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ABSTRACT

Context. The current generation of X-ray satellites has discovered many new X-ray sources that are difficult to classify within the
well-described subclasses. The hard X-ray source IGR J11215−5952 is a peculiar transient, displaying very short X-ray outbursts
every 165 days.
Aims. To characterise the source, we obtained high-resolution spectra of the optical counterpart, HD 306414, at different epochs,
spanning a total of three months, before and around the 2007 February outburst with the combined aims of deriving its astrophysical
parameters and searching for orbital modulation.
Methods. We fit model atmospheres generated with thefastwind code to the spectrum, and used the interstellar lines in the spectrum
to estimate its distance. We also cross-correlated each individual spectrum to the best-fit model to derive radial velocities.
Results. From its spectral features, we classify HD 306414 as B0.5 Ia.From the model fit, we findTeff ≈ 24 700 K and logg ≈ 2.7, in
good agreement with the morphological classification. Using the interstellar lines in its spectrum, we estimate a distance to HD 306414
d >∼ 7 kpc. Assuming this distance, we deriveR∗ ≈ 40R⊙ andMspect≈ 30 M⊙ (consistent, within errors, withMevol ≈ 38 M⊙, and in
good agreement with calibrations for the spectral type). Analysis of the radial velocity curve reveals that radial velocity changes are
not dominated by the orbital motion, and provide an upper limit on the semi-amplitude for the optical componentKopt <∼ 11±6km s−1.
Large variations in the depth and shape of photospheric lines suggest the presence of strong pulsations, which may be themain cause
of the radial velocity changes. Very significant variations, uncorrelated with those of the photospheric lines are seenin the shape and
position of the Hα emission feature around the time of the X-ray outburst, but large excursions are also observed at other times.
Conclusions. HD 306414 is a normal B0.5 Ia supergiant. Its radial velocitycurve is dominated by an effect that is different from binary
motion, and is most likely stellar pulsations. The data available suggest that the X-ray outbursts are caused by the close passage of the
neutron star in a very eccentric orbit, perhaps leading to localised mass outflow.

Key words. stars: binaries: close - stars: evolution - stars: individual: HD 306414 - stars: pulsars - stars: supergiants - X-rays:stars -
X-rays: individual: IGR J11215−5952

1. Introduction

The hard X-ray transient IGR J11215−5952 was discovered
by the INTEGRAL satellite (Lubinski et al. 2005). ASwift
localisation confirmed its unambiguous identification as the
bright B-type supergiant HD 306414 (Romano et al. 2007).
IGR J11215−5952 has been observed to present a number of
short X-ray outbursts, separated by long intervals of quiescence,
with a recurrence time of 164.6 d (Romano et al. 2009). During
each outburst, the source is detected for∼ 8 d. The outbursts
appear to have a recurrent structure, consisting of a fast rise, a
bright peak (reachingLX ≈ 1036erg s−1 for the assumed distance
of 6.2 kpc) that may last only∼ 1 d each cycle, and a grad-
ual decay. However, the X-ray emission during the decay seems
to consist of many flares superimposed and the sparse coverage
does not permit ruling out that some of them reach similar lumi-
nosity to the peak (Romano et al. 2009). During the flares, pul-
sations atPS = 187s are seen, indicating that the compact object

⋆ Based on observations collected at the European Southern
Observatory, La Silla, Chile (ESO 078.D-0172)

is a magnetised neutron star. The X-ray spectra are typical of a
high-mass X-ray binary.

Outside the outbursts, the X-ray luminosity has been ob-
served to be below the detection limit ofSwift, roughly cor-
responding toLX <∼ 5 × 1033 erg s−1 at the distance assumed
(Romano et al. 2007). Seven outbursts were reported between
2003 and 2008, all happening at the recurrence time. No detec-
tions outside these outbursts are reported.

The counterpart, HD 306414, has not been studied in de-
tail. It was classified as a B1 Ia supergiant (Vijapurkar & Drilling
1993), and the scarce photometry available in the literature does
not suggest strong photometric variability (Negueruela etal.
2005). The X-ray behaviour of the source, characterised by ir-
regular flaring, seems typical of neutron stars accreting from the
wind of a supergiant. Because of the regular outbursts and lack
of detection outside them, IGR J11215−5952 has been classed as
a supergiant fast X-ray transient (SFXT; Romano et al. 2009). A
few of these objects show similar behaviour, displaying periodic
outbursts (e.g. IGR J18483−0311; Romano et al. 2010), though
others seem to flare at irregular intervals, even if some orbital
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modulation of the X-ray emission is present. The recurrenceof
outbursts at fixed intervals is widely interpreted as a signature of
the orbital period, while the lack of X-ray emission outsidethese
outbursts argues for an eccentric orbit.

In this paper, we try to improve our understanding of
IGR J11215−5952 by studying in detail its optical counterpart,
HD 306414. In Sect. 2, we present our observational dataset.In
Sect. 3, we fit the spectrum with a model atmosphere to deter-
mine the stellar parameters. In Sect. 4, we discuss the radial ve-
locity variations seen in the spectrum. Finally, in Sects. 5and 6,
we discuss the implications of these results and draw some con-
clusions.

