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An integrated study of U—-Pb zircon dating, geochemical and Sr— Nd - Hf isotopic compositions of garnet-bearing
granulite and marble from the granulite-facies domain of the Nyingchi Complex (eastern Himalayan syntaxis)
has provided insights into the tectonic evolution of the southern Lhasa terrane. The peak metamorphism of the
garnet-bearing granulite is marked by a mineral assemblage of garnet + orthopyroxene + high-Ti
amphibole + plagioclase + quartz + rutile. Abundant exsolved rutile needles are observed within amphibole,
garnet and quartz. The peak metamorphic temperatures are estimated at 803-924 °C. Geochemical data from
the garnet-bearing granulites provide evidence for a basaltic protolith that formed in a continental-margin arc
setting. Sr—Nd - Hf isotopic compositions indicate that this protolith was sourced from partial melting of a
depleted mantle. LA-ICP MS U-Pb zircon dating shows that the protolith age and metamorphic age of the
garnet-bearing granulites are 89.3 + 0.6 Ma and 81.1 + 0.8 Ma, respectively. The detrital magmatic zircons
from the marble yield ages from 86.3 to 167 Ma. The age distribution and Hf isotopic composition (eue(t) =
+5.9 to +17.5) of the detrital magmatic zircon in the marble are consistent with the isotopic data of zircons
from the Jurassic-Cretaceous Gangdese batholiths, suggesting that the clastic sediments were partially derived
from these intrusives or associated volcanic rocks, and deposited in the fore-arc basin of the Gangdese arc. The
metamorphic zircons in the marble yield a metamorphic age of 81.4 & 0.5 Ma. These results show that both
the arc magmatic rocks and forearc sedimentary rocks underwent high-temperature (HT) granulite-facies
metamorphism at ~81 Ma, indicating anomalously high heat input in the forearc region. A range of tectonic
observations, including a coeval hiatus in arc magmatism and a period of regional uplift, indicate that HT
metamorphism resulted from the subduction of the Neo-Tethys ocean ridge beneath the southern Lhasa terrane
during the Late Cretaceous.
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1. Introduction

The subduction of an oceanic spreading ridge is likely to be a
phenomenon that characterizes many convergent plate boundaries.
Following ridge subduction, a slab window will form beneath the
overriding plate as the plate growth along the diverging oceanic plate
edges ceases (DeLong et al., 1979; Thorkelson, 1996). Ridge subduction
and the associated slab window strongly affect the tectonic,
metamorphic and magmatic evolution of the overriding plate (e.g.,
Aguillon-Robles et al., 2001; Brown, 1998; Cole and Stewart, 2009;
Delong et al,, 1979; Groome and Thorkelson, 2009; Guillaume et al.,
2010; Lagabrielle et al., 2000; Santosh and Kusky, 2010; Sisson et al.,
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2003; Thorkelson, 1996). Large porphyry Cu—Au deposits may be
spatially associated with the oceanic ridge subduction (Haeussler et al.,
1995; Sun et al., 2010). Importantly, the oceanic ridge subduction plays
a pivotal role in crustal growth through the interaction between
asthenospheric mantle and supracrustal rocks (Nelson and Forsythe,
1989; Tang et al., 2010). Identifying when ridge subduction has occurred
is thus important for understanding the tectonic evolution of ancient
convergent margins. Extensive studies of the effects of ridge subduction
have been investigated in the modern Pacific Rim convergent margins
(McCrory et al, 2009, and references therein). There are several
geological effects related to the ridge subduction, including (1) adakitic
rocks derived from partial melting of the oceanic crust at slab window
edges (Tang et al., 2010; Thorkelson and Breitsprecher, 2005), and/or
from partial melting of overlying lower crust (Cole et al., 2006); (2) a
hiatus of arc magmatism due to the cessation of fluid-triggered mantle-
wedge melting (Cole and Stewart, 2009, and references therein);
(3) near-trench magmatism, either by decompression melting of
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upwelling mantle, or from magmas derived from partial melting of the
accretionary wedge sediments, or both (Bradley et al,, 2003; Cole and
Stewart, 2009; Cole et al., 2006; Marshak and Karig, 1977); (4) HT/UHT
metamorphism in the fore-arc region (Brown, 1998; Delong et al,
1979; Santosh and Kusky, 2010); (5) uplift of the fore-arc and arc region
in response to the subduction of the topographic high and buoyant ridge,
or the replacement of relatively cool lithospheric mantle by relatively hot
asthenospheric mantle (Guillaume et al., 2009, 2010; Rogers et al., 2002);
and (6) changes in structural style on either side of the slab window
(Pavlis and Sisson, 1995). Although there is no unique signature of ridge
subduction events, the observation of several of these features together
can help identify regions where ridge subduction may have occurred
in the past (Sisson et al, 2003). Near-trench magmatism and HT
metamorphism are the most striking features attributable to ridge
subduction, and are likely to be diagnostic of ancient ridge subduction
(Brown, 1998; Santosh and Kusky, 2010).

The southern Lhasa terrane (Gangdese belt) was an Andean-type
magmatic arc that resulted from the northward subduction of the
Neo-Tethyan oceanic slab prior to the India-Asia collision (55 +
10 Ma) (Allégre et al., 1984; de Sigoyer et al., 2000; Najman et al.,
2010, and references therein; Yin and Harrison, 2000). The existing
geochronological data indicate that the time of the Gangdese arc
magmatism spans from late Triassic to Eocene (Chu et al, 2006; Ji
et al., 2009; Lee et al.,, 2009; Schdrer et al., 1984; Wen et al., 2008b; Xu
etal., 1985). The closure of the Neo-Tethyan ocean would have involved
at least one episode of spreading ridge subduction beneath the southern
Lhasa terrane. Based on the occurrences of charnockite, adakitic rocks,

and HT metamorphism, Zhang et al. (2010b, 2010c) and Meng et al.
(2010) have suggested that a Late Cretaceous (~90 Ma) ridge
subduction could have occurred in the southeastern Lhasa terrane.
However, the presence of coeval (98-88 Ma) arc magmatic rocks
conflict with the ridge subduction model (Guan et al, 2011). Guan
et al. (2010) suggested instead that the ridge subducted at ~80 Ma
based on the adakitic magmatism in the southeastern Lhasa terrane.
The timing of ridge subduction therefore remains enigmatic.

