
Open Research Online
The Open University’s repository of research publications
and other research outputs

I scratch and sense but can I program? An
investigation of learning with a block based
programming language
Journal Item
How to cite:

Simpkins, Neil (2014). I scratch and sense but can I program? An investigation of learning with a block
based programming language. International Journal of Information Communication and Technology, 10(3) pp.
87–116.

For guidance on citations see FAQs.

c© 2014 IGI Global

Version: Not Set

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.4018/ijicte.2014070107

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.4018/ijicte.2014070107
http://oro.open.ac.uk/policies.html

1

I Scratch and Sense but can I program? An Investigation of learning
with a block based programming language.

N. K. Simpkins

The Open University
Department of Computing and Communications
Faculty of Mathematics, Computing and Technology
Walton Hall
Milton Keynes
MK7 6AA

Email: n.k.simpkins@open.ac.uk
Tel: +44(0)1908 858819, Fax: +44 (0)1908 652175

Neil Simpkins is currently a lecturer in web application development, in the department of
computing and communications at The Open University. He has developed a range of
short courses for the university’s ‘Web Application Development’ certificate, as well as a
major courses such as ‘T320 E-business technologies: foundations and practice’ and
‘TT284 Web Technologies’ which have been taken by many thousands of students. He has
a doctorate in natural language processing and has worked as a technology expert in the
European Commission and a number of major financial institutions as well as teaching in a
range of other leading UK universities.

Abstract

This paper reports an investigation into undergraduate student experiences and views of
a visual or ‘blocks’ based programming language and its environment. An additional and
central aspect of this enquiry is to substantiate the perceived degree of transferability of
programming skills learnt within the visual environment to a typical mainstream textual
language.

Undergraduate students were given programming activities and examples covering four
basic programming concepts based on the Sense programming language which is
intended to simplify programming. Sense programming statements are represented by
blocks which only fit together in ways that produce a meaningful syntactic outcome,
which may lower the cognitive barrier to learning.

2

Students were also presented with concepts represented using an equivalent textual
construct and asked to consider their understanding of these based on the graphical
cases. They were finally asked to complete a short online survey. This paper presents the
programming activities, the survey and an analysis of the results.

Keywords: skills transfer; visual programming; blocks language; technology education;
distance education; Scratch programming.

1 Introduction

Teaching basic programming skills to novices has widely been seen as a problematic area
responsible for the high dropout rates of around thirty to fifty percent (Dening &
McGettrick, 2005; May & Dhillon, 2009) associated with computer science courses. Ma,
Ferguson, Roper and Wood (2011) report that many first-year students perform worse
than expected and that students can hold ‘non-viable’ mental models of programming
concepts. They introduce a teaching model which utilises visualisation of programs as an
aid to better understanding of key concepts. The visualisation they explore refers to visual
models which depict the operation of a textual code fragment rather that the use of a
blocks programming language itself to implement a program directly, which is the focus
here.

When first encountered, basic programming concepts, such as repetition and
conditionals, are inherently difficult to understand for a significant proportion of
students. No single teaching approach seems to benefit all students. A proportion of
students can readily comprehend a concept, such as repetition, as written in a textual
language, for example Java, but a significant group will always be frustrated and require
other forms of illustration of the concept which present less or differing cognitive load
(Stachel et al., 2013).

This paper reports an investigation into the efficacy of a blocks based language for
learning programming. The investigation has three stages for students:

1. Performing a series of simple programming activities using Sense as detailed in a
brief guide.

2. Comparing the graphical programs that they have seen and run in step '1' with
some textual equivalents which are similar to those found in more mainstream
programming languages.

3. Completing a short online survey concerning their experiences.

In the activities students were provided with visual block programs to execute which
demonstrated four basic concepts (sequencing, variables, repetition and conditionals)
found in all programming languages. For two of these (repetition and conditionals)
students were asked to consider if their understanding could be transferred to similar
textual constructs. After completing these activities students were asked to complete a
brief survey. Based on the responses the investigation focuses on two key questions:

1. How well a blocks programming language communicates basic programming
concepts.

2. How easily an understanding of concepts based on a blocks programming
language transfers to a mainstream textual language.

3

A student, having gained experience using a graphical language, will be faced with
syntactic complexity and greater freedom for error when using a textual language. If
central concepts themselves have already been learnt in a graphical environment then a
student might be less burdened and better able to cope with greater syntactic and
semantic freedom and complexity.

The initial parts of this paper cover background aspects, such as blocks programming
languages, related work, the student population and the particular blocks language
employed here. Subsequent parts examine the specific activities given to students and
the response to the survey. The activities are available online (Simpkins, 2012) and the
survey employed is given in Appendix A.

2 Background

Several innovations have sought to make programming more accessible by seeking to
simplify aspects which are common sources of problems for a typical novice. Errors in
syntax and semantic misuse of constructs are two prominent sources of problems.

Interactive Development Environments (IDEs) such as Eclipse (The Eclipse Foundation,
2013) provide context sensitive completion and help and also highlight syntactic errors in
code. The syntactic and sematic complexity of languages such as Java means that these
tools can be of limited assistance, if any, to novice programmers.

Blocks programming languages adopt a different approach. The programming language
itself is made up of a range of objects, usually termed ‘blocks’, that can be dragged,
dropped and plugged together to form a program. This approach to constructing a
programme seeks to constrain the syntax of the language. Only blocks, which might be
used together in a meaningful fashion, can actually be plugged together.

