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Abstract

In this paper we examine the resolvability of infinite designs. We show that in stark
contrast to the finite case, resolvability for infinite designs is fairly commonplace. We
prove that every t-(v, k, Λ) design with t finite, v infinite and k, λ < v is resolvable
and, in fact, has α orthogonal resolutions for each α < v. We also show that, while
a t-(v, k, Λ) design with t and λ finite, v infinite and k = v may or may not have a
resolution, any resolution of such a design must have v parallel classes containing v
blocks and at most λ − 1 parallel classes containing fewer than v blocks. Further,
a resolution into parallel classes of any specified sizes obeying these conditions is
realisable in some design. When k < v and λ = v and when k = v and λ is infinite,
we give various examples of resolvable and non-resolvable t-(v, k, Λ) designs.

Keywords: infinite design, resolvable, resolution, parallel class
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1. Introduction

We assume that the reader is familiar with the general concepts of design theory,
and refer them to [9] for general definitions and notation. For finite t, v, k and λ,
a t-(v, k, λ) design is a pair (V,B) where V is a v-set of points and B is a collection

1supported by NSERC discovery grant
2supported by the Australian Research Council via grants DE120100040 and DP120103067

Preprint submitted to Elsevier November 12, 2013



of k-subsets of V , called blocks, such that every t-subset of V is a subset of exactly
λ blocks. A t-(v, k, λ) design (V,B) is called resolvable if B can be partitioned into
parallel classes, each of which is a partition of V .

Classically t, v, k and λ are taken to be finite. However, there has been con-
siderable interest in designs with infinite parameter sets. Fundamental definitions
and assumptions are given in [5]. Grannell, Griggs, and Phelan [14, 15] gave the
first explicit constructions for infinite Steiner triple systems, and rigid, sparse and
perfect countably infinite Steiner triple systems are constructed in [12], [8] and [6],
respectively.

Extension results for Steiner systems can be found in Quackenbush [24] and Beu-
telspacher and Cameron [1]. Cameron has also considered the subject from a geomet-
ric point of view in [2], and in [4] he showed that large sets of Steiner systems exist
for all finite t and k and infinite v. Orbits in infinite designs have been considered by
Cameron [3], Webb [27, 28], Evans [11] and Camina [7]. The specific case of orbits
on projective planes is considered by Moorhouse and Pentila [22]. Horsley, Pike and
Sanaei [16, 23] have considered block intersection graphs of infinite designs. In this
paper we consider the resolvability properties of infinite designs.

We use the set of assumptions laid out in [5]. In particular, we work in Zermelo–
Fraenkel set theory with the axiom of choice. We use the following definition from [5].

Definition 1.1 ([5]). Let t, v and k be cardinals with t finite and let Λ = (λi,j)0≤i,j≤t

be a matrix of cardinals, where λi,j is undefined for i+ j > t. A t-(v, k, Λ) design is a

pair (V,B) where V is a v-set of points and B is a collection of k-subsets of V , called

blocks, with the properties that

1. no block is a strict subset of any other block;

2. the cardinality of the set of points missed by a block is non-zero, and is inde-

pendent of the block;

3. for any disjoint subsets I and J of V with |I| + |J | ≤ t, exactly λ|I|,|J | blocks

contain each point in I and no point in J .

We will also need the notion of a partial design, which we define here.

Definition 1.2. Let t, v and k be cardinals with t finite and let Λ = (λi,j)0≤i,j≤t
be a

matrix of cardinals, where λi,j is undefined for i + j > t. A partial t-(v, k, Λ) design

is a pair (V,B) where V is a v-set of points and B is a collection of k-subsets of V ,

called blocks, which satisfy 1 and 2 from Definition 1.1, and

3 ′. for any disjoint subsets I and J of V with |I| + |J | ≤ t, at most λ|I|,|J | blocks

contain each point in I and no point in J .

Throughout the paper we will assume that t ≥ 2 is finite, that v is infinite, and
that Λ is the matrix with entries (λi,j)0≤i,j≤t

, where λi,j is undefined for i + j > t.
As in [5] we use b to denote λ0,0, λ to denote λt,0 and r to denote λ1,0. As we are
considering resolvability of designs, the parameter r, which represents the cardinality
of the set of blocks containing a given point x, is of particular relevance.

The following was shown in Theorem 3.1 of [5].
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Theorem 1.3 ([5]). Let t, v and k be cardinals such that t is finite and t ≥ 2, and

let V be a v-set and B be a collection of k-subsets of V . If (V,B) satisfies 1 and 2 of

Definition 1.1 and each t-subset of V is a subset of exactly λ sets in B, then (V,B)
is a t-(v, k, Λ) design with λt,0 = λ and λi,j = v for 0 ≤ i ≤ t − 1, 0 ≤ j ≤ t and

i + j ≤ t.

As a consequence of this result, when t and λ are both finite we can replace Λ
with λ and talk about a t-(v, k, λ) design.

The study of resolvability in designs has a long history, indeed in a geometric
context it is related to the notion of parallelism and is a direct consequence of the
affine property. In design theory, Kirkman introduced the concept in his original 1847
paper [17], posing the problem of the existence of resolvable triple systems, which are
known as Kirkman systems in his honour. This existence problem was only settled in
1971 by Ray-Chadhuri and Wilson [25]. When k = 2, resolvable 2-(v, 2, 1) designs are
equivalent to one-factorizations of the complete graph, which are well studied (see for
example [21]). Currently, for finite designs, the necessary conditions for the existence
of a resolvable design are known to be sufficient only for k = 2, 3, 4 [9]. The sparsity of
these values and the time it took to settle Kirkman’s conjecture point to how difficult
a problem resolvability is in the finite case. For sufficiently large orders, Lu [20] has
shown that the necessary conditions for the existence of a resolvable design are also
sufficient.

