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Abstract

Goal-driven self-optimization through feedback loops has shown effectiveness
in reducing oscillating utilities due to a large number of uncertain factors in
the runtime environments. However, such self-optimization is less satisfac-
tory when there contains uncertainty in the predefined requirements goal
models, such as imprecise contributions and unknown quality preferences, or
during the switches of goal solutions, such as lack of understanding about the
time for the adaptation actions to take effect. In this paper, we propose to
handle such uncertainty in goal-driven self-optimization without interrupt-
ing the services. Taking the monitored quality values as the feedback, and
the estimated earned value as the global indicator of self-optimization, our
approach dynamically updates the quantitative contributions from alterna-
tive functionalities to quality requirements, tunes the preferences of relevant
quality requirements, and determines a proper timing delay for the last adap-
tation action to take effect. After applying these runtime measures to limit
the negative effect of the uncertainty in goal models and their suggested
switches, an experimental study on a real-life online shopping system shows
the improvements over goal-driven self-optimization approaches without un-
certainty handling.
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1. Introduction

Self-optimization enables a system to continually seek opportunities to
improve its runtime qualities by adapting its structure and behavior (Kephart
and Chess, 2003). With well-understood alternative functionalities and their
different contributions to relevant quality requirements, requirements goal
models (Mylopoulos et al., 1992), where functional and quality requirements
are respectively modeled as hard and soft goals, have been used to reason
about the optimal reconfigurations for a running system (Lapouchnian et al.,
2005; Wang and Mylopoulos, 2009; Welsh et al., 2011; Peng et al., 2012). A
quality attribute is correlated to a soft goal to measure its satisfaction based
on the corresponding quality value (Letier and van Lamsweerde, 2004). The
reconfigurations are often triggered periodically at a fixed time interval, or by
the violations of the predefined constraints on the quality attributes. Mostly,
when goal reasoning (Giorgini et al., 2002; Sebastiani et al., 2004) is used
in decision making for self-optimization, the goal models are usually prede-
fined with the assumption that they are perfectly understood and will not
frequently change at runtime, and the self-optimization is often conducted
with predefined adaptation rules (Baresi et al., 2010).

However, the changing environments may bring diverse uncertainty as
compounding factors of goal models. For instance, contribution uncertainty,
i.e., different operationalizations contribute to soft goals at an uncertain level
due to imperfect knowledge about the runtime environments (Welsh et al.,
2011), may lead to suboptimal reconfigurations. Preference uncertainty, i.e.,
the relative importance of soft goals for a system may be uncertain under
different runtime environments (Peng et al., 2012; Liaskos et al., 2010), affects
the results of goal reasoning when not all the desired soft goals can be fully
satisfied. Effect uncertainty, i.e., the timing delay for the switches of goal
solutions, or the adaptation actions, to take effect in the running system may
be uncertain (Cheng, 2008), may trigger a premature reconfiguration before
the last one has taken effect and thus cause the problem of oscillation. Such
negative effect resulting from the uncertainty will make the self-optimization
less satisfactory.

Notice that contribution and preference uncertainty lie in the goal models,
and effect uncertainty originates from the switches of goal solutions. All of
them can be regarded as uncertainty at design time as well as uncertainty at
runtime, because contributions, preferences and timing delays are hard to be
precisely specified at design time, and they may also change under different
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runtime environments.
While design-time uncertainty handling in requirements has been widely

addressed through better approaches in elicitation, disambiguation and in-
consistency check (Liaskos et al., 2012; Yang et al., 2012; Arora et al., 2012),
these approaches more or less involve human intervention. Hence, runtime
adaptations through unsupervised feedback loops present little time to apply
them, while quickly responding to changes in the environments.

On the other hand, considering alternative system configurations, it is
common that quality requirements conflict with each other and the configu-
ration better in certain quality dimensions can be worse in others (Clements
et al., 2001). However, predefined adaptation rules (e.g., if average response
time is larger than a threshold, then switch from multimedia mode to textual
mode) usually do not involve the full facets but a single or several facet(s) of
the quality requirements. Hence, such rules are not flexible enough and may
trigger premature reconfigurations.

Therefore, one problem with goal-driven self-optimization is that, if the
understanding of the goal models and their suggested switches contains un-
certainty, the resulting adaptations will be less satisfactory. In principle, it
is possible to limit their negative effect by adapting the goal models and their
suggested switches at runtime, which is also known as models@run.time (Blair
et al., 2009; Morin et al., 2009). The other problem is that adaptation rules
of self-optimization only capture partial facets of the quality requirements
and are difficult to be fully predefined. In practice, a global indicator should
be used to comprehensively guide the self-optimization process.

To address such problems, in this paper, we propose a combined approach
to handle diverse uncertainty in goal-driven self-optimization. Taking the
monitored quality values as the feedback, and the estimated earned value as
the global indicator of self-optimization, our approach handles the three kinds
of uncertainty to limit their negative effect. For contribution uncertainty, we
conduct a probabilistic analysis at runtime to update the quantitative contri-
butions from alternative functionalities to soft goals, based on a probabilistic
model for the satisfaction and denial of goals proposed by Giorgini et al.
(2002). For preference uncertainty, we integrate the dynamic quality trade-
off mechanism proposed in our previous work (Peng et al., 2012) to tune
the preferences of relevant soft goals. For effect uncertainty, we introduce
a heuristics-based technique to determine a proper timing delay for the last
adaptation action to take effect.

To evaluate the effectiveness of the proposed approach, we conducted an
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experimental study on a real-life online shopping system. The study ana-
lyzed and compared the earned value, relevant quality values and adaptation
frequency of goal-driven self-optimization approaches with and without un-
certainty handling. The study shows that, by combining the mechanisms for
uncertainty handling, goal-driven self-optimization becomes more effective in
terms of both earned value and stability.

The rest of the paper is structured as follows. Section 2 introduces the re-
quired preliminaries. Section 3 illustrates our motivation. Section 4 presents
the proposed approach, including an overview and the techniques for han-
dling the three kinds of uncertainty. Section 5 reports our implementation.
Section 6 evaluates the proposal and makes some discussion. Section 7 intro-
duces a number of existing proposals and compares them with ours before
the conclusions in Section 8.

2. Preliminaries

Our approach is built on top of goal-oriented requirements modeling (My-
lopoulos et al., 1992) and value-based software engineering (Boehm, 2003).
In this section, we briefly explain the basics and then introduce the problem
of uncertainty with soft goal satisfaction.

2.1. Goal-Oriented Requirements Modeling

In goal-oriented requirements analysis, functional requirements are mod-
eled as hard goals, while quality requirements are modeled as soft goals (My-
lopoulos et al., 1992). Goals can be refined into subgoals through AND/OR
decompositions until reaching leaf-level tasks that can be accomplished by
software components or human agents. To satisfy an AND/OR-decomposed
goal, all/at least one of its subgoals must be satisfied. Hence, goal models
capture the space of alternative goal solutions (i.e., sets of leaf-level tasks)
satisfying the top-level goals in the form of OR-decompositions.

Following Giorgini et al. (2002), goals can be related to each other through
quantitative contribution links, i.e., w+S, w−S, w+D, w−D, w+, w−, ++S,
−−S, ++D, −−D, ++ and −−. The weight w ∈ [0, 1] numerically expresses
the strength by which the satisfaction/denial of the source goal contributes
to the satisfaction/denial of the target goal. Here we adopt a probabilistic
model proposed by Giorgini et al. (2002) to represent the evidence of the sat-
isfaction/denial of a goal as the probability that the goal is satisfied/denied.
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Hence, G1
w+S−→ G2 (respectively G1

++S−→ G2) can be interpreted as that,
if the probability of the satisfaction of G1 is p, then the probability of the
satisfaction of G2 is w × p (respectively 1 × p), i.e., P (G1 is satisfied ∧
G2 is satisfied) = w×P (G1 is satisfied); but if the probability of the denial
of G1 is p′, then nothing can be inferred about the probability of the denial

of G2. G1
w−S−→ G2 (respectively G1

−−S−→ G2) can be interpreted as that, if the
probability of the satisfaction of G1 is p, then the probability of the denial
of G2 is w× p (respectively 1× p), i.e., P (G1 is satisfied∧G2 is denied) =
w × P (G1 is satisfied); but if the probability of the denial of G1 is p′,
then nothing can be inferred about the probability of the satisfaction of G2.
w+D, w−D, ++D and −−D are respectively dual w.r.t. to w+S, w−S, ++S
and −−S by inverting satisfaction and denial, and thus their probabilistic
interpretations are omitted. w+, w−, ++ and−− are respectively shorthand
for w+S and w+D, w−S and w−D, ++S and ++D, and −−S and −−D.