Lego Mindstorms (LEGO.com Mindstorms, n.d) is an example of a block programming
language. This is designed for controlling a robot with each block representing a
movement or other action such as firing a projectile. A program is constructed by
dragging a sequence of blocks, each representing an action, out onto a work area to build
up a program. According to its type each block can be configured using a range of
parameters. So a movement block has parameters such as direction, power and duration.
Mindstorms is not a general purpose language and is not as flexible as a language such as
Java or Perl for example. It does illustrate how block programming languages can be
innovative, accessible and quite powerful.

Other more recent developments of block languages have sought to introduce other
features such as collaborative learning amongst students (Jain, Singhal & Gupta, 2011)
and combine text with visual programming, such as Greenfoot (University of Kent in
Canterbury, n.d.), which provides a visual depiction of the ‘actors’ (like ‘sprites’) and stage
objects but which uses textual Java for programming.

3 Programming and the Open University

At the Open University (OU) teaching programming is a central area of interest within the
faculty of Mathematics, Communication and Technology. The OU is the largest higher
education institution in the United Kingdom with over 250,000 registered students. The
OU only offers distance learning and has a long history of using technology for delivering
courses and for supporting students online.

4

The demographics of the OU student population are quite different to those of a typical
UK ‘bricks and mortar’ university. The average age of new undergraduate OU students is
thirty-one and 9% of new students are over fifty.

Around 27% of new OU undergraduates were under twenty-five in 2012 (19,982
students) and over thirty-one thousand of all students were under twenty-five. In very
recent times the makeup of student population has started to change. The general trend
is toward greater numbers of younger undergraduates who in the face of increased
university fees are seeking less costly alternatives. Distance learning with full or part-time
options is one such solution. Of new students, 45% had one A-level or lower qualification.
A high proportion of students (over 71%) also work full or part-time whilst studying.

4 Scratch visual programming

In 2009 the Open University started production of a new course ‘TU100 My Digital Life’
(Open University 2013; Richards, Petre & Bandara 2012). This course was important for
the university, as it is the first course that new undergraduates in technology related
fields must embark on and as a central entry level course it will be taken by thousands of
students each presentation. Importantly, the course is the initial course for those starting
computing related degrees and introduces students to programming concepts.

A previous entry level course teaching programming at the OU (Woodmn. Griffiths,
Macgregor & Holland, 1999) had employed LearningWorks, a Smalltalk programming
environment with graphical enhancements. Another course employed a traditional
textual language (JavaScript) but received negative student feedback and significant
numbers of students failed to complete the course. Based on this experience the team
made the decision to adopt a blocks programming language, seeking to lessen the
cognitive burden on students who are typically just embarking on academic study.

At that time ‘Scratch’ (Resnick et al., 2009; Lifelong Kindergarten Group n.d.) had started
to emerge as a popular and engaging environment for young people to use. Scratch is
aimed at pre-university education but includes all the basic elements of a general purpose
programming language (repetition, conditionals, threads, etc.). Scratch does not have the
facilities for more sophisticated notations such as inheritance or other types of
abstraction. A more recent version of Scratch (version 2) does allow user-defined blocks
which can be seen as equivalent to procedures (Lifelong Kindergarten Group, n.d.).

The Scratch environment is freely available, has a thriving user base, good documentation
and there are example projects that can be downloaded. At the time of writing there are
over three million such projects produced by users from around the world.

The graphical nature of the programming language precludes student errors in syntax. A
program is created by first selecting a statement type such as ‘Motion’ which displays all
statements in that category in a panel. A statement can then be dragged and dropped
into the ‘scripts’ panel and can be slotted together with other blocks to create sequences
of statements making up a program.

A range of example blocks available in Scratch is illustrated in Fig. 1, classified according
to Malan and Leitner (2007). Blocks have tags, indentations and shapes so that they can
only be plugged together in ways that make a syntactically meaningful statement. So for
example hexagonal Boolean blocks can be inserted into a hexagonal hole in, for example,
a conditional if block. Blocks which enclose other blocks, such as repetition and

5

conditional blocks dynamically resize themselves to enclose any number of other blocks
as these are added or removed. The range of blocks available is quite extensive (Lifelong
Kindergarten Group, (n.d.)).

Statements Boolean expressions Conditionals Loops (repetition)

Variables Threads Events

Fig. 1 Example Scratch blocks according to Malan and Leitners’ classification.

Fig. 2 shows an example Scratch program. Here such a vertical sequence of blocks is
termed a ‘stack’ of blocks. The stack executes from the block at the top of the stack and
proceeds down the stack one block at a time. The program is started by clicking on a
green flag button in the environment as indicated by the top block. Under this is a
repetition block which runs the enclosed program blocks repeatedly ‘forever’.

The first enclosed block causes the program to wait for ten seconds after which another
second repetition block will execute the blocks it encloses ten times. The extent of the
waiting period is controlled by simply typing a number into the white ‘seconds’ box, here
ten, in the ‘wait’ block. This method of parameterisation is common to several other
block types such as repetition for which the number of repetitions is entered.

Inside of the inner repetition block is a single block which moves the sprite on the stage
by two steps. After twenty steps the sprite will ‘bounce’ if it has reached the edge of the
stage area as specified by the last block in the forever block.

