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ABSTRACT
We present a clustering analysis of luminous red galaxies (LRGs) using nearly 9000 objects

from the final, three-year catalogue of the 2dF-SDSS LRG and QSO (2SLAQ) Survey. We

measure the redshift-space two-point correlation function, ξ (s) and find that, at the mean LRG

redshift of z̄ = 0.55, ξ (s) shows the characteristic downturn at small scales (�1 h−1 Mpc)

expected from line-of-sight velocity dispersion. We fit a double power law to ξ (s) and measure

an amplitude and slope of s0 = 17.3+2.5
−2.0 h−1 Mpc, γ = 1.03 ± 0.07 at small scales (s <

4.5 h−1 Mpc) and s0 = 9.40 ± 0.19 h−1 Mpc, γ = 2.02 ± 0.07 at large scales (s > 4.5 h−1 Mpc).

In the semiprojected correlation function, wp(σ ), we find a simple power law with γ = 1.83 ±
0.05 and r0 = 7.30 ± 0.34 h−1 Mpc fits the data in the range 0.4 < σ < 50 h−1 Mpc, although

there is evidence of a steeper power law at smaller scales. A single power law also fits the

deprojected correlation function ξ (r), with a correlation length of r0 = 7.45 ± 0.35 h−1 Mpc

and a power-law slope of γ = 1.72 ± 0.06 in the 0.4 < r < 50 h−1 Mpc range. But it is in

the LRG angular correlation function that the strongest evidence for non-power-law features

is found where a slope of γ = −2.17 ± 0.07 is seen at 1 < r < 10 h−1 Mpc with a flatter γ =
−1.67 ± 0.07 slope apparent at r � 1 h−1 Mpc scales.

We use the simple power-law fit to the galaxy ξ (r), under the assumption of linear bias, to

model the redshift-space distortions in the 2D redshift-space correlation function, ξ (σ , π ). We

fit for the LRG velocity dispersion, wz, the density parameter, �m and β(z), where β(z) =
�0.6

m /b and b is the linear bias parameter. We find values of wz = 330 km s−1, �m = 0.10+0.35
−0.10

and β = 0.40 ± 0.05. The low values for wz and β reflect the high bias of the LRG sample.

These high-redshift results, which incorporate the Alcock–Paczynski effect and the effects

of dynamical infall, start to break the degeneracy between �m and β found in low-redshift

galaxy surveys such as 2dFGRS. This degeneracy is further broken by introducing an additional

external constraint, which is the value β(z = 0.1) = 0.45 from 2dFGRS, and then considering

�E-mail: nicholas.ross@durham.ac.uk
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the evolution of clustering from z ∼ 0 to zLRG ∼ 0.55. With these combined methods we find

�m(z = 0) = 0.30 ± 0.15 and β(z = 0.55) = 0.45 ± 0.05. Assuming these values, we find

a value for b(z = 0.55) = 1.66 ± 0.35. We show that this is consistent with a simple ‘high-

peak’ bias prescription which assumes that LRGs have a constant comoving density and their

clustering evolves purely under gravity.

Key words: galaxies: clusters: general – cosmology: observations – large-scale structure of

Universe.

1 I N T RO D U C T I O N

Recent measurements of the galaxy correlation function, ξ , have

produced a series of impressive results. Whether it be the detection

of baryonic acoustic oscillations (Eisenstein et al. 2005), clustering

properties of different spectral types of galaxy (Madgwick et al.

2003), or the evolution of active galactic nucleus black hole mass

(Croom et al. 2005), the two-point correlation function (2PCF) con-

tinues to be a key statistic when studying galaxy clustering and

evolution. There have also been a series of recent studies (e.g. Coil

et al. 2004; Le Fèvre et al. 2005; Zehavi et al. 2005; Phleps et al.

2006) investigating the clustering properties and evolution with red-

shift of galaxies from 0.3 < z < 1.5. Amongst these, Zehavi et al.

(2005) use the Sloan Digital Sky Survey (SDSS; York et al. 2000) to

examine the clustering properties of luminous red galaxies (LRGs)

at a redshift of z � 0.35. They find that correlation length depends

on LRG luminosity and that there is a deviation from a power law

in the real-space correlation function, with a dip at ∼2 Mpc scales

as well as an upturn on smaller scales.

Although the form of the 2PCF is in itself a worthwhile cos-

mological datum, more information can be gained by studying the

dynamical distortions at both small and large scales in the cluster-

ing pattern (Kaiser 1987). Measured galaxy redshifts consist of a

component from the Hubble expansion plus the motion induced by

the galaxy’s local potential. This leads to one type of distortion in

redshift-space from the real-space clustering pattern. There are two

basic forms of dynamical distortion. (i) Small-scale virialized ve-

locities causing elongations in redshift direction – ‘Fingers of God’,

but at larger scales there will also be flattening of the clustering

in the redshift direction due to dynamical infall. (ii) Another type

of geometric distortion can be introduced if we assume the wrong

cosmology to convert redshifts to comoving distances (Alcock &

Paczynski 1979). Under the assumption that galaxy clustering is

isotropic in real space, a test can be performed in redshift space

by determining which cosmological parameters return an isotropic

clustering pattern.

In the linear regime, dynamical effects are broadly determined

by the parameter β, where β = �0.6
m /b, �m is the matter density

parameter and b is the linear bias parameter. If we assume, as is

common, a zero spatial curvature model, then the main parame-

ter determining geometric distortion is �m. We can therefore use

these redshift-space distortions to our advantage and derive from

them estimates of �m and β, (e.g. Kaiser 1987; Ballinger, Peacock

& Heavens 1996; Loveday et al. 1996; Matsubara & Suto 1996;

Matsubara & Szalay 2001; Peacock et al. 2001; Hoyle et al. 2002;

da Ângela et al. 2005). Unfortunately, there is often a degeneracy

between these parameters, but this can be broken by the inclusion

of other information. This additional information is introduced via

constraints obtained from linear evolution theory of cosmological

density perturbations (da Ângela et al. 2005, and references therein).