Unlike the numerous igneous studies, the metamorphic history of
southern Lhasa terrane is rarely studied (Booth et al., 2009; Guo et al.,
2012; Harris et al., 1988; Wang et al., 2009; Zhang et al., 2010c). In the
southeastern Lhasa terrane, the Nyingchi Complex underwent high
temperature (HT) granulite-facies metamorphism (Geng et al., 2006;
Zhang et al,, 2010c). The ages of granulite-facies metamorphism and
protolith of the Nyingchi Complex are important to understand the
tectonic evolution of the active southern margin of Eurasia. Previous
studies show that the metamorphic ages of the host rocks of the
granulite are 80-90 Ma (Dong et al., 2012; Wang et al., 2009; Zhang
et al.,, 2010c). However, the metamorphic age of the granulite remains
uncertain. In addition, the age and origin of the protoliths of the
granulites have not yet been well constrained. In this study, we focus
on granulite facies rocks of the Nyingchi Complex and provide new
evidence for Late Cretaceous (~81 Ma) forearc high-temperature (HT)
metamorphism that resulted from the Neo-Tethys ocean ridge
subduction. Our results, combined with studies on the igneous and
tectonic history, provide new constraints on the Late Cretaceous
evolution of the India-Asian collision.
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Fig. 1. (a) Tectonic framework of the Tibetan Plateau and the Lhasa terrane (modified from Zhu et al., 2011). JS = Jinsha Suture; BNS = Bangong-Nujiang Suture; SNMZ = Shiquan River-
Nam Tso Mélange Zone; LMF = Luobadui-Milashan Fault; IYTS = Indus-Yarlung Tsangpo Suture. (b) Simplified geological map and cross-section of the eastern Himalayan syntaxis
(modified from Zhang et al., 2010c), showing the locations of the studied samples and Late Cretaceous magmatism. The Late Cretaceous Gangdese adakities are from Wen et al., 2008a,
mafic magmatism are from Guan et al.,, 2011, and adakitic charnockites are from Zhang et al., 2010b. All of the samples shown are of garnet-bearing granulite facies rocks with the

exception of sample T668, which is from a marble unit contained in the granulite unit.
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2. Geological background

The Tibetan Plateau is a collage of continental terranes that were
accreted to the Eurasian plate during the Phanerozoic (Allégre et al.,
1984; Dewey et al,, 1988; Pan et al,, 2012; Yin and Harrison, 2000).
The Lhasa terrane is the southernmost terrane of the Asian continent
(Fig. 1a), and is separated from the Qiangtang terrane to the north by
the Bangong-Nujiang suture zone (BNS) and from the Tethyan
Himalaya (Indian affinity) to the south by the Indus-Yarlung Tsangpo
suture zone (IYTS) (Dewey et al., 1988; Pan et al., 2012). Based on
contrasting sedimentary covers, it can be divided into northern, central,
and southern Lhasa terranes (Fig. 1a), separated by the Shiquan River—
Nam Tso Mélange Zone (SNMZ) and Luobadui-Milashan Fault (LMF),
respectively (Zhu et al,, 2011). The northern Lhasa terrane is mainly
covered by Jurassic-Cretaceous volcanic rocks, which were intruded
by Mesozoic (130-80 Ma) plutonic rocks (Zhu et al, 2009a, and
references therein). The central Lhasa terrane comprises Precambrian
basement (e.g. the Nyaingentanglha gneisses), overlain by Paleozoic—
Cretaceous sedimentary cover (Hu et al., 2005; Zhu et al., 2011). The
southern Lhasa terrane is dominated by Cretaceous-Early Tertiary
Gangdese batholiths and the Linzizong volcanic succession (Chu et al.,
2006; Coulon et al., 1986; Ji et al., 2009; Lee et al., 2009; Wen et al.,
2008b; Zhang et al.,, 2007). There is an apparent hiatus in Gangdese
arc magmatism in the southern Lhasa terrane between 80 and 70 Ma,
the cause of which remains unclear (Volkmer, 2010; Wen et al.,
2008b). Wen et al. (2008a, 2008b) attributed it to a brief episode of
shallow-subduction. Volkmer (2010) suggested that the formation of
eclogitic lithospheric root resulted from shortening of Gangdese arc
that caused the lull in magmatic activity. Regionally, the 69-40 Ma
Linzizong volcanic rocks in the Gangdese unconformably overlie
strongly deformed Late Cretaceous and/or older rocks (Burg and Chen,
1984; England and Searle, 1986; Kapp et al., 2007; Leier et al., 2007),
suggesting that significant crustal shortening and uplift occurred prior
to 69 Ma. The Xigaze fore-arc basin is located at the southern margin
of the southern Lhasa terrane, immediately north of the Yarlung-
Tsangpo suture zone, extends from Xigaze in the east to Saga in the
west with a length of ~550 km (west of our study area). This basin is
mainly composed of Late Cretaceous coarse- to fine-grained
volcaniclastic sedimentary rocks, with minor intercalated hemi-
pelagic marl (Diirr, 1996; Einsele et al, 1994). Previous studies
indicated that the clastic sediments mainly sourced from the Gangdese
arc (Diirr, 1996; Einsele et al., 1994; Wu et al., 2010).

In the eastern Himalayan syntaxis, the southern Lhasa terrane is
separated from the Himalayan unit by the Yarlung-Tsangpo suture
zone (Fig. 1b). In the Yarlung-Tsangpo suture zone, the ultramafic and
mafic blocks coexist with blastobasalt pillow lava and quartzite to
form relatively complete ophiolitic sequence (Geng et al., 2006). Zircon
U-Pb geochronology studies suggested that the ophiolite formed in
early Jurassic and locally in Late Triassic (Geng et al, 2011). The
geochemical studies on the metamorphic mafic rocks of the ophiolite
indicated that the Neo-Tethyan Ocean involved a two-stage evolution:
(1) initial formation by melting of MORB-OIB mantle source; and
(2) entrapment within the mantle above a subduction zone (Geng
et al., 2010).

In the southeastern Lhasa terrane, as exposed along the western
margin of the eastern syntaxis, there is no residual fore-arc basin
between the southern Lhasa terrane and Yarlung-Tsangpo suture
zone. The southern Lhasa terrane mainly consists of granitic plutons
intruding the high-grade Nyingchi Complex and Cambrian-Eocene
strata (Fig. 1b) (Geng et al., 2006; Guo et al., 2012; Zhang et al., 2008).
The Nyingchi Complex and granitic plutons are directly contact with
the Yarlung-Tsangpo suture zone (Fig. 1b). The granitic plutons have
been dated from 165 to 22 Ma (Guan et al.,, 2010; Guo et al., 2011,
2012; Wen et al., 2008a; Zhang et al., 2008, 2010a, 2010b), similar to
those of the Gangdese batholiths in the central part of the southern
Lhasa terrane (Chu et al, 2006; Ji et al, 2009; Wen et al,, 2008b;

Zhang et al., 2007). The Late Cretaceous intrusions are well developed
in the western margin of the eastern syntaxis. For example, the Wolong
pluton (83-80 Ma) exhibits adakitic geochemical characteristics,
resulting from partial melting of the underplated basaltic lower crust
(Guan et al., 2010; Wen et al.,, 2008a). Zhang et al. (2010b) and Guan
etal. (2011) reported a suite of Late Cretaceous (90-88 Ma) charnockite
and a suite of Late Cretaceous (98-88 Ma) mafic rocks in Lilong area,
respectively. In addition, Guo et al. (2011) reported a ~80 Ma gneissic