This paper is concerned with the resolvability of infinite designs. Köhler [18]
showed that there exist cyclic resolvable designs with v = ℵ0 and k, t finite. One
of our results shows that every design with these parameter sets must be resolvable.
Horsley, Pike and Sanaei [16] briefly considered the notion of resolvability in infinite
designs, but refrained from formally defining resolvability of such designs for want of
further study, which this paper now undertakes. To date, these appear to be the only
mentions of resolvability for infinite designs in the literature.

Let (V,B) be a t-(v, k, Λ) design with t finite and v infinite. It is clear that
λ0,0 ≥ λ1,0 ≥ . . . ≥ λt,0, and so

λ ≤ r ≤ b. (1)

Further, a block cannot contain more than v points, so

k ≤ v. (2)

A point x appears in
(

v−1

t−1

)

t-sets and each block containing x contains
(

k−1

t−1

)

t-sets
containing x. Since each point appears in r blocks we have the classical equation

r

(

k − 1

t − 1

)

= λ

(

v − 1

t − 1

)

.

However, since t is finite and v is infinite we have
(

v−1

t−1

)

= v and r
(

k−1

t−1

)

= rk, so the
equation above becomes

rk = λv. (3)

(Note that when k is infinite we have
(

k−1

t−1

)

= k and when k is finite we have that r

is infinite and hence r
(

k−1

t−1

)

= r = rk.)
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In the next section we define and discuss resolvability in the context of infinite
designs. We then consider the case when k < v in Section 3 and show in Theorem 3.3
that all such designs are necessarily resolvable when λ < v. We further show, in
Theorem 3.7, that any such design has q orthogonal resolutions for each q < v. When
k < v and λ = v we supply examples of both resolvable and non-resolvable designs.

In Section 4 we consider the case when k = v. Both resolvable and non-resolvable
designs exist in this case, but we demonstrate in Theorem 4.3 that when λ is finite,
any resolution of such a design has v parallel classes containing v blocks and at most
λ−1 parallel classes containing fewer than v blocks. Further, in Theorem 4.7 we show
that a resolution into parallel classes of any specified sizes obeying these conditions
is realisable in some design. When k = v and λ = v, we give various examples of
resolvable and non-resolvable designs.

2. Resolvability

For infinite designs we adopt a definition of resolvability which is unchanged from
the finite case.

Definition 2.1. A parallel class of a t-(v, k, Λ) design, (V,B), is a collection of blocks

R ⊆ B which forms a partition of V .

Definition 2.2. A t-(v, k, Λ) design, (V,B), is said to be resolvable if B can be

partitioned into parallel classes. Such a partition is called a resolution of the design.

Thus in a resolvable t-(v, k, Λ) design, (V,B), there exists a collection of pairwise
disjoint parallel classes which between them contain every block in B exactly once.
The number of parallel classes in any resolution of a design is the parameter r.

Resolvability in infinite designs behaves differently in the cases k < v and k = v
and we will divide our investigation accordingly. The following theorem deals with
the possible values of r in infinite designs with various parameters. It is essentially a
restatement of Theorem 8.1 of [5], but with the emphasis on r rather than b.

Theorem 2.3. Let t, v, k and λ be cardinals such that v is infinite, t is finite and

t ≥ 2.

• If λ > v, then a t-(v, k, Λ) design has r = λ.

• If either k < v and λ ≤ v or k = v and λ is finite, then a t-(v, k, Λ) design has

r = v.

• If k = v, λ ≤ v and λ is infinite, then λ ≤ r ≤ v.

Proof. If λ > v, then Equation (3) implies that r = λ. If k < v and λ ≤ v, then
Equation (3) implies that r = v. If k = v and λ is finite, then r = v by Theorem 1.3
(recall that r = λ1,0). If k = v, λ ≤ v and λ is infinite, then Equation (3) implies
that r ≤ v and Equation (1) states that λ ≤ r.
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3. The case k < v

Clearly, any parallel class in a t-(v, k, Λ) design with k < v must contain v blocks.

3.1. The case k < v, λ < v

Theorem 2.3 implies that a t-(v, k, Λ) design with k < v and λ < v has r = v. So
any resolution of such a design is necessarily into v parallel classes each containing v
blocks. In this section we show that every t-(v, k, Λ) design with k < v and λ < v is
resolvable. As a consequence, every infinite triple system is a Kirkman system. We
then strengthen our result to show that, in fact, every t-(v, k, Λ) design with k < v
and λ < v has α orthogonal resolutions for each α < v.

The following lemma is adapted from a similar lemma in [16].

Lemma 3.1. Let t, v, k and λ be cardinals such that v is infinite, t is finite, t ≥ 2,
k < v and λ < v. Let (V,B) be a partial t-(v, k, λ) design such that every (t−1)-subset
of V is a subset of v blocks of B. Let S and S ′ be disjoint subsets of V such that

|S| ≤ t − 1 and |S ′| < v. Then there are v blocks in B which are supersets of S and

which are disjoint from S ′.

Proof. Since |S| ≤ t − 1 and |S ′| < v, it is easy to see that there is a subset S† of
V such that S ⊆ S†, S† ∩ S ′ = ∅ and |S†| = t − 1. Let X be the collection of all
blocks in B which are supersets of S† and let Y be the collection of all blocks of B
which are supersets of S† and contain at least one point in S ′. It suffices to show that
|X \ Y| = v. From our hypotheses |X | = v and thus it suffices to show that |Y| < v.