6

Fig. 2 Example scratch program stack of blocks

Not all blocks programming languages have such a facility but importantly Scratch has a
‘stepping’ mode where a program is executed one block at a time with the current
position in the program being highlighted (Fig. 3). This allows students to follow the
progress of execution of a program and to see which path is taken when there are
choices, such as provided by a conditional statement.

Fig. 3 Example of highlighting of blocks as execution progresses

Highlighting pauses when there is a ‘wait’ block or when there is interaction with the
user, for example to gather input using a popup dialogue box. Students were asked to
utilise this stepping facility when performing the programming activities that they
undertook before taking the survey, so that they can more easily see the flow of control
through each program stack.

There are now other variants of Scratch, such as Panther (Panther group, n.d.) which
includes additional programming facilities but which is not intended to be used by novice
programmers. Another variant Snap, (University of California at Berkeley, n.d.) adds other
advanced features such as the ability to construct custom block types. It also supports
higher order functions so that blocks may for example receive a function as if it were data
and subsequently execute the function (Harvey & Mönig, n.d.).

Blocks languages may also have weaknesses for which there is some evidence but little
literature. It is sometimes commented that they are inflexible and lack the expressive
power of a mainstream textual language. This may be why new variants provide
additional notional devices and there is no valid reason to believe that a blocks language
might not be as powerful as any other programming language. There is also a question of
screen space. As programs become more complex navigating multiple, perhaps large
stacks, may become difficult. Newer visual devices such as shrinking procedural stacks to
be shown as a single block may relieve this problem.

7

At the OU it was decided to use a modified version of Scratch, later named Sense, as the
main tool for teaching programming in TU100. Sense, which is similar to PicoBoard
(Playful invention company, n.d.), is briefly outlined in the next section.

5 Sense Visual Programming

Scratch was extended to produce the Sense environment (Fig. 4) (Richards et al., 2012). It
extends the blocks language itself and adds a hardware board which is connected to a PC
with a USB connector. The hardware board carries a range of devices to provide
additional sensors and controls. The blocks language has been extended to support
control and sampling of board components. The Scratch language is not changed in other
significant ways and the interface resembles Scratch in general layout.

Fig. 4 Sense programming environment when started

The Sense board is not described further here because it was not utilised in the
programming activities that were given to students. In fact the activities were produced in
versions for Scratch and for Sense so that students not taking TU100 could participate. All
of the students surveyed and reported here however have taken TU100 and many would
have been familiar with Sense and the Scratch project on which it is based.

It is important to note that these TU100 students may not have engaged with the course’s
programming component. It is permitted to pass TU100 without submitting any of the
programming assignments. In addition, the invitation to participate was sent after the
conclusion of the course so as not to have any impact on student studies. The
consequence is that the number of students who actually received the invitation is
unknown, as is the number of respondents that actually failed TU100.

8

6 Related Research

Most of the literature around Scratch has been concerned with teaching of school
children (Lamb & Johnson, 2011; Resnick et al., 2009) and examined the nature of groups
using Scratch as well as the diverse range of projects they produced. This literature does
not examine the effectiveness of the tool in teaching although it has observed that
children find the approach absorbing and rewarding in terms of the facility to make
interesting and entertaining projects.

Malan and Leitner (2007) proposed Scratch as a good first programming language. They
argued that Scratch allows students to focus on an understanding of logic without also
dealing with syntax. Of the twenty-five students in their investigation 76% reported that
they considered Scratch to be a positive influence when they later came to learn Java.
Students that did not feel positive or negative about the influence of Scratch (16%) were
those that had prior programming experience. The investigation did not include aspects
such as transferability or the graphical nature of the blocks language included here.

Parsons and Haden (2007) used Alice (Cooper, Dann & Pausch, 2000), a visual
programming environment for developing three dimensional animations. The
environment allows students to drag and drop graphical tiles to create a program. Tiles
represent different types of statement which control the actions of characters in an
animation (Fig. 3). Alice characters are similar to Scratch sprites, but have properties and
methods similar to objects in a traditional object orientated language. The students in the
study had prior programming experience and the investigation sought to determine to
what extent students could transfer their skills onto the visual language. The conclusion
was that “Alice’s powerful graphical capabilities may actually be counterproductive when
Alice is used as a teaching tool, rather than as an animation tool.” Student feedback
provided an indication that some students “may have become distracted by details of the
animation process itself”. As Scratch also supports animations of characters this problem
might also be applicable to the tool.

Powers, Ecott and Hirshfield (2007) examined students’ ability to transfer from Alice to
C++. They report significant problems for students, chiefly that they did not understand
the attention to syntax required for compilation and submitted work that included syntax
errors. They also found that “Many students became discouraged when their programs
did not compile and they concluded that they were inadequate programmers, even
though they were able to program in Alice”. Students also viewed Alice as an
environment for children and concluded that what they had achieved was not “real
programming”. Again this could also be a problem common to Scratch.

Lewis (Lewis 2012) provides a comparison of student experiences using Scratch and Logo
(Logo Foundation, 2013; Agalianos, Noss & Whitty, 2001). Sixth grade students (11-12
year olds) used Scratch in a classroom environment and after some directed teaching
were asked questions concerning repetition and conditional statements expressed both
as Scratch stacks and as Logo textual statements. Lewis found some evidence for
repetition being better understood based on the Logo textual representation whereas
conditionals were better understood using Scratch. It was hypothesised that textual
representation might provide a lower level focus for attention which in some cases
compensates for the lack of a visual representation.