Table 1
Geochemical data of the garnet-bearing granulites from the Nyingchi Complex.
Sample T664 T665 T666 T667 T726
Latitude N29°12/ N 29°12 N 29°12 N29°12/0.7" N29°12/
20.8" 19.1 14.8" 21.0”
Longitude ~ E94°07’ E 94°07' E 94°07 E 94°08’ E94°07
10.4" 16.6" 27.0" 32.6" 10.3"
(wt.%)
Sio, 51.81 50.71 52.83 54.65 54.1
TiO, 097 0.81 0.78 0.78 097
Al,03 18.68 19.54 19.12 18.14 16.73
TFe,03 1155 953 8.66 8.66 1148
MnO 0.19 0.15 0.13 0.14 022
MgO 402 481 45 427 2.85
Ca0 7.04 8.59 8.05 7.78 923
Na,0 339 3.96 412 333 299
K,0 133 0.59 0.82 1.05 049
P,0s5 03 025 0.19 021 022
Loi 09 1.46 1.26 131 0.74
Tol 100.18 1004 100.46 100.32 100.02
Mg# 4 50 51 49 33
(ppm)
Sc 212 19.6 20.6 19.0 26.6
\Y 259 219 211 213 248
Cr 133 23.2 15.2 259 141
Co 69.5 474 49.0 51.7 64.1
Ni 153 19.1 16.1 2238 440
Cu 729 45.1 20.0 88.8 110
Zn 110 89.7 88.7 834 912
Ga 206 199 19.7 19.2 195
Rb 382 6.73 10.6 21.1 843
Sr 616 627 629 586 678
Y 2138 17.2 16.4 154 28.1
Zr 208 18.6 21.7 215 328
Nb 2.88 1.89 224 212 244
Ba 256 177 168 295 99.8
La 11.0 930 930 9.44 112
Ce 259 21.1 214 20.1 254
Pr 3.62 2.79 2.87 254 351
Nd 173 12.8 129 114 159
Sm 409 3.02 3.11 276 419
Eu 125 1.01 0.98 1.02 1.22
Gd 401 2.96 2.99 2.72 433
Tb 0.61 048 0.48 043 0.75
Dy 3.82 3.01 278 2.66 4.75
Ho 0.75 0.60 0.56 0.52 098
Er 218 1.71 1.64 1.56 2.88
Tm 033 025 023 022 0.44
Yb 2.08 1.63 1.45 1.45 278
Lu 0.32 024 0.22 0.23 041
Hf 0.77 0.76 0.93 0.81 121
Ta 032 0.20 0.26 0.26 030
Pb 7.11 7.04 10.1 10.8 9.17
Th 0.864 0.46 1.19 1.55 225
0] 0218 0.16 038 053 051
(La/Yb)n 38 41 46 4.7 29
8751 /855y 0.704765 0.704394 0.704502  0.704607
(37Sr/3%sr); 0.70454 0.70433 0.70437 0.70456
143Nd/4Nd 0512776 0512812 0512845  0.512753
("*Nd/ 0512693 0.512727 0512759  0.512660
144Nd).
enalt) 33 4.0 46 27
Tom (Ga) 0.80 0.76 0.69 1.12

Notes: LOI = Loss on ignition; TFe,0;3 = All Fe calculated as Fe,0s3; Mg# = 100(Mg/
Mg + Fe).
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Fig. 2. Photomicrographs for the garnet-bearing granulite (a-g) and the marble (h) from the Nyingchi Complex in the eastern Himalayan syntaxis. (a) The porphyroblast garnet is partially
replaced by retrograde symplectites of amphibole + plagioclase + rutile (sample T666). Garnet contains orthopyroxene inclusion. (b) Oriented rutile needles in garnet (sample T666).
(c) The type 1 amphibole containing rutile inclusions (sample T664). (d) Core-rim structure from type 1 amphibole (sample T664). (e) Orthopyroxene partially replaced by type 2
amphibole (sample T667). (f) Oriented rutile needles in quartz (sample T666). (g) Oriented ilmenite needles in rutile (sample T664, backscattered electron image). (h) Calcite,
diopside, aegirine and quartz assemblage from the marble (sample T668). Abbreviations: Aeg = aegirine; Amp = amphibole; Cal = calcite; Czo = clinozoisite; Di = diopside; Grt = garnet;
Ilm = ilmenite; Opx = orthopyroxene; Pl = plagioclase; Qtz = quartz; Rt = rutile.
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granite resulting from magma mixing between juvenile and old crustal
materials.

The Nyingchi Complex, to the north of the Yarlung-Tsangpo suture
zone (Fig. 1b), was considered to be the Precambrian basement of the
Lhasa terrane based on the middle- and high-grade metamorphism
(Geng et al,, 2006). However, the detrital zircon U-Pb dating shows
that the metasedimentary rocks from the Nyingchi Complex are no
older than 490 or 340 Ma (Dong et al., 2010; Guo et al., 2012; Zhang
et al, 2008). Due to the lack of detailed geological and geochemical
investigation, the age and origin of the protoliths of the Nyingchi Complex
have not yet been well documented. The existing studies show that the
Nyingchi Complex is a set of tectonic mélange involved in different ages
and various lithologies (Dong et al., 2010; Guo et al., 2011, 2012; Zhang
et al, 2008, 2010c). The Nyingchi Complex can be divided into
granulite-facies and amphibolite-facies metamorphic units (Fig. 1b)
(Zhang et al., 2010c). The granulite-facies metamorphic unit is composed
of granulite, garnet-bearing amphibolite and marble. The granulite occurs
as lenses or blocks within the amphibolite-facies country rocks. The
amphibolite-facies metamorphic unit consists of migmatite, amphibolitic
gneiss, granitic gneiss, kyanite-sillimanite biotite schist and marble
(Booth et al,, 2009; Guo et al, 2011, 2012; Zhang et al,, 2008, 2010c).
The P-T conditions for the granulite-facies and amphibolite-facies have
been estimated at 0.9-1.3 GPa, 830-900 °C and 0.8-1.2 GPa, 600-800 °C,
respectively (Booth et al., 2009; Wang et al., 2009; Zhang et al., 2010c).

3. Petrography

Five garnet-bearing granulite samples (T664, T665, T666, T667, and
T726) and a marble sample (T668) of this study have been collected

a Te666

Fig. 3. Typical zircon CL images for (a) the garnet-bearing granulite and (b) the marble.
The smaller circles show LA-ICP MS dating spots and corresponding U- Pb ages (in Ma),
the dashed circles show locations of Lu—Hf isotope analysis and corresponding eyf(t)

values.

from the granulite facies unit of the Nyingchi Complex (Zhang et al.,
2010c) (Fig. 1b). Outcrop GPS coordinates for the garnet-bearing
granulite samples are given in Table 1. Because of the thick soil cover,
the field relations between the garnet-bearing granulite and marble
are unexposed.

3.1. Garnet-bearing granulite

All five garnet-bearing granulite samples display porphyroblastic
texture and gneissose structure. They have similar mineral assemblages,
and consist of garnet, amphibole, plagioclase, orthopyroxene, quartz,
clinozoisite, epidote, rutile, ilmenite, and zircon (Fig. 2a-g). Based on
the mineral assemblages and microstructures, two metamorphic stages
are recognized: peak granulite facies and retrograde amphibolite facies.
All the samples have undergone retrograde metamorphism, and locally
preserve relics of the peak metamorphic assemblages.