Clearly, there are |S ′| t-subsets of V that are supersets of S† and also contain a
point of S ′. Thus, since each block in Y is a superset of at least one of these t-sets
and since each of these t-sets is a subset of at most λ blocks in B, it follows that
|Y| ≤ λ|S ′| < v.

Lemma 3.2. Let t, v, k and λ be cardinals such that v is infinite, t is finite, t ≥ 2,
k < v and λ < v. Let (V,B) be a partial t-(v, k, Λ) design such that every (t − 1)-
subset of V is a subset of v blocks in B, and let B∗ be a block in B. Then there is a

parallel class of (V,B) containing B∗.

Proof. Let V = {xα}α<v. We will show, by transfinite induction on β, that for each
ordinal β ≤ v there is a set Pβ of pairwise disjoint blocks in B such that B∗ ∈ Pβ ,
|Pβ| ≤ |β| + 1, xα ∈

⋃

Pβ for each α < β, and Pα ⊆ Pβ for each α < β. This will
suffice to complete the proof, since Pv will be a parallel class of (V,B) containing B∗.

Take P0 = {B∗}. Now let γ be an ordinal with γ < v and assume that, for each
β < γ, there is a set of pairwise disjoint blocks Pβ of (V,B) such that B∗ ∈ Pβ ,
|Pβ| ≤ |β| + 1, xα ∈

⋃

Pβ for each α < β, and Pα ⊆ Pβ for each α < β.

If γ is a limit ordinal take Pγ =
⋃

β<γ Pβ .

If γ is a successor ordinal and xγ−1 ∈
⋃

Pγ−1, then take Pγ = Pγ−1. If γ is a
successor ordinal and xγ−1 /∈

⋃

Pγ−1, then take Pγ = Pγ−1 ∪{B}, where B is a block
which contains xγ−1 but is disjoint from

⋃

Pγ−1 (v such blocks exist by Lemma 3.1,
noting that |

⋃

Pγ−1| ≤ k|Pγ−1| ≤ k(|γ − 1| + 1) < v).
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Theorem 3.3. Let t, v, k and λ be cardinals such that v is infinite, t is finite, t ≥ 2,
λ < v, and k < v. Then every t-(v, k, Λ) design is resolvable.

Proof. Let (V,B) be a t-(v, k, Λ) design. Let B = {Bα}α<v (we have seen that r = v
and so b = v by Equation (1)). We will show, by transfinite induction on β, that for
each ordinal β ≤ v there is a collection Rβ of at most |β| pairwise disjoint parallel
classes of (V,B) such that Bα ∈

⋃

Rβ for each α < β and Rα ⊆ Rβ for each α < β.
This will suffice to complete the proof, since Rv will be a resolution of (V,B).

Take R0 = ∅. Now let γ be an ordinal with γ < v and assume that, for each
β < γ, there is a collection Rβ of at most |β| pairwise disjoint parallel classes of (V,B)
such that Bα ∈

⋃

Rβ for each α < β and Rα ⊆ Rβ for each α < β.

If γ is a limit ordinal take Rγ =
⋃

β<γ Rβ.

If γ is a successor ordinal and Bγ−1 ∈
⋃

Rγ−1 then take Rγ = Rγ−1. If γ is a
successor ordinal and Bγ−1 /∈

⋃

Rγ−1 then we take Rγ = Rγ−1 ∪ {P}, where P is a
parallel class of (V,B) which contains Bγ−1 and is disjoint from

⋃

Rγ−1 (we will show
that such a parallel class exists).

Clearly, (V,B \
⋃

Rγ−1) is a partial t-(v, k, Λ) design. If every (t− 1)-subset of V
is a subset of v blocks in B\

⋃

Rγ−1, then we can apply Lemma 3.2 to (V,B\
⋃

Rγ−1)
to find our desired parallel class.

Let S be a (t−1)-subset of V . Let X be the collection of all blocks in B which are
supersets of S and let Y be the collection of all blocks in

⋃

Rγ−1 which are supersets
of S. We will complete the proof by showing that |X | − |Y| = v. Clearly there are
exactly v t-subsets of V which are supersets of S. Each of these is a subset of exactly
λ blocks in B, all of which are in X . Thus, since a block in X can be a superset of at
most

(

k

t

)

of these t-sets, it follows that
(

k

t

)

|X | ≥ λv and hence that |X | = v. There
are exactly |Rγ−1| blocks in

⋃

Rγ−1 which contain any given point of S and hence at
most |Rγ−1| blocks in Y . So |Y| ≤ |Rγ−1| ≤ |γ−1| < v, and hence |X |− |Y| = v.

We now extend this result to cover orthogonal resolutions.

Definition 3.4. Two resolutions R1 and R2 of a t-(v, k, Λ) design (V, {Bα}α∈I) are

called orthogonal if for any parallel classes {Bα}α∈J1
∈ R1 and {Bα}α∈J2

∈ R2 we

have |J1 ∩ J2| ≤ 1.

Note that this definition means that, in a non-simple design, two different blocks
containing the same points are treated as distinct for the purposes of determining
orthogonality.

The study of orthogonal resolutions of designs has a long history in the finite
case [13, 26], culminating with Colbourn et al [10] showing the existence of doubly
resolvable designs with k = 3 and Lamken [19] showing general asymptotic existence
of designs with d mutually orthogonal classes for arbitrary finite k. We can strengthen
our proof of Theorem 3.3 to show that any t-(v, k, Λ) design admits q orthogonal
resolutions for any q < v.

Lemma 3.5. Let t, q, v, k and λ be cardinals such that v is infinite, t is finite, t ≥ 2,
q < v, k < v and λ < v. Let (V,B) be a t-(v, k, Λ) design, let B′ be a subset of B such
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that every (t−1)-subset of V is a subset of v blocks in B′, let B∗ be a block in B′, and

let {Rα}α<q be a collection of q pairwise orthogonal resolutions of (V,B). Then there

is a parallel class P of (V,B′) which contains B∗ and such that P shares at most one

block with each parallel class in
⋃

α<q Rα.