Figure 1 depicts a goal model of an online shopping system, which is used
to illustrate our approach throughout the rest of the paper. Hard goals, soft
goals and tasks are shaped as rounded rectangles, clouds and hexagons. The
tasks and soft goals are annotated with a symbol for the sake of reference
simplicity. Each soft goal is annotated with a number (dashed circle) to
represent stakeholders’ preference over different quality requirements. This
goal model reflects the following requirements: after searching the desired
products, a customer can view the details about the interested products, and
add the wanted products to the cart; the stock has to be checked before the
customer places and pays the order.

Details Be Viewed, Stock Be Checked and Out of Stock Items Be Ordered
are OR-decomposed goals. Product details can be viewed in textual mode
(t2, e.g., only descriptive texts) or in multimedia mode (t3, e.g., texts and
pictures). t2 helps to reduce response time but hurts to enhance usability,
and t3 contributes to them in a reverse manner. Once the products in the
shopping cart are out of stock, there are two available strategies: remove
them (t8), or order them from retailers (t6) or wholesalers (t7). t8 hurts
to reduce order canceling rate because the customers are apt to cancel the
order when some wanted products are removed. Reversely, t6 and t7 hurt to
reduce ordering cost because extra orders have to be placed to retailers or
wholesalers for out of stock products, with the difference being that t6 hurts
more than t7 because retailers usually charge a higher price than wholesalers.

Based on these OR-decomposed goals, the following alternative goal so-
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Figure 1: A Goal Model of an Online Shopping System.

lutions that satisfy the top-level goal Product Be Sold can be derived. The
overall contribution of each solution to the soft goals is calculated as a score
being the weighted sum of the satisfaction/denial levels of the soft goals.
And the satisfaction/denial levels of the soft goals can be calculated by label
propagation algorithms (Giorgini et al., 2002).

s1 : [t1, t2, t4, t5, t7, t9, t10, t11], score = 0.02

s2 : [t1, t3, t4, t5, t7, t9, t10, t11], score = 0.21

s3 : [t1, t2, t4, t5, t6, t9, t10, t11], score = 0.00

s4 : [t1, t3, t4, t5, t6, t9, t10, t11], score = 0.19

s5 : [t1, t2, t4, t5, t8, t9, t10, t11], score = − 0.15

s6 : [t1, t3, t4, t5, t8, t9, t10, t11], score = 0.04

Example 2.1. For the solution s1, “View in Textual Mode” is chosen, which
respectively has a 0.7+ and a 0.8− contribution link to “Response Time Be
Reduced” and “Usability Be Enhanced”. Hence, their satisfaction/denial lev-
els are respectively 0.7/0.0 and 0.0/0.8. Similarly, the satisfaction/denial
levels of “Ordering Cost Be Reduce” and “Order Canceling Rate Be Re-
duced” are respectively 0.0/0.6 and 0.8/0.0. Given the preferences to these
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soft goals as shown in Figure 1, the score of s1 is calculated as 0.2 × (0.7 −
0.0) + 0.3 × (0.0 − 0.8) + 0.2 × (0.0 − 0.6) + 0.3 × (0.8 − 0.0) = 0.02.

2.2. Value-Based Software Engineering

Value-based software engineering (VBSE) (Boehm, 2003) proposes to in-
tegrate value consideration into software engineering principles and practices.
Different from traditional earned value systems based on cost and schedule es-
timation for project management, VBSE focuses on the real stakeholder value
being earned and emphasizes the incorporation of business-value and mission-
value achievement into feedback control systems. Earlier we have successfully
applied the principles of VBSE in dynamic quality trade-offs (Peng et al.,
2012) and runtime survivability assurance (Chen et al., 2011).

On the one hand, systems are usually designed to create value for stake-
holders, and thus earned value is an appropriate indicator of self-optimization.
On the other hand, compared with adaptation rules based on quality viola-
tions (e.g., if average response time is larger than a threshold, then switch
from multimedia mode to textual mode), earned value reflects a global syn-
thesis of the full facets of quality requirements. Hence, earned value here is
used as the global indicator of self-optimization.

Further, an application-specific value proposition should be predefined to
estimate the value earned from every successful transaction in a time interval
(e.g., 30 seconds). Earned value estimation could be so complicated that it
should be accomplished by business experts on the basis of business market
analysis, risk analysis, business losing trend analysis, etc. We assume that a
formula for earned value measurement can be predefined by business experts.
For instance, the value proposition for the online shopping system can be
defined as follows by considering both short-term and long-term influence
factors.

value = sales× 20%− sales× 5% (or 6.5% or 7.5%)−
sales× (1.0− usability)× 0.02

The first term means 20 percent of the sales are earned, which is influenced
by the short-term factors such as response time and order canceling rate.
The second term is the cost for processing the orders (e.g., stocking, trans-
portation, etc.). Depending on the strategy for dealing with the out of stock
products, 5, 6.5 and 7.5 percent of the sales are respectively expended for
removing, ordering from wholesalers and ordering from retailers. The last
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term takes into account the long-term factor usability because low usability
will result in customer losing and it usually takes a long time to be reflected
in earned value if not considered explicitly in the value proposition.

Example 2.2. If sales and usability in a time interval is 200 dollars and 0.8,
and the out of stock products are removed, then earned value is 29.2 dollars.

2.3. Uncertainty with Soft Goal Satisfaction

Hard goals and tasks usually have clear-cut satisfaction criteria. For
instance, the task Pay Order is satisfied when an order has been paid by a
customer. On the other hand, soft goals usually have no clear-cut satisfaction
criteria. For instance, it is difficult to definitely determine whether or not
the soft goal Response Time Be Reduced is satisfied. Hence, it is reasonable
to determine to what extent a soft goal meets its criterion rather than to
determine whether or not a soft goal is satisfied.

A quality attribute can be identified for and correlated to a soft goal (Letier
and van Lamsweerde, 2004). Thereby the satisfaction criterion of a soft goal
can be seen as respecting the expected quality value. Then a soft goal is sat-
isfied/denied to some extent means that the actual quality value is roughly
larger/smaller (for positive quality attributes, i.e., the larger the better, e.g.,
usability) or smaller/larger (for negative quality attributes, i.e., the smaller
the better, e.g., response time) than expected.

To handle such uncertainty with soft goal satisfaction, the theory of fuzzy
sets (Zadeh, 1965) can be adopted to provide a gradual measurement for the
satisfaction/denial level of soft goals (Baresi et al., 2010; Whittle et al., 2009).
Specifically, a membership function is designed for each soft goal to assign a
degree of truth to the satisfaction criterion. Figure 2 shows two membership
functions for the fuzzy relational operators � and �. The X axis denotes the
actual value of a quality attribute, while the Y axis denotes the membership
value (i.e., how closely the relation is respected). In the case of Actual Value
� Expected Value, its membership function is absolutely true when the actual
value is larger than the expected value, has a degree of truth between 0 and 1
when the actual value is smaller than the expected value and larger than 90%
of the expected value, and is absolutely false when the actual value is smaller
than 90% of the expected value. Based on such membership functions, the
satisfaction level of a soft goal is a membership value s, whilst its denial level
is 1.0− s.
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Figure 2: Membership Functions for Fuzzy Relational Operators: (a) Actual Value �
Expected Value, (b) Actual Value � Expected Value.

Example 2.3. The satisfaction level of “Response Time Be Reduced” can be
measured by the membership function (b) in Figure 2. Given that the expected
response time is 1000ms, “Response Time Be Reduced” is fully satisfied when
the actual response time is smaller than 1000ms, has a degree of satisfaction
between 0 and 1 when the actual response time is smaller than 1100ms and
larger than 1000ms, and is fully denied when the actual response time is
larger than 1100ms.

3. Motivation

This section illustrates the motivation of handling the three kinds of un-
certainty in goal-driven self-optimization.