Scaffidi and Chambers (2012) employed Scratch in a study to investigate the acquisition of
programming skills over time. The study examined two key aspects. Firstly ‘sophistication’

9

of projects in their use of different Scratch primitives in projects over time and secondly
‘coding efficiency’ as the time taken to develop a project. This was achieved by randomly
selecting users from the Scratch web site, retrieving their projects and then analysing
these for finesse and coding efficiency. Both measures were examined as trends over
time by examining an individual project’s history recorded as how many times it was
saved and by comparing the use of primitives in more recent projects against earlier
projects by the same author.

A downward trend was discovered in the demonstration of technical expertise, a level or
downward trend was observed in efficiency and a high level of drop-out was observed.
These trends were partially explained by a loss of the more expert programmers from the
population. Other possibilities were considered to explain the trends, such as more expert
programmers being less likely to explicitly demonstrate their skills and that the measures
used are inappropriate.

7 Programming activities and illustrations

As students may not have engaged with Sense previously it is necessary to provide a basis
on which students can base their learning and view of Sense. This background was
established by providing a set of activities and illustrations of basic programming
concepts.

To investigate how well a blocks language communicates basic programming concepts
students were given a range of activities (Simpkins, 2012) covering four basic elements of
programming, which can be found in the majority of mainstream languages:

1. Sequencing. This activity demonstrates how a program consists of a set of steps or
instructions which are carried out one at a time in the order they are written. The
Scratch stepping mode is itself a direct illustration of this principle which is used in
the activity.

2. Variables. This activity illustrates how (global) variables are declared, named and
store values such as numbers, text etc. which are used in a program.

3. Conditional statements. This activity employs an if conditional construct and an
if..else.. (Fig. 1) construct providing a choice point between different sets of
subsequent instructions.

4. Iteration or repetition. This activity uses a repeat repetition construct to allow a set
of instructions to be performed multiple times; repeating them as many times as
required.

For each element a simple activity or two has been created to demonstrate the concept
using the blocks language of Sense. Students do not themselves have to do any
programming as the demonstration programs are provided in a project form so they may
be downloaded and simply opened in Sense.

It was estimated that each activity would not take more than a few minutes to complete,
as would the survey. It was thought that students would not complete the exercise if it
were too time consuming.

10

8 The Survey

The survey reported here was conducted based on the Sense environment because
students had in principle completed TU100 and might have installed that version of the
software. Students were invited on a voluntary basis to complete the survey after the end
of the course, so as not to interrupt their studies. Whilst the activities were produced in
two versions, tailored to Scratch and Sense, the survey itself is common to both and
refers to the Scratch programming language and environment.

The survey was created using the LimeSurvey tool (LimeSurvey Project team, 2011). This
tool is quite flexible and manages the storage and presentation of survey responses. It
allows questions to be presented with each question as a separate web page with links to
navigate backward and forward (Fig. 5). Two other options are offered on each web page
so that a partially completed survey can be saved and resumed later or the survey can be
abandoned.

All the questions required a mandatory answer except for the last which solicits any
additional comments that a student might have. All the questions, except the last three,
required students to select a single option as their response. The final question allows a
free text response and the two before this allow students to select any number of the
statements listed that they agree with.

Fig. 5 LimeSurvey question web page

In the analysis of results that follows the questions have been shortened but the entire
survey is listed in Appendix A.

A central feature of this enquiry is the degree to which students believe that the
programming skills they have learnt within the visual environment can be transferred to a
mainstream textual language. This aspect of the study is important, as learning how to

11

program in the blocks language is pedagogically not an end in itself. The Sense language is
not as flexible or powerful as a mainstream language and is not suitable for, or utilised, in
the IT industry. Using Sense may simplify learning of programming and is an entertaining
approach but crucially, if it is to have real value, the skills learnt should be readily
transferrable to other languages.

The survey itself investigates undergraduate students in terms of their:

 Experience of programming. Students’ previous experience ranges from a
complete beginner with no experience to expert programmers.

 View of the blocks programming language they have used across a few areas such
as: ease of adoption, usability, flexibility, expressive power.

 Perception of the transferability of skills learnt using the blocks language to a
typical textual programming language.

The format of the survey as a sequence of web pages should not itself influence the
responses students selected (Downes-Le-Guin, Baker, Mechling & Erica, 2012) but does
allow the survey to be more easily completed and is best suited to a highly geographically
distributed cohort.

This survey is limited in scope in that it has not been possible to greatly investigate
aspects such as ‘positive bias’ (Groves et al., 2004) where students might respond in a
manner showing support to the blocks language when they think this is the desired
outcome. The potential for positive bias has been reduced by the timing of the survey.
Students were invited to participate after the conclusion of the course presentation and it
was made clear that participation was voluntary and not associated directly with the
course presentation. The brevity of the survey is intended to facilitate student
participation and avoid so called ‘survey fatigue’ (Kampen, 2006), although it is likely that
other factors have influenced the survey responses such as respondents avoiding
selection of responses which are on the extremities.

9 Survey results

Only one invitation was issued to students to participate in the survey, to which there
were seventy-five responses. Of these a very few are incomplete, as the latter questions
have not been answered and the number of responses drops to a low of seventy-one for
the last seven questions.