In this work, we extend the redshift coverage of the SDSS LRG

Survey by using the data from the recently completed 2dF-SDSS

LRG and QSO (2SLAQ) Survey (Cannon et al. 2006; Croom et al., in

preparation). LRGs are ideal candidates for galaxy redshift surveys

since they are intrinsically bright and so can be seen to cosmolog-

ical distances. Selection criteria are used which gave a relatively

clean and complete selection of LRGs and since they are the most

massive galaxies, they are believed to reside in overdense peaks of

the underlying matter distribution and are thus excellent tracers of

large-scale structure.

Observations of the 2SLAQ Survey are now complete, with a

number of new results being reported (e.g. Roseboom et al. 2006;

Wake et al. 2006; Sadler et al. 2006). In this paper we shall concen-

trate on the clustering of the 2SLAQ LRG sample, extending the

work of the SDSS LRG Survey (Eisenstein et al. 2001; Zehavi et al.

2005) to higher redshift. We calculate the two-point galaxy correla-

tion function in both redshift space and real space for LRGs over the

redshift range 0.4 < z < 0.8. Then using information gained from ge-

ometric distortions in the redshift-space clustering pattern, values of

the cosmological parameters �m and β can be found (e.g. Alcock &

Paczynski 1979; Ballinger et al. 1996; Hoyle et al. 2002; da Ângela

et al. 2005).

In Section 2 we therefore introduce the 2SLAQ sample and the

techniques used in our analysis. In Section 3 the 2SLAQ LRG cor-

relation function measurements are presented and comparisons to

other surveys are made. In Section 4 we model the redshift-space

distortions and compare these models to our data, finding values of

�m and β. Our conclusions are presented in Section 5.

2 DATA A N D T E C H N I QU E S

2.1 The 2dF-SDSS LRG and QSO Survey

A full description of the 2SLAQ Survey can be found in Cannon

et al. (2006). At its heart, the 2SLAQ Survey relies on the SDSS

photometric survey to supply LRG targets for spectroscopic follow-

up using the 2dF instrument on the Anglo-Australian Telescope.

The selection of distant (z > 0.4) LRGs is done on the basis of

SDSS gri photometric data, using the (g − r) versus (r − i) colours

and the SDSS ‘de Vaucouleurs’ i-band magnitude. The criteria are

similar to those used for the faint ‘Cut II’ sample in the SDSS LRGs

(Eisenstein et al. 2001) and are described in detail by Cannon et al.

(2006). (See Fukugita et al. 1996, for a description of the SDSS

filters.)

The survey covers two narrow stripes along the celestial equator

(|δ| < 1.◦5). The Northern Stripe runs from 8.h4 to 15.h3 in right

ascension (RA) and is broken into five substripes to utilize the best

photometric data. The Southern Stripe runs from 20.h6 to 4.h0. Fig. 1

shows the layout of the target stripes and the 2dF fields observed.

The total area of the survey, including the overlap regions, was

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 381, 573–588
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The 2SLAQ LRG two-point correlation function 575

Figure 1. The location of the 2SLAQ Input Catalogue (dotted rectangles) and observed fields (circles). Solid circles indicate fully observed fields with high,

�85 per cent overall completeness, while hollow circles have less than 85 per cent overall completeness or fields with non-standard selection criteria.

approximately 180 deg2. Again, complete details of the survey fields

are given by Cannon et al. (2006).

It is important to be aware of the tiling strategy of the 2SLAQ

Survey when estimating the clustering of the LRGs. A simpler tiling

scheme was used for 2SLAQ than for the preceding 2dFGRS/2QZ

survey. For instance, for 2SLAQ, the 2dF tiles were offset by 1.◦2 in

the RA direction as opposed to a variable spacing strategy employed

by the 2dFGRS and 2QZ. Again, contrary to the 2dFGRS/2QZ, the

galaxies in 2SLAQ were given higher fibre assignment priority, with

the LRGs always having priority over the QSOs. This makes sure

the LRG selection was not biased by the QSOs. The details of the

survey mask and selection function will be described in detail in

Section 2.3.

The total 2SLAQ LRG data set consists of a total of 18 487 spec-

tra for 14 978 discrete objects; 13 784 of these (92 per cent) have

reliable, ‘Qop’ �3 redshifts.1 From these ‘Qop’ �3 objects, 663 are

identified as being stars, leaving a total of 13 121 galaxies.

We cut this sample down further by using only those confirmed

LRGs which were part of the top priority ‘Sample 8’ selection as

described fully in Cannon et al. (2006). These galaxies comprise the

most rigorously defined 2SLAQ LRG sample where completeness

is the highest due to their top priority for spectroscopic observation.

The exact Sample 8 selection lines in the gri plane are shown in fig. 1

of Cannon et al. (2006). The magnitude limits is ideV < 19.8 (dered-

dened). However, the sample we use does include observations taken

in the 2003A semester, where a brighter ideV < 19.5 mag limit was

used, as long as the observed LRG would have made the ‘Sample

8’ selection. We do not include observations taken from fields a01,

a02 and s01 (see Cannon et al. 2006) as they have low complete-

ness and should not be used in statistical analyses. Once the final

selection criteria had been decided, there were 25 795 ‘Sample 8’

LRG targets at a sky density of about 70 deg−2. Approximately

40 per cent (10 072) of these objects were observed, with 9307 ob-

taining ‘Qop’ �3. After imposing the cuts above, this leaves a total

of 8656 LRGs, 5995 in the Northern Galactic Stripe and 2661 in

1 ‘Qop’ represents a redshift quality flag assigned by visual inspection of

the galaxy spectrum and the redshift cross-correlation function. A value of 3

or greater represents a 95–99 per cent confidence that the redshift obtained

from the spectrum is valid.