2. Observations and description of the spectrum

Spectra of HD 306414 were obtained with theferos instru-
ment mounted on the ESO/MPG 2.2 m telescope, located at
the European Southern Observatory (ESO) in La Silla (Chile).
Observations were obtained on eleven dates irregularly spaced
between December 2006 and February 2007. Two additional
feros spectra were taken in March 2009, with another one taken
in May 2009 using the same instrumentation. The 14 spectra
were bias subtracted, flatfield corrected, extracted using the op-
timum mode and wavelength calibrated using the standardferos

Midas pipeline. The spectra are characterised by a very wide
spectral coverage, going from∼3500Å to∼9200Å, and a re-
solving powerR ∼ 48 000. The 39 échelle orders are blaze-
corrected and merged into a single spectrum by the pipeline.The
complete log of observations is given in Table 1.

The classification region of a typical spectrum is shown in
Fig. 1, corresponding to the Dec 22, 2006 observation, with la-
bels providing line identification. The remainder of the spectrum
is not shown (except for selected regions in Figures 2, 3 and 8),
as there are very few stellar features present, and they are as ex-
pected for the spectral type derived below (see Negueruela et al.
2010 for a description of typical features). The spectra only show
variability in the Hα and Hβ lines. Hα is always in emission, but
the line shows variations both in shape and centroid position (see
Sect. 3.6 ). Hβ is regularly in absorption, but occasionally shows
emission components, as in the spectrum shown in Fig. 1. The
absorption spectral features correspond to an early B supergiant,
with H i and Hei lines showing similar intensities and many nar-
row lines of ionised metals, most notably Oii, N ii and Siiii/iv.

3. Results

3.1. Spectral classification

HD 306414 has previously been classified as B1 Ia. For early
B stars, the main temperature diagnostic is the ratio between
the Siiii 4553 Å and Siiv 4089 Å lines. In our case, the relative
strengths are very similar, placing HD 306414 between spec-
tral types B0.5 and B0.7. The Heii 4686 Å line is very weakly
present, and Heii 4200 & 4541 Å are hardly detectable, corrob-
orating that the star lies in this spectral range. Luminosity sen-
sitive ratios, like that of Siiv 4116 Å to Hei 4121Å, support a
high luminosity, with the intensity of the Oii lines, and the ratio
of Si iii 4553 Å to Hei 4388Å favouring a Ia class.

Therefore we adopt a spectral type B0.5 Ia, though noting
that the star is slightly later than the standard,κ Ori. Apart from
Hα, the most remarkable spectral features outside the range
shown are the Feiii lines of multiplets 115 and 117 in emis-
sion between 5920 and 6032 Å (see Fig. 2). These lines are

Table 1. Log of observations of high-resolution spectra sorted
by date.

Number Date MJD

1 03/12/2006 7:52:00 54072.33
2 11/12/2006 5:41:00 54080.24
3 15/12/2006 6:34:00 54084.27
4 22/12/2006 8:38:00 54091.36
5 29/12/2006 6:22:00 54098.27
6 17/01/2007 3:30:00 54117.15
7 05/02/2007 8:50:00 54136.37
8 11/02/2007 4:39:00 54142.19
9 13/02/2007 1:38:00 54144.07
10 16/02/2007 2:22:00 54147.10
11 16/02/2007 2:40:00 54147.11
12 19/03/2009 7:41:28 54909.32
13 21/03/2009 3:27:10 54911.14
14 13/05/2009 2:09:00 54964.09
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Fig. 2. The Feiii lines of multiplets 115 and 117 in emission in
the spectrum of HD 306414.

seen in emission in the spectra of very luminous supergiants.
Wolf & Stahl (1985) proposed that their presence in emission
could be used to discriminate between normal B supergiants
and B hypergiants. However, HD 306414 is not a hypergiant, as
shown by the fact that Hei 4387 Å is stronger than Siiii 4553Å
(Walborn et al. 1990, and Fig. 1). Indeed, we find the Feiii lines
in emission in the spectra of several early-B supergiants oflumi-
nosity class Ia in the UVES POP database (Bagnulo et al. 2003).
Their presence in the spectrum of HD 306414 represents direct
confirmation of its high luminosity.

3.2. Interstellar lines and distance estimation

We used the interstellar lines in the spectrum of HD 306414
to study the radial velocity distribution of interstellar mate-
rial along its line of sight. We calculated the velocity scale
with respect to the local standard of rest (LSR) by assuming
that the Sun’s motion with respect to the LSR corresponds to
+16.6 km s−1 towards Galactic coordinatesl = 53◦; b = +25◦.

In Fig. 3, we show the interstellar Nai D lines; both present
identical morphologies, with two well-separated components.
Other interstellar lines, such as the Caii K & H doublet, have
an almost identical structure. The Ki 7699 Å line, which is
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Fig. 1. Spectrum of HD 306414 covering from 3950 Å till 5000 Å. We showidentifications for Balmer and Hei, as well as the
strongest lines of Siiii, Si iv, O ii, N ii and Niii. The spectral region selected to determine radial velocities via cross-correlation is
highlighted.

not saturated, has very similar edge velocities. In the Nai D
lines, the wider component is centred on+10 km s−1 and the
narrower component is centred on−14 km s−1. The total line
width at half height is≈ 42 km s−1. Both lines have the same
wing profiles, but the D2 line is more saturated than D1. In
Fig. 3, we also show the Galactic rotation curve in the direc-
tion to HD 306414 (l = 291.◦89, b = +1.◦07), computed assum-
ing circular Galactic rotation and adopting the rotation curve of
Brand & Blitz (1993), with a circular rotation velocity at the po-
sition of the Sun (dGC = 8.5 kpc) of 220 km s−1. Along this line
of sight, LSR velocities start at small negative values and be-
come more negative with distance until reaching a minimum at
−18.5 km s−1 (at a Galactocentric distance of 7.9 kpc, 3.2 kpc
away from the Sun). From then on, radial velocities increase
with distance, becoming positive at a distance of 6.5 kpc from
the Sun.

