
Open Research Online
The Open University’s repository of research publications
and other research outputs

Code Club: bringing programming to UK primary
schools through Scratch
Conference or Workshop Item

How to cite:

Smith, Neil; Sutcliffe, Clare and Sandvik, Linda (2014). Code Club: bringing programming to UK primary
schools through Scratch. In: 45th ACM Technical Symposium on Computer Science Education (SIGCSE 14), 5-8 Mar
2014, Atlanta, GA, ACM.

For guidance on citations see FAQs.

c© 2014 ACM

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/2538862.2538919

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82977681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/2538862.2538919
http://oro.open.ac.uk/policies.html

Code Club: Bringing Programming to UK Primary Schools
through Scratch

Neil Smith
Centre for Research in

Computing
The Open University
Milton Keynes, UK

n.smith@open.ac.uk

Clare Sutcliffe
Code Club

London, UK
clare@codeclub.org.uk

Linda Sandvik
Code Club

London, UK
linda@codeclub.org.uk

ABSTRACT
Code Club is a network of after-school programming clubs
for primary (US: elementary) schoolchildren, run by technically-
competent volunteers in conjunction with (generally technically-
unskilled) teachers. The main motivation of Code Club is
to inspire children with a sense of fun and achievement for
programming and digital creativity. This paper reports on
the first year of Code Club in 1000 UK schools. The results
were extremely positive, but some children had difficulty
understanding the concepts behind the projects.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education; K.3.1 [Computers and Educa-
tion]: Computer Uses in Education; D.1.7 [Programming
Techniques]: Visual Programming

General Terms
Active Learning, K-12 Instruction

Keywords
introductory programming, elementary school, primary school,
K-12

1. INTRODUCTION
Eric Schmidt’s 2011 MacTaggart speech [17] galvanised

an overhaul of the UK’s K-12 Computing education provi-
sion. He pointed out that a generation of UK schoolchildren
was not receiving a substantive Computing education. Prior
to 2011, ICT (Information and Communication Technolo-
gies) education in UK schools consisted mainly of lessons in
how to drive office automation software with little, if any,
programming or other technical expertise being developed.
However, experience with tools such as Scratch [15] and Sto-
rytelling Alice [14] show that primary (age 5–11) schoolchil-
dren can engage profoundly with computing concepts.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGCSE ’14, March 05 - 08 2014, Atlanta, GA, USA
Copyright 2014 ACM 978-1-4503-2605-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2538862.2538919

Seeing that primary schoolchildren were being abandoned
by the current ICT education provision, two of the current
authors decided to do something about it. In 2012, they
founded Code Club, a network of after-school clubs in pri-
mary schools. Code Club is intended to provide an easy and
fun introduction to digital creation that will motivate chil-
dren to pursue Computing throughout their school careers
and beyond. In the process, the children will learn the basics
of programming and fundamental CS concepts.

Meanwhile, the proposed new Computing curriculum [9]
is following Code Club’s direction. The new government-
mandated national curriculum includes major changes, such
as the introduction of algorithms to children under 7 years
old. However, it will not be in place before September 2014,
and there remain significant challenges with its deployment,
including the lack of expert teachers [10].

2. CODE CLUB’S APPROACH
The idea of Code Club formed after a hack day in early

2012. Hack days are events where designers and developers
come together to produce a new technology product. One
key characteristic of these events is that they are fun for the
participants. Anecdotal questioning of various industrial IT
practitioners indicates that fun was a fundamental reason
for them progressing in the industry: the fun of meeting a
challenge, of inventing a new product, of understanding a
difficult concept. For many current IT practitioners, their
passion was ignited at school, often during after-school clubs.
These impressions are borne out by Schulte & Knobelsdorf
[18], who indicate that prior experiences of design activities
(including programming) encourage people to engage more
fully in Computing at university, as well as fostering a more
positive view of CS. Many practitioners are keen to con-
tribute to bringing their passion to a new generation, but
lack the pedagogic skills, child-protection accreditation, and
access to children to do so effectively.

This desire must be seen in the changing context of Com-
puting in UK schools. Since Schmidt’s speech, the UK
government and other organisations have started a process
of major changes in how Computing is taught in school.
This involves both updating the curriculum and training the
teachers; many years of neglect of Computing in schools had
left little Computing expertise among the teaching staff with
many non-specialists now teaching the subject [10]. Much
of this effort is directed at secondary (age 11–18) schools.
However, primary schoolchildren are capable of productive
engagement with Computing concepts [16, 15, 14, 2, 6] but

the problem of teacher expertise is even more acute: few pri-
mary school staff have a technical background and therefore
lack both the skills and confidence to bring programming to
their pupils.