The garnets from all the five samples occur as subhedral to euhedral
porphyroblasts, with a grain size of 1-5 mm. The garnet porphyroblasts
in sample T666 contain inclusions of orthopyroxene, quartz and rutile
(Fig. 2a). Most garnet grains contain exsolved needles of rutile (Fig. 2b).
The garnet porphyroblasts are partially replaced by fine-grained
symplectites (Fig. 2a). The symplectites are composed of amphibole and
plagioclase, with or without rutile (Fig. 2a). Amphibole can be divided
into two types based on their mode and composition. Type 1 consists of
relatively large grains (up to 3mm) and contains a large number of rutile
exsolution needles (Fig. 2c-e), suggesting their high-Ti precursors.
Some Type 1 amphiboles in sample T664 show core-rim structure, and
the mineral color changes from brownish in the core to greenish in
the rim (Fig. 2d). Type 2 consists of a greenish and fine-grained
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Fig. 4. Chondrite-normalized REE patterns of the zircons from (a) the garnet-bearing

granulite and (b) the marble. Chondrite normalization values from Sun and McDonough
(1989).
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aggregate with plagioclase (Fig. 2a). The Orthopyroxene granis
form two morphological types. The large anhedral orthopyroxenes in
sample T667 are generally replaced by greenish amphibole (Fig. 2e).
The fine-grained orthopyroxenes are mainly included in the garnet
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Fig. 6. Geochemical classification for the garnet-bearing granulite in the southern Lhasa
terrane in the eastern Himalayan syntaxis. (a) Zr/TiO,— Nb/Y diagram of Winchester and
Floyd (1977); (b) Th—Co plot of Hastie et al. (2007).

porphyroblasts (Fig. 2a). Clinozoisite and epidote occur as the alteration
product of plagioclase, mainly within the plagioclase along the cleavage
(Fig. 2a, c). Two generations of rutile are identified in sample T664,
T665, T666, and T726. The first generation is seen as dark brown to
black single crystal inclusions within amphibole, garnet, or quartz
grains (Fig. 2a, c). Some rutile grains in sample T664 contain regular
ilmenite exsolution lamellae (Fig. 2g), indicating that they have
significant Fe content (Banfield and Veblen, 1991; Zack et al., 2004).
The second generation occurs as exsolution needles within garnet,
quartz and amphibole (Fig. 2b, d, f). The rutile needles in garnets and
quartz are distributed along three crystallographically oriented planes
(Fig. 2b, f). Most needles are 100-200 pm in length and <1 um in
diameter (Fig. 2b, f). The rutile needles in amphibole are 50-200 pm in
length and 1-5 pm in diameter, and distribute along one or two
crystallographically oriented planes (Fig. 2d). These rutile needles
within garnet, hornblende and quartz are thought to be formed by

Fig. 5. U-Pb concordia diagrams for the zircon from (a) the garnet-bearing granulite and
(b) the marble from the Nyingchi Complex. (c) The relative probability and frequency plots
of the U-Pb ages of detrital magmatic zircon from the marble. Also plotted for comparison,
the relative probability diagram of zircon U- Pb ages of the Late Triassic-Eocene Gangdese
batholiths and volcanic rocks (in gray) (Chu et al., 2006; Guan et al., 2010, 2011; Guo et al,,
2011, 2012; Ji et al., 2009; Jiang et al.,, 2012; McDermid et al., 2002; Quidelleur et al., 1997;
Wen et al.,, 2008a, 2008b; Zhang et al.,, 2007, 2010b; Zhu et al., 2008, 2009a, 2009b, 2011),
and the detrital zircon age spectra for the Middle-Upper Cretaceous Xigaze forearc
sedimentary rocks (in dashed line) (Aitchison et al., 2011; Wu et al,, 2010).
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titanium exsolution during cooling, and suggest that titanium is
saturated in these minerals during prograde metamorphism (Adachi
et al, 2010; Kawasaki and Osanai, 2008; Thomas et al., 2010; Wark
and Watson, 2006).

In summary, the garnet-bearing granulites from Nyingchi Complex
experienced an early stage of granulite-facies metamorphism and a late
stage of amphibolite-facies retrogression. The peak granulite-facies is
characterized by a mineral assemblage of garnet + orthopyroxene +
high-Ti amphibole + plagioclase + quartz + rutile. The retrograde
amphibolite facies is represented by a mineral assemblage of
plagioclase + low-Ti amphibole + quartz + rutile.

3.2. Marble

Primary compositional layers with distinct color bands are partially
preserved in thick marble beds. The grayish-green marble layers are
rich in silicate minerals whereas the white marble layers contain nearly
pure carbonate. The marble sample T668 (N29°12/31.6”, E94°10'7.3") is
grayish-green in color. It shows blastic texture and massive structure,
and mainly consists of calcite, and minor diopside, aegirine, quartz
and tremolite (Fig. 2h).

4. Analytical methods
4.1. Zircon trace elements and U— Pb dating

Zircons were separated from rock samples using conventional heavy
liquid and magnetic separation techniques. Cathodoluminescence (CL)
images, taken at Northwest University (China), were used to check
the internal structures of individual zircon grains and to guide U-Pb
dating and Hf isotope analysis. Zircon U-Pb isotopic analyses were
conducted by laser-ablation, inductively coupled plasma mass
spectrometer (LA-ICP-MS) at the State Key Laboratory of Geological
Processes and Mineral Resources (GPMR), China University of
Geosciences. Laser sampling was performed using a GeoLas 2005. An
Agilent 7500a ICP-MS instrument was used to acquire ion-signal
intensities. Helium was applied as a carrier gas. Argon was used as the
make-up gas and mixed with the carrier gas via a T-connector before
entering the ICP. Nitrogen was added into the central gas flow
(Ar + He) of the Ar plasma to decrease the detection limit and improve
precision (Hu et al,, 2008). Each analysis incorporated a background
acquisition of approximately 20-30's (gas blank) followed by 50 s data
acquisition from the sample. The Agilent Chemstation was utilized for
the acquisition of each individual analysis. A beam diameter of 32 um
was used. Zircon 91500 was used as an external standard and the
NIST610 glass was used as an external standard. Detailed operating
conditions for the laser ablation system and the ICP-MS instrument
and data reduction are the same as described by Liu et al. (2010a,
2010b). Off-line selection and integration of background and analyte
signals, and time-drift correction and quantitative calibration were
conducted by ICPMSDataCal (Liu et al, 2010a). We use 2°°Pb/238U
ages for zircons <1000 Ma and 2°7Pb/2°®Pb ages for zircons >1000 Ma.
The data were processed using the ISOPLOT program of Ludwig
(2003). The analytical data of zircon U-Pb dating and trace elements
are give in Appendix Tables A1 and A2, respectively.

4.2. Zircon Lu— Hf isotope

In situ zircon Lu- Hf isotopic measurements were performed on the
dated zircons using the LA-MC-ICPMS, at Northwest University in Xi'an.
Analytical spots were located close to or on the top of LA-ICPMS spots or
in the same growth domain as inferred from CL images. The analytical
protocol used was similar to that outlined in Yuan et al. (2008). The
analyses were undertaken using a spot size of 44 um, an 8 Hz repetition
rate and a laser power of 100 mj/pulse. Zircon 91500, GJ-1 and
Monastery were used as the reference standard. The decay constant

for 17%Lu and the chondritic ratios of '7®Hf/"””Hf and "®Lu/'””Hf used
in calculations are 1.865 x 10~ '!/year (Scherer et al., 2001), and
0.282772 and 0.0332 (Blichert-Toft and Albarede, 1997), respectively.
The single-stage model age (Tpym;) was calculated relative to the
depleted mantle with a present-day '7SHf/!”’Hf ratio of 0.28325 and
176Lu/"7Hf ratio of 0.0384 (Griffin et al., 2000), and two-stage model
ages (Tpmz) were calculated by assuming a mean '7®Lu/!”’Hf value of
0.015 for the average continental crust (Vervoort and Blichert-Toft,
1999).Initial '7®Hf/!”7Hf ratios and &u(t) values are calculated by the
zircon crystallization ages.