Table 1. The 2SLAQ LRG Survey; numbers of different samples. Over

18 000 spectra were obtained, resulting in 13 121 spectroscopically con-

firmed LRGs. We use the LRGs with the ‘Sample 8’ input priority settings

for our analysis but do not include the data taken in the a01, a02 and s01

fields which have low-redshift completeness and should be excluded from

statistical analysis (Cannon et al. 2006). Thus we are left with 8656 in our

‘Gold Sample’.

Sample description Number in sample North South

Unique objects 14 978 10 369 4609

‘Qop’ �3 13 784 9726 4058

M stars 663

LRGs 13 121 9280 3841

LRG Sample 8 8756 6076 2680

excluding a01, a02, s01 8656 5995 2661

the Southern Galactic Stripe (see Table 1). For all further analysis,

this is the sample utilized which we call the ‘Gold Sample’ and has

a z̄Gold = 0.55.

2.2 The two-point correlation function

Here we give a brief description of the 2PCF; for a more formal

treatment the reader is referred to Peebles (1980) which presents

the basis for the rest of the section. To denote the redshift-space (or

z-space) correlation function, we will use the notation ξ (s) and to

denote the real-space correlation function, ξ (r) will be used, where s
is the redshift-space separation of two galaxies and r is the real-space

separation.

The 2PCF, ξ (x), is defined by the joint probability that two galax-

ies are found in the two volume elements dV1 and dV2 placed at

separation x,

dP12 = n2[1 + ξ (x)] dV1 dV2. (1)

To calculate ξ (x), N points are given inside a window W of obser-

vation, which is a 3D body of volume V(W). An estimation of ξ (x)

is based on an average of the counts of neighbours of galaxies at a

given scale, or more precisely, within a narrow interval of scales.

An extensively used estimator is that of Davis & Peebles (1983) and

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 381, 573–588

 at O
xford Journals on Septem

ber 19, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


576 N. P. Ross et al.

is usually called the standard estimator,

ξStd(s) = Nrd

N

DD(s)

DR(s)
− 1, (2)

where DD (s) is the number of pairs in a given catalogue (within

the window W) and DR (s) is the number of pairs between the data

and the random sample with separation in the same interval. Nrd is

the total number of random points and N is the total number of data

points. A value of ξ = 1 implies there are twice as many pairs of

galaxies than expected for a random distribution and the scale at

which this is the case is called the correlation length.

2.3 Constructing a random catalogue and survey completeness

The 2PCF, ξ , is measured by comparing the actual galaxy distri-

bution to a catalogue of randomly distributed galaxies. Following

the method of Hawkins et al. (2003) and Ratcliffe et al. (1998),

these randomly distributed galaxies are subject to the same redshift,

magnitude and mask constraints as the real data and we modulate

the surface density of points in the random catalogue to follow the

completeness variations. We now look at the various factors this

involves.

Following Croom et al. (2004), we discuss issues regarding the

2SLAQ Survey completeness. As with the rest of the paper, we are

only concentrating on the properties of the LRGs. One might think

the parallel 2SLAQ QSO Survey would have a bearing on subse-

quent discussion but due to the higher priority given to the fibres

assigned to observe the LRGs, the QSO Survey has no impact on

LRG clustering considerations, as already noted. For more descrip-

tion of the clustering of the QSOs the reader is referred to da Ângela

et al. (2006).

Three main, separate types of completeness are going to be con-

sidered; (i) coverage completeness, fc, which we define as the frac-

tion of the input 2SLAQ catalogue sources that have spectroscopic

observations. Identically to Croom et al. (2004), we calculate fc, as

being the ratio of observed to total sources in each of the sectors

defined by overlapping 2SLAQ fields, which are pixelized on 1 ar-

cmin scales; (ii) spectroscopic completeness, fs which can be said

to be the fraction of observed objects which have a certain spec-

troscopic quality; (iii) incompleteness due to fibre collisions which

is dealt with separately from coverage completeness. For coverage

completeness and spectroscopic completeness we assume that both

are functions of angular position only, i.e. fc(θ ) and fs(θ ), respec-

tively. The spectroscopic (i.e. redshift) completeness does depend

on magnitude but this is not relevant for any of the purposes of this

paper.

2.3.1 Angular plus spectroscopic completeness and fibre collisions

There are various technical details associated with the 2dF instru-

ment. Variations in target density, the small number of broken or

otherwise unusable fibres and constraints owing to the minimum

fibre placing (see below) could introduce false signal into the clus-

tering pattern. For our analysis, the 2SLAQ Survey consists of 80

field pointings. Many of these pointings overlap, alleviating some

of these technical issues.

The design of the 2dF instrument means that fibres cannot be

placed closer than approximately 30 arcsec (Lewis et al. 2002) so

both members of a close pair of galaxies cannot be targeted in a

single fibre configuration. The simple, fixed-spacing tiling strategy

of the 2SLAQ Survey means that not all such close pairs are lost.

Neighbouring tiles have significant areas of overlap and much of

the survey sky area is targeted more than once. This allows us to

Figure 2. The w(θ ) for the 2SLAQ redshift catalogue (light blue) dotted,

open circles compared to the parent catalogue solid (red) line. The errors

quoted are ‘FtF’ errors with the subareas used given in Table 2. The filled blue

squares, with dashed error bars, show the w(θ ) from the redshift catalogue

after the correction for fibre collisions has been applied. The values for the

uncorrected (corrected) w(θ ) from the redshift catalogue have been moved

by �log = −(+)0.05 in the abscissa for clarity. Note also that the solid line

represents the filled squares given in Fig. 5.

target both galaxies in some close pairs. Nevertheless, the survey

misses a noticeable fraction of close pairs. It is important to assess

the impact of this omission on the measurement of galaxy clustering

and to investigate schemes that can compensate for the loss of close

pairs.