Proof. We construct P exactly as the parallel class required in the proof of Lemma 3.2
is constructed, except that, when choosing a new block to add to our partial parallel
class, we avoid blocks which are in parallel classes in

⋃

α<q Rα which already share a
block with our partial parallel class. To see that we can always choose such a block,
suppose we are choosing a block B which contains xγ−1 but is disjoint from

⋃

Pγ−1,
and note that Lemma 3.1 ensures the existence of v such blocks. On the other hand,
⋃

Pγ−1 contains fewer than v blocks and each of these is shared with at most one
parallel class in each resolution in {Rα}α<q. So, because q < v, it is clear that fewer
than v parallel classes in

⋃

α<q Rα share a block with
⋃

Pγ−1 and, since each of these
contains exactly one block which contains xγ−1, that there are fewer than v blocks
which must be avoided.

It is routine to check that this construction produces the required parallel class.

Lemma 3.6. Let t, q, v, k and λ be cardinals such that v is infinite, t is finite, t ≥ 2,
q < v, λ < v and k < v. Let (V,B) be a t-(v, k, Λ) design, and let {Rα}α<q be a

collection of q pairwise orthogonal resolutions of (V,B). Then there is a resolution R

of (V,B) which is orthogonal to each resolution in {Rα}α<q.

Proof. Construct R exactly as the resolution required in the proof of Theorem 3.3 is
constructed, except that, instead of applying Lemma 3.2 to find a new parallel class,
we apply Lemma 3.5 to find a new parallel class which shares at most one block with
each parallel class in

⋃

α<q Rα.

It is routine to check that this construction produces the required resolution.

Theorem 3.7. Let t, v, k and λ be cardinals such that v is infinite, t is finite, t ≥ 2,
k < v and λ < v. Then every t-(v, k, Λ) design has q orthogonal resolutions for each

cardinal q such that q < v.

Proof. This is easily proved by transfinite induction using Lemma 3.6.

3.2. The case k < v, λ = v

We now show there exist both resolvable and non-resolvable t-(v, k, Λ) designs
with k < v and λ = v. In fact, the two results below also apply when k = v.

Lemma 3.8. Let v, k and t be cardinals such that v is infinite, t is finite, t ≥ 2 and

t + 1 ≤ k ≤ v. There is a t-(v, k, Λ) design, with λi,j = v for i + j ≤ t, which has no

resolution.

Proof. Let V be a v-set. Let

I = {(I, J) : I, J ⊆ V, I ∩ J = ∅, |I| + |J | ≤ t}.

7



Because t is finite, it is clear that |I| = v and so we can write I = {(Iα, Jα)}α<v.
Let W be a subset of V with |W | = t + 1. Since |V \ W | = v we can find a set
of v pairwise disjoint v-subsets of V \ W , {S∗} ∪ {S ′

α}α<v say. For each α < v, let
Sα = S ′

α \ (
⋃

β≤α(Iβ ∪ Jβ)) and observe that |Sα| = v for each α < v (note that
|
⋃

β≤α(Iβ ∪ Jβ)| ≤ t|α + 1| < v).

Let B∗ be a k-subset of W ∪ S∗ such that W ⊆ B∗. For each α < v, let Bα be a
k-subset of Iα ∪ (W \ Jα) ∪ Sα such that Iα ⊆ Bα and |W ∩ Bα| ≥ 1 (such a subset
exists because |Jα| ≤ t < |W | and k − |Iα| ≥ k − t ≥ 1). Let B be the collection
containing B∗ exactly once and each element of {Bα : α < v} exactly v times. Note
that |B| = v2 + 1 = v.

For each (I, J) ∈ I, it follows from the definition of B that at least v sets in B
contain each point in I and no point in J , and it follows from |B| = v that at most
v sets in B contain each point in I and no point in J . If k is infinite, no set in B
is a proper subset of any other because B∗ is the only set in {B∗} ∪ {Bα : α < v}
which contains infinitely many points in S∗ and, for each α < v, Bα is the only set
in {B∗} ∪ {Bα : α < v} which contains infinitely many points of Sα. If k is finite, no
set in B is a proper subset of any other trivially. Thus (V,B) is a t-(v, k, Λ) design
with λi,j = v for i + j ≤ t. Each block in B contains a point in W and W ⊆ B∗, so
it follows that (V,B) does not have a resolution.

Lemma 3.9. Let v, k and t be cardinals such that v is infinite, t is finite, t ≥ 2 and

t + 1 ≤ k ≤ v. There is a t-(v, k, Λ) design with λi,j = v for i + j ≤ t which has a

resolution into v parallel classes each containing v blocks.

Proof. Let V be a v-set. Let

I = {(I, J) : I, J ⊆ V, I ∩ J = ∅, |I| + |J | ≤ t}.

Because t is finite, it is clear that |I| = v and so we can write I = {(Iα, Jα)}α<v.
We can find a collection of v pairwise disjoint v-subsets of V , {S ′

α}α<v say. For each
α < v let Sα = S ′

α \ (
⋃

β≤α(Iβ ∪ Jβ)) and observe that |Sα| = v for each α < v (note
that |

⋃

β≤α(Iβ ∪ Jβ)| ≤ t|α + 1| < v).