The survey is made up of sixteen questions. The first question simply asks for an email
address to be entered. This is used to identify the student’s answers if they decide they
will suspend the survey to return later and complete the questions. In the following
sections each of the subsequent questions is outlined and the responses examined.

9.1 Students’ main area of educational interest

This question was intended to aid in profiling the participating students. It was something
of a surprise (Fig. 6) to find so few students outside computing and technology but this is
a Maths, Computing and Technology faculty introductory course.

12

Fig. 6 Area of educational interest

Several areas of educational interest were not represented; languages, business, law and
health. Typically an IT course in this subject area at the OU would attract a small number
of students from the business school, so this was an unexpected finding. It might be that
this minority, with less interest and feeling less connected to a future in IT at the
university were not motivated to participate.

From the responses received it is to be expected that the students will be highly
motivated in programming challenges as they view either computing or technology as
their own chosen area of educational interest. However, this does not indicate that they
will actually be well suited to programming.

9.2 Students’ level of programming experience

The reported level of students experience in programming (Fig. 7) is a key element of this
investigation. If most students were found to be experienced or expert programmers then
their opinion of a blocks programming language as an introductory tool would be
compromised, especially as it might well be that the majority of these students can be
expected to have been taught previously using textual languages. Students were not
asked if they had previous experience of a blocks or textual language to keep the survey
short but it is thought unlikely that OU students embarking on a degree would have
encountered a blocks language before.

13

Fig. 7 Level of programming experience

The majority of the respondents had little or no programming experience. It is not clear
that the students putting themselves in the category ‘Written programs’ have excluded
themselves from being something of a beginner in programming.

The 29% of students describing themselves as ‘Complete beginner (no experience)’ is
unexpected as they have completed the TU100 course and they should therefore have
performed a range of Sense programming activities. However, it is possible to pass TU100
without undertaking any of the Sense programming activities.

The 8% of students that have classified themselves as ‘expert’ may be seen as something
of a contradiction given that TU100 is a first level introductory course. However, it is
known at the OU (Open University, 2012) that most students are working (71%) and many
have extensive experience as practitioners in industry but decide that their careers would
benefit from a better technical foundation and by gaining certification from a recognised
university.

As this investigation is focused on basic concepts and support for beginners expert
programmers were asked to approach the activities and survey by reflecting back to when
they started to learn programming. It must be expected that the experts would still have
different views of the suitability of the block language and tool in some areas, especially
in terms of their suitability for complex projects.

9.3 The sequencing activity

The first graphical illustration attempts to impart sequencing to students. This is a very
simple concept and one that students do typically readily grasp even if they find other
programming concepts difficult. The survey then asks two questions:

1. How well the activity as a whole illustrated the concept (Fig. 8).

2. How the graphical nature of the illustration supported understanding the concept
(Fig. 9).

The overall satisfaction with the activity as illustrating sequencing is extremely high with
81% describing the concept as ‘illustrated well’. This also demonstrates to some extent
that the students were not subject to ‘central tendency bias’, where responses at the
extremes are avoided, which might have been complicit in reducing this figure and

14

increasing the less extreme answers. The other two positive answers account for a further
15% of students, leaving just 3% reporting a negative view of the effectiveness with which
the Sense program illustrated the basic concept.

Fig. 8 Level to which sequencing activity
illustrates the concept

Fig. 9 Significance of the graphical nature
of the sequencing illustration

Of the 8% that remain ‘not confident’ that they have understood the concept 50%
classified themselves as complete beginners as programmers. The very high level of
satisfaction with the illustration is somewhat surprising and perhaps a testament to the
power of a graphical approach.

The second question of this pair resulted in the response depicted in Fig. 9. In this
question the ‘central’ group represent the most positive response and ‘positive
contribution’ the next lesser positive. The three positive answers were selected by a total
of 90% of students. This very high positive response demonstrates a very strong feeling
that it is the graphical nature of the illustration which provides students with insight to
understand the concept.

The very high levels of positive statements in response to both questions are very
supportive of the Sense blocks language as a tool for learning.

9.4 The use of variables activity

The next two questions relate to the activity which outlines how variables can be used to
hold values and how these can be manipulated in operations such as addition.

Again students are asked two questions concerning ‘using variables’ and the graphical
program’s illustration:

1. How well the activity as a whole illustrated the concept (Fig. 10).

2. How the graphical nature of the illustration supported understanding the concept
(Fig. 11).

The graphical program as an illustration of the concept is slightly less positive (Fig. 10) in
terms of the most positive answer (71%) but the three positive answers together
represent 95% of student responses.

15

Fig. 10 Level to which the ‘using variables’
activity illustrates the concept

Fig. 11 Significance of the graphical nature
of the sequencing illustration

The contribution from the graphical nature of the illustration to understanding of the
concept is reported to be greater than in the previous case with both ‘central’ and
‘positive contribution’ being increased.

Again it is a surprise that such a very high percentage of students believe they have
understood the concept and that they cite the graphical nature of the illustration is the
foundation of this.

9.5 The repetition activity

The third programming concept is that of repetition. This concept and that of
conditionals, the last concept, are slightly more complex and thought more difficult to
comprehend for novice programmers. It was therefore expected that fewer students
would understand the illustration of the concepts in these cases.

The response to how well the activity illustrated the repetition concept is actually better
with 80% returning the most positive response and a total of 94% selecting the three
positive responses. So despite the increased complexity of the concept it appears that
students are more supported by the illustration. This might be because they feel that the
insight is of greater value.