To quantify the effect of these so-called ‘fibre collisions’ we have

followed previous 2dF studies (e.g. Hawkins et al. 2003; Croom et al.

2004) and calculated the angular correlation function for galaxies in

the 2SLAQ parent catalogue, wp(θ ), and for galaxies with redshifts

used in our ξ analysis, wz(θ ). We used the same mask to determine

the angular selection for each sample.

As shown in Fig. 2, on scales θ � 3 arcmin, the angular correla-

tions of the parent and redshift catalogue are very nearly consistent.

At scales θ � 2 arcmin, we begin to lose close pairs. To correct for

this effect, we use a similar method to Hawkins et al. (2003) and Li

et al. (2006). The quantity wcor(θ ) = (1 + wp)/(1 + wz) is used to

weight our 3D DD pairs. For each DD pair, the angular separation

on the sky is calculated and the galaxy–galaxy pair is weighted by

the wcor(θ ) ratio given by the relevant angular separation. The result

of weighting by this factor is shown by the filled (dark blue) squares

in Fig. 2.

The last stage in determining the angular ‘mask’ is to evaluate

the spectroscopic completeness of the survey, fs(θ ) which for our

purposes, we again assume depends on sky position only. This func-

tion essentially describes the success rate in obtaining a spectrum

and reliable redshift for a given fibred object. Here the advantage of

LRGs becomes apparent. With their well-defined early-type spectra

and often very strong Ca H&K break around 4000 Å, a high suc-

cess rate was achieved when calculating a redshift for the 2SLAQ

LRG objects. Also, it became apparent that our 4 h per field expo-

sure time was on occasion generous and relatively high S/N spec-

tra were recorded. The spectroscopic completeness has been esti-

mated at 94.5 per cent for the primary ‘Sample 8’ and the redshift

completeness at 96.7 per cent, giving an overall completeness of

91.4 per cent (Cannon et al. 2006, section 5.5, fig. 5).

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 381, 573–588
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The 2SLAQ LRG two-point correlation function 577

Figure 3. The redshift distribution for the 2SLAQ LRG ‘Gold’ Sample we

use. The solid red histogram is for the ‘Gold’ Sample. The dashed blue line

is from the normalized random catalogue.

2.3.2 Radial selection function and estimates of the LRG N(z)

The observed distribution of galaxy redshifts is given in Fig. 3.

Plotted are the N(z) distributions, binned into redshift slices of

� z = 0.02, for the ‘Gold Sample’. Also shown is a polynomial

fit (seventh order) to the N(z) distribution, which is used to generate

the random distributions. Checking the N(z) fits using higher order

polynomials or convolved double Gaussians does not give tighter

reproduction of the observed LRG redshift distribution.

Combining the radial selection function and the completeness

map, we generate a random catalogue of points which we now use

to calculate the LRG correlation function.

2.4 Calculating the two-point correlation function

As the LRG correlation function, ξ (s), probes high redshifts and

large scales, the measured values are highly dependent on the

assumed cosmology. In determining the comoving separation of

pairs of LRGs we choose to calculate ξ (s) for two representative

cosmological models. The first uses the cosmological parameters

derived from Wilkinson Microwave Anisotropy Probe, 2dFGRS and

other data (Percival et al. 2002; Spergel et al. 2003; Cole et al. 2005;

Sánchez et al. 2006; Spergel et al. 2007) with (�m, ��) = (0.3, 0.7),

which we will call the � cosmology. The second model assumed is

an Einstein–de Sitter (EdS) cosmology with (�m, ��) = (1.0, 0.0)

which we denote as the EdS cosmology. We will quote distances

in terms of h−1 Mpc, where h is the dimensionless Hubble constant

such that H0 = 100 h km s−1 Mpc−1.

We have used the minimum variance estimator suggested by

Landy & Szalay (1993) to calculate ξ (s). Using notation from

Martı́nez & Saar (2002), this estimator is

ξLS(s) = 1 +
(

Nrd

N

)2
DD(s)

RR(s)
− 2

(
Nrd

N

)
DR(s)

RR(s)
(3)

≡ 〈DD〉 − 〈2DR〉 + 〈RR〉
〈RR〉 , (4)

where the angle brackets denote the suitably normalized LRG–LRG,

LRG–random and random–random pairs counted at separation s.

Table 2. The 2SLAQ LRG Survey; names and RA ranges for the N = 9

sections used when calculating the FtF errors.

Area name RA (J2000) range (◦) LRGs Randoms ρrd/ρLRG

a 123.0–144.0 617 10 745 17.41

b 150.0–168.0 1837 35 449 19.30

c 185.0–193.0 572 14 484 25.32

d 197.0–214.0 1723 34 373 19.95

e 218.0–230.0 1246 24 849 19.94

s06 309.2–330.0 745 12 457 16.72

s25 330.0–360.0 876 18 499 21.12

s48 0.0–30.0 658 13 516 20.54

s67 30.0–59.7 382 8749 22.90

Entire survey 8656 173 120 20.00

We use bin widths of δ log (s/h−1 Mpc) = 0.1. The density of ran-

dom points used was 20 times the density of LRGs. The Hamilton

estimator is also utilized (Hamilton 1993) where

ξHam(s) = DD(s)RR(s)

DR(s)2
− 1 (5)

and no normalization is required. Since we find the differences of

the Hamilton estimator compared to the Landy–Szalay method are

negligible, the Landy–Szalay method is quoted in all ξ (s) figures

unless explicitly stated otherwise.

Three methods are employed to estimate the likely errors on our

measurements. The first is a calculation of the error on ξ (s) using

the Poisson estimate of

σPoi(s) = 1 + ξ (s)√
DD(s)

. (6)

The second error estimate method is what we shall call the field-
to-field (FtF) errors, calculated by

σ 2
FtF(s) = 1

N − 1

N∑
i=1

DRi (s)

DR(s)
[ξi (s) − ξ (s)]2, (7)

where N is the total number of subsamples, i.e. ‘the fields’ and ξ i(s)

is from one field. ξ (s) is the value for ξ from the entire sample and

is not the mean of the subsamples. For our studies the natural unit

of the ‘FtF’ subsample is given by the area geometry covered by

the survey. Thus we take N = 9, and split the NGP area into five

regions, ‘a, b, c, d, e’ and the SGP into four regions, namely ‘s06,

s25, s48, s67’. Details of the FtF subsamples are given in Table 2.