Therefore, the obvious solution was to provide a vehicle
by which IT professionals could productively engage primary
schoolchildren in fun digital design and implementation ac-
tivities. If we could excite children’s interest in Computing,
they would absorb the basics of CS by engaging with the ma-
terial. However, there was no way that a pair of outsiders to
education could usefully influence the ongoing governmen-
tal plans for the revision of CS education, especially in the
short term. Code Club was the solution to this quandary.

The Code Club model is an after-school club, run by an
technically-adept volunteer in tandem with a teacher in the
school. The volunteer brings the necessary technical exper-
tise to the club, while the teacher provides additional ped-
agogic support and “crowd control” expertise. Code Club
provides a set of materials for the children to work through,
guiding them to create a rich multimedia project, generally
a game (games are recognised as strongly motivating chil-
dren to engage with programming concepts [8, 22, 1]). Code
Club also provides volunteers with an easy route to child-
protection vetting via the UK government’s existing STEM
Ambassador programme. Code Club does not technically
vet the volunteers or provide any technical training. This
does not seem to cause any issues, especially as the pro-
gramming is straightforward for anyone with programming
experience.

Code Club’s approach has limitations, mainly due to Code
Club’s self-selecting nature. Initially only the more forward-
thinking and technically-aware schools signed up for Code
Club, though this is becoming less of an issue as more clubs
sign up. Code Club can only run if the school already has
sufficient PCs available and if there is a committed volunteer
nearby. As an after-school club, attendance by children is
both voluntary and limited, meaning that only a few of the
most interested children will attend. However, we consider
that Code Club is the best we can do in the short term.

In April 2012, Code Club was announced and the news
quickly spread. Within weeks, over a thousand volunteers
and two hundred schools had expressed an interest in setting
up a Code Club. A steering committee of nine (including
all of this paper’s authors) was assembled to produce and
oversee the Code Club materials. Twenty-two schools, with
enthusiastic and technically-skilled teachers, were selected to
pilot Code Clubs at the end of the 2012 summer term. Code
Club opened to all schools in September 2012. 250 clubs
were active by the end of 2012; by October 2013, over 1300
clubs were registered. The international branch of Code
Club, Code Club World, launched in June 2013 with 60 clubs
registered outside the UK by October 2013. News of Code
Club continues to spread mostly by word of mouth, with
additional exposure from articles in widely-read publications
(e.g. Wired UK [12, 21], national newpapers The Guardian
[7] and The Indepenent [11]) and highly public awards [20].

3. SCRATCH
We chose Scratch [15] as the first programming environ-

ment. This was due to its known ease of use by primary
schoolchildren, the range of media resources easily available,
and support for saving and sharing projects via the Scratch
website. Scratch can be used for a variety of projects, often

Figure 1: The Scratch environment.

animations, simple games, and interactive stories.
Scratch is a visual programming environment (see Fig-

ure 1). It features a set of sprites that move around a
world (called the stage). Sprites have one or more cos-
tumes and the stage has one or more backgrounds, which
define their appearance. Both sprites and the stage can
have their own behaviours, defined by scripts. Sprites and
the stage can have multiple scripts which run concurrently
and asynchronously. Scripts are formed by clicking together
pre-defined code blocks, selected from a number of themed
palettes. Some blocks perform operations such as moving
sprites, changing their appearance, changing costumes, play-
ing sounds, detecting collisions, and so on. Other blocks ex-
pose much information about sprites, such as position and
direction. More blocks implement standard control struc-
tures, including a variety of loops, if-then-else selections, and
pauses. Scripts are triggered by either user input (mouse
clicks and keyboard presses), broadcast messages sent from
other scripts, or the “green flag” button on the Scratch UI;
the latter is often used to start a project. Programmers
can create variables with with scope either global or local
to a sprite. Sprites can communicate either through global
variables or broadcast messages.

We have created further projects using HTML5 and Python,
though these projects have not yet received sufficient use to
form reliable conclusions on their reception.