3.1. Contribution Uncertainty

The weights of contribution links in a goal model are usually given by busi-
ness analysts based on their assumptions on the runtime environments (Welsh
et al., 2011). However, it is too difficult for a business analyst to precisely and
quantitatively estimate the weight of a contribution link, and the uncertainty
with the runtime environments may break their assumptions (Example 3.1).
As a result, the weights of contribution links may be overestimated or un-
derestimated. This kind of contribution uncertainty, if not properly handled,
may cause goal reasoning produce suboptimal goal reconfigurations (Exam-
ple 3.2).
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Example 3.1. An online shopping system usually orders out of stock prod-
ucts from wholesalers rather than from retailers based on the assumption that
wholesalers usually provide lower prices than retailers. However, wholesalers
sometimes may quote a higher price due to inventory drop and retailers may
quote a lower price for sales promotion. Without updating the weights of rele-
vant contribution links, the adaptation mechanism may make wrong decisions
on choices of suppliers.

Example 3.2. Given the weights as shown in Figure 1, multimedia-mode
product viewing will be chosen. However, if the weights of multimedia-mode
and textual-mode product viewing to usability were respectively underesti-
mated to 0.5+ and 0.5−, textual-mode product viewing would be chosen by
goal reasoning because it has a higher contribution score to “Usability Be
Enhanced” and “Response Time Be Reduced”.

3.2. Preference Uncertainty

The preferences of soft goals in a goal model are usually decided by busi-
ness analysts through static trade-off decisions based on their assumptions
on the runtime environments (Peng et al., 2012; Liaskos et al., 2010). How-
ever, due to the uncertainty with the runtime environments, the appropriate
preference for each soft goal will change at runtime (Example 3.3). This kind
of preference uncertainty, if not properly handled, may also cause suboptimal
goal reconfigurations especially when not all the desired quality requirements
can be satisfied.

Example 3.3. In normal situations, usability is preferred to response time
in order to provide attractive interfaces for customers, justifying multime-
dia mode being chosen for viewing product details. In a high-load scenario,
however, response time should be given a higher preference over usability to
ensure the availability of the functionality of viewing product details, thus
making textual mode be chosen.

3.3. Effect Uncertainty

In goal-driven self-optimization, goal reasoning is triggered when require-
ments are deviated, possibly adapting the requirements problem to an alter-
native solution and the system to a corresponding configuration. Ideally, the
adaptation action should take effect immediately, i.e., the deviated require-
ments are satisfied on the spot. However, due to the additional processing
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Figure 3: Oscillation of Adaptation Actions due to Effect Delay.

required for reconfiguration such as initialization and data migration, there
is often a timing delay for an adaptation action to take effect in the running
system (Cheng, 2008). As a result, the deviated requirements may still be
violated or even get worse during the timing delay. Example 3.4 illustrates a
common case for such effect delay. Further, Example 3.5, taken from our ex-
perimental study, illustrates its resulting oscillation problem from the aspect
of earned value changes as shown in Figure 3.

Example 3.4. The adaptation mechanism of the online shopping system de-
cides to switch from textual mode to multimedia mode for the goal “Details
Be Viewed”. Then a series of architectural reconfigurations are enforced ac-
cordingly. A typical set of reconfigurations can be: firstly, some component
instances for multimedia-mode product viewing are created and loaded; sec-
ondly, these new component instances are initiated, e.g., by assigning buffer
and loading some initialization data; thirdly, the adaptation mechanism waits
for the existing component instances for textual-mode product viewing to en-
ter a safe mode and then deactivates them, and in the meantime new client
requests are blocked and buffered; and finally, the component instances for
multimedia-mode product viewing are activated and begin to process client re-
quests. From the above process, it can be seen that it still takes some time for
the optimization to take effect after an adaptation decision is made, during
which the earned value may even be degraded (Example 3.5).
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Example 3.5. It can be observed from Figure 3 that a deviation of earned
value was detected at time 3 (the dashed line represented the expected earned
value) and then the adaptation mechanism decided to replace t8 with t7. Due
to the effect delay, the deviation of earned value got even worse at time 4,
and the solution was changed back from t7 to t8. In the following time 5 and
6, similar oscillation continued, making the earned value stand at a low level.

A simple way to handle effect delay is to designate a fixed timing delay
for each adaptation action as suggested in (Cheng, 2008). However, due to
the uncertain runtime environments, effect delay itself can also be uncertain,
i.e., we cannot assume that an adaptation action will definitely take effect in
a fixed length of timing delay. Hence, this kind of effect uncertainty, if not
properly handled, may trigger a premature reconfiguration before the last
one has taken effect, and thus cause oscillation.

4. Our Approach

In this section, we first give an overview of uncertainty handling in goal-
driven self-optimization, and then present the techniques for handling the
three kinds of uncertainty.

4.1. Overview of Uncertainty Handling

In order to handle the uncertainty underlying goal-driven self-optimization,
our approach maintains a live goal model as the knowledge base for self-
optimization, updates the weights of contribution links, tunes the prefer-
ences of soft goals, and determines a proper timing delay for the last adap-
tation action to take effect. Figure 4 depicts an overview of goal-driven self-
optimization, which follows the MAPE-K (Monitor, Analyze, Plan, Execute,
Knowledge) control loop (Kephart and Chess, 2003), and highlights where
the uncertainty lies (indicated by question marks) and where the uncertainty
is handled (indicated by check marks).

In this overview, the Monitor step is achieved by using Sensors to regu-
larly collect and aggregate runtime data in order to capture the properties
that are of interest to self-optimization. The interested properties in our on-
line shopping system are earned value and quality attributes such as response
time, usability, order canceling rate and ordering cost. To automatically col-
lect such data, predefined specific sensors should be first instrumented into
the target system, which can be accomplished in an engineering or reengi-
neering manner (Salehie and Tahvildari, 2009).
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Figure 4: Overview of Goal-Driven Self-Optimization.

The Analyze step consists of Delay Analyzer, Contribution Updater and
Preference Tuner, sub-steps that respectively handle effect uncertainty, con-
tribution uncertainty and preference uncertainty on the basis of earned value
and quality values. Notice that preferences and contributions will not be
tuned and updated when the last adaptation action is still in its timing de-
lay since the system is in a disturbance stage during the delay.

The Plan step is achieved by a quantitative Goal Reasoner, which is to find
among all the goal solutions the one with the highest score (score calculation
is introduced in Section 2.1). This reasoner is similar to the one proposed
by Wang and Mylopoulos (2009) except that here we consider quantitative
rather than qualitative contribution links.

The Execute step is realized by first using Goal Configurator to reconfigure
the live goal model (specifically, the OR-decomposed goals) according to the
planned goal solution and then using Architecture Configurator to map from
goal reconfiguration to architecture reconfiguration of the running system.

Instead of detailedly exploring each step of the self-optimization control
loop, we will put emphasis upon the Analyze step since in this paper we focus
on uncertainty handling. In the following three sections, we will respectively
introduce the handling techniques of contribution uncertainty, preference un-
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certainty and effect uncertainty.