16

Fig. 12 Level to which the repetition
statement activity illustrates the concept

Fig. 13 Significance of the graphical nature
of the repetition illustration

The response specifically to the graphical nature of the illustration is very close to that of
the previous activity. The overwhelming view is consistent in that the graphical nature
appears very supportive to understanding.

9.6 The conditional activity

The last programming concept is that of conditional statements. An ‘If <condition> then
<action1> else <action2>’ statement was employed to illustrate this. The condition tests
some input provided by a pop up dialogue box into which the user types a response. Each
action consists of a pop up message dialogue box reporting which action is being
executed. The dialogues allow the user to select which of the actions is performed (the
‘then’ action or the ‘else’ action) and to receive clear feedback concerning which action is
performed.

Fig. 14 Level to which the conditional
statement activity illustrates the concept

Fig. 15 Significance of the graphical nature
of the conditional illustration

17

The illustration of the conditional statement (Fig. 14) shows slightly less success than the
illustration of iteration. Whilst 75% of students thought the concept was illustrated well
there are significantly more that are less confident they have actually understood the
concept, despite considering the illustration to be satisfactory.

Whilst fewer students have understood the concept of a conditional statement the
contribution of the graphical nature of the illustration is very much the same as for the
earlier iteration. Again it appears to be precisely the graphical nature of the illustration
that has proven useful for students in understanding.

10 Transference to textual constructs

Two of the survey questions concerned the ability of students to understand textual
programming statements based on their familiarity with a graphical equivalent as
encountered earlier during the programming activities. The questions concern the ease of
understanding a repetition and a conditional. For each of these, students were provided
with the Sense code as a stack of blocks and a textual equivalent to the stack written in a
fictitious language.

10.1 Conditional

The conditional statement used as an illustration has the form of an ‘If <condition> Then
<statements> Else <statements>’. The Sense stack of blocks is shown in Fig. 16. This is
again a program that starts to run when the green flag button in the Sense interface is
clicked. The second block is a ‘set variable to value’ block which here sets the value of the
selected variable called ‘answer’ to a value returned by another embedded block which is
a ‘pop up and get input block’. As the name implies this block produces a pop-up dialogue
box and then returns whatever the user types into this when the dialogue’s ‘ok’ button is
pressed. The dialogue box will contain the pop-up’s text as a prompt which here is ‘shall
we execute the blocks?’.

The third block is a ‘pop up warning block’ which will echo back to the user what they
typed in, which is expected to be ‘yes’ or ‘no’. The next block is the conditional ‘if’
statement block. If the user has typed in ‘yes’ then the pop-up warning block will inform
the user ‘Doing the IF part as you wished.’ otherwise the next pop-up will inform the user
‘Doing the ELSE part as you wished.’. A final block informs the user that the program has
finished.

18

Fig. 16 Sense conditional statement stack

This Sense stack provides a very simple and interactive graphical illustration of how a
conditional ‘if’ statement operates. The user also has direct control over which of the
conditional paths is executed and receives clear feedback.

The textual equivalent of the Sense stack attempts to be as similar as possible to the
Sense stack. As students may not be familiar with any textual language the equivalence
between blocks and textual statements is briefly outlined in the activity guide:

“Here we are going to use:

 read (answer) in place of the 'get input' part of the 'pop up and get input'
block, which puts a value into 'answer'.

 write(<something>) in place of a 'pop up warning' block which displays either
some text or the value in a variable.

 instead of a 'appended with' operation on strings, we simple use '+' to join two
string together (for example "Hello " + "there" produces a string "Hello
there").

 a semi-colon ';' which marks the end of a statement. This is just a syntactic
convention of the type of textual language we are thinking of.”

The textual program code which does differ from the graphical illustration but was given
as roughly equivalent is:

write("shall we execute the blocks?");
read(answer);
write(" you typed " + answer);
if (answer = "yes")
{

write("doing the if statement's IF part");
}
else
{

write(" doing the if statement's ELSE part");
};
write('Finished.');

19

Fig. 17 Extent to which the graphical conditional
supported understanding of the conditional textual construct

The support provided by the graphical conditional (Fig. 17) for understanding the textual
version is less extensive than the very high approval of the graphical illustration seen
earlier (Fig. 15). The highest level of support labelled ‘Straightforward’ was selected by
only 30% of students but the total of the two answers which indicate the graphical
approach made a positive contribution to understanding total 74%.

Perhaps the most interesting group are those that did not find the graphical illustration
helped them which total 20%. However of these the greater part (13%) were those that
nevertheless did find the textual conditional easy to understand.

10.2 Textual repetition

The Sense repetition block is included in a very simple set of blocks (Fig. 18). The program
uses a variable called ‘times to do loop’ as a counter which specifies how many times to
repeat the enclosed blocks. The value of the variable is obtained before the repetition is
entered by use of a pop-up dialogue which asks the student to enter a numerical value for
this purpose.

Inside of the repetition a ‘wait’ block is used to ensure the repetition executes slowly and
that progress can be easily seen in the stepping mode which highlights each block as it
executes. In addition, another variable ‘times done’ is incremented each time the
repetition is executed. The value of this variable, as all others in the stack, will be
displayed in the Sense interface. This incrementing value is intended to illustrate how
repetition execution progresses from zero iterations toward the ‘times to do loop’
number of iterations.