4. PEDAGOGY
There are several existing programmes of study for teach-

ing children the basics of computing and programming (e.g.
[6, 2]) but none was suitable for Code Club. The published
curricula generally assume that the teaching will be deliv-
ered during a formal, class-based, teacher-led programme of
study, lasting from a term to a year or more. Code Club
runs as a ten-week after-school club with one hour sessions
(including allocating time for children to arrive and pack
up). Existing programmes of study assume that children
will attend virtually all the sessions. Attendance at after-
schools clubs is more erratic. The emphasis in the existing
programmes is on the skills and behaviours that the chil-
dren should acquire. The intent of Code Club was to create
a sense of fun and excitement in its child participants and
inculcate a desire to engage with Computing, with skill de-

Figure 2: A sample project step.

velopment a secondary concern.
We adopted a project-based pedagogy [5]. Each project

creates a specific Scratch application, such as a game or a
drawing package. The projects are broadly similar to others
designed for a similar age group (e.g. [13]), though earlier
projects are smaller to allow them to be completed in a single
club session.

The first term’s activity consists of nine projects, with
each project expected to take one or two sessions. Each
project is divided into a series of steps (see Figure 2 for an
example). The first few steps are directed with a restricted
scope and aim to give the child a basic, working applica-
tion within around twenty minutes. Subsequent steps extend
the basic project. Some steps are directed and add specific
pieces of additional functionality. Some steps describe an
extension for the project but leave its implementation to
the pupil. Others are more open ended, inviting pupils to
explore how they can customise or extend the application.
As the projects progress throughout the term, the level of
direction decreases and pupils are increasingly asked to de-
sign and implement their own ideas and extensions. The
first term concludes with a “capstone” project where pupils
design and build their own game, drawing together what
they have learnt from previous projects.

All project steps include specific prompts for pupils to
test their projects and to save their work. The projects
make extensive use of Scratch Cards [19], quick summaries
of often-used functionality, to emphasise skill and knowledge
transfer across projects.

The second term of Scratch projects is organised as three
larger projects (an animated monster, a suite of musical
instruments with recording and playback, and a platform
game), each intended to be completed over three to four

weeks. These projects contain a substantial design compo-
nent, with at least one session dedicated to the students
designing their projects. These projects contain little sam-
ple code for the children to copy. Instead, they are expected
to create their own scripts, prompted by what they have
achieved already or suggested samples in the projects.

The project-based approach has several advantages for
Code Club. First, it emphasises work on authentic prob-
lems. This motivates the children to engage with the ma-
terial and hence learn the programming skills they need,
almost as a by-product. Second, pupils produce a discrete
artefact, which gives the children a sense of achievement as
well as the ability to show off the products of their labours
to friends and family (assisted by Scratch’s ability easily to
share projects via its website). Third, it allows for much
more flexibility in attendance; the material allows for chil-
dren to miss sessions at different times and still be a full
participant on their return. Fourth, it gracefully allows for
differentiation across pupils of different ability, with pupils
able to progress through projects at the speed most appro-
priate to them.

5. THE FIRST YEAR
We evaluated the adoption and progress of Code Club

with two surveys, performed by club leaders completing on-
line questionnaires. We received 150 responses (of approxi-
mately 280 clubs) to the first survey in December 2012, and
130 responses (of approximately 800 clubs) to the second
survey in June 2013. We also examined a sample of 22 com-
pleted capstone projects, where clubs made them available
to us.

5.1 Survey Results
The first survey concentrated on the demographics of the

club members; the second on the results of up to a year of
Code Club.

The first survey revealed 2233 children enrolled in 150
clubs, giving an average of 14.9 children per club (Figure 3).
40% of club members were girls. Club sizes ranged from one
to eighty children; we assume the latter were where Code
Club was used in lessons in schools across year groups. Ex-
trapolating this across all clubs meant that in December
2012 there were over 5800 children in Code Clubs and over
twelve thousand children in Code Clubs by July 2013. 77%
of club members had no prior programming experience; 20%
had used Scratch before.

By the end of the year, children had completed an average
of six projects each (Figure 4), though some clubs have com-
pleted ten or more projects. This low number is expected as
many clubs started at various points throughout the year.

We also asked the club organisers to rate the children’s
confidence with different programming concepts (Figure 5).
“Confidence” was reported on a ten-point Likert scale and
respondents were asked to give a rating for the club over-
all. Several respondents commented that children in their
club had a range of confidence in these concepts. Despite
this, the ratings are encouraging, with most clubs showing
that most people are at least reasonably confident using a
variety of programming concepts. Children are reported as
being less confident with debugging than with any of the
programming concepts. These confidence levels are borne
out in the analysis of the projects, below.