4.3. Whole rock major- and trace-element analysis

Fresh rock samples were crushed in a steel crusher and then
powdered in an agate mill to a grain size <200 mesh for analyses. The
major elements were analyzed by X-ray fluorescence (XRF) at the
State Key lab of Biogeology and Environmental Geology, China
University of Geosciences. The analytical uncertainty is better than 5%.
Trace elements were measured using Agilent 7500a ICP-MS at the
State Key Laboratory of Geological Processes and Mineral Resources
(GPMR), China University of Geosciences, Wuhan. The detailed
sample-digesting procedure for ICP-MS analyses and analytical
precision and accuracy for trace elements are the same as described
by Liu et al. (2008).

4.4, Measurements of Ti content in quartz

The measurements of Ti content in quartz were performed using OL-
JXA-8100 electron microprobe at the GPMR. The accelerating voltage,
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samples. Also plotted, for comparison, published magmatic zircon data of the Gangdese
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beam current, and counting time were set to 15 kV, 20 nA, and 30 s,
respectively.

5. Results
5.1. Zircon U- Pb geochronology and trace-element geochemistry

5.1.1. Garnet-bearing granulite

Zircons from sample T666 are subhedral or euhedral, with grain
lengths of 200-500 pm and aspect ratios of 1:1-1:3. In CL images
(Fig. 3a), most zircons exhibit core-rim structures. The cores show
banded zoning and sector zoning with brighter luminescence than the
rims, indicating that they are magmatic in origin (Corfu et al.,, 2003).
The rims exhibit no zoning, and are interpreted as metamorphic
overgrowths (Corfu et al., 2003). Thirty-six analyses on 22 zircon grains
were carried out. Twenty-two analyses on the cores have Th of 39.6—
202 ppm, U of 80.0-261 ppm, with Th/U ratios of 0.46-0.77 (mean =
0.62, Table A1). The magmatic cores are enriched in HREE, and have
positive Ce anomalies and marked negative Eu anomalies (Eu/Eu* =
0.17-0.32) (Fig. 4a). They yield 2°Pb/**8U ages ranging from 86.5 to
92.5 Ma, with a weighted mean of 89.3 + 0.6 Ma (MSWD = 0.97)
(Fig. 5a; Table A2), representing the crystallization age of the protolith
of the garnet-bearing granulite. The metamorphic rims have low Th/U
ratios of 0.30-0.50 (except for the spot T666-05r, mean = 0.38) and
low REE contents (Fig. 4a; Tables A1 and A2). They display HREE-

enriched patterns with positive Ce anomalies and moderate negative
Eu anomalies (Eu/Eu* = 0.40-0.82) (Fig. 4a), distinct from those of the
magma zircons in this sample. The metamorphic rims yield 2°°Pb/23U
ages of 80.5-81.8 Ma, with a weighted mean age of 81.1 & 0.8 Ma
(MSWD = 0.05) (Fig. 5a), which is interpreted as the metamorphic age.

5.1.2. Marble

The detrital zircons in sample T668 vary from euhedral to subrounded
in shape, and range in size from 80 to 300 um with aspect ratios of 1:1-
1:3. The euhedral crystal shape implies relatively short transport
distances prior to deposition. In CL images (Fig. 3b), most zircons exhibit
core-rim structures. The cores show oscillatory zoning, indicating that
they are magmatic zircons (Corfu et al., 2003). The rims display planar
zoning or no zoning, which is typical of metamorphic origin (Corfu
et al,, 2003). Some grains show planar zoning or no zoning, similar to
the metamorphic rims (Fig. 3b). Sixty-seven analyses on 67 zircon grains
were carried out. Forty-eight analyses on the cores have Th of 17.0-
1598 ppm, U of 124-4314 ppm, with Th/U ratios of 0.03-1.17
(Table A1). They are enriched in HREE, and have positive Ce anomalies
and marked negative Eu anomalies (Eu/Eu* = 0.04-0.77) (Fig. 4b;
Table A2). Their 2°°Pb/?8U ages rang from 86.3 to 167 Ma, with two
populations at 86-100 Ma and 120-155 Ma, respectively (Fig. 5b and c).
The youngest age peak is 89.7 Ma (Fig. 5c), giving a maximum
depositional age of the protolith. In contrast, nineteen analyses on the
metamorphic domains have Th of 21.3-1591 ppm, U of 145.8-
1023 ppm, with variable Th/U ratios of 0.12-1.56 (Table A1). They have
relatively flat M-HREE patterns, and largely weak negative Eu anomaly
(Eu/Eu* = 0.42-1.05) (Fig. 4b). This is also distinct from those of the
cores in this sample. They have 2°°Pb/?*8U ages ranging from 80.4 Ma to
84.4 Ma, with a weighted mean of 81.4 + 0.5 Ma (MSWD = 0.74)
(Fig. 5b), which is interpreted as the metamorphic age.

5.2. Whole-rock geochemistry of the garnet-bearing granulite

Petrographic observation shows that the garnet-bearing granulite
samples have experienced various degrees of alteration, as indicated
by the presence of epidote and clinozoisite (Fig. 2). Some major
elements (e.g., K and Na) and large-ion lithophile elements (LILE, e.g.,
Cs, Rb and Ba) could be mobilized during metamorphism and alteration
(Chesworth et al,, 1981; Wood et al., 1979). In contrast, high field-
strength elements (HFSE, e.g., Nb, Ta, Zr, Hf, Ti, Y), REE and transitional
elements (e.g., Ni, Cr, V, and Sc) are considered to be relatively immobile
during alteration and metamorphism (Middelburg et al., 1988; Wood
etal., 1979). We thus chose the relatively immobile elements to discuss
the protolith nature of the garnet-bearing granulite.

Whole rock major- and trace-element data of the garnet-bearing
granulite are presented in Table 1. All the studied samples show low
LOI of 0.74-1.46% (Table 1), suggesting that they were not significantly

Table 2

Measured Ti contents in quartz and T (°C) estimation with TitaniQ thermometer.
Sample Na,O K,0 Cry,03 MgO Ca0 MnO Al O3 FeO Si0, Zr0, Total Ti T(°C)

w (%) ppm P=10Kkbar P=13kbar

Spot = 50 um
T666-01 —* - - 0.003 0.008 - 0.058 0.029 0.024 99.252 - 99.374 174 821 894
T666-02 - - - 0.006 - - 0.037 0.032 - 99.519 0.032 99.626 192 834 908
T666-03 - - - - - 0.014 0.050 0.035 - 99.769 - 99.868 210 846 920
T666-04 0.011 - - 0.025 0.015 - 0.060 0.036 - 99.606 - 99.753 216 849 924
T666-05 0.003 - - 0.020 0.029 0.027 0.038 0.035 - 99.380 - 99.532 210 846 920
T666-06 0.012 0.022 - 0.010 0.011 - 0.051 0.028 - 99.463 - 99.597 168 817 889
T666-07 - 0.002 0.005 0.026 0.002 - 0.056 0.027 0.021 99.502 - 99.641 162 812 885
T666-08 0.003 0.002 - 0.037 - - 0.048 0.026 - 99.658 - 99.774 156 807 880
T666-09 - - - 0.016 - - 0.041 0.035 - 99.611 - 99.703 210 846 920
T666-10 - - - 0.006 - - 0.040 0.025 0.011 98.726 - 98.808 150 803 874

* Below detection limit.
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carbonated during metamorphism and alteration. They have SiO, of
50.71-54.65%, and are characterized by high Al,0; (16.73-19.54%),
low TiO, (0.78-0.97%), low MgO (2.85-4.81%) and low Mg# of 33-51
(Table 1). Their protoliths are sub-alkaline basalts according to the Zr/
TiO,—Nb/Y classification diagram (Winchester and Floyd, 1977)
(Fig. 6a). In the Co-Th classification diagram, they plot in the calc-
alkaline basalt field (Hastie et al., 2007) (Fig. 6b).