20

Fig. 18 Sense ‘repeat’ block in a program stack

The activity text explains assignment and a repetition so that the textual version of the
Sense program can be understood:

“To set a variable called 'number' to the value '10' we will use a textual statement:

number := 10;

The 'wait' blocks in the stack we will simply ignore, although textual languages do
sometimes have equivalent statements. The 'repeat <answer>' block is replaced
by a 'repeat <answer> times' textual statement.”

The textual repetition program was given as:
times_done := 0;
write("How many times shall we loop?");
read(answer);
repeat answer times
{

times_done := times_done + 1;
}

Fig. 19 Extent to which the graphical conditional
supported understanding of the textual repetition construct

21

The textual repetition seems to be slightly less well understood than the conditional (Fig.
19). Again the two answers that indicate that the graphical illustration did contribute to
understanding have a significant total of 72% but fewer students felt the construct was
‘straightforward’ to understand based on the graphical illustration. This small decrease is
insignificant.

11 The Graphical Tool and Approach

Two further questions asked students about the Sense tool itself and the graphical
approach to programming that Scratch provides. For these questions students were
allowed to select as many options as they agreed with. These questions are also broader
in scope and designed to identify factors or lessons that could be learnt from the use of
the Sense blocks language and the Sense graphical environment.

Fig. 20 The Scratch/Sense tool

The most popular options (Fig. 20) strongly suggest that the software is easy to install,
start using and subsequently to use for programming. The degree to which students
considered the software ‘fun to use’ and the number which report they will continue to
use the software after the end of the TU100 course is surprisingly high.

22

Fig. 21 The graphical approach to programming

The options selected which relate to the graphical approach to programming (Fig. 21)
clearly indicate that, as expected the approach is easier to understand and easier to use
than a textual based language and is especially appealing to those with little or no
programming experience. However, there is a significant recognition that the Sense
blocks language is limited in power and will eventually be constraining. The extent to
which this is realised is something of a surprise. As expected, this is less recognised by
complete beginners but is reported by those with significant experience.

12 Future Work

The investigation reported here first provided students with some programming activities
to undertake so that they would gain a common and specific experience of Sense and
then garners their opinions of the Sense tool, its blocks language and the transfer of skills
to a textual language. In the future it will be possible to extend this work across a range of
fronts.

One area for focus may be the testing of students to determine if their perception of
what they have learnt is indeed correct. Both the understanding of Sense stacks and
textual language might be assessed. Whilst OU students are mature students who will
reflect and consider their responses to a survey, such as that employed here, it may be
the case that they have been over optimistic in their responses.

Another area for further investigation would be to increase the complexity of the
program examples. This might include higher concepts such as abstraction and nested
constructs. It would also be of interest to re-survey students after they have learnt a
textual language to assess if the perceived advantages of Sense remain in the longer term

23

given greater experience and if students did continue to use Sense as they intended. To
do this will require some organisational approval to contact those from the TU100 cohort
as they continue studying. A future survey could also examine in detail the reasons for the
reduction in the numbers of students that understood the textual versions of constructs
compared to the very high numbers that thought they had earlier understood the basic
concept behind the graphical and textual constructs.

To facilitate these developments will generally require securing a greater commitment
from a set of students than is normally possible at the OU. There is however a procedure
and ethical means to achieve this which should allow the research to continue in these
directions.

13 Conclusions and Summary

The survey results illustrate that both a complete beginner and those with a small amount
of experience of programming believe they benefit very greatly from utilising a blocks
language. The use of a blocks language is seen by students, with a very high degree of
consensus, as very beneficial to their insight into basic programming concepts and it is the
graphical nature itself of the language which supports this understanding.

Students reported that the blocks language significantly enables understanding of the
most basic concepts (variables, stepping execution) as it does slightly more complex but
still core concepts such as conditionals and repetition.

The overall conclusion is that students see the Sense blocks programming language as a
powerful approach to adopt for supporting students in their early experiences of
programming. Sense and Scratch are also reported to be simple to install, get started with
and fun to use more generally.

Importantly, students report that they consider the transferability of the programming
skills they have learnt in a blocks environment to a traditional textual language as very
straightforward. At the same time a significant proportion of students consider the
language and tool will ultimately be limiting in what they can produce.

The positive findings from this survey are in line with what might be generally expected
but the degree to which students find the blocks programming language simple and easy
to understand and to which they consider skills learnt can be transferred very greatly
surpasses expectations.

Acknowledgements

I would like to acknowledge the support of the OU in producing this article and to thank
Mr John Busvine of the University for his Support in conducting the survey reported here
and Dr Karen Kear for her input.

References

Agalianos, A., Noss, R. & Whitty, G. (2001). Logo in Mainstream Schools: The Struggle over
the Soul of an Educational Innovation. British Journal of Sociology of Education,
22(4), 479-500.

24

Denning, P. J., & McGettrick, A. (2005). Recentering computer science, Communications
ACM, 48(11), 15–19.

Downes-Le-Guin, T., Baker, R., Mechling, J. and Erica, R. (2012). Myths and realities of
respondent engagement in online surveys, International Journal of Market
Research, 54(5), 613-633.

Eclipse Foundation. 2013. The Eclipse Foundation open source community website.
Retrieved October 28, 2013, from http://www.eclipse.org/.

Groves, R., Fowler, F., Couper, M., Lepkowski, J., Singer, E. & Tourangeau, R. (2004).
Survey methodology, Hoboken, NJ: Wiley & Sons.