We asked respondents to rate how many of their club

Figure 3: Code Club sizes.

0 5 10 15 20 25 30 35 40 45+

0

20

40

60

Size of club

N
u
m

b
er

o
f

cl
u
b
s

Figure 4: Number of completed projects.

1 2 3 4 5 6 7 8 9+
0

5

10

15

20

25

Number of completed projects

N
u
m

b
er

o
f

cl
u
b
s

Figure 5: Confidence with concepts.

2 4 6 8 10

0

10

20

Confidence

%
re

p
o
rt

ed

Programming Variables

Conditionals Booleans

Broadcasting Debugging

members engaged in programming or some other form of
digital making outside Code Club. The results were surpris-
ingly evenly split, with one third saying that less than one
third of their club members engaged in such activities, one
third said about half did, and one third saying that more
than two thirds did some form of digital making outside
Code Club.

Finally, we asked respondents an open-ended question for
further comments. Most were positive, with many men-
tioning minor errors in the project sheets. The most com-
mon substantive comment was about the transition from
following instructions to open-ended tasks. Many respon-
dents commented that children were able to follow the early,
guided instructions but were unable to apply any knowledge
to unguided challenges. This will require a revision of our
pedagogy to give more structure to these challenges, such
as Bagge’s Scratch projects [3] which show the blocks to be
used in a challenge step without showing how they should
be assembled.

5.2 Project Analysis
We analysed a sample of 22 of the final ‘build your own

game’ projects to see what programming concepts were con-
tained within them. These projects were designed and built
by the children themselves, rather than following any in-
structions from a Code Club sheet. We analysed the pro-
gramming concepts used in these projects (see Table 1),
noting whether the concepts were properly used or just at-
tempted. We made no judgements about the presence of
bugs or the quality of the gameplay! Many of the final
projects were based on earlier Code Club projects, but all
contained their own variations in program code. Some projects
were completely novel, including a two-player game of tennis
and a wizardly duel. As can be seen in this table, most of
the projects appropriately used user input (often as a game
control), control statements, parallel execution (both mul-
tiple sprites and multiple, simultaneous execution of scripts

Table 1: Concepts used in ‘build your own’ projects.
Concept Correctly used Incorrectly used
Variables 13 0
User input 21 1
Broadcast within
a sprite

1 0

Broadcasting between
sprites

13 2

Control statements 20 1
Boolean connectives 7 0
Parallel execution 22 0
Detecting state 20 0

within the same sprite), and detecting and acting on states
in the project (normally collision detection).

The more tricky concepts of variables and message pass-
ing were used in over half the projects, mostly appropriately.
Where variables were used, they were always used appropri-
ately, normally as score counters or game timers. Where
variables were not used in the project, they were generally
not needed. Message passing was often used to allow sprites
to communicate game events, such as losing a life.

The distributed nature of Code Club, and the flexibility
of timetabling individual projects, made it impractical for
us to observe a representative sample of children develop-
ing their own projects in a club. Observation of children
in our own clubs and at other events indicates that chil-
dren are generally comfortable with most of the concepts
listed in Table 1. Children seemed to start the design of
their projects from considering the end result and bringing
in programming concepts as appropriate to that end. We
rarely saw children wanting to achieve some functionality
and not knowing how to approach it. We did not perform
more in-depth exercises to gauge children’s design processes,
such as “think aloud” design sessions.

6. CONCLUSIONS AND FUTURE WORK
Code Club is a new network of after-school clubs aimed

at introducing primary schoolchildren to the joy of program-
ming. Surveys of Code Clubs show that Code Club is achiev-
ing its objectives. The children have fun. They successfully
engaged with a range of digital design and implementation
tasks, creating several artefacts along the way. The children
coped remarkably easily with some difficult programming
concepts. Children were able to show off their creativity
within the projects and many children were eager to con-
tinue developing projects outside Code Club. Code Clubs
continue to spring up across the UK and internationally.

Code Club continues the work of other projects that bring
programming experience to schoolchildren [14, 15, 8]. Code
Club is distinct because it is addressed exclusively at pri-
mary schoolchildren, and it has a national, and increasinly
international, scope. It is an initiative that answers the call
to arms of how to update the Computing curriculum [4].

Code Club continues to expand. We are still aiming to
have Code Club in 25% of UK primary schools by the end of
2014. Additional project types are being developed, using
HTML5 and Python. After a period of rapid expansion
and development, we intend to consolidate our progress with
the project materials, revising them as necessary to improve
their ease of use and to smooth the transition from following

instructions to designing your own code. We will continue
to monitor and evaluate Code Club across these changes.