The chondrite-normalized REE patterns (Fig. 7a) show LREE
enrichment [(La/Yb)y = 2.9-4.7] with Eu/Eu* = 0.87-1.13. They are
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enriched in K, Pb and Sr, and depleted in Nb, Ta, Zr, Hf and Ti relative
to their neighboring elements (Fig. 7b). These geochemical
characteristics are similar to those of the Late Cretaceous (98-88 Ma)
mafic rocks in Linlong area (Fig. 7) (Guan et al., 2011).

5.3. Isotope geochemistry

The whole-rock Sr—Nd isotopic composition for the garnet-bearing
granulite samples is given in Table 1. Lu— Hf isotope analyses for zircon
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Fig. 9. Immobile trace-element tectonic discrimination diagrams for the garnet-bearing granulite. (a—d) The immobile trace element discriminant function tectonic setting diagram of

Agrawal et al. (2008); (e) Hf/3-Th—Nb/16 (Wood, 1980); (f) Th/Yb—Ta/Yb (Pearce, 1982).
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grains from the garnet-bearing granulite and the marble samples are
presented in Table A3 and are plotted in Fig. 8.

The initial 7Sr/36Sr ratios and enq(t) values are calculated at t =
89 Ma. Four garnet-bearing granulite samples have relatively
homogeneous initial 87Sr/36Sr ratios of 0.70433-0.70456 and positive
ena(t) values ranging from + 2.7 to + 4.6 (Table 1). Eighteen Hf isotopic
analyses on the magmatic cores of the zircons from garnet-bearing
granulite have eyg(t) values from +10.5 to +16.0, and two-stage
model ages (Tpwm) from 126 to 479 Ma (Table A3 and Fig. 8). These
values are similar to those of the mafic rocks (~88 Ma) in Lilong area,
which show initial 8’Sr/%7Sr ratio of ~0.70427, exq(t) value of +3.0,
and ey¢(t) values of +11.8 to +17.2 (Guan et al,, 2011).

Thirty-eight Hf isotopic analyses on the magmatic cores of detrital
zircons from the marble yield eyg(t) values ranging from +5.9 to
+17.5, corresponding to the Tpy, of 82-778 Ma (Table A3 and Fig. 8).

5.4. Ti-in-quartz geothermometry

The quartz grains in the garnet-bearing granulite contain abundant
exsolved rutile needles (Fig. 2f). Experimental studies have shown
that the Ti contents in quartz increase with rising temperature and
decrease with increasing pressure (Kawasaki and Osanai, 2008;
Thomas et al., 2010; Wark and Watson, 2006). Hence exsolution is
commonly a consequence of rutile nucleation in response to decreasing
Ti solubility during cooling or decompression (Kawasaki and Osanai,
2008; Thomas et al, 2010; Wark and Watson, 2006). Wark and
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Watson (2006) experimentally calibrated the Ti-in-quartz (TitaniQ)
thermometer based on the temperature dependence of Ti solubility
in quartz. Thomas et al. (2010) further investigated the effect of
pressure on the Ti-in-quartz solubility, and developed TitaniQ
thermobarometer that enables estimations of the temperature and
pressure conditions of igneous and metamorphic rocks when used
in combination with independent thermobarometers. The TitaniQ
temperature is determined using equation 12 of Thomas et al. (2010): T

oy 60952+1741-P(kbar) -
(°C) = T2 R0 X% <R Indre, 273.15, where P is the pressure (kbar), R

is the gas constant (8.314472 J/K), X%tgz is the mole fraction of TiO, in
quartz and ar, is the activity of TiO, in the system.

The analyzed quartz in this study contains fine, oriented needles
of exsolved rutile spaced 10-20 pum apart (Fig. 2f). Rutile needles are
distributed throughout the entire area of quartz grains (Fig. 2f),
suggesting that Ti diffusion is insignificant. In order to obtain reliable Ti
content of pre-exsolution quartz, we adopted the large-area-averaged
method (Adachi et al,, 2010; Wark and Watson, 2006) using a beam
diameter of 50 pm. Ten analyses were performed on six quartz grains.
The results show that the predominant trace elements present in quartz
are Mg, Al and Ti (Table 2). The Ti contents range from 150 to 216 ppm
(Table 2). Based on the presence of rutile throughout the prograde and
retrograde metamorphic stages, the activity of titanium (ar, ) is assumed
to be 1. Considering that the peak metamorphic mineral assemblages for
the garnet-bearing granulite are similar to those of the adjacent felsic
granulite reported by Zhang et al. (2010c), we assumed a pressure of
10-13 kbar, obtained by conventional barometry (Zhang et al., 2010c),
to calculate the peak metamorphic temperature. Our calculated results
show that the metamorphic temperatures are 803-849 °C at P =
10 kbar and 874-924 °C at P = 13 kbar (Table 1), consistent with the
peak metamorphic temperatures of 830-900 °C, estimated by
conventional thermometers (Zhang et al., 2010c).

6. Discussion
6.1. Petrogenesis of the garnet-bearing granulite and the marble
6.1.1. Garnet-bearing granulite

Late Cretaceous (110-80 Ma) Gangdese arc magmatism was
widespread in the southern Lhasa terrane along the IYSZ (Guan et al.,
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2011; Ji et al., 2009; Wen et al., 2008b). Guan et al. (2011) reported a
suite of Late Cretaceous (98-88 Ma) mafic rocks in Lilong area, and
suggested that they were formed from partial melting of the
metasomatized mantle wedge. The protolith age (~89 Ma) of the
garnet-bearing granulite is similar to the crystallization age (~88 Ma)
of the Lilong mafic rocks (Sample ML24-2) (Guan et al, 2011). Both
the garnet-bearing granulite and the Lilong mafic rocks have high
Al,05 (>16.7%), low MgO (Mg# = 33-51) and low TiO; (<1.1%)
(Table 1). They are calc-alkaline (Fig. 6), and show LREE enrichment
(Fig. 7a) and marked negative Nb, Ta, Zr, Hf and Ti anomalies (Fig. 7b).
Those characteristics are typical of subduction-related magmas
(Pearce and Peate, 1995). On the immobile trace element discriminant
function tectonic setting diagrams (Agrawal et al., 2008), they all lie in
the island arc basalt field (Fig. 9a-d). They further plot in the active
continental margin arc field on the Hf/3-Th—Nb/16 (Fig. 9e) and Ta/
Yb-Th/Yb (Fig. 9f) diagrams. The close spatial relationship (Fig. 1b)
and their similarities in age and geochemical characteristics all strongly
suggest that the protolith of the garnet-bearing granulites and the
Lilong mafic rocks share a similar petrogenesis.