4.2. Handling Contribution Uncertainty

Let us first consider the contribution link sourced from an OR-decomposed
sub-goal. For an OR-decomposed goal, assume that there are n sub-goals
contributing to m soft goals. Recall the probabilistic interpretation of the
contribution links introduced in Section 2.1, the weight w of a contribution
link sourced from hgi (1 ≤ i ≤ n) to sgk (1 ≤ k ≤ m) can be interpreted as a
conditional probability depending on the type of the contribution link. For

instance, in hgi
w+S−→ sgk, w can be interpreted as the conditional probability

P (sgk is satisfied | hgi is satisfied).

hgi
w+S−→ sgk : w = P (sgk is satisfied | hgi is satisfied)

=
P (hgi is satisfied ∧ sgk is satisfied)

P (hgi is satisfied)

hgi
w−S−→ sgk : w = P (sgk is denied | hgi is satisfied)

=
P (hgi is satisfied ∧ sgk is denied)

P (hgi is satisfied)

hgi
w+D−→ sgk : w = P (sgk is denied | hgi is denied)

=
P (hgi is denied ∧ sgk is denied)

P (hgi is denied)

hgi
w−D−→ sgk : w = P (sgk is satisfied | hgi is denied)

=
P (hgi is denied ∧ sgk is satisfied)

P (hgi is denied)

For each sub-goal hgi, hgi is satisfied means hgi is chosen for the satis-
faction of its parent OR-decomposed goal and is included in the current goal
solution. On the other hand, hgi is denied means hgi is not included in the
current goal solution but one of its sibling goals hgj(j 6= i) is chosen for the
satisfaction of their parent OR-decomposed goal. Based on this observation,
the weight w of w+D and w−D can be further transformed into the follow-

ings. For instance, in hgi
w+D−→ sgk, w can be interpreted as the probability of

the denial of sgk under the condition that hgi is denied, which can be seen
as the sum of the probabilities of the denial of sgk under the condition that
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one of the hgi’s sibling goal hgj(j 6= i) is satisfied.

hgi
w+D−→ sgk : w =

n∑
j=1,j 6=i

P (sgk is denied | hgj is satisfied)

=
n∑

j=1,j 6=i

P (hgj is satisfied ∧ sgk is denied)

P (hgj is satisfied)

hgi
w−D−→ sgk : w =

n∑
j=1,j 6=i

P (sgk is satisfied | hgj is satisfied)

=

n∑
j=1,j 6=i

P (hgj is satisfied ∧ sgk is satisfied)

P (hgj is satisfied)

In order to calculate these conditional probabilities, each pair (hgi, sgk) is
associated with a couple [Satik, Denik], representing the sum of satisfaction
and denial level of sgk in all the past time intervals under the condition that
hgi is satisfied. [Satik, Denik] denotes the relative frequency of the occurrence
of satisfaction and denial of sgk when hgi is satisfied.

Considering the uncertainty with soft goal satisfaction introduced in Sec-
tion 2.3, similar handling techniques proposed by Baresi et al. (2010) and Whit-
tle et al. (2009) are adopted, i.e., the membership functions in Figure 2 are
used to fuzzify the satisfaction and denial level of soft goals (Example 4.1).
Hence, our approach not only handles soft goal satisfaction uncertainty based
on fuzzy set theory but also handles contribution uncertainty based on prob-
ability theory. Notice that the actual value can be monitored, and the ex-
pected value, in our work, is the average of the last 10 actual values. This is
because the expected value, if set fixed at design-time, contains uncertainty
itself.

Example 4.1. Table 1 lists the fuzzified satisfaction and denial level of soft
goal “Response Time Be Reduced” (k = 1) in each of the past 10 time in-
tervals. Product details are viewed in multimedia mode (i = 1) in the first 5
time intervals, and then in textual mode (i = 2) in the last 5 time intervals.
Thus, Sat11, the satisfaction frequency of “Response Time Be Reduced” when
multimedia mode is chosen, is 0.3 + 0.2 + 0.15 + 0.2 + 0.1 = 0.95, and
Den11, the denial frequency of “Response Time Be Reduced” when multime-
dia mode is chosen, is 0.7 + 0.8 + 0.85 + 0.8 + 0.9 = 4.05. Similarly, Sat21
is 0.7 + 0.8 + 0.75 + 0.8 + 0.7 = 3.75, and Den21 is 0.3 + 0.2 + 0.25 +
0.2 + 0.3 = 1.25.
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Table 1: Fuzzified Satisfaction and Denial Level of Response Time Be Reduced.

Time Details Be Viewed
Response Time Be Reduced

Sat Den

1 View in Multimedia Mode 0.3 0.7

2 View in Multimedia Mode 0.2 0.8

3 View in Multimedia Mode 0.15 0.85

4 View in Multimedia Mode 0.2 0.8

5 View in Multimedia Mode 0.1 0.9

6 View in Textual Mode 0.7 0.3

7 View in Textual Mode 0.8 0.2

8 View in Textual Mode 0.75 0.25

9 View in Textual Mode 0.8 0.2

10 View in Textual Mode 0.7 0.3

Based on the couples [Satik, Denik], the conditional probabilities can be
calculated as follows, and we call them the posterior knowledge of the con-
tribution links.

hgi
w+S−→ sgk : w =

Satik
Satik + Denik

hgi
w−S−→ sgk : w =

Denik

Satik + Denik

hgi
w+D−→ sgk : w =

n∑
j=1,j 6=i

Denjk

n∑
j=1,j 6=i

Satjk +
n∑

j=1,j 6=i

Denjk

hgi
w−D−→ sgk : w =

n∑
j=1,j 6=i

Satjk

n∑
j=1,j 6=i

Satjk +
n∑

j=1,j 6=i

Denjk

The weight of contribution link w+ (w−) is calculated as the average of
the weights of contribution links w+S and w+D (w−S and w−D). Rather
than dropping the initial contribution links elicited by domain experts during
requirements analysis (the prior knowledge), we update the contribution links
as the weighted sum of the prior and posterior knowledge. A higher weight
to the prior knowledge represents higher confidence on the priori.

Example 4.2. Following Example 4.1, the weight of hg1
w+S−→ sg1 is 0 .95

0 .95+4 .05

= 0.19, the weight of hg1
w−S−→ sg1 is 0.81, the weight of hg1

w+D−→ sg1 is
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Figure 5: An Example of Contribution Links Sourced from AND-Decomposed Sub-Goals.

1 .25
3 .75+1 .25

= 0.25, and the weight of hg1
w−D−→ sg1 is 0.75. Hence, the weight of

hg1
w−−→ sg1 is 0 .81+0 .75

2
= 0.78. Considering that the initial contribution link

sourced from hg1 to sg1 in Figure 1 is 0.9− and assuming that the confidence
on the prior is 0.4, the weight is updated to 0.4 × 0.9 + (1 − 0.4) × 0.78 =
0.828.

Now let us consider the contribution link sourced from an AND-decomposed
sub-goal. Notice that if such an AND-decomposed sub-goal is included (or
not included) in a goal solution, its closest OR-decomposed ancestor sub-
goal if exists is also included (or not included) in this goal solution. Based
on this observation, the contribution link sourced from an AND-decomposed
sub-goal can be handled using the proposed technique by moving the source
of such a contribution link to the closest OR-decomposed ancestor sub-goal
if exists (Example 4.3). If such an ancestor goal does not exist, the uncer-
tainty in this contribution link can be neglected since its source goal is always
included in all goal solutions and thus will not produce negative effect.

Example 4.3. Figure 5 shows an example of the contribution links sourced
from AND-decomposed sub-goals. The uncertainty in the contribution link
sourced from “g7” to “sg1” can be handled using the proposed technique by
moving its source to “g4”. However, the uncertainty in the contribution link
sourced from “g3” to “sg2” can be neglected because “g3” is always included
in all the goal solutions.

Notice that the handling of contribution uncertainty may be less effective
when a soft goal is simultaneously contributed by the sub-goals of multiple
OR-decomposed goals (or multiple AND-decomposed (sub-)goals). This is

17



because the proposed technique cannot differentiate which OR-decomposed
goal’s sub-goal (or AND-decomposed (sub-)goal) contributes more or less to
the satisfaction and denial of the same soft goal. However, this can be solved
by refining the soft goals into sub-soft goals by type or topic (Mylopoulos
et al., 1992) until every soft goal is contributed by the sub-goals of one OR-
decomposed goal (or one AND-decomposed (sub-)goal).

4.3. Handling Preference Uncertainty

We integrate the dynamic quality trade-off mechanism proposed in our
earlier work (Peng et al., 2012) to handle preference uncertainty. It takes
as input the earned value and quality values, and dynamically tunes the
preferences of soft goals in response to the changing environments using a
PID (proportional-integral-derivative) feedback controller.

The reason for adopting a control-theoretic technique to realize preference
tuner is that every soft goal has an approximately proportional relationship
between its preference and expectation, i.e., the better a soft goal is expected,
the higher its preference should be (Peng et al., 2012). Hence, the tuner is
designed to prevent a soft goal from getting worse by increasing its preference
such that another goal solution with better satisfaction level of this soft goal
will be chosen. For instance, if the response time is getting too long in
online shopping, the preference of the soft goal Response Time Be Reduced
should be increased such that textual mode will be chosen to make response
time close to its expectation. Detailed descriptions of the preference tuning
algorithm can be found in Peng et al. (2012).