7. REFERENCES
[1] J. C. Adams and A. R. Webster. What do students

learn about programming from game, music video,
and storytelling projects? In Proceedings of the 43rd
ACM technical symposium on Computer Science
Education, pages 643–648, 2012.

[2] C. at School Working Group. Computer Science: A
Curriculum for Schools. Computing at School, 2012.

[3] P. Bagge. Junior Computer Science Scratch Projects,
2013. Available from
http://code-it.co.uk/year4/scratchprojects.html

[4] V. Barr and C. Stephenson. Bringing computational
thinking to K-12: what is involved and what is the
role of the computer science education community?
ACM Inroads, 2:48–54, 2011.

[5] P. C. Blumenfeld, E. Soloway, R. W. Marx, J. S.
Krajcik, M. Guzdial, and A. Palincsar. Motivating
project-based learning: Sustaining the doing,
supporting the learning. Educational Psychologist,
26(3/4):369–398, 1991.

[6] K. Brennan, M. Chung, and J. Hawson. Scratch
curriculum guide draft, 2011.

[7] J. Butterworth. Primary Code. In The Guardian, 15
July 2013. Available from
http://www.theguardian.com/science/life-and-
physics/2013/jul/15/programming-schools-children

[8] M. Carbonaroa, D. Szafronb, M. Cutumisub, and
J. Schaefferb. Computer-game construction: A
gender-neutral attractor to computing science.
Computers & Education, 55(3):1098–1111, 2010.

[9] Department for Education. National curriculum
review: new programmes of study and attainment
targets from September 2014, 2013. Available from
https://www.gov.uk/government/consultations/national-
curriculum-review-new-programmes-of-study-and-
attainment-targets-from-september-2014

[10] S. Furber. Shut Down or Restart? The Way Forward
for Computing in UK Schools. The Royal Society,
2012.

[11] R. Garner. Welcome to Code Club: UK programme
that teaches children computer coding goes
global. In The Indepenent, 24 July 2013. Available from
http://www.independent.co.uk/news/education/schools/
welcome-to-code-club-uk-programme-that-teaches-
children-computer-coding-goes-global-8730806.html

[12] D. Geere. Afterschool ‘Code Clubs’ planned to teach
kids programming. In Wired.co.uk, 17 April 2012.
Available from
http://www.wired.co.uk/news/archive/2012-
04/17/code-club

[13] LEAD Project. Super Scratch Programming
Adventure! No Starch Press

[14] C. Kelleher, R. Pausch, and S. Keisler. Storytelling
Alice motivates middle school girls to learn computer
programming. In Proceedings of the SIGCHI
Concerence on Human Factors in Computing Systems,
pages 1455–1464. ACM, 2007.

[15] J. Maloney, K. Peppler, Y. Kafai, M. Resnick, and
N. Rusk. Programming by choice: Urban youth

learning programming with scratch. In Proceedings of
the 39th SIGCSE Technical Symposium on Computer
Science Education, pages 367–371. ACM, 2008.

[16] M. Petre and B. Price. Using robotics to motivate
‘back door’ learning. Education and Information
Technologies, 9:147–158, 2004. (Draft available from
http://mcs.open.ac.uk/bp5/papers/2004-eit/2004-
EIT-Robotics-Backdoor.pdf)

[17] E. Schmidt. MacTaggart Lecture. Edinburgh
Television Festival, 2011.

[18] C. Schulte and M. Knobelsdorf. Attitudes towards
computer science-computing experiences as a starting
point and barrier to computer science. In Proceedings
of the third international workshop on Computing
education research, pages 27–38, 2007.

[19] Scratch. Scratch cards, 2012. Available from
http://info.scratch.mit.edu/Support/Scratch Cards.

[20] Talk Talk. Digital Heroes Award, 2012. Information
available from
http://www.talktalk.co.uk/digitalheroes/winners.php

[21] N. Tufnell. Code Club Robo-Boogie competition asks
kids to invent a robot dance. In Wired.co.uk, 15
November 2013. Available from
http://www.wired.co.uk/news/archive/2013-
11/15/kids-get-coding-with-robo-boogie

[22] L. Werner, S. Campe, and J. Denner. Children
learning computer science concepts via Alice
game-programming. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education,
pages 427–432, 2012.