Harvey, B. & Mönig, J. (n.d.). SNAP! Reference Manual 4.0. Retrieved October 28, 2013
from http://byob.berkeley.edu/SnapManual.pdf.

Jain, A. K., Singhal, M. & Gupta, M. S. (2011). Algorithm building and learning
programming languages using a new educational paradigm, AIP Conference
Proceedings, 1373, 149-158.

Kampen, J. K. (2006). The impact of survey methodology and context on central tendency,
nonresponse and associations of subjective indicators of government performance.
Quality & quantity, 41, 793-813.

Lamb, A. & Johnson, L. (2011). Scratch: Computer Programming for 21st Century
Learners. Teacher Librarian, 38(4), 64-68.

LEGO. (n.d.). LEGO.com Mindstorms, Retrieved October 28, 2013 from
http://mindstorms.lego.com/en-us/Default.aspx.

Lewis, C. M. (2010) How programming environment shapes perception, learning and
goals: logo vs. scratch. Proceedings 41st ACM technical symposium on Computer
science education, 346-350.

Lifelong Kindergarten Group, (n.d.). Scratch: a programming language for everyone,
Retrieved October 28, 2013 from http://scratch.mit.edu/.

Lifelong Kindergarten Group, (n.d.). Scratch 1.4 Reference Guide, Retrieved October 28,
2013 from http://info.scratch.mit.edu/support/reference_guide_1.4.

Lifelong Kindergarten Group, (n.d.). Scratch 2, Retrieved October 28, 2013 from
http://wiki.scratch.mit.edu/wiki/Scratch_2.0.

LimeSurvey Project team. (2011). LimeSurvey - the free and open source survey software
tool !, Retrieved October 28, 2013 from http://www.limesurvey.org/.

Logo Foundation. (2013). The Logo Foundation, Retrieved October 28, 2013 from
http://el.media.mit.edu/logo-foundation/.

Ma, L., Ferguson, J., Roper, M. & Wood, M. (2011). Investigating and improving the
models of programming concepts held by novice programmers. Computer Science
Education, 21(1), 57-80.

Malan, D. J. & Leitner H. H. (2007), Scratch for budding computer scientists, Procs. 38th
SIGCSE technical symposium on Computer science education, 223-227.

25

May, J. & Dhillon, G. (2009). Interpreting Beyond Syntactics: A Semiotic Learning Model
for Computer Programming Languages. Journal of Information Systems Education,
20(4), 431-438.

Open University. (2012). The Open University in facts and figures, Retrieved October 28,
2013 from http://www.open.ac.uk/about/main/the-ou-explained/facts-and-
figures.

Open University. (2013). TU100 My Digital Life, Retrieved October 28, 2013 from
http://www3.open.ac.uk/study/undergraduate/course/tu100.htm.

Panther group. (n.d.). Panther - based on Scratch. Retrieved October 28, 2013 from
http://pantherprogramming.weebly.com/.

Parsons, D. & Haden, P. (2007). Programming osmosis: knowledge transfer from
imperative to visual programming environments, Proceedings 20th Annual
Conference of the National Advisory Committee on Computing Qualifications, 209-
215.

Playful invention company. (n.d.). PicoBoard. Retrieved October 28, 2013 from
http://www.picocricket.com/picoboard.html.

Powers, K., Ecott, S. & Hirshfield, L. (2007). Through the looking glass: teaching CS0 with
Alice, Proceedings of the 38th SIGCSE technical symposium on computer science
education, 39(1), 213-217.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., Silverman, B. & Kafai, Y. (2009). Scratch:
Programming for All, Communications of the ACM. Nov. 52(11), 60-67.

Richards, M., Petre, M. & Bandara, A. (2012). Starting with Ubicomp: using the
SenseBoard to introduce computing, In: 43rd ACM Technical Symposium on
Computer Science Education, 29 February-3 March 2012, Raleigh, NC.

Scaffidia, C. & Chambersa, C. (2012). Skill Progression Demonstrated by Users in the
Scratch Animation Environment, International Journal of Human-Computer
Interaction, 28(6), 383-398.

Simpkins, N. K. (2012). Sense survey activities, Retrieved October 28, 2013 from
http://norton.open.ac.uk/senseStepsGuide.html.

Stachel, J., Marghitu, D., Brahima, T. B., Sims, R., Larry Reynolds, L. & Czelusniak, V.
(2013). Managing Cognitive Load in Introductory Programming Courses: A Cognitive
Aware Scaffolding Tool. Journal of Integrated Design and Process Science, 17(1), 37-
54.

University of California at Berkeley. (n.d.), SNAP! (Build Your Own Blocks) 4.0. Retrieved
October 28, 2013 from http://byob.berkeley.edu/.

University of Kent in Canterbury. (n.d.), About Greenfoot. Retrieved October 28, 2013
from http://www.greenfoot.org/overview.

Woodman, M., Griffiths, R., Macgregor, M., Holland, S. (1999), LearningWorks: A
Customized Programming Environment for Smalltalk Modules. Proceedings 21st
International Conference on Software Engineering, 638-641.

26

Appendix A Survey Questions

Here only the actual questions have been reproduced out of each web page that presents
the question to decrease the size of the graphics. The questions are presented in the
same order as they are presented to students completing the survey.

27

28

29

30

31

32