The third method is usually referred to as the jackknife estimate,

and has been used in other correlation studies (e.g. Scranton et al.

2002; Zehavi et al. 2002, 2005). Here we estimate σ as

σ 2
Jack(s) =

N∑
i ′=1

DRi ′ (s)

DR(s)
[ξi ′ (s) − ξ (s)]2, (8)

where i′ is used to signify the fact that each time we calculate a

value of ξ (s), all subsamples are used bar one. For the jackknife

errors, we divide the survey into 32 approximately equal sized areas,

leaving out ∼4.5 deg2 from the entire survey area at one time. Thus

a jackknife subsample will contain ∼8350 LRGs. We can then work

out the covariance matrix in the traditional way,

Cov(ξi , ξ j ) = N − 1

N

N∑
l=1

(
ξ l

i − ξ̄ l
i

) (
ξ l

j − ξ̄ l
j

)
, (9)
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Figure 4. The ratio of Poisson to jackknife errors (solid black line and

squares), Poisson to ‘FtF’ errors (dashed blue line and triangles) and ‘FtF’

to jackknife errors (dotted red line and open squares). As can be seen, all error

estimators are comparable on scales �10 h−1 Mpc, while at larger scales than

this the jackknife and ‘FtF’ errors are considerably larger than the simple

Poisson estimates. The magnitude of the ‘FtF’ and jackknife errors are very

similar from the smallest scales considered here up to ≈40 h−1 Mpc.

where ξ̄ is the mean value of ξ measured from all the jackknife

subsamples and N = 32 in our case (cf. Zehavi et al. 2002). The

variances are obtained from the leading diagonal elements of the

covariance matrix,

σ 2
i = Cov(ξi , ξi ) (10)

When examining the covariance matrix, we find the measurements to

be slightly noisy as well as an indication of anticorrelation (contrary

to theoretical expectations). However, we note that in the other recent

clustering studies, noisy covariances and anticorrelations were also

noted (e.g. Scranton et al. 2002; Zehavi et al. 2002, 2005).

The ratio of Poisson to jackknife errors, Poisson to ‘FtF’ errors,

and the ‘FtF’ to jackknife errors are given in Fig. 4. As can be seen,

all error estimators are comparable on scales �10 h−1 Mpc, while

at larger scales than this the jackknife and ‘FtF’ errors are consider-

ably larger than the simple Poisson estimates. The magnitude of the

‘FtF’ and jackknife errors are very similar from the smallest scales

considered here, up to ≈40 h−1 Mpc. This behaviour has been noted

in other correlation function work, e.g. da Ângela et al. (2005). We

also note that FtF and jackknife errors are more comparable in size,

regardless of scale. Hence, the errors that are quoted on all correla-

tion functions from here on are the square roots of the variances from

the jackknife method, except for the case of the angular correlation

function, w(θ ), where we quote the ‘FtF’ error.

2.5 Measuring ξ(σ, π)

Having described how we calculate galaxy–galaxy separations in

redshift space in order to measure ξ (s), we can now study the clus-

tering perpendicular, σ , and parallel, π , to the line of sight. We work

out the comoving distance, rc, to our object, which is equal to the

distance parallel to the line of sight, i.e. a π value. Thus, already

knowing the redshift-space separation, s, we can use

s2 = σ 2 + π 2 (11)

to find σ . At this point it should be noted that σ is sometimes

designated by rp, where rp ≡ σ . For this paper we shall continue

to use σ for the perpendicular separation. Closely following Hoyle

et al. (2002), ξ (σ , π ) can be estimated in a similar way to ξ (s).

A catalogue of points that have the same radial selection function

and angular mask as the data but are unclustered is used to estimate

the effective volume of each bin. As stated above, the unclustered,

random catalogue also contains 20 times more points than the data.

The DD(σ , π ), DR(σ , π ) and the RR(σ , π ), where again D stands

for data LRG and R stands for random, counts in each σ and π bins

are found and the Landy–Szalay estimator,

ξLS(σ, π ) = 〈DD(σ, π )〉 − 〈2DR(σ, π )〉 + 〈RR(σ, π )〉
〈RR(σ, π )〉 , (12)

is used to find ξ (σ , π ), with bins of δlog(σ/h−1 Mpc) =
δlog(π/h−1 Mpc) = 0.2. Again, we compute three types of errors

to use as a guide; Poisson, ‘FtF’ and Jackknife errors are calculated

for ξ (σ , π ) as in equations (6)–(8). Again, after comparing the dif-

ferent ξ (σ , π ) error estimators we find that on the scales we are

considering, the jackknife error is sufficient for our purposes.

2.6 The projected correlation function, wp(σ)

Although we are now in a position to calculate the redshift-space

correlation function, the real-space correlation function, ξ (r), which

measures the physical clustering of galaxies and is independent of

redshift-space distortions, remains unknown. However, due to the

fact that redshift distortion effects only appear in the radial com-

ponent, by integrating along the π direction, we can calculate the

projected correlation function,

wp(σ ) = 2

∫ ∞

0

ξ (σ, π ) dπ. (13)

In practice we set the upper limit on the integral to be π max =
70 h−1 Mpc as at this large scale, the effect of clustering is negli-

gible, while linear theory should also apply. The effect of z-space

distortions due to small-scale peculiar velocities or redshift errors

is also minimal on this scale. Changing the value of π max from 25

to 100 h−1 Mpc makes negligible difference in the result.