The garnet-bearing granulites have positive exq(t) values of +2.7 to
+4.6 (Table 1) and zircon gyg(t) values of +10.5 to +16.0 (Table A3
and Fig. 8), indicating that their protoliths were derived from a depleted
mantle source. The negative correlation between MgO and (87Sr/%Sr);
(Fig. 10a) and positive correlation between MgO and enq(t) (Fig. 10b)
are consistent with crustal assimilation affecting the more evolved
compositions. One potential crustal contaminant in the southeastern
Lhasa terrane is provided by the Nyingchi Complex (Zhang et al.,
2010a). The metasedimentary rocks in the Nyingchi Complex have
negative eyq(t) values of —14.5 to —10.8 (for t =89 Ma), and (7Sr/
865r); of 0.71330 to 0.73324 (Zhang et al, 2010a). From simple
endmember modeling (Fig. 11), the protoliths of the garnet-bearing
granulites can be generated by mixing of mantle derived magmas
with a small amount (<5%) of crustal contaminants. The large ey(t)
variation (>5 units of ey(t)) of the 89 Ma zircons can account for such
contamination (Kemp et al,, 2007; Yang et al., 2007). On the basis of
these observations, we suggest that the protolith of the garnet-bearing
granulite was derived from partial melting of the mantle wedge,
accompanied by small amounts of contamination by the Nyingchi
Complex during magma ascent.

6.1.2. Marble

The magmatic cores of the detrital zircons from the marble yield
206p,238y ages of 86.3-167 Ma, and cluster at 86-100 Ma and 120-
155 Ma, respectively (Fig. 5b, c). The youngest age peak defines a
maximum depositional age of 89.7 Ma for the protolith of the marble
(Fig. 6). Because the metamorphism occurred at 81.4 + 0.5 Ma, the
protolith must have been deposited between 90 and 81 Ma. Moreover,
the age distribution of the detrital magmatic zircons in the marble
matches well with the age spectra of the Jurassic-Cretaceous Gangdese
batholiths and volcanic rocks (Chu et al,, 2006; Guan et al.,, 2010, 2011;
Guo et al,, 2011, 2012; Ji et al., 2009; McDermid et al., 2002; Quidelleur
etal.,, 1997; Wen et al., 2008b; Zhang et al., 2007, 2010b; Zhu et al., 2008,
2009a, 2009b, 2011) (Fig. 5¢). They have positive gy¢(t) values ranging
from +5.9 to +17.5, indicating that their host rocks were derived
from partial melting of juvenile crust or depleted mantle sources
(Fig. 8), which is consistent with the characteristics of the Gangdese
batholiths (Chu et al,, 2006; Ji et al, 2009; Zhang et al., 2007). The
euhedral crystal shape (Fig. 3b) suggests relatively short transport
distances prior to deposition. The above observations strongly argue
that the detrital zircons from the marble have been derived from
erosion of the Gangdese batholiths and equivalent volcanic rocks. In
addition, the detrital magmatic zircons have a similar age spectra to
the Middle-Upper Cretaceous Xigaze forearc basin sedimentary rocks
(Fig. 5¢) (Aitchison et al,, 2011; Wu et al., 2010). Considering the direct
contact between the Nyingchi Complex and the Yarlung-Tsangpo
suture zone (Fig. 1b), we propose that the protolith of the clastic

component of the marble was deposited in the fore-arc basin of the
Gangdese arc during Late Cretaceous.

6.2. The Late Cretaceous (~81Ma) HT metamorphism

Our study indicates that the Nyingchi Complex underwent
granulite-facies metamorphism, and was subsequently overprinted by
amphibolite-facies retrograde metamorphism. The peak granulite-
facies mineral assemblage is garnet + orthopyroxene + high-Ti
amphibole + plagioclase + quartz + rutile (Fig. 2), which is similar to
those of the adjacent felsic granulites in the Nyingchi Complex (Zhang
et al, 2010c). The single rutile crystals contain regular ilmenite
exsolution lamellae (Fig. 2g), indicating that they have high Fe content
and formed during HT metamorphism (Banfield and Veblen, 1991;
Zack et al.,, 2004). In addition, amphibole, garnet and quartz all contain
abundant exsolved rutile needles (Fig. 2b, d, f), suggesting that their
precursors have high Ti contents. The peak metamorphic temperatures
estimated by using TitaniQ geothermometer are 803-924 °C (Table 2),
which are consistent with the previous estimations for adjacent felsic
granulite in the Nyingchi Complex (Zhang et al., 2010c).

All the inherited (magmatic and detrital) zircon cores of both the
garnet-bearing granulite and the marble have similar chondrite-
normalized REE patterns (Fig. 4). The REE patterns of inherited
(magmatic and detrital) cores contain significantly higher REE contents
than those of metamorphic rims. Their pronounced negative Eu
anomaly, and positive Ce anomaly is a common feature of magmatic
zircon (Hoskin and Schaltegger, 2003). The metamorphic zircon rims
in the garnet-bearing granulite (sample T666) have relatively low Th/
U ratios and low REE contents (Table A2). The REE patterns of the
metamorphic zircon rims in garnet-bearing granulite show steep slopes
from the HREE to LREE with moderately negative Eu anomalies (Eu/
Eu* = 0.40 ~ 0.82) and positive Ce anomalies (Fig. 4a). Enrichment of
HREE indicates that the metamorphic zircon rims did not equilibrate
with garnet in this sample, or formed in an “open” system situation
with an infinite reservoir of trace element (Rubatto, 2002). The
decreasing Eu anomaly, compared to the inherited magmatic zircons,
is compatible with the release of Eu due to the break-down of minor
plagioclase. The metamorphic rims/zircons in the marble (sample
T668) have relatively flat M-HREE patterns, and weak negative Eu
anomaly (Eu/Eu* = 0.42-1.05) (Fig. 4b). Depletion of HREE indicates
they grew during or after the crystallization of garnet. However, the
lack of garnet in the marble (Fig. 2h) suggests that they probably formed
in an “open” system. The weak negative Eu anomaly indicates that the
metamorphic rims/zircons coexisted with minor or no feldspar. The
geochemistry of the metamorphic rims/zircons in the garnet-bearing
granulite and the marble suggests that they probably formed in an
“open” system situation during the peak granulite-facies metamorphic
stage. LA-ICP MS U-Pb zircon dating results show that they yield a
consistent metamorphic age of ~81 Ma (Fig. 5a, b). We thus propose
that the Nyingchi Complex experienced HT granulite-facies
metamorphism at ~81 Ma.

6.3. Late Cretaceous Neo-Tethys oceanic ridge subduction

Our work demonstrates that the protolith of the garnet-bearing
granulites is typical of continental margin arc rocks whereas the
protolith of the marble formed in the fore-arc basin of the Gangdese
arc. Typically the fore-arc region is characterized by low-temperature
metamorphism resulting from the subduction of cold oceanic
lithosphere (Groome and Thorkelson, 2009). However, in the
southeastern Lhasa terrane both the arc magmatic rocks and fore-arc
sedimentary rocks underwent HT granulite facies metamorphism at
~81 Ma. Therefore, the Late Cretaceous HT metamorphism requires a
tectonic setting that allows an anomalously high heat flux in the fore-
arc region. Several tectonic models may account for a high heat flux in
such a setting, for example, slab break-off which is sometimes a
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response to continental collision (Davies and von Blanckenburg, 1995).
The India-Asian continental collision took place at 55 + 10 Ma (de
Sigoyer et al, 2000; Najman et al, 2010, and references therein).
Many studies suggested that the break-off of the Neo-Tethyan oceanic
slab occurred at ~50 Ma (Ji et al., 2009; Lee et al., 2009; Wen et al.,
2008b), considerably later than the ~81 Ma HT metamorphism in the
southeastern Lhasa terrane. A second possibility is ridge subduction
which places hot sub-slab asthenospheric mantle beneath the base of
the overlying plate resulting in HT/UHT metamorphism in the slab
window at the roots of the arc and fore-arc and so produces

a) ~90 Ma

Oceanic spreeding ridge

Neo-Tethys Ocean

Lithosphere

b) ~81 Ma
Neo-Tethys Ocean

Lithosphere

c) ~70 Ma

Fore-arc basin

Ridge subduction and
formation of slab window

anomalously high temperatures at shallow crustal depth (Brown,
1998; Santosh and Kusky, 2010).