For each α < v, let B∗
α be a k-subset of V \ Jα such that Iα ⊆ B∗

α, B∗
α ⊆ Iα ∪ Sα

and |Sα \B∗
α| = v, and let P∗

α be a partition of V \B∗
α into v parts of size k such that

each part contains exactly one point in V \ (Sα ∪B∗
α) (such a partition exists because

|V \ (Sα ∪ B∗
α)| = v and Sα \ B∗

α can be partitioned into v parts of size k − 1). Let
Pα = {B∗

α} ∪ P∗
α for each α < v and note that Pα is a partition of V into v parts of

size k. Let B be the collection containing each element of
⋃

α<v Pα exactly v times.
Note that |B| = v2 = v.

For each (I, J) ∈ I, it follows from the definition of B that at least v sets in B
contain each point in I and no point in J , and it follows from |B| = v that at most
v sets in B contain each point in I and no point in J . If k is infinite, no set in B
is a proper subset of any other because, for each α < v, the only sets in B which
contain infinitely many points of Sα are those in Pα. If k is finite, no set in B is a
proper subset of any other trivially. Thus (V,B) is a t-(v, k, Λ) design with λi,j = v
for i + j ≤ t, and {Pα : α < v} is a resolution of (V,B).
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4. The case k = v

A parallel class in a t-(v, k, Λ) design with k = v may contain as few as two blocks
or as many as v blocks. Further, a resolution of such a design may contain parallel
classes containing different numbers of blocks. We call a parallel class of such a design
with cardinality less than v a short parallel class.

4.1. The case k = v, λ finite

The Euclidean and extended Euclidean planes show that there exist both resolv-
able and non-resolvable t-(v, k, Λ) designs with k = v and λ finite. The Euclidean
plane, viewed as a 2-(2ℵ0, 2ℵ0, 1) design has a resolution into 2ℵ0 parallel classes each
containing 2ℵ0 blocks, where the parallel classes are all complete sets of lines of the
same slope. The extended Euclidean plane, viewed as a 2-(2ℵ0, 2ℵ0 , 1) design, has the
property that any two blocks intersect and so is not resolvable.

It is worth noting that we can “projectivise” any resolvable 2-(v, v, 1) design by
adding one new point to the design for each parallel class of some resolution of the
design, adding to each existing block the new point corresponding to its parallel class,
and adding a new block containing exactly the new points. This produces a 2-(v, v, 1)
design with no resolution.

By Theorem 2.3, a t-(v, k, Λ) design with k = v and λ finite has r = v, and hence
any resolution of such a design has v parallel classes. However, some of these parallel
classes may be short. In this section we show that a resolution of a t-(v, k, Λ) design
with k = v and λ finite can have at most λ− 1 short parallel classes (and hence must
have v parallel classes containing v blocks). We further show that for any ℓ < λ sizes
less than v, it is possible to find a resolution of a design with short parallel classes of
exactly these sizes. These results generalise Lemma 2.7 of [16] which shows that any
resolution of a t-(v, v, 1) design has v parallel classes, each of which contains v blocks.

We begin by constructing an array in which the columns represent the points
of a design, the rows the parallel classes and the entries the blocks. Partial arrays
correspond to partial designs. Let t, v, k, λ and r be cardinals such that v is infinite,
t and λ are finite, and t ≥ 2. Let A be an r×v array such that each cell of A contains
exactly one symbol. For a particular row s of A and a symbol σ which appears in s,
we call the set B of all columns of A which contain σ in row s a block of A. We will
say that B is a block in row s and induced by the symbol σ. If a set T of columns of
A is a subset of a block of A in row s then we will say that T is covered by row s. If
A satisfies

(i) each block of A has size k and no block of A contains every column of A;

(ii) no block of A is a strict subset of another block of A; and

(iii) each t-set of columns is covered by exactly λ rows of A;

then we say that it is a t-(v, k, λ) resolution array. If A satisfies (i), (ii) and

(iii)′ each t-set of columns is covered by at most λ rows of A;
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then we say that it is a partial t-(v, k, λ) resolution array.

Clearly, a t-(v, k, λ) resolution array is equivalent to a resolution of a t-(v, k, λ)
design, together with an ordering of its points and parallel classes. Similarly, a partial
t-(v, k, λ) resolution array is equivalent to a resolution of a partial t-(v, k, λ) design,
together with an ordering of its points and parallel classes. Note that permuting the
rows or columns of a (partial) resolution array A does not affect the structure of the
corresponding resolution.

For cardinals v and r such that v is infinite we call a row of an r×v array special if
it contains fewer than v distinct symbols and normal if it contains v distinct symbols.
Special rows correspond to short parallel classes in the corresponding resolution. In
what follows we will often assume that any special rows occur above any normal ones.
We call the ℓ × 1 array comprising the first ℓ cells of a column c of A the ℓ-initial

pattern of c. We say an ℓ-initial pattern occurs in an array if there is at least one
column of the array which has that initial pattern.

Lemma 4.1. Let v, r and ℓ be cardinals such that v is infinite and ℓ is finite. Let

A be an r × v array such that the first ℓ rows of A are special. Then fewer than v
ℓ-initial patterns occur in A, and any set of v columns of A has a subset of v columns

which all have the same ℓ-initial pattern.

Proof. For i = 1, . . . , ℓ, let bi be the number of distinct symbols which occur in row
i of A. Because the first ℓ rows of A are special, bi < v for i ∈ {1, . . . , ℓ}. Thus the
number of ℓ-initial patterns which occur in A is at most b1b2 · · · bℓ < v. It follows
that, if C is a set of v columns of A, then there must be v columns in C which all
have the same ℓ-initial pattern.

Lemma 4.2. Let t, v and λ be cardinals such that v is infinite, t and λ are finite,

and t ≥ 2, and let A be a t-(v, v, λ) resolution array. Then A has v normal rows and

at most λ − 1 special rows.