4.4. Handling Effect Uncertainty

It is almost impossible to know if an adaptation action has taken effect
or not before its effect has been observed from the running system. Different
actions need different timing delays; even the same action may need different
timing delays under different environments. To automatically determine the
proper timing delay for an adaptation action, the challenge is to formalize the
observable effect. From the perspective of VBSE, we formalize the observable
effect as the satisfaction level of earned value and determine the proper timing
delay by a heuristics-based technique.

Since earned value also does not have a clear-cut satisfaction criterion,
its satisfaction level is fuzzified by the membership function in Figure 2 (a).
The actual earned value is monitored and analyzed from the runtime data
as introduced in Section 2.2, and the expected earned value is the average
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of the last 10 actual earned values. Notice that earned value is used as the
global indicator of self-optimization, and thus the adaptation mechanism is
triggered when the satisfaction level of earned value is less than the value
satisfaction threshold α.

Instead of using complex learning techniques that usually require much
runtime data to be effective, we choose to adopt several simple and straight-
forward heuristic rules (i.e., rules R1 to R4) to guide the handling of effect
uncertainty because there is little available runtime data that can be used be-
fore an adaptation action is shown to be effective or ineffective. The proper
timing delay of an adaptation action is dynamically determined by Algo-
rithm 1.

R1 : delay ≥ delaymin

R2 : delay ≤ delaymax

R3 : actual earned value (t+ 1) ≥ actual earned value(t)

R4 : actual earned value (t+ 1) � expected earned value,

and its membership value ≥ α

Algorithm 1 The Procedure of Delay Analysis

1: procedure Delay-Analysis(earned value, delay)
2: delay + +
3: if ! R1 then
4: continue delaying
5: else if R2 then
6: if (R3 && R4) || delay == delaymax then
7: stop delaying
8: else
9: continue delaying

10: end if
11: end if
12: end procedure

Rule R1 indicates that the prior knowledge of the timing delay of an
adaptation action can be used to determine the minimum timing delay for
facilitating the analysis (Line 3-4). If no (trusted) prior knowledge is avail-
able, the minimum timing delay should be one time interval. Rule R2 means
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Figure 6: Delay Patterns Identified from our Experimental Study.

that delay should be stopped if it has taken a long time but the action has
not brought into effect (Line 6-7), i.e., to prevent the actually ineffective ac-
tions from running for a long time and thus making the system running in
a suboptimal fashion. Rules R3 and R4 indicate that there is an increasing
trend of earned value and earned value has been satisfied to an acceptable
level, meaning that the action has taken effect from the perspective of earned
value and thus the delay should be stopped (Line 6-7).

Example 4.4 shows two delay instances that are actually two typical pat-
terns of delay. All delay instances found in our experimental study are vari-
ants of these two patterns.

Example 4.4. Figure 6 shows two delay instances of an effective action and
an ineffective action. The minimum timing delay is one time interval and
the maximum timing delay is four time intervals. In Figure 6 (a), at time t1,
an action is carried out and delay is started because of the deviation of earned
value; at time t2, delay is continued because both R3 and R4 are violated;
at time t3, R3 is achieved but R4 is still violated, hence, delay is continued;
at time t4, delay is stopped because all heuristic rules are achieved (i.e., the
action is considered to be effective). Similarly, in Figure 6 (b), an action
is carried out at time t1; at time t5, R4 is still violated and the maximum
delay is reached (i.e., the action is considered to be ineffective), hence, delay
is stopped and the adaptation mechanism is re-triggered to find another goal
solution.
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5. Implementation

We implement the framework in Figure 4 in an extensible way in order
to provide a generic infrastructure of the goal-driven self-optimization with
proposed uncertainty handling techniques. Specifically, Delay Analyzer, Con-
tribution Updater, Preference Tuner, Goal Reasoner and Goal Configurator
are application-independent components. They are realized in a plug-in man-
ner so that necessary extensions or different implementations that may be
later introduced can be easily integrated with the infrastructure. On the
other hand, Sensors and Architecture Configurator are application-specific
components. They are programmed as external RMI interfaces using RMI-
IIOP technology so that the infrastructure and the running system can be
decoupled, distributed and stand-alone. Notice that this implementation of
the framework is a reconstruction of the implementation proposed in Peng
et al. (2012) by following the MAPE-K architecture, integrating uncertainty
handling and adopting quantitative goal reasoning.

In order to apply our approach, developers should provide their own im-
plementation to the two external interfaces. The implementation to Sensors,
i.e., to obtain application-specific earned value and quality values, depends
on the business goals, strategies and policies and on the quality attributes’
own characteristics. Typical techniques for realizing sensors include logging,
profiling and aspect-oriented programming (Salehie and Tahvildari, 2009).
For the online shopping system, we compute earned value as introduced in
Section 2.2, and measure quality values by analyzing business database and
log files (e.g., the success or failure of a payment transaction, the response
time of a browsing request, etc.).

The implementation to Architecture Configurator, i.e., to map from goal
reconfiguration to architectural reconfiguration, depends on the implemen-
tation and architecture styles of the target system. Typical techniques for
achieving architectural reconfiguration include lightweight methods like de-
sign patterns (e.g., wrapper, proxy, or strategy) for well-designed systems, re-
flective component models (e.g., Fractal (Bruneton et al., 2006)) for component-
based systems, service-oriented techniques (e.g., AO4BPEL (Charfi and Mezini,
2007)), and architecture-based middlewares (e.g., SM@RT (Song et al., 2011)).
For the online shopping system, we realize architectural reconfiguration by
Java reflection mechanism, by which components are instantiates by runtime
reflection on the basis of goal-component mappings.
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6. Experimental Study

To evaluate the proposed approach, we conducted an experimental study1

on an online shopping system, whose requirements goal model is illustrated
in Figure 1, to answer the following research questions:

• Q1: Do the three kinds of uncertainty really exist and have influences
on the goal-driven self-optimization?

• Q2: What benefit can be achieved from the combined handling of the
three kinds of uncertainty in goal-driven self-optimization?

• Q3: What is the scalability of our approach?

6.1. Experimental Setup

The stress testing tool JMeter 2.3.4 was used to simulate concurrent sys-
tem accesses with a constant load about 25 users, and Badboy 2.1 was used
to record the JMeter test plan. The experiments were conducted on a server
with an Intel Core2 Quad 2.33 GHz processor and 4GB RAM, running Win-
dows Server 2008.

In our experiments, usability was stochastically distributed with different
density under textual and multimedia mode to simulate real-life customer
feedbacks, order canceling rate was stochastically distributed with different
density under different strategies for dealing with the out of stock products
to simulate real-life customer behaviors, and response time and ordering cost
were intrinsically changing under the previous two simulations.

Each experiment was executed in a continuous running of about 30 min-
utes. Earned value was calculated as introduced in Section 2.2, and quality
values were computed by log analysis based on the collected runtime data
per time interval. Notice that the weight of the prior knowledge used in con-
tribution updating was set to 0.5, the minimum and maximum timing delay
were set to one and four time intervals, the value satisfaction threshold was
set to 0.5, and the time interval was set to 30 seconds.

We conducted the experiments with the following eight approaches using
the same experimental setting. To extensively evaluate the proposed ap-
proach, all the possible combinations of the handling of the three kinds of
uncertainty were considered.

1All the models and results used in our experimental study are available at www.se.

fudan.edu.cn/research/self-adaptation/JSS-UncertaintyHandling.
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• A1: the approach without self-optimization capability.

• A2: the self-optimization approach using predefined adaptation rules.
One of the four adaptation rules is to switch from multimedia mode to
textual mode if average response time is larger than a threshold.

• A3–P: the goal-driven self-optimization approach that only handles
preference uncertainty.

• A4–PE: the goal-driven self-optimization approach that handles pref-
erence uncertainty and effect uncertainty.

• A5–C: the goal-driven self-optimization approach that only handles
contribution uncertainty.

• A6–CE: the goal-driven self-optimization approach that handles con-
tribution uncertainty and effect uncertainty.

• A7–PC: the goal-driven self-optimization approach that handles pref-
erence uncertainty and contribution uncertainty.

• A8–PCE: the goal-driven self-optimization approach that handles pref-
erence uncertainty, contribution uncertainty and effect uncertainty.