The line of sight in the direction to HD 306414 passes first
through the Southern Coalsack (distance about 170 pc), one of
the most prominent dark nebulae in the southern Milky Way
(Nyman et al. 1998), which is responsible for the strong ab-
sorption at low (negative) velocities. It then follows along the
Sagittarius-Carina spiral arm, which is seen almost tangentially.
The first intersection with the arm takes place between∼1.0 and
2.5 kpc. The longitude-velocity diagram of CO emission inte-
grated over latitude (Cohen et al. 1985) shows CO emission with

negative velocities, reaching−45 km s−1, which do not agree
with the model prediction. The interstellar lines in HD 306414
show components at similarly high negative velocities (with the
half-depth edge at−21 km s−1 and a component reaching almost
−35km s−1), indicating that the star is located at a larger distance.
In particular, the star must be more distant than two large molec-
ular clouds (288.5+1.5 and 291.5−0.8) at a distanced ≈ 3.3 kpc
(Cohen et al. 1985).

The far intersection with the Sagittarius-Carina arm (outside
the solar circle) results in CO emission at positive LSR velocities
(Cohen et al. 1985). The star HD 97253, located atd ≈ 2.5 kpc
(290.◦8, +0.◦1), only shows negative radial velocities in its inter-
stellar Nai lines (which are otherwise very similar to those of
HD 306414; cf. Hunter et al. 2006), suggesting that the positive
components in the interstellar spectrum of HD 306414 are not
produced by clouds very close to the Sun,1. Though Cohen et al.
(1985) do not identify any large cloud producing absorption
close to HD 306414, this absorption edge (reaching values as
high as+21 km s−1) must be produced at large distances. In

1 Other nearby stars have similar interstellar lines. HD 97534
(290.◦98,+0.◦24), located at about 3.9 kpc (Dambis 1991), only displays
negative velocities. HD 94910 (AG Car; 289.◦2, −0.◦70), located at a
distance∼ 6 kpc (Hoekzema et al. 1992; Humphreys et al. 1989) also
shows very similar interstellar lines, but the long wavelength edge is
affected by the presence of stellar emission components.
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view of this, we conclude that HD 306414 must be located on
the near side of the second intersection with the Sagittarius-
Carina arm, at a distance not less than, and perhaps slightlymore
than, 7 kpc. The nearby massive open cluster NGC 3603 (291.◦5,
−0.◦4) has a distance estimate of 7.6 kpc (Melena et al. 2008) and
vLSR = +14 km s−1, in good agreement with the radial velocity
curve model.

3.3. Spectrum modelling

To calculate the stellar parameters, we used the code Fastwind

(an acronym for Fast Analysis of STellar atmospheres with
WINDs; Puls et al. 2005; Santaloya-Rey et al. 1997). Fastwind

is a spherical non-LTE model atmosphere code with mass loss.
The analysis is based on visual fitting of hydrogen Balmer and
Si iii/iv lines (see Castro et al. 2012, for additional details). With
the stellar parameters obtained from the analysis, we generated
a synthetic spectrum, which will be the template used for the
determination of radial velocities through the cross-correlation
method.

We used as a reference the spectrum observed on December
15th, 2006. As a first step we estimated the rotational velocity
of the star, using the method of Simón-Dı́az & Herrero (2007),
as vrot = 50 km s−1. With this vrot, a macroturbulence value
vmac = 80 km s−1 is needed to reproduce the profiles. The best
fit is obtained forTeff = 24 700 K, logg = 2.7. The tempera-
ture is slightly cooler than obtained for other B0.5 Ia supergiants
(Markova & Puls 2008; Crowther et al. 2006), but hotter than
that of B0.7 Ia stars (Crowther et al. 2006), in good agreement
with the spectral classification. The surface gravity is typical of
the luminosity class.

The mass loss rate was determined from the fit to the Hα
line and must be considered approximate, as the line shows some
variability. The value derived depends onv∞, which, in the ab-
sence of ultraviolet spectra, must be assumed to be the typical
value for the spectral type. The wind was modelled without con-
sidering clumping. Model parameters are listed in Table 2.

The He relative abundance,ǫ = 0.13± 0.03 is very slightly
above solar, suggesting little chemical evolution. From the
model fits, we derived chemical abundances for the species
present in the spectrum. The values obtained are displayed in
Table 3. The C abundance is very inaccurate, because it is de-
rived from only one line (Cii 4267 Å), as Cii 6578, 6582 Å are

Table 2. Stellar parameters derived from the model fit (upper
panel) and calculated using the photometry of Klare & Neckel
(1977) and assumingd = 7.0 kpc (lower panel).

Teff (103K) 24.2± 1.0
logg 2.7± 0.1
v sini (km s−1) 50
U − B −1.00
B − V −0.20
V − R −0.15

d(kpc) 7± 1
MV −7.1± 0.3
log(L∗/L⊙) 5.68± 0.14
R∗/R⊙ 40± 5
M∗/M⊙ 29± 10
log(Ṁ) (M⊙ yr−1) −5.7± 0.3
v∞ (km s−1) 1230,a

(a) Assumed.

too weak at this spectral type. The Mg abundance was also ob-
tained from one line (Mgii 4481Å), but its value is consistent
with the Si abundance. The N and O abundances were obtained
by fitting a large number of lines. Not all the transitions aremod-
elled with the same accuracy, but the values derived seem con-
sistent. Based on them, the star seems to be slightly N-enhanced,
suggesting little evolution, in agreement with the He abundance.