Proof. By Theorem 2.3, a t-(v, v, λ) design has r = v, and it follows that A must have
v rows. So it suffices to show that A has at most λ − 1 special rows. Suppose for a
contradiction that A has at least λ special rows and assume that the special rows of
A occur above the normal rows. Choose any block B in row λ+1 of A and note that
|B| = v. By Lemma 4.1 there is certainly a t-subset T of B such that every column
in T has the same λ-initial pattern. Then T is covered by each of the first λ+ 1 rows
in A, yielding a contradiction.

Since a resolution array corresponds to a resolution of a design with short parallel
classes corresponding to special rows, we have the following theorem as a corollary.

Theorem 4.3. Let t, v and λ be cardinals such that v is infinite, t and λ are finite,

and t ≥ 2. Any resolution of a t-(v, v, λ) has v parallel classes, at most λ−1 of which

are short.

Given a partial t-(v, v, λ) resolution array A, we will say that an ℓ-initial pattern
is common if it is the ℓ-initial pattern of v columns in A. We define an ℓ-refinement

R of A as a set of columns of A such that
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1. every common ℓ-initial pattern in A is the initial pattern of v columns of R;

2. the ℓ-initial pattern of every column in R is common;

3. each block in a normal row of A contains at most one column of R.

We note that the set of all columns of A with common ℓ-initial patterns will always
satisfy Properties 1 and 2 above. Using Property 1 of the definition of ℓ-refinement,
it can be seen that, given an ℓ-refinement Q of A, there is a partition {Qα}α<v of Q
into v parts each of which is itself an ℓ-refinement.

Lemma 4.4. Let t, v, λ and ℓ be cardinals such that v is infinite, t and λ are finite,

t ≥ 2 and ℓ ≤ λ − 1. Let A be a partial t-(v, v, λ) resolution array with fewer than

v rows such that the first ℓ rows of A are special and the remainder are normal, and

let T be a t-set of columns of A which is covered by at most λ− 1 rows of A. If there

is an ℓ-refinement D of A such that D is disjoint from T and there are v columns of

A not in D, then there is a partial t-(v, v, λ) resolution array which is obtained from

A by adding a normal row such that the new row covers T and such that each block

in the new row contains at most one column in V \ (T ∪ D).

Proof. Let V be the set of columns of A and let {Dα}α<v be a partition of D into v
ℓ-refinements. For each column c ∈ V \ D, let

Sc = {y ∈ D : c, y ∈ T for some t-subset T of V which is covered by λ rows of A}.

Note that ℓ ≤ λ − 1 and that each block in a normal row of A contains at most one
column in D. Thus, because A has fewer than v rows, it can be seen that |Sc| < v
for each c ∈ V \ D. Let ST =

⋃

c∈T Sc and note that |ST | < v, since t is finite.

Index the columns in V \ (T ∪ D) with the ordinals greater than 1 and less than
v as {xα}2≤α<v. Form an array A′ by adding a new row to A in which the symbol σ1

appears in every column in T ∪ (D1 \ ST ), the symbol σα appears in every column in
{xα} ∪ (Dα \ Sxα

) for each ordinal 2 ≤ α < v, and the symbol σ0 appears in every
other column in V (note that in particular σ0 appears in every column in D0). We
claim that A′ is the required partial t-(v, v, λ) resolution array.

Certainly the new row of A′ covers T , and each block in the new row contains
at most one column in V \ (T ∪ D). Furthermore, because |Dα| = v for each α < v,
|ST | < v, and |Sc| < v for each c ∈ V \ D, it can be seen that each block in the new
row has size v. So if A′ does not satisfy the conditions of the lemma, it must be the
case that either there is a t-set of columns which is covered by the new row and by λ
rows of A, or that some block in the new row is a strict subset or a strict superset of
some block in A.

Suppose there is a t-subset U of V which is covered by the new row and by λ rows
of A. Because there are at most λ− 1 special rows, U is covered in some normal row
s of A. Thus, since every block in a normal row of A contains at most one column
in D, U contains at most one column in D. It follows that U contains at least one
column c in V \ D. If c /∈ T , then c = xα for some α such that 2 ≤ α < v and,
because U is covered by the new row, U ⊆ {xα} ∪ (Dα \ Sxα

). But then the fact that
U is covered by λ rows of A implies that U ∩ D ⊆ Sxα

, contradicting |U | = t ≥ 2. If
c ∈ T , then U ⊆ T ∪ (D1 \ ST ) because U is covered by the new row. But then the
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fact that U is covered by λ rows of A implies U ∩ D ⊆ ST and U 6= T , contradicting
|U | = t.

Suppose a block B′ in the new row is a strict subset or a strict superset of a block
B in some other row s of A. Let σα be the symbol that induces B′, where α < v. It
cannot be that s is a normal row of A because then B contains at most one column
in D and v columns in V \ D (by the definition of refinement), and B′ contains v
columns in D and at most t columns in V \ D (by the construction of the new row).
Thus s is a special row of A. Let σ be the symbol which induces B. Because there
are v columns which contain σ in row s, by Lemma 4.1 there is a common ℓ-initial
pattern P in which σ appears in row s. Then, by the definition of refinement, Dα+1

contains v columns with ℓ-initial pattern P and these columns are in B but not in B′.
So B * B′. Let τ be a symbol other than σ which appears in row s. Because there
are v columns which contain τ in row s, by Lemma 4.1 there is a common ℓ-initial
pattern Q in which τ appears in row s. Then, by the definition of refinement, Dα

contains v columns with ℓ-initial pattern Q and these columns are in B′ but not in
B. So B′ * B.