6.2. Evaluation of Handling Uncertainty (Q1)

Although the experiments of handling preference uncertainty (i.e., A3–P,
A4–PE, A7–PC and A8–PCE) were conducted, the detailed evaluation of
handling preference uncertainty was not considered separately in this paper
since it has been demonstrated in our earlier paper (Peng et al., 2012). Here
we mainly focus on the evaluation of handling contribution uncertainty and
effect uncertainty.

6.2.1. Evaluation of Handling Contribution Uncertainty

Table 2 shows the updating results of contribution links when the experi-
ments finished (i.e., after a running of 30 minutes). The first column lists the
initial contribution links as shown in Figure 1. The second to fifth columns
respectively report the final updated contribution links in the experiments
with handling of contribution uncertainty, i.e., A5–C, A6–CE, A7–PC and
A8–PCE.
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Table 2: Updating Results of Contribution Links
Initial A5–C A6–CE A7–PC A8–PCE

t2
0.7+−→ sg1 0.839 0.839 0.680 0.681

t2
0.8−−→ sg2 0.776 0.775 0.832 0.837

t3
0.9−−→ sg1 0.729 0.707 0.780 0.781

t3
0.9+−→ sg2 0.921 0.921 0.882 0.887

t6
0.7−−→ sg3 0.843 0.843 0.702 0.703

t7
0.6−−→ sg3 0.554 0.555 0.448 0.447

t8
0.8+−→ sg3 0.809 0.825 0.828 0.827

t8
0.7−−→ sg4 0.652 0.663 0.680 0.685

g1*
0.8+−→ sg4 0.646 0.646 0.730 0.735

* g1 represents goal Out of Stock Items Be Ordered.

It can be observed that A5–C and A6–CE get different results from A7–
PC and A8–PCE. We found that only one adaptation action was triggered
in the experiments with A5–C and A6–CE and thus the online shopping
system was configured to the goal solution [t1, t3, t4, t5, t8, t9, t10, t11]
most of the time. As a result, only the contribution links sourced from t3 and
t8 (indicated in bold in the second and third columns) were well updated.
On the other hand, at least eight adaptation actions were triggered in the ex-
periments with A7–PC and A8–PCE and thus the online shopping system
was configured to different goal solutions. As a result, all the contribution
links were well updated and those sourced from t3 and t8 were similar to
the results of A5–C and A6–CE. The above analysis also suggests that it
is reasonable to provide a combined handing of preference uncertainty and
contribution uncertainty, which will be detailed demonstrated in Section 6.3.

It can be seen that A7–PC and A8–PCE get almost the same results,
and two contribution links are greatly overestimated (indicated in bold in the
fourth and fifth columns) and others are slightly overestimated or underesti-
mated. For instance, the contribution link sourced from View in Multimedia
Mode (t3) to Response Time Be Reduced (sg1) is greatly overestimated by
about 0.12, and the contribution link sourced from Remove Out of Stock
Items (t8) to Ordering Cost Be Reduced (sg3) is slightly underestimated by
about 0.03. This answers Q1 positively that contribution uncertainty really
exists.

Further, due to the greatly overestimated contribution link sourced from
View in Multimedia Mode (t3) to Response Time Be Reduced (sg1), we found
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Figure 7: The Self-Optimization Process (Earned Value vs. Time).

in the experiments without handling contribution uncertainty (i.e., A3–P
and A4–PE) that there happened a switch from multimedia mode to textual
mode, which would not happen if contribution uncertainty were properly
treated. This answers Q1 positively that contribution uncertainty, if not
properly handled, may produce suboptimal goal solutions, and it is practical
to take such uncertainty into consideration to make self-optimization more
satisfactory.

6.2.2. Evaluation of Handling Effect Uncertainty

Figure 7 (a) and (b) respectively show the self-optimization process with-
out handling effect uncertainty (i.e., A7–PC) and with handling effect un-
certainty (i.e., A8–PCE). The X axis denotes discrete time intervals of 30
seconds and the Y axis denotes the earned value in each time interval. The
triangle point on the curve represents that an adaptation action is performed,
the diamond point represents that the goal reasoner produces the same goal
solution and thus no adaptation action is performed, and the square point
represents that the timing delay of the last action is stopped.

It can be observed that, without handling effect uncertainty, the system
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suffered 3 oscillations of adaptation actions (identified by dashed rectan-
gles in Figure 7 (a)), performed totally 20 times of adaptation actions in
30 minutes, and had a standard deviation of earned value of 4.24. Notice
that Figure 3 is taken from the second oscillation. On the other hand, by
handling effect uncertainty, the system performed only 5 times of adaptation
actions in 30 minutes and had a standard deviation of earned value of 3.33.
This answers Q1 positively that effect uncertainty really exists.

Further, the delay length of all the 5 adaptation actions were identified by
dashed rectangles in Figure 7 (b). Among them, two actions had a delay of 2
time intervals, each avoiding 1 premature action; two actions had a delay of 3
time intervals, each avoiding 2 premature actions; and one action had a delay
of 4 time intervals, avoiding 3 premature actions. For instance, an action
happened due to a deviation of earned value at time 30, and a premature
action would have happened at time 31 due to an even worse deviation of
earned value if there were no consideration of timing delay. Hence, at least
9 premature actions were avoided through handling effect uncertainty, and
all the actions took effect before reaching the maximum delay. This answers
Q1 positively that effect uncertainty, if not properly handled, may produce
premature actions and cause oscillation, and it is reasonable to take timing
delay into consideration to make the system more stable.

It is worth to mention that we also get similar results of effect uncertainty
with A3–P and A4–PE, and with A5–C and A6–CE. It is also worth
to mention that the fourth action’s delay in Figure 7 (b) is a variant of
the second pattern in Figure 6, with the difference being that it took effect
when reaching the maximum delay; the first and second action’s delay almost
follows the first pattern in Figure 6; and the third and fifth action’s delay are
a variant of the first pattern in Figure 6, with the difference being that they
first had an increase of earned value before a decrease. A wider experiment
should be performed to find more delay patterns to guide the derivation of
heuristic rules for determining the proper timing delay.

6.3. Effectiveness Evaluation (Q2)

Table 3 shows the means of earned value and quality values per interval
and the adaptation frequency in 30 minutes under different approaches. The
adaptation frequency is used as an indicator for the stability of self-adaptive
systems. The first and second columns list the involved approaches and
their earned values. The third to sixth columns respectively list the quality
values, i.e., response time, usability, ordering cost and order canceling rate.

26



Table 3: Means of Earned Value, Quality Values and Adaptation Frequency
App. Val. ($) Res. (ms) Usa. (%) Cos. ($) Can. (%) Fre. (#)

A1 28.76 948.97 82.38 12.91 14.38 N/A

A2 29.82 924.18 83.70 11.69 15.13 29 + 0

A3–P 30.57 934.18 86.31 12.40 15.55 19 + 4

A4–PE 31.27 887.14 86.22 13.31 14.82 10 + 3

A5–C 29.20 1044.08 87.07 10.09 18.62 1 + 20

A6–CE 29.34 981.68 86.10 10.64 19.57 1 + 18

A7–PC 30.73 928.96 87.31 12.32 15.43 16 + 6

A8–PCE 31.58 889.14 86.49 13.12 14.06 8 + 3

The last column lists the adaptation frequency in the form of a + b, where
a represents the number of succeeded adaptation (i.e., an adaptation action
is performed) and b represents the number of failed adaptation (i.e., the goal
reasoner cannot find a better goal solution and thus no adaptation action is
performed although an adaptation action is really needed). Notice that the
first row lists the average results of A1 under all the 6 goal solutions of the
online shopping system.

Firstly, it can be seen that A3–P has a gain of 6.29% and 2.52% in earned
value over A1 and A2 respectively, A5–C has a gain of 1.53% but a loss of
2.08% in earned value over A1 and A2 respectively, and A7–PC has a gain
of 6.85% and 3.05% in earned value over A1 and A2 respectively. This shows
that handling preference or contribution uncertainty independently cannot
achieve the highest earned value, but a combination of them can.