We suggest that the Late Cretaceous (~81Ma) HT metamorphism in
the southeastern Lhasa terrane resulted from the subduction of the Neo-
Tethys ocean ridge based on the following evidence: (1) The temporal
and spatial variation of the Gangdese arc magmatism indicates that
there is a gap in the period between 80 and 70 Ma (Fig. 5¢) (Ji et al.,
2009; Wen et al., 2008b). Although Volkmer (2010) attributed this
gap to the formation of eclogitic lithospheric root resulting from
shortening of the Lhasa terrane, this model conflicts with the

Gangdese arc

-

Lhasa
Terrane

Lilong mafic rocks

Dehydration of slab
crust/sediments

Lhasa

Adakitic Terrane

charnockites

i  Lilong mafic rocks

Adakitic rocks derived from partial melting

Neo-Tethys Ocean

Lithosphere

of the underplated mafic lower crust

Lhasa
Terrane

Adakitic
charnockites

Lilong mafic rock

HT granulite and marble
Gangdese adakites

Fig. 12. Schematic tectonic model for of the evolution of the southern Lhasa terrane in the eastern Himalayan syntaxis area during 90-70 Ma. Details are in Section 6.4.
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contemporary HT metamorphism recorded in the Nyingchi Complex
(Zhang et al., 2010c; this study); (2) Wen et al. (2008a) reported a
suite of epidote-bearing adakitic rocks (80-82 Ma) in the southeastern
Lhasa terrane, and suggested that these rocks originated from partial
melting of underplated mafic lower crust; (3) Guo et al. (2011) reported
a Late Cretaceous granite (~81 Ma) which resulted from binary mixing
between juvenile crustal materials (or mantle-derived magma) and an
old crustal component, suggesting crustal anatexis at that time; (4) A
major regional unconformity across southern Lhasa terrane has been
documented, with gently dipping Palaeocene Linzizong volcanic rocks
above folded Late Cretaceous and/or older rocks, showing that
significant crustal uplift occurred prior to the India-Asia collision
(Burg and Chen, 1984; England and Searle, 1986; Kapp et al., 2007;
Leier et al,, 2007); and (5) Gahalaut and Kundu (2012) analyzed the
Gangdese arc morphology and earthquake ruptures, and suggested that
the buoyant seismic/aseismic ridge subduction influenced the Gangdese
arc morphology by causing a cusp in the southeastern Lhasa terrane.
Taking all these independent and diverse studies into account, we
propose that Late Cretaceous tectonothermal phenomena (the magmatic
gap, adakitic rocks, crustal anatexis, fore-arc HT metamorphism, crustal
uplift) were strongly influenced by the subduction of a Neo-Tethys
oceanic ridge.

6.4. Late Cretaceous tectonic evolution of the southeastern Lhasa terrane

In order to explain the petrogenesis of the different rock types in the
southeastern Lhasa terrane we propose a three-stage tectonic model
accounting for the evolution of the southern Lhasa terrane during the
Late Cretaceous, involving a stage of ridge subduction at ~81 Ma
(Fig. 12). We do not propose a specific type of triple junction
configuration in our model because of the lack of robust constraints on
such speculation.

Stage 1 (~90 Ma): The young Neo-Tethys oceanic slab subducted
beneath the Lhasa terrane prior to the arrival of the Neo-Tethys ridge
at the trench (Fig. 12a). Dehydration of the down-going slab triggered
partial melting of the mantle wedge to produce normal arc magmatism
(Guan et al,, 2011; this study). Contemporaneous melting of young, hot
subducting oceanic crust resulted in the formation of adakitic
charnockites (Zhang et al., 2010b). In the fore-arc basin, the detrital
sediments were mainly derived from the erosion of the Gangdese
batholiths and equivalent volcanic rocks (Fig. 12a).

Stage 2 (~81 Ma): The Neo-Tethys ocean ridge entered the trench
(Fig. 12b). The resulting slab window placed the sub-slab
asthenospheric mantle beneath the base of the overlying southern
Lhasa terrane, which resulted in HT metamorphism in the roots of the
arc and fore-arc basin (Brown, 1998; Santosh and Kusky, 2010). High
heat flow through the slab window further induced partial melting of
overlying crustal rocks to form intermediate to acidic magmas, which
included adakitic magma sourced from partial melting of the newly
underplated mafic lower crust (Guan et al,, 2010; Wen et al., 2008a),
and granitic magma derived from mixing of juvenile and older crustal
materials (Guo et al,, 2011). In addition, the early uplift of the southern
Lhasa terrane was triggered by subduction of the Neo-Tethys ocean
ridge due to its topography and buoyancy, resulting in contraction and
uplift in the overlying fore-arc (Guillaume et al., 2009, 2010). The influx
of asthenospheric mantle through the slab window may have enhanced
early uplift of the southern Lhasa terrane (Guillaume et al., 2010; Zandt
and Humphreys, 2008). This provides an explanation for the cessation
of deposition of the Takena Formation, which was deposited in a
retroarc foreland basin, and its subsequent uplift, deformation and
erosion during Late Cretaceous (Leier et al., 2007).

Stage 3 (~70Ma): Following ridge subduction, the young, warm, and
thus buoyant oceanic slab subducted beneath the southern Lhasa
terrane (Fig. 12c¢), which induced transient shallow subduction
(Gutscher et al,, 2000; Wen et al., 2008a). Contractional deformation

occurred in the upper plate, and crustal thickening occurred in the
arc-backarc region (Collins, 2002; Gutscher et al., 2000).

7. Conclusions

This study of a garnet-bearing granulite and a marble from
the Nyingchi Complex of the southeastern Lhasa terrane documents
high-temperature, granulite-facies metamorphism and subsequent
amphibolite-facies retrograde metamorphism. The granulite-facies
assemblage is characterized by garnet + orthopyroxene + high-Ti
amphibole + plagioclase + quartz + rutile. The amphibole, garnet, quartz
grains contain abundant of exsolved rutile needles, suggesting that their
precursors had high Ti contents. The peak metamorphic temperature is
803-924 °C estimated using the TitaniQ geothermometer. Whole rock
major and trace elements and Sr— Nd — Hf isotopic compositions, together
with isotopic studies of zircons indicate that their protoliths were island-
arc basaltic rocks that had crystallized at 89.3 + 0.6 Ma. The detrital
magmatic zircons from the marble have a similar age distribution and
epe(t) values to those of the Jurassic-Cretaceous Gangdese batholiths
and volcanic rocks, suggesting that the detritus has been derived from
the Gangdese batholiths or equivalent volcanic rocks, and deposited in
the forearc basin. The metamorphic zircons in the garnet-bearing
granulite and marble yield a consistent metamorphic age of ~81 Ma.
This event was coeval with a hiatus in arc magmatism, a regional
unconformity and with crustal anatexis. We propose that the HT
metamorphism resulted from the Neo-Tethys ocean ridge subduction in
the southeastern Lhasa terrane.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.tecto.2013.10.007.
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