Due to wp(σ ) now describing the real-space clustering, the in-

tegral in equation (13) can be rewritten in terms of ξ (r), (Davis &

Peebles 1983)

wp(σ ) = 2

∫ π max

σ

r ξ (r )√
(r 2 − σ 2)

dr . (14)

If we then assume that ξ (r) is a power law of the form, ξ (r) =
(r/r0)−γ , equation (14) can be integrated analytically such that

wp(σ )

σ
=

(
r0

σ

)γ [
�( 1

2
) �( γ−1

2
)

�( γ

2
)

]
=

(
r0

σ

)γ

A(γ ), (15)

where A(γ ) represents the quantity inside the square brackets and

�(x) is the Gamma function calculated at x. We now have a method

for calculating the real-space correlation length and power-law

slope, denoted r0 and γ , respectively.

2.7 The real-space correlation function, ξ(r)

Using the projected correlation function, wp(σ ), it is now possible

to find the r0 and γ for the real-space correlation function. How-

ever, if one does not assume a power law ξ (r), it is still possible
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to estimate ξ (r) by directly inverting wp(σ ). Following Saunders,

Rowan-Robinson & Lawrence (1992) we can write

ξ (r ) = − 1

π

∫ ∞

r

dw(σ )/dσ

(σ 2 − r 2)1/2
dσ. (16)

Assuming a step function for wp(σ ) = wi in bins centred on σ i, and

interpolating between values,

ξ (σi ) = − 1

π

∑
j�i

w j+1 − w j

σ j+1 − σ j
ln

(
σ j+1 +

√
σ 2

j+1 − σ 2
i

σ j +
√

σ 2
j − σ 2

i

)
(17)

for r = σ i . We shall be utilizing this interpolation method to check

whether a power-law description is valid for our 2SLAQ Survey

data and, if so, what values the parameters r0 and γ take.

3 R E S U LT S

3.1 The LRG angular correlation function, w(θ)

We first analyse the form of the angular correlation function,

w(θ ). The full input catalogue contains approximately 75 000 LRGs

mainly from areas in the two equatorial stripes; about 40 per cent

of this area was observed spectroscopically. As stated in Section 2,

approximately a third of the objects in the total input catalogue pass

the Sample 8 selection criteria. As well as providing estimates of fi-

bre collision and other angular incompleteness, the angular function

is of interest in itself, particularly given the narrow redshift range

from which the sample is derived. We use 25 795 ‘Sample 8’ LRG

targets to estimate the w(θ ). We first note that the function gives

clear indication of a change of slope at θ = 2 arcmin or ≈1 h−1 Mpc

in the � cosmology. Considering the form of w(θ ) = A θ 1−γ , at θ

< 2 arcmin the slope is γ = −2.17 ± 0.07 and at larger scales the

slope is γ = −1.67 ± 0.07. Using Limber’s formula from Phillipps

et al. (1978) and assuming a double power-law form where the slope

changed between −2.17 and −1.67 at ∼1.5 h−1 Mpc (comoving),

we found in the � case, a value of r0 = 4.85 ± 0.3 h−1 Mpc at small

scales and r0 = 6.89 ± 0.6 h−1 Mpc at large scales (see Fig. 5). We

shall check models of this form against the deprojected correlation

Figure 5. The angular correlation function, w(θ ) from the 2SLAQ input

catalogue containing 25 795 LRG targets (solid, red squares). Clear evidence

is seen for a change of power-law slope on ∼2 arcmin scales which is

equivalent to ≈1 h−1 Mpc. The open (black) circles show the results from

the NDWFS at z ∼ 0.5 (White et al. 2007).

function ξ (r) (see Fig. 9 below). We find that the form of this double

power law gives reasonable fits to the data in the LRG redshift sur-

vey, although the large-scale slope derived from the input catalogue

w(θ ) appears slightly flatter than in the semiprojected and 3D corre-

lation functions (see below). The reason for this is not clear, although

it could be that w(θ ) is more sensitive to any artificial gradient in

the LRG data. Thus, we checked for an angular systematic in the

data by calculating the angular correlation between spectroscopic

LRGs that are not at the same redshift. We find this is consistent

with zero and so such systematics do not explain the flatter slope

for w(θ ) at large scales. The most likely explanation is the different

fitting ranges for w(θ ) and the semiprojected correlation function.

This test also suggests that the upturn at θ < 2 arcmin is a real fea-

ture. It will be seen that w(θ ) gives the strongest evidence of all the

correlation function statistics for non-power-law behaviour in ξ (r).

A similar feature is seen by Zehavi et al. in the SDSS MAIN galaxy

sample and to a lesser extent in the SDSS LRG Survey. Reports of

such features in galaxy correlation functions go back to Shanks et al.

(1983). We simply report the existence of this feature in the LRG

data and leave further interpretation for a future paper. Possible in-

terpretations could include models of halo occupation distribution

(HOD) in the standard model case or the possibility that it might

represent a real feature in the mass distribution in the case of other

models. We also show results from White et al. (2007, open, black

circles, fig. 5) who report on the angular correlation function as a

route to estimating merger rates of massive red galaxies. As can be

seen, these measurements from the NOAO Deep Wide Field Survey

(NDWFS; Jannuzi & Dey 1999) agree very well with the 2SLAQ

LRG results, though as we shall discuss later, care always has to

be taken when comparing measurements from galaxy surveys with

different selections.