Secondly, it can be observed that A3–P decreases succeeded adaptation
frequency over A2 by 34.48% and has a low frequency of failed adaptation,
A5–C has one succeeded adaptation but has a high frequency of failed adap-
tation, and A7–PC decreases succeeded adaptation frequency over A2 by
44.83% and has a low frequency of failed adaptation. This demonstrates
that handling preference or contribution uncertainty independently may suf-
fer instability (i.e., high frequency of succeeded adaptation) or make systems
run in sub-optimal manner (i.e., high frequency of failed adaptation), but a
combination of them can effectively relieve such problems.

Thirdly, after further considering effect uncertainty, A4–PE has a gain
of 2.29% in earned value and a decrease of 47.37% in succeeded adaptation
frequency over A3–P, A6-CE has a gain of 0.48% in earned value and a
decrease of 10.00% in failed adaptation frequency over A4–C, A8–PCE
has a gain of 2.77% in earned value and a decrease of 50.00% in adaptation
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frequency over A7–PC, and A8–PCE has the highest earned value and the
lowest adaptation frequency. This demonstrates that the handling of effect
uncertainty should be combined with the handling of preference uncertainty
and contribution uncertainty in order to further improve the effectiveness of
goal-driven self-optimization.

Last but not least, in terms of quality attributes, A3–P, A4–PE, A5–C,
A6–CE, A7–PC and A8–PCE are better in certain dimensions but worse
in others because we focus on the overall optimization from the perspective
of earned value rather than on the optimization of quality attributes.

The above analysis answers Q2 positively that it is practical and reason-
able to combine the handling of the three kinds of uncertainty, and by such a
combination, goal-driven self-optimization can be improved in terms of both
earned value and stability.

6.4. Scalability Evaluation (Q3)

The scalability of our approach is mainly determined by the performance
of the Analyze and Plan step. In the Analyze step, the time complexity of
Delay Analyzer, Preference Tuner and Contribution Updater are respectively
constant time, linear time with the number of soft goals and linear time with
the number of contribution links. In the Plan step, the time complexity of
Goal Reasoner is exponential time with the number of OR-decomposed goals.

To evaluate the scalability of our approach, we conducted a set of ex-
periments with automatically generated goal models whose sizes vary from
30 goals to 210 goals. Table 4 reports the experimental results. The first
five columns respectively list the number of goals, OR-decomposed goals,
soft goals, contribution links and goal solutions in each goal model. The
last four columns respectively list the performance (in milliseconds) of Delay
Analyzer, Preference Tuner, Contribution Updater and Goal Reasoner.

The Analyze step took around 3 milliseconds in all the experiments. And
the Plan step took around 3 seconds with the experiments on the goal model
containing 18 OR-decomposed goals (with 46656 goal solutions), which is still
feasible in our approach. As the number of OR-decomposed goals climbs to
21 (with 279936 goal solutions), the Plan step returned an “out of memory”
error, which is infeasible in our approach at this scale. Hence, this answers
Q3 that our approach can be applied to real-life systems with medium-sized
requirements goal models.
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Table 4: Performance of Our Approach.
Goal Model (#) Performance (ms)

G OR SG C GS DA PT CL GR

30 3 4 9 6 1 1 1 1

60 6 8 18 36 1 1 1 8

90 9 12 27 216 1 1 1 20

120 12 16 36 1296 1 1 1 78

150 15 20 45 7776 1 1 1 452

180 18 24 54 46656 1 1 1 3079

210 21 28 63 279936 1 1 1 out

6.5. Discussion

The handling of contribution uncertainty may be less effective when the
weights of contribution links change impulsively. In this case, our approach
responds slowly to such changes because our probability-based technique
needs some time of observing to precisely capture such changes. One possible
remedy to this is to use the latest n monitored quality values for calculating
[Satik, Denik] instead of using all the historical monitored quality values.

The handling of effect uncertainty relies on a few constants, i.e., value sat-
isfaction threshold, and minimum and maximum timing delay. The setting of
value satisfaction threshold α should consider a system’s tolerance capability
of earned value violation. For instance, if a system has a low tolerance capa-
bility of value violation, α should be larger (e.g., 0.9); otherwise, α should be
smaller (e.g., 0.4). The minimum timing delay is actually optional with the
default value being one time interval because every adaptation action needs
at least one time interval to take effect, and can be set to other values if prior
knowledge about the minimum timing delay is available (e.g., the historical
runtime data of adaptation actions). And the maximum timing delay can be
estimated by the historical runtime data of adaptation actions if available,
or can be analyzed by business experts considering the maximum tolerance
range of value violation from the business perspective.

Last but not least, we argue that the three kinds of uncertainty really exist
and can be controlled to some extent by the proposed techniques such that the
effectiveness of goal-driven self-optimization can be improved. Surely, other
possible techniques should be explored to handle the uncertainty (especially
the effect uncertainty) and be compared with the proposed techniques.
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7. Related Work

Our work falls in the area of self-adaptive systems that are able to change
their structures and/or behaviors in response to the changes in their opera-
tional environments, the system themselves and their requirements (Lemos
et al., 2011). Instead of enumerating all of the related studies, we refer the
readers to Cheng et al. (2009a), Sawyer et al. (2010) and Lemos et al. (2011)
for a comprehensive analysis of the current state-of-the-art, limitations and
challenges. Here we focus our discussion on the most closely related studies
in four areas: goal-driven self-adaptation, self-adaptation under probability,
runtime uncertainty handling, and design-time uncertainty handling.

7.1. Goal-Driven Self-Adaptation

Self-adaptive systems should be requirements-aware since these systems
are increasingly operating in volatile and poorly-understood environments
which forces requirements engineers to make assumptions about the states
and events these systems may encounter at runtime (Sawyer et al., 2010).
Several advances have been made on goal-driven self-adaptation. Dalpiaz
et al. (2009) proposed a conceptual architecture to provide systems with
self-configuration capabilities. Wang and Mylopoulos (2009) proposed a re-
quirements monitoring and diagnosing approach to allow self-repairing in
cases of failures. Chen et al. (2011) proposed a requirements-driven self-
optimization approach to achieve survivability assurance for Web systems.
Souza et al. (2011) proposed a systematic system identification method for
self-adaptive systems to identify configuration parameters and target outputs
as well as their qualitative relations, which can be used to dynamically tune
these parameters in cases of requirements deviations (Souza et al., 2012).
Fu et al. (2012) proposed a stateful requirements monitoring approach for
decentralized self-repairing of socio-technical systems. Salehie et al. (2012)
proposed a requirements-driven approach to support adaptive security in or-
der to protect variable assets at runtime.

These studies have the commonality that they use requirements goal mod-
els as the knowledge base for self-adaptation and cover the four self-* capa-
bilities proposed by IBM’s autonomic computing (Kephart and Chess, 2003).
However, all of them lack an explicit consideration of uncertainty handling,
which may cause negative effect on self-adaptation.
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Table 5: Literature Comparison over Supported Uncertainty Handling

Approach
Ext.

Int.
Sat. Pre. Con. Eff.

RELAX (Whittle et al., 2009; Cheng et al., 2009b)
√

× × × ×
FLAGS (Baresi et al., 2010)

√
× × × ×

REAssuRE (Welsh et al., 2011; Ramirez et al., 2012)
√
� ×

√
× ×

Bencomo and Belaggoun (2013); Bencomo et al. (2013)
√
� ×

√
× ×

POISED (Esfahani et al., 2011) × × × ×
√

Our Approach
√
�

√ √ √
×

7.2. Self-Adaptation under Probability

Ghezzi et al. (2013) presented ADAM to support adaptation aimed at
mitigating non-functional uncertainty. It exploits Markov Decision Processes
(MDPs) to model self-adaptive systems which have alternative and optional
functionality implementations. According to the aggregated quality metrics
up to the current state, ADAM can find the execution path with the high-
est probability to satisfy the non-functional requirements and then enable
adaptation by switching to alternative implementations or skipping the op-
tional. They do not consider the inaccuracy of the transition probabilities in
such MDP models, while we take into account the uncertainty in goal mod-
els by tuning the preference ranks of soft goals and updating the weights of
contribution links.