If an array A′ can be formed by adding rows to an array A, then we will say
that A′ is an extension of A. The following lemma shows that a partial resolution
array with ℓ special rows can be extended to a (complete) resolution array by adding
normal rows. We then show that partial resolution arrays with special rows of any
prescribed ℓ ≤ λ−1 types exist. Given the correspondence between resolution arrays
and resolutions of designs, these results show that resolutions of designs with short
parallel classes of any prescribed ℓ ≤ λ − 1 sizes exist.

Lemma 4.5. Let t, v, λ and ℓ be cardinals such that v is infinite, t and λ are finite,

t ≥ 2 and ℓ ≤ λ− 1. Let A′ be a partial t-(v, v, λ) resolution array with ℓ rows, all of

which are special. Then A′ can be extended to a t-(v, v, λ) resolution array by adding

normal rows.

Proof. Let V be the set of columns of A′. Let (Tα)α<v be a sequence which contains
each t-subset of V exactly λ times. Let E be the set of all columns in A′ with
common ℓ-initial patterns. Since all the rows of A′ are special, E is an ℓ-refinement
of A′, let {Eα}α<v be a partition of E into v ℓ-refinements. For each α < v, let
Cα = Eα \ (

⋃

β≤α Tβ) and observe that |Cα| = v and that Cα is an ℓ-refinement
because every common initial pattern in A′ is the initial pattern of v columns in Cα

(note that |
⋃

β≤α Tβ | ≤ t|α + 1| < v).

We will show, by transfinite induction on α, that for each ordinal α ≤ v there is
a partial t-(v, v, λ) resolution array Aα such that

(i) Aα is an extension of Aβ for each β < α;

(ii) Aα has exactly ℓ special rows and at most |α| normal rows;

(iii) for each β such that α ≤ β < v, each block in a normal row of Aα contains at
most one column in Cβ, so Cβ is an ℓ-refinement of Aα; and

(iv) each t-subset T of V is covered by at least µα(T ) rows of Aα, where µα(T ) is
the number of times T occurs in (Tβ)β<α.
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This will suffice to complete the proof, since Av will be a t-(v, v, λ) resolution array
which is an extension of A′.

Take A0 = A′. Now let γ be an ordinal with γ < v and assume that, for each
α < γ, there is a partial t-(v, v, λ) resolution array Aα satisfying (i)-(iv).

If γ is a limit ordinal then let Aγ =
⋃

α<γ Aα.

If γ is a successor ordinal and Tγ−1 is covered by λ rows of Aγ−1, then let Aγ =
Aγ−1. If γ is a successor ordinal and Tγ−1 is covered by at most λ − 1 rows of Aγ−1,
then we construct Aγ from Aγ−1 by applying Lemma 4.4 with A = Aγ−1, T = Tγ−1,
and D = Cγ−1. Note that, by Lemma 4.4, each block in the new row contains at most
one column in V \ (Tγ−1 ∪ Cγ−1), ensuring that Cβ is an ℓ-refinement of Aγ for each
β such that γ ≤ β < v.

Lemma 4.6. Let t, v, λ and ℓ be cardinals such that v is infinite, t and λ are finite,

t ≥ 2 and ℓ ≤ λ − 1. Let b1, . . . , bℓ be cardinals each of which is less than v. Then

there is a partial t-(v, v, λ) resolution array with ℓ rows such that row i contains bi

blocks for i = 1, . . . , ℓ.

Proof. Let V be the Cartesian product b1 × · · · × bℓ × v, where we are considering
b1, . . . , bℓ and v as sets of ordinals. Let V be the set of columns of our array and
note that |V | = v. Let A be the array such that, for i = 1, . . . , ℓ and β < bi, the
symbol σβ appears in row i in the columns in {(α1, . . . , αℓ+1) : αi = β}. Clearly, row
i contains bi blocks of size v for i = 1, . . . , ℓ. For any distinct i, j ∈ {1, . . . , ℓ}, β < bi

and γ < bj , the columns in {(α1, . . . , αℓ+1) : αi = β, αj 6= γ} are in the block induced
by σβ in row i but not in the block induced by σγ in row j. Thus no block of A is
a strict subset of another. Obviously each t-set of columns is covered by at most λ
rows of A because A contains less than λ rows.

Lemmas 4.5 and 4.6 give us the following Theorem.

Theorem 4.7. Let t, v, λ and ℓ be cardinals such that v is infinite, t and λ are finite,

t ≥ 2 and ℓ ≤ λ − 1. Let b1, . . . , bℓ be cardinals each of which is less than v. Then

there is a t-(v, v, λ) design with a resolution into v parallel classes each of size v and

ℓ short parallel classes of sizes b1, . . . , bℓ.

Having shown that every feasible “type” of resolution for a t-(v, k, Λ) design with
k = v and λ finite is realisable in some such design, we conclude this section by
presenting an example which demonstrates that a single design may admit two res-
olutions of different “types”. Lemma 4.8 establishes the existence of a design which
admits two different resolutions, one which contains short parallel classes and another
which does not.

Lemma 4.8. There exists a 2-(ℵ0,ℵ0, 2) design admitting one resolution into ℵ0

parallel classes each containing ℵ0 blocks and another resolution into one parallel

class containing four blocks and ℵ0 parallel classes each containing ℵ0 blocks.

Proof. The example will be constructed by combining two copies of a 2-(ℵ0,ℵ0, 1)
design, (V,B), admitting a resolution into ℵ0 parallel classes each containing ℵ0 blocks.
We further require that B contains two blocks B1 and B2 in the same parallel class
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in this resolution such that there is a partition {D1, D2} of the points outside these
blocks such that |D1| = |D2| = ℵ0 and each block other than B1 and B2 intersects
both D1 and D2.