3.2 The LRG redshift-space correlation function, ξ(s)

Using the above corrections including that for fibre collisions, the

2SLAQ LRG redshift-space 2PCF, ξ (s), is shown in Fig. 6. There is

clear evidence for downturns at small scales �2.5 h−1 Mpc and large

Figure 6. The redshift-space 2PCF, ξ (s) for the 2SLAQ LRG Survey in

a � cosmology (filled, red diamonds) and an EdS, �m = 1, cosmology

(open, cyan diamonds). The dashed lines shown are the double power-law

best-fitting models to data with the associated values of s0 and γ given in

Table 3.
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scales �10 h−1 Mpc that are not described well by a single power

law. This turnover is consistent with the redshift-space distortion

effects one would expect in a ξ (s) correlation function – namely

the ‘Finger of God’ effect at small scales due to intrinsic velocity

dispersions and large-scale flattening from peculiar motions due to

coherent cluster infall. However, we note that real features in the

real-space correlation function, ξ (r), may also be contributing. We

have also estimated the effect of the integral constraint (IC, Peebles

1980) at larger scales. Using our global (N + S) normalization of

the correlation function, we assume a total number of 8656 galaxies

in a total volume of 4.5 × 107 h−1 Mpc3 and r0 = 7.45 h−1 Mpc.

Integrating with a γ = 1.8 power law to 20 h−1 Mpc gives an

IC = 3.5 × 10−4 and to 100 h−1 Mpc, an IC = 2.4 × 10−3. Adding

such contributions would make negligible contributions to any of

our correlation function fits.

We now attempt to parametrize the ξ (s) data. The simplest model

traditionally fitted to correlation function estimates is a power law

of the form

ξ (s) =
(

s

s0

)−γ

, (18)

where s0 is the comoving correlation length, in units of h−1 Mpc.

However, with the redshift-space distortion effects being so evident,

we find that a single power is insufficient to describe the data and

thus switch to a double power-law model

ξ (s) =
{(

s
s1

)γ1 s � sb and(
s
s2

)γ2 s > sb,
(19)

where sb is the scale of the ‘break’ from one power-law description

to the other. This ξ (s) model is used later in Section 4. We fit the

double power law continuously over the range 0.4 < s < 60 h−1 Mpc.

We fix the break scale at 4.5 h−1 Mpc for the � cosmology and at

2.5 h−1 Mpc for the EdS cosmology. We perform a χ2 fit, following

the prescription given by Press et al. (1992, chapter 15), to find

the best-fitting values for s1, γ 1, s2, and γ 2. We plot the best-fitting

double-power-law models in Fig. 6 and quote the values of s1, γ 1, s2

and γ 2, in Table 3. The errors quoted in Table 3 are only indicative

because no account has been taken of the non-independence of the

correlation function points in deriving the ξ (s) fits.

For comparison, in Fig. 7 results from the SDSS LRG study are re-

ported (Eisenstein et al. 2005; Zehavi et al. 2005) as well as selected

measurements from the 2dFGRS (Norberg et al. 2002). The 2dFGRS

is a blue, bJ selected survey of generally ∼L∗ galaxies. However, in

Norberg et al. (2002), the sample is segregated by luminosity and

spectral type, the latter governed by the η parameter (Madgwick

et al. 2003). Assuming a conversion of M0.2
r − MbJ

� −1.1, we

Table 3. Values of the redshift-space correlation length and slope for the

2SLAQ LRG Survey from ξ (s). When a � cosmology was assumed, sb was

set at 4.5 h−1 Mpc. When an EdS cosmology was assumed, sb was set at

2.5 h−1 Mpc.

� s0 < 4.5 h−1 Mpc s0 > 4.5 h−1 Mpc

s 0(h−1 Mpc) 17.3+2.5
−2.0 9.40 ± 0.19

γ 1.03 ± 0.07 2.02 ± 0.07

χ2
min (reduced) 1.95 1.88

EdS s0 < 2.5 h−1 Mpc s0 > 2.5 h−1 Mpc

s 0(h−1 Mpc) 20.3+9.4
−5.0 7.15 ± 0.13

γ 0.88 ± 0.11 1.88+0.05
−0.04

χ2
min (reduced) 0.91 3.43

Figure 7. The redshift-space correlation function, ξ (s) for the 2SLAQ LRG

Survey (filled, red, diamonds). For comparison, data from the SDSS LRG

Survey (black stars Zehavi et al. 2005; Eisenstein et al. 2005) and the high

luminosity early-type 2dFGRS, (Norberg et al. 2002, open blue triangles)

are also plotted.

calculate that the faintest 2SLAQ LRGs in our sample have an

MbJ
≈ −20.5. Weighting according to number, we thus use the

Norberg et al. (2002) −21.00 > MbJ
− 5 log h > −22.00 and

−20.50 > MbJ
−5 log h > −21.50 luminosity ranges from their

‘early-type’ volume-limited sample. This is shown by the (blue)

open triangles in Fig. 7.

The 2SLAQ LRG measurement is lower than the SDSS LRG re-

sult. It should not be concluded that this is evidence of evolution

because although the SDSS survey is at a lower mean redshift, it was

designed in order to target generally redder, more luminous LRGs

(Eisenstein et al. 2001). The 2SLAQ LRG colour selection criteria

are relatively relaxed for an ‘LRG’ survey, leading to bluer and less

luminous galaxies making it into our sample. We note here that it is

non-trivial comparing clustering amplitudes and bias strengths for

surveys with (sometimes very) different colour/magnitude/redshift

selections. As such, a more detailed analysis of the clustering evo-

lution for SDSS and 2SLAQ LRGs is presented in Wake et al. (in

preparation).

The 2dFGRS MbJ
<−20.5, early-type sample is at least approx-

imately matched in terms of luminosity to the 2SLAQ LRGs. Once

we have determined the linear bias parameter b for the z = 0.55

2SLAQ LRGs, we shall be able to use a simple model of bias evo-

lution, to compare these low-redshift 2dFGRS and 2SLAQ LRG

results.

3.3 The projected correlation function, wp(σ)

Again, after applying coverage, spectroscopic and fibre collision

corrections, the projected correlation function, wp(σ ), is presented

in Fig. 8. We again fit a single power law to the 2SLAQ data and find

that for the � cosmology, a single power law is an adequate descrip-

tion, returning a reduced χ2 = 1.17 over 0.4 < σ < 50 h−1 Mpc.