3.4. Extinction and stellar parameters

The combination of accurate stellar parameters with a broad
spectral energy distribution allows a good determination of the
extinction law and reddening. We usedUBV photometry from
the literature (Klare & Neckel 1977),2, and JHKS photometry
from 2MASS (Skrutskie et al. 2006). These data were used as
input for theχ2 code for parameterized modelling and character-
isation of photometry and spectroscopychorizos implemented
by Maı́z-Apellániz (2004), which fits different extinction laws to
the data and determines the values ofR andE(B − V) that pro-
duce best fits. From the fit, we obtain as most likely parameters,
R = 4.2, AV = 3.00, E(B − V) = 0.70. The value ofR is rather

2 Note that theUBV photometry of Drilling (1991) shows excellent
agreement with that of Klare & Neckel (1977).
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Fig. 4. Hertzsprung-Russell diagram showing the evolutionary
tracks without rotation by Schaller et al. (1992), and the position
of HD 306414. Numbers to the left of the ZAMS indicate initial
mass in solar masses.

high compared to the standard valueR = 3.1, but well within the
range of values seen along different lines of sight.

Assuming a distanced = 7.0 kpc, a lower limit based on
the estimate in the previous section, the absolute magnitude for
the source isMV = −7.1. This value is within the usual range
of magnitudes for early-B supergiants of luminosity class Ia
(Crowther et al. 2006). From this, we calculated the absolute
stellar parameters displayed in Table 2. In order to assign for-
mal errors to these values, we assumed conservative errors of
±1 kpc in the distance. The position of the star in the theoretical
HR diagram is shown in Fig. 4. The evolutionary tracks from
Schaller et al. (1992) suggest that the star has just completed H
core burning. Its evolutionary mass (obtained placing the star on
the theoretical tracks) is 37.5 M⊙ (present day), corresponding
to an initial massMini = 42 M⊙.

The spectroscopic massM∗ = 29± 10M⊙ is (just) consis-
tent within the errors with the present-day evolutionary mass.
In many cases, supergiants show a discrepancy between spec-
troscopic and evolutionary masses (Herrero et al. 1992; Herrero
2007). In addition, the evolutionary mass compares well with
those obtained for Ia supergiants in the B0–1 range (e.g.
Crowther et al. 2006; Trundle et al. 2004). We must note that the
distance to the source may be somewhat higher, allowing for a
moderately higher spectroscopic mass. On the other hand, the
use of evolutionary tracks that take initial rotation into account
(e.g. Ekström et al. 2012) would result in a somewhat lower evo-
lutionary mass. In conclusion, all the data available are con-
sistent with a present-day mass≈ 35 M⊙. We stress that this
is an evolutionary mass, and thus directly comparable to other
evolutionary masses (e.g. Crowther et al. 2006). The dynami-
cal masses of some HMXBs are smaller than the masses corre-
sponding to their spectral types (e.g. van der Meer et al. 2007).

3.5. Light curve

A long-term photometric lightcurve is available for HD 306414
from the All Sky Automated Survey ASAS-3 photometric cata-
logue (Pojmanski 1997). The catalogue containsV-band obser-
vations of HD 306414 between HJD 2451880 and 2455170, with
a total of 629 photometric points.

Table 3. Chemical abundances resulting fromfastwind analyses.

Species log(X/H)

Si 7.73± 0.17
O 8.73± 0.20
N 8.42± 0.10
C 7.74± 0.44
Mg 7.60± 0.25

The lightcurve shows no clear evidence of orbital variabil-
ity. We searched for possible periodicities using different al-
gorithms (Lomb-Scargle periodograms, phase-dispersion min-
imisation,clean) available within theStarlink packageperiod
(Dhillon et al. 2001), without finding any statistically significant
result. Next, we folded the photometric data on the 164.6-d pe-
riod derived from the X-ray observations. Again, we did not
find any significant modulation. Short-term variability is present
throughout the whole timespan covered by the observations,
but it is likely consistent with the photometric errors, typically
0.04 mag, but occasionally as high as 0.08 mag. The average
magnitude remains constant over∼9 yr of observations, with a
standard deviation of 0.04 mag.

3.6. Radial velocity curve

The strong wind of an early B supergiant may affect the
shape and centroid of Hi and Hei lines. For example,
van der Meer et al. (2007) studied the radial velocity curvesof
the optical components in three high-mass X-ray binaries. These
objects, with spectral types between O8 and B0, exhibit only
lines of Hi, Hei and Heii (apart from the Siiv 4089 Å line).
van der Meer et al. (2007) carried out measurements of each in-
dividual line, finding differences of a few percent between lines.
Fortunately, given its later spectral type, HD 306414 presents
a large number of lines corresponding to ionised metals. Such
lines are formed in deep photospheric layers, and thereforeare
not affected by the wind. We performed preliminary analysis
of individual spectral lines to decide which set of lines would
be most suitable for measuring radial velocities. When indi-
vidual metallic lines are measured, the radial velocities within
a given spectrum are consistent, with differences smaller than
4 km s−1. As in previous analyses of similar stars, we found
that the best behaviour corresponds to the Siiii triplet, which
presents very small dispersion between the values for the in-
dividual lines. However, cross-correlation techniques are well
known to produce more accurate velocities, even for early-type
stars (Liu et al. 1988), as they make use of all the spectral infor-
mation (e.g. Hill 1993).