Filieri et al. (2012) presented KAMI to provide continuous verification of
reliability and performance requirements of self-adaptive systems by exploit-
ing Discrete-Time Markov Chains (DTMCs) and Continuous-Time Markov
Chains (CTMCs) respectively and using a model checking technique. KAMI
can update the model parameters of DTMCs and CTMCs through Bayesian
estimation based on runtime observations. Similarly, Sykes et al. (2013) pro-
posed to enable self-adaptive systems to cope with incomplete and inaccu-
racy knowledge by updating their behavior models. They use a probabilistic
rule learning technique to not only update transition probabilities but also
discover new structures of the model. These studies aim at updating the
models used for the knowledge base of planning. Different from their mod-
els, we handle the uncertainty in requirements goal models and also deal with
effect uncertainty.

7.3. Runtime Uncertainty Handling

Esfahani et al. (2011) distinguish between external uncertainty and inter-
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nal uncertainty in self-adaptive systems. External uncertainty arises from the
environment or domain, which is still a key challenge when requirements en-
gineering for self-adaptive systems (Sawyer et al., 2010; Cheng et al., 2009a).
On the other hand, internal uncertainty is underlying adaptation decision’s
impact on the quality objectives.

Table 5 provides a comparison between our approach and some approaches
supporting runtime uncertainty handling reported in related work in terms
of satisfaction uncertainty, preference uncertainty, contribution uncertainty,
effect uncertainty and internal uncertainty. Several advances have been made
on external uncertainty while less attention has been paid on internal uncer-
tainty. Besides, most studies on external uncertainty focus on one kind of
uncertainty while our approach handles almost all the listed external uncer-
tainty (although this list is not sound and complete and we partially handle
satisfaction uncertainty by dealing with soft goals).

Whittle et al. (2009) developed RELAX, a formal requirements specifica-
tion language, whose semantics is defined in fuzzy branching temporal logic,
to support explicit expression of environment uncertainty in requirements for
self-adaptive systems. This enables the self-adaptive systems to temporarily
relax the satisfaction of non-critical requirements when environment changes.
Following Whittle et al. (2009), Cheng et al. (2009b) integrated RELAX with
goal modeling and proposed a range of tactics for adaptation to deal with
uncertainty.

Baresi et al. (2010) presented FLAGS, an extension of the KAOS goal
model (van Lamsweerde and Letier, 2002), distinguishing between crisp goals,
whose satisfaction is Boolean, and fuzzy goals, whose satisfaction is evalu-
ated by fuzzy logic. Similar to RELAX, FLAGS also exploits fuzziness to
handle the satisfaction uncertainty of fuzzy goals with the idea of tolerating
small/transient deviations. This approach has been successfully applied to
self-adaptive service compositions (Baresi and Pasquale, 2010a,b).

Both RELAX and FLAGS support the handling of goal satisfaction un-
certainty, while our approach partially supports it by only dealing with soft
goals and further handles contribution uncertainty, preference uncertainty
and effect uncertainty.

Welsh et al. (2011) proposed REAssuRE, in which claims are attached to
the contribution links to record the rationale for a choice of alternative goal
operationalization when there is uncertainty about the optimal choice. Fur-
ther, Ramirez et al. (2012) integrated REAssuRE with RELAX to introduce
a fuzzy logic layer upon the evaluation criteria of claims’ validity. When a
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claim is falsified at runtime, its attached contribution link is updated (e.g.,
converting from help to neutral), and the goal model is re-evaluated to find
a better solution. Hence, these studies presented a qualitative way to han-
dle the contribution uncertainty. Enlightened by their work, we propose a
quantitative way to handle the contribution uncertainty.

Following Welsh et al. (2011), Bencomo and Belaggoun (2013) proposed
to map goal models and claims to dynamic decision networks (DDNs), where
each qualitative contribution link corresponds to a conditional probability
and each configuration is associated with a preference. When the validity of
a claim is changed at runtime, the relevant conditional probabilities will be
updated and the DDN model will be re-evaluated to find a configuration with
the highest probability-weighted utility (Bencomo et al., 2013). The condi-
tional probabilities and preferences are given by experts and only some of
the conditional probabilities will be updated, while our approach can update
all the conditional probabilities and tune the preferences.

Esfahani et al. (2011) proposed POISED to handle the internal uncer-
tainty, which is built upon possibility theory to assess the positive and nega-
tive consequences of internal uncertainty. POISED can find a system config-
uration that maximizes the satisfaction of quality objectives as well as max-
imizes the positive consequences and minimizes the negative consequences.
Complementary to this work, our approach can utilize this technique to han-
dle the uncertainty underlying goal reasoning.

7.4. Design-Time Uncertainty Handling

Design-time uncertainty handling in requirements engineering has been
proposed in researches on requirements elicitation, disambiguation and in-
consistency check. Salay et al. (2012) used partial models to manage re-
quirements uncertainty. This study is more qualitative (e.g., are there more
alternatives to achieve a goal) where ours is more quantitative (e.g., is the
contribution link underestimated). Yang et al. (2012) proposed an approach
to detect the uncertainty in natural language requirements. This study han-
dles requirements uncertainty at the language level where ours is at the model
level. Arora et al. (2012) focused on the uncertainty arising from inconsistent
feature interactions. The difference is that our approach has an aim to im-
prove or maintain the satisfaction level of requirements even though initially
the requirements goal models are not perfectly defined.

Karlsson and Ryan (1997) used the analytic hierarchy process technique,
In et al. (2002) used a multi-criteria analysis method, and Avesani et al.
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(2005) used a machine learning-based technique, to prioritize requirements.
Liaskos et al. (2012) used the analytic hierarchy process technique to quan-
titatively elicit the weights of contribution links. Cheng (2008) statically
designated a fixed timing delay for the adaptation mechanism to wait and
observer the effect. As an initial attempt, we studied the impact of different
windows of timing delay to self-adaptive systems in Chen et al. (2011).

Letier and van Lamsweerde (2004) proposed to specify partial degrees
of goal satisfaction and quantify the impact of alternative designs on the
degree of goal satisfaction for guiding requirements elaboration and design
decision making. The partial degree of goal satisfaction is modeled by objec-
tive function on quality variables, and the objective function is specified by
probabilistic models. This study used a probabilistic technique to tackle goal
satisfaction uncertainty at design time, while we focus on runtime handling
of contribution uncertainty, preference uncertainty and effect uncertainty.

Esfahani et al. (2013) presented GuideArch to quantitatively guide the ex-
ploration of architectural solution space, including ranking the architectures,
finding the optimal, and identifying the critical decisions, under the uncer-
tain impact of architectural alternatives on properties of interest. This study
employs fuzzy math to represent and reason about uncertainty where ours
uses a probability analysis to try to eliminate the contribution uncertainty.

In summary, these design-time approaches more or less involve user study
or elicitation, making them infeasible to be applied in an unsupervised self-
optimization process. However, we propose to dynamically handle the un-
certainty at runtime.

8. Conclusions

Goal-driven self-optimization approaches usually use requirements goal
models to reason about the optimal configurations for running systems. How-
ever, current approaches often suffer from diverse uncertainty as compound-
ing factors of the predefined goal models and their suggested switches in the
changing and uncertain environments. In this paper, we have proposed an
approach to provide a combined handling of the three kinds of uncertainty,
i.e., proposing a probabilistic-based analysis for contribution uncertainty, in-
tegrating a dynamic quality trade-off mechanism for preference uncertainty,
and proposing a heuristics-based technique for effect uncertainty. After ap-
plying these runtime measures, our approach can limit the uncertainty’s neg-
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ative effect on goal-driven self-optimization, e.g., avoiding suboptimal or pre-
mature reconfigurations and mitigating oscillations of adaptation actions.

Our experimental study on an online shopping system has shown that
the three kinds of uncertainty really exist and have negative effect on goal-
driven self-optimization, and the effectiveness of goal-driven self-optimization
approaches can be further improved in terms of both earned value and sta-
bility by a combined handling of the three kinds of uncertainty.

The preference and effect uncertainty are general in self-adaptive systems
although our approach is under the umbrella of goal models. Thus we plan
to apply the techniques to architecture-based self-adaptation approaches for
further validating the feasibility and to exploit the specific uncertainty under
architecture-based self-adaptation. In addition, we hope to extend our ap-
proach to further deal with the internal uncertainty underlying goal reasoning
by integrating the related work like Esfahani et al. (2011). We also plan to
explore other possible techniques to handle the three kinds of uncertainty as
well as to perform a wider range of experiments on more real-life systems to
find more delay patterns for a better handling of effect uncertainty.
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