To see that such a design exists, note that we can take a 2-(ℵ0,ℵ0, 1) design (V,B)
with point set Z2 whose block set is {L ∩ Z2 : L ∈ L}, where L is the set of all lines
in R2 which contain at least one point in Z2 and which are either vertical or have
rational slope (this is Example 2.6 from [16]). The design admits a resolution whose
parallel classes are sets of blocks with the same slopes. We can choose any two blocks
with the same slope as B1 and B2 and then let

D1 = {(x, y) ∈ V : 2n <
√

x2 + y2 ≤ 2n+1 for some odd n} \ (B1 ∪ B2), and

D2 = ({(x, y) ∈ V : 2n <
√

x2 + y2 ≤ 2n+1 for some even n} ∪ {(0, 0)}) \ (B1 ∪ B2).

(Intuitively, D1 and D2 are defined by forming concentric annuli centred on the origin,
each time doubling the radii, and partitioning the points outside B1 and B2 according
to whether they fall in an “odd” or “even” annulus.)

Let W be an ℵ0-set of points and let {X1, X2, Y1, Y2} be a partition of W into
four parts of size ℵ0. We now combine two copies of (V,B) to form a 2-(ℵ0,ℵ0, 2)
design (W,B†) as follows. Place two copies of (V,B), (W,B′) and (W,B′′) say, on W.
Place (W,B′) such that B1 and B2 map to X1 and X2 and D1 and D2 map to Y1 and
Y2, so no block in B′ is a subset of Y1 or Y2. Place (W,B′′) in the same way, but with
the roles of X and Y interchanged.

To see that no block in B† is a subset of another, note that no other block is a
subset of X1, X2, Y1 or Y2, that each block in B′ has at most two points in X1 ∪ X2

and has ℵ0 points in Y1 ∪ Y2, and that each block in B′′ has at most two points in
Y1 ∪ Y2 and has ℵ0 points in X1 ∪ X2.

A resolution of (W,B†) into ℵ0 parallel classes each containing ℵ0 blocks is easily
obtained by taking the union of the resolutions of (W,B′) and (W,B′′). A resolu-
tion of (W,B†) into one parallel class containing four blocks and ℵ0 parallel classes
each containing ℵ0 blocks can be obtained by taking {X1, X2, Y1, Y2} as one parallel
class, the union of the remainders of the parallel classes of (W,B′) and (W,B′′) that
X1, X2, Y1, Y2 were stolen from as another parallel class, and the other parallel class
from (W,B′) and (W,B′′) as the remaining parallel classes.

4.2. The case k = v, λ infinite

A t-(v, v, Λ) design with k = v and λ infinite may or may not be resolvable.
Lemma 3.8 gives an example of a t-(v, v, Λ) design with k = v and λ infinite which
has no resolution, and Lemma 3.9 gives an example of a t-(v, v, Λ) design with k = v
and λ infinite which has a resolution into v parallel classes each containing v blocks.
We conclude with Lemma 4.9 which shows that, at the other extreme, there is a
t-(v, v, Λ) design with k = v and λ infinite which has a resolution into v parallel
classes each containing two blocks. It is also worth noting that Example 6 of [5]
gives a 2-(2ℵ0, 2ℵ0, Λ) design which has a resolution into ℵ0 parallel classes of size two.
Moreover, Example 7 of [5] gives, for any fixed finite t, a t-(2ℵ0 , 2ℵ0, Λ) design which
has a resolution into ℵ0 parallel classes of size two and one parallel class of size 2ℵ0.
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Lemma 4.9. Let v and t be cardinals such that v is infinite and t is finite. There is

a t-(v, v, Λ) design with λi,j = v for i + j ≤ t with a resolution into v parallel classes

each of size two.

Proof. We first show there is a t-(v, v, Λ) design (V,B), with λi,j = v for i + j < t,
having the property that no two blocks in B are disjoint and no two blocks in B have
union V . To see this, repeat the construction in Lemma 3.8, except let |W | = 2t + 1
and for each α < v choose Bα to be a k-subset of Iα ∪ (W \ Jα) ∪ Sα such that
Iα ∪ (W \ Jα) ⊆ Bα and |Sα \ Bα| = v. Identical arguments to those in the proof
of Lemma 3.8 above show that (V,B) is a t-(v, v, Λ) design (V,B) with λi,j = v for
i+ j < t. Our new choices of W and Bα ensure that each block in B contains at least
t + 1 points in W , which in turn ensures that no two blocks in B are disjoint (recall
|W | = 2t + 1 and |Jα| ≤ t). The choice also ensures that, for each α < v, the union
of Bα and any other block in {B∗} ∪ {Bβ : β < v} omits v points in Sα, because any
other block in {B∗}∪{Bβ : β < v} contains at most t points in Sα. So a design (V,B)
with the desired properties does indeed exist.

We now claim that (V, {B, V \B : B ∈ B}) is a t-(v, v, Λ) design with λi,j = v for
i + j ≤ t. For any disjoint subsets I and J of V with |I| + |J | ≤ t it is clear that at
least v sets in {B, V \ B : B ∈ B} contain each point in I and no point in J , and it
follows from |{B, V \ B : B ∈ B}| = 2|B| = 2v = v that at most v sets in B contain
each point in I and no point in J . Also, the facts that no block in B is a proper
subset of another, that no two blocks in B are disjoint, and that no two blocks in B
have union V , together imply that no block in {B, V \B : B ∈ B} is a proper subset
of another. So (V, {B, V \ B : B ∈ B}) is indeed a t-(v, v, Λ) design with λi,j = v for
i + j ≤ t, and it is easy to see that {{B, V \B} : B ∈ B} is a resolution of the design
into v parallel classes each of size two.
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