We used the cross-correlation technique, implemented in a
python program developed by ourselves, to determine radialve-
locities. Every cross-correlation function (CCF) was subject to
apodization and a Gaussian function was fitted to the CCF by
using the method of least squares. We chose as a template the
synthetic spectrum used to fit the observed spectrum in the pre-
vious subsection. We cross-correlated every individual spectrum
using the 4540–4660Å range (marked in Fig. 1). There are sev-
eral strong reasons to choose this region: firstly, it contains the
Si iii triplet, together with a large number of Oii and Nii lines;
secondly, it does not include any Hei or H i lines that could be
affected by the wind; finally, it does not include any significant
atmospheric or interstellar feature that would not participate of
the stellar motion. The resulting velocities are shown in Table 4,
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Table 4. Radial velocities corrected to the heliocentric restframe
and sorted by phase (with a systemic shift of+2.8 km s−1 not
applied). The last column shows the residuals for the fit to the
orbit shown in Fig. 5 and discussed in Sect. 4.2.

Number Phase vrad (km s−1) O-C (km s−1)

1 0.00000 −6.42 −6.61
2 0.04806 −0.85 −1.70
3 0.07255 2.78 1.56
12 0.08557 −9.46 −11.00
13 0.09663 −3.10 −4.83
4 0.11563 7.64 5.67
5 0.15761 12.23 9.39
6 0.27233 10.49 3.62
7 0.38911 15.01 0.20
14 0.41835 −4.15 −3.78
8 0.42447 −6.49 −6.10
9 0.43589 −5.53 −3.65
10 0.45430 5.54 8.64
11 0.45436 4.97 8.07

after application of the heliocentric correction. A systemic ve-
locity of +2.8 km s−1, which was applied to the synthetic spec-
trum, is not included. Phase zero was chosen to correspond tothe
first radial velocity sorted by date, as we did not want to force the
time of periastron passage. The formal error in each individual
measurement is 0.9 km s−1.

The persistence of recurrent X-ray outbursts every 164.6 d
strongly suggests that this is the orbital period (Romano etal.
2009). Our radial velocity data cannot be used to verify the pe-
riod, as the 2006–2007 data cover only 75 days (i.e. less than
half the periodicity), while the 2009 spectra correspond tothe
same phases when folded on this period. The periodicity in the
X-rays has, however, been observed between 2003 and 2011
(Romano et al. 2011) and almost certainly represents the orbital
period. In spite of this, when we fold the data on this period,
the resulting radial velocity curve is not consistent with expec-
tations. For instance, measurements♯3 and♯12 were taken at al-
most the same phase (though on different dates), but show a large
difference in radial velocity (> 14 km s−1). This effect is not due
to the measurement technique, as illustrated by measurements
♯10 and♯11. These two spectra, taken on the same night, result
in measurements identical within the errors, demonstrating that
the cross-correlation technique is as accurate as the formal errors
indicate.

Moreover, the folded radial velocity curve (Fig. 5) does not
show a shape compatible with orbital modulation. The disper-
sion of the measurements is clearly dominated by two large ex-
cursions, happening around phase 0.1 and around phase 0.4. We
are thus forced to conclude that the radial velocity changesin
the spectrum of HD 306414 are not directly reflecting the dy-
namical motion of the system, but are caused at least in part by
some other physical effect. We do not believe these changes to
be due to variations in line profiles associated with the stellar
wind, because they are measured in high-ionisation lines (such
as the Siiii triplet), but also seen in lines like Hei 4471 Å, more
likely to be affected by the wind.

A similar effect, with radial velocity variations not reflect-
ing binary motion, is observed in the HMXB GX301−2, which
contains a very luminous B1 hypergiant (Kaper et al. 2006).
Possible explanations are tidal deformation (unlikely in such a
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Fig. 5. Radial velocity curve folded on the 164.6-d period de-
rived from the X-ray observations, with phase zero chosen tobe
the time of the first observation. The dashed line marks the time
of X-ray peaks. The thick line represents a typical radial velocity
curve for an eccentric orbit with the periastron phase at this time
(see Section 4.2). The numbers identify the observations, as in
Table 1.

wide system as IGR J11215−5952, except close to periastron) or
pulsations (cf. van Kerkwijk et al. 1995; Quaintrell et al. 2003).
To investigate the origin of the variations, we plotted the evolu-
tion of several metallic lines, which are expected to be produced
deep in the photosphere and not affected by the stellar wind, find-
ing very complex variability. In addition to changes in the ra-
dial velocity of the centroids, the lines display changes inshape
and depth. An example is shown in Fig. 6, but all metallic lines
display similar behaviour. Such changes have been observedin
other luminous B-type supergiants, and are generally attributed
to pulsations (e.g. Ritchie et al. 2009).

Given the important changes in shape of the lines used for the
cross-correlation, one could worry about the accuracy of the ra-
dial velocities measured. In Fig. 7, we plot the cross-correlation
functions for the three spectra that were shown in Fig. 6. In spite
of the large differences in the shapes of the metallic lines, the
shape of the cross-correlation function is not affected, and there-
fore we conclude that the relative accuracy of the radial velocity
determinations is as good as their formal errors.

The Hα line, the best mass loss tracer in the optical range,
also shows strong variability in shape and radial velocity (as de-
fined by the centroid of the emission component). The changes
in radial velocity do not correlate with those of the photospheric
lines. This lack of correlation is not unexpected, as the emission
line should be probing the stellar wind. The variations detected
in the Hα line are likely due to structure in the stellar wind. In
some high-mass X-ray binaries with close orbits, the wind struc-
ture is affected by the X-rays, and some absorption components
are attributed to an accretion wake (e.g. Kaper et al. 2006).Such
structures are very unlikely to form in IGR J11215−5952, be-
cause X-rays are only emitted over a very small part of the orbit.

In spite of this, as seen in Fig. 8, very strong changes in the
shape of Hα took place close to the time of the X-ray outburst
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Fig. 6. Variability in the line profiles of two of the features used
for the cross correlation, Oii 4591 and 4596 Å. The red line is
spectrum 1, the green line is spectrum 3, and the black line is
spectrum 5. The variations in line depth (indicated by the arrows)
are typical of pulsating supergiants.
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spectrum 1 in the region used for the cross-correlation.Bottom
panel: Peak of the cross correlation functions for three spectra.
The spectra chosen are the same ones for which a small fraction
is depicted in Fig. 6. The colour coding is the same as in Fig. 6.

covered by our observations, which started on February 7th and
had its peak on February 9th (Romano et al. 2009). The Hα pro-
file on February 5th clearly shows a much deeper absorption
trough than any other spectrum. Meanwhile, the centroid of the
emission features migrates redwards. In contrast, on February
11th the emission feature had moved bluewards, showing a very
large excursion invrad. By February 13th, the line seems back
to its typical profile. We must note, however, that a very strong
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Fig. 8. Hα profiles normalised and displayed in temporal order
(day-month-year). The variable sharp features are atmospheric.

bluewards excursion is also seen in the December 22nd spec-
trum, seven weeks (i.e. almost one third of the orbital period) be-
fore the outburst, when no X-ray emission was expected from the
source. While these excursions in the radial velocity of Hα are
taking place, the radial velocity of the photospheric linesdoes
not follow the same behaviour.

4. Discussion

IGR J11215−5952 is a peculiar X-ray source, associated with
the class of SFXTs. A neutron star, detected as a transient
PS = 187 s pulsar, orbits the B0.5 Ia supergiant HD 306414. The
X-ray source is only detected for short timespans (< 10 d), but
reappears consistently every 164.6 days, strongly suggesting that
this is the orbital period (Romano et al. 2011). Because of the
very short duty cycle, a very high eccentricity is assumed. Two
basic ideas have so far been proposed to explain its behaviour.
Sidoli et al. (2007) speculated on the presence of an equato-
rial disk around the supergiant, with the outbursts being due to
crossings of the neutron star through this disk. Negueruelaet al.
(2008) tried to fit IGR J11215−5952 within a general picture of
supergiant X-ray binaries, suggesting that accretion becomes in-
efficient when the neutron star is more than∼ 3R∗ away from
the supergiant, as a consequence of increasing clumpiness in the
stellar wind.

The presence of a large disk around the supergiant seems
to be ruled out by the optical observations, as there is no evi-
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dence of such a structure in the optical spectra. The Hα line, the
best mass-loss tracer in the optical range, shows a morphology
and variability typical of early-B supergiants (Fig. 8), and can
be fit by the model atmosphere, which assumes spherical mass
loss. A small disk can perhaps be accommodated, by assuming
that it is outshone by the supergiant, but then the outburstsmust
happen when the neutron star is within the region with a strong
stellar wind, and the two alternatives become almost indistin-
guishable. Another closely related possibility is an equatorial
enhancement or focusing of the wind. This possibility has been
proposed in some similar systems with very luminous compan-
ions (e.g. in’t Zand et al. 1998), though no physical mechanism
has been proposed to cause this enhancement.

On the other hand, accretion from a spherical wind, even if
clumpy, seems unable to reproduce the characteristics of the X-
ray outbursts, such as the very short duration and strong peak
(Romano et al. 2009; Karino 2010). An abrupt transition be-
tween a region where high accretion rates can be achieved and
the rest of the orbit, where accretion is suppressed, would be
required.

The optical spectra show a strong change in the morphology
of Hα around the time of the February 2007 periastron passage.
As we also see another important change seven weeks before
periastron, a direct connection between the changes in profile
and the periastron passage cannot be claimed. The spectral mor-
phology of HD 306414 indicates a very luminous supergiant,
and hence a strong and highly variable mass-loss is expected.
The conclusion that changes in radial velocity do not seem tobe
dominated by orbital motion, but by some other phenomenon,
most likely stellar pulsation, adds complication to the stellar
mass loss. The possibility of enhanced mass loss close to pe-
riastron, though, is not ruled out, and perhaps is even suggested
by the observations.

4.1. Stellar pulsations

The sort of line-profile variability displayed in Fig. 6 is present
in all the absorption lines in the spectrum of HD 306414. Similar
variability is generally interpreted as a reflection of stellar pul-
sations. Oscillations in main-sequence and not-very-evolved B-
type stars have been known for years (Aerts 2006). Recent ev-
idence also points to widespread oscillations in B-type super-
giants. Both g- and p-modes were detected in HD 163899 (B1 Ib,
Saio et al. 2006), while photometric variability strongly sug-
gests that a very high fraction of B supergiants present opacity-
driven gravity-mode oscillations (Lefever et al. 2007). Inaddi-
tion, there is growing evidence suggesting that the extra line
broadening in OB supergiants known as macroturbulence could
be caused by photospheric line-profile variations (Aerts etal.
2009; Simón-Dı́az et al. 2013).

Oscillations have also been reported in GP Vel, the B0.5 Ib
optical counterpart to the X-ray pulsar Vela X-1. When analysing
its radial velocity curve, van Kerkwijk et al. (1995) detected sub-
stantial deviations from the curve expected for pure Keplerian
motion. Large changes in the shape of line profiles were also
observed. Later, Quaintrell et al. (2003) showed that, after sub-
tracting the best orbital fit, the residual radial velocity excursions
seemed to be modulated at multiples of the orbital frequency.
This led Quaintrell et al. (2003) to suggest that the oscillations
were tidally induced by the companion.

Koenigsberger et al. (2012) showed that tidal interactions
between the neutron star and supergiant in the slightly eccen-
tric Vela X-1 system can indeed induce surface motions on the
supergiant companion that lead to strongly variable profiles for

the photospheric lines. This in turn causes the measured radial
velocity curve to deviate significantly from that expected from
Keplerian motion. In all simulations run by Koenigsberger et al.
(2012), the net effect was to give a radial velocity amplitude
higher than expected from pure Keplerian motion, which in turn
would lead to an overestimation of the neutron star mass, as
pointed out by Quaintrell et al. (2003). Similar effects could also
occur in HD 306414, which has an even more eccentric or-
bit, but without detailed modelling of the type carried out by
Koenigsberger et al. (2012), such an assertion remains specula-
tive.

The radial velocity excursions measured in HD 306414 are
not much more extreme than those seen in GP Vel, which can
reach≈ 12 km s−1 (Quaintrell et al. 2003), and are also com-
patible with the highest values observed in (apparently) isolated
supergiants (Simón-Dı́az et al. 2010). It is unclear if theneutron
star companion may play a role in exciting the oscillations.The
orbit of Vela X-1 is much tighter (Porb = 9.0 d), but the ec-
centricity is almost certainly much smaller (e = 0.09 in Vela
X-1). In a wide, eccentric orbit, the regular passage of the neu-
tron star through a close periastron could provide a strong res-
onance effect, exciting non-radial oscillations (Witte & Savonije
1999). In any case, we must stress that the presence of a compan-
ion does not seem necessary to excite strong pulsation. Similarly
wide excursions have been observed in the extreme B supergiant
HD 50064, which could be related to luminous blue variables
(Aerts et al. 2010). They seem to be modulated with a 37 d pe-
riod, also detected in the photometry, which is interpretedas a
radial oscillation mode. Strong changes in the depth of photo-
spheric lines are also seen (Aerts et al. 2010).

Pulsations are generally revealed by periodic photometric
variability. However, the typical amplitudes of these variations
are only a few hundredths of a magnitude (typically,∼0.04;
Lefever et al. 2007). Variability of this amplitude would not be
detectable with the accuracy and sampling of the ASAS photom-
etry. We also checked if the presence of pulsations may have an
effect on the stellar parameters derived. We carried out the same
fastwind analysis for all the spectra available, finding slightly
different physical parameters between spectra, but always com-
patible with the values reported within the error bars quoted.

4.2. Stellar and orbital parameters

Even if stellar pulsations are the main cause of the radial velocity
variations, it is highly unlikely that they are theonly cause. Our
spectroscopic analysis of HD 306414 resulted in values for the
mass compatible with a current massM∗ ≈ 35M⊙. Naturally,
a neutron star, with a massMX ≈ 1.4 M⊙ in a wide orbit is
unlikely to induce large Doppler shifts in such a massive su-
pergiant. On the other hand, the short X-ray outbursts detected
every 164.4 d argue for a highly eccentric orbit, suggestingthat
the neutron star should come sufficiently close to the supergiant
to induce some measurable radial velocity shifts, unless the line
of sight is almost perpendicular to the orbital plane. It is thus
sensible to expect an orbital signature to lie hidden below the
higher-amplitude variations due to pulsations.

In an attempt to constrain the orbital parameters, we used the
SBOP code,3 (Etzel 2004), which fits single-lined orbits to the
observed radial velocities of a spectroscopic binary usingone
of several optimisation schemes based on the Lehmann-Filhes
differential correction procedure, to investigate which sort of or-
bital solutions are compatible with the observed radial velocity

3 http://mintaka.sdsu.edu/faculty/etzel/
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curve. SBOP requires a preliminary knowledge of some param-
eters to produce an accurate fit. If we fix the orbital period tothe
X-ray outburst recurrence time, the code will invariably locate
the periastron at the phase corresponding to the large excursion
in radial velocity around 2006 December 22nd. The sudden in-
crease in radial velocity in a few days is interpreted by the code
as periastron passage in a high-eccentricity orbit. As it isdifficult
to explain the short X-ray outbursts observed if they happenat
orbital phase∼ 0.3, we assume that this abrupt change in radial
velocity is not due to orbital motion.

Therefore we also forced the time of periastron to be con-
strained between MJD 54136 and 54144, i.e. within four days of
the peak of the X-ray outburst that happened on 2007 February
9th and fixed the zero time of ephemerides to the time of the first
observation. We run SBOP fixing the eccentricity and lettingthe
other orbital parameters converge. We tried different values of
the eccentricity, varying in steps of 0.05, and checked the stan-
dard deviation of the fit for each value. Orbits with moderate
to large eccentricities can be fitted to the radial velocity points
with similar standard deviations, though none of them results in a
credible fit. From examination of a large number of fits, we con-
clude that the semi-amplitude for the optical component must be
Kopt <∼ 11± 6 km s−1 so that the orbital variations are not seen.

The large changes in radial velocity observed around the
time of periastron allow for rather high orbital eccentricity. If
we assumeKopt ≈ 11 km s−1, we can find solutions with high-
eccentricity that result in relatively low standard deviations (as
compared to other solutions). As an example, Figure 5 shows
the radial velocity curve of an orbit withKopt = 10.4 km s−1

ande = 0.8 that could lie hidden below the pulsations. As an
illustration, Table 4 includes in the last column the residuals for
this fit. Even though they are unacceptably high, no other fit re-
sults in a lower standard deviation. For such high eccentricity
orbits, assumingM∗ = 35M⊙ and a standard neutron star mass
MX = 1.4 M⊙, the expectedKopt is always≈ 10 km s−1 for
i = 90◦. It is therefore not surprising that we fail to detect the
orbital motion in the presence of strong pulsations.

4.3. Accretion mechanisms

The orbital parameters suggested by the X-ray behaviour
of IGR J11215−5952 are very different from those of
other SFXTs (or any other supergiant X-ray binary), as
both the orbital period and eccentricity appear rather high,
and seem more typical of long-period Be/X-ray bina-
ries (Okazaki & Negueruela 2001). Supergiant systems like
IGR J16465−4507 or SAX J1818.6−1703 havePorb ≈ 30 d,
and moderate to high eccentricities are deduced from the modu-
lation in their X-ray flux (see, e.g. Clark et al. 2010). The pecu-
liar supergiant X-ray binary GX301−2 hasPorb = 41.498 d and
e = 0.462 (Koh et al. 1997). Though its X-ray flux is strongly
modulated and presents a strong peak, emission is detected
throughout the orbit. Leahy & Kostka (2008) find that the X-ray
lightcurve can be reproduced if the B1 Ia+ hypergiant compan-
ion loses mass through a tidal stream in addition to the strong
stellar wind.

Even though the mass donor in GX301−2 is more evolved
and perhaps more massive (and hence more luminous) than
HD 306414 (Kaper et al. 2006), the similarities between the two
systems are strong. It is easy to envisage IGR J11215−5952
evolving into a system very similar to GX301−2 as stellar evo-
lution turns HD 306414 into a later-type B hypergiant (with a
slower and denser wind) and tidal circularisation reduces the ec-
centricity. The accretion mechanism may also be similar. Given

the high mass of the supergiant, the neutron star may come very
close to its surface without giving rise to changes in the radial
velocity higher than those allowed by our observations. Indeed,
periastron distances≈ 2 R∗ are compatible with eccentricities
≈ 0.8. Such a close distance may lead to localised mass loss
through the inner Lagrangian point in the form of a transienttidal
stream. This scenario is fully consistent with the large variations
in the shape of Hα observed close to the periastron passage and
may explain the strong perturbing influence of the neutron star
on the supergiant companion in spite of the large average dis-
tance.

The X-ray outbursts would then be due to the accretion of
stellar wind from regions close to the stellar atmosphere coupled
with a transient tidal stream that may even permit the forma-
tion of a transient accretion disk. The presence of such transient
structure may be tested by future high-sensitivity missions via
the study of spin evolution during the short X-ray outburst.With
the high-eccentricity orbit suggested by the shape of the out-
bursts, the neutron star will quickly move to distancesd > 3R∗,
leading to the disappearance of the tidal stream (and putative ac-
cretion disk) and hence the abrupt decrease in luminosity. The
residual emission that is sometimes seen up to 6–8 days afterthe
peak (Romano et al. 2009) may then be due to the low-density
stellar wind at high distances.

Based on the orbital parameters of IGR J11215−5952,
Liu et al. (2011) suggested that the system might have gone
through a phase as a Be/X-ray binary in the past. The high mass
that we derive for HD 306414 makes this possibility very un-
likely. With an initial mass>∼ 35 M⊙, HD 306414 should have
had a spectral type around O5 V when it was on the main se-
quence (Martins et al. 2005). No Oe star with such an early spec-
tral type is known (Negueruela et al. 2004). Moreover, in theac-
cretion scenario presented here, a transient accretion disk may
possibly form near periastron, allowing the transfer of angular
momentum to the neutron star and thus invalidating the assump-
tion of pure wind accretion used by Liu et al. (2011).

5. Conclusions

We used high-resolution spectroscopy of HD 306414, the opti-
cal counterpart to IGR J11215−5952, to determine its astrophys-
ical parameters and search for orbital modulation. We find that
HD 306414 is a luminous B0.5 Ia supergiant, at a distance not
smaller (and perhaps slightly higher) than 7 kpc. Its present-day
mass is≈ 35M⊙, a typical value for the spectral type. Its chem-
ical composition is also typical of the spectral type, and reveals
little chemical evolution, suggesting that the star is justending
core hydrogen burning.

The star presents moderately strong variations in radial ve-
locity, but these changes take the form of large excursions on a
timescale of a few days and do not seem to reflect orbital mo-
tion. Very significant changes in shape and depth of all photo-
spheric lines are taken as indications of pulsations, providing a
likely origin for the radial velocity excursions. Variations in ra-
dial velocity reflecting the orbital motion are not evident,but we
checked that the signature of a wide, highly-eccentric orbit, as
suggested by the X-ray behaviour, can be effectively masked by
the effects of pulsations.

In view of these characteristics, we suspect that
IGR J11215−5952 is not a typical SFXT, but rather a sys-
tem in which flares are driven by the close approach of the
neutron star to the companion during periastron, very likely
resulting in localised mass loss from the outer layers of the
supergiant and the formation of a transient accretion disk.
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The close passage may be (partially) responsible for the ex-
citation of the pulsational modes. As the supergiant expands,
IGR J11215−5952 will probably turn into a system very similar
to GX301−2, which contains a neutron star in an eccentric orbit
around a B1.5 Ia+ hypergiant.
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