Over the wider range of 0.1 < σ < 50 h−1 Mpc, the χ 2 increases

to 1.71. Thus the projected correlation function appears to deviate

from a single power law at small scales in the way described in

Section 3.1. The results for r0 and γ assuming a single power law
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Figure 8. The 2SLAQ LRG projected correlation function, wp(σ ), with er-

ror bars from the ‘Jackknife’ estimates (solid, red diamonds). The dashed

line is the power law that gives the best-fitting line from the χ2 analysis

(see Table 4). The measurements from the SDSS LRGs (Zehavi et al. 2005)

are shown as a guide, with the SDSS errors being of comparable size to

the plotted stars. The open (green) triangles are from COMBO-17 red se-

quence (Phleps et al. 2006). The lower panel shows the 2SLAQ LRG wp(σ )

measurements divided by this best-fitting power law with the dashed line

covering 0.4 < σ < 50 h−1 Mpc.

Table 4. Values of the projected correlation function,

wp(σ ), correlation length and slope for the 2SLAQ LRG

Survey. In the�model, fits were performed over the range

0.4 < σ < 50.0 h−1 Mpc, whereas for the EdS model, fits

were performed over 0.25<σ <40.0 h−1 Mpc. The value

of r0 was found using equation (15).

� EdS

r0(h−1 Mpc) 7.30 ± 0.34 5.40 ± 0.31

γ 1.83 ± 0.05 1.82 ± 0.06

χ2
min (reduced) 1.17 1.39

are given in Table 4. The errors are taken from jackknife estimates

found by dividing the survey into 32 subareas.

This power-law deviation in the projected correlation function

is in line with recent results seen in other galaxy surveys, e.g. the

SDSS MAIN sample (Zehavi et al. 2004, not plotted) and the SDSS

LRGs (Zehavi et al. 2005). A ‘shoulder’ is reported in these studies

around ∼1 h−1 Mpc scales. This feature is currently believed to be

a consequence of the transition from the measuring of galaxies that

reside within the same halo (the ‘one-halo’ term) to the measuring

of galaxies in separate haloes (the ‘two-halo’ term). Dips in the pro-

jected correlation function are a major prediction of HOD models.

Thus for the 2SLAQ LRG Survey, we set a fiducial model, based on

our best-fitting single power-law model of wp(σ ) and find that if we

divide the data out by this model, the results (bottom panel, Fig. 8)

are potentially comparable to the Zehavi et al. (2005) results (their

fig. 11). Despite the fact that our LRG sample is at higher redshifts

and extends to lower luminosities, the form of the projected corre-

lation function appears close to that seen in the SDSS LRG sample,

although at lower amplitude. We conclude that the 2SLAQ LRG

correlation function changes slope in similar fashion to the SDSS

LRG semiprojected correlation function.

Continuing with wp(σ ), we compare the 2SLAQ LRGs with the

Classifying Objects by Medium-Band Observations (COMBO-17)

Survey. COMBO-17 (Wolf et al. 2001) uses a combination of 17 fil-

ters to obtain photometric redshifts accurate to σz/(1 + z) � 0.01 for

the brightest (RVega < 20 mag) objects. This is a comparable sample

to our own in that it covers the same redshift range (0.4 < z < 0.8),

but care must be taken when comparing the results; although the

COMBO-17 galaxies described here are defined as red sequence,

on the whole they will not be LRGs and will have a fainter magnitude

and different colour selection. Fig. 8 gives the projected correlation

function of the 2SLAQ LRGs and red COMBO-17 galaxies from

Phleps et al. (2006) (assuming a flat � cosmology). The change in

slope is clearly seen in COMBO-17 and indeed is modelled success-

fully with an HOD prescription (Phleps et al. 2006). The upturn in

slope in COMBO-17 versus 2SLAQ seems to occur on slightly dif-

ferent scales (� 1– 2 versus �5 h−1 Mpc) and is more dramatic than

for either of the LRG samples. The errors on the COMBO-17 data

are also much greater. Whether the differences are real, caused by

the fainter magnitude of the COMBO-17 galaxies, or whether they

are due to anomalies caused by the photometric redshifts, remains

unclear.

3.4 The real-space correlation function, ξ(r)

Having reported the clustering of 2SLAQ LRGs using the z-space

correlation function, ξ (s) and the projected correlation function,

wp(σ ) we now use the methods quoted in Section 2 to esti-

mate the real-space correlation function, ξ (r). We show this in

Fig. 9.

Again, we attempt to fit simple power-law models to our ξ (r) data

in order to find values for the real-space correlation length and slope,

Figure 9. The real-space 2PCF for the 2SLAQ LRG Survey (filled, red,

diamonds) for the � cosmology. The best-fitting single power law with r0 =
7.45 ± 0.35 and γ = 1.72 ± 0.06 is given by the dashed (red) line. The double

power-law fit reported for the angular correlation, w(θ ), in Section 3.1,

is shown by the dotted (blue) line. The solid (black) line is a theoretical

prediction for the ξmass(z = 0.55) using the simulations from Colı́n et al.

(1999). These models have (�m, ��) = (0.3, 0.7), h = 0.7 and a σ 8 = 1.0.

We shall return to this in Section 4. The lower panel shows the 2SLAQ LRG

ξ (r) measurements (assuming a � cosmology) divided by this best-fitting

power law with the dashed line covering 0.4 < σ < 50 h−1 Mpc.
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Table 5. Values of the correlation length and slope for

the 2SLAQ LRG Survey from the real-space correla-

tion function, ξ (r). Model fits were performed over the

range 0.4 < r < 50 h−1 Mpc for the � cosmology and

over the range 0.25 < r < 40 h−1 Mpc for the EdS

cosmology.

� EdS

r0(h−1 Mpc) 7.45 ± 0.35 5.65 ± 0.41

γ 1.72 ± 0.06 1.67 ± 0.09

χ2
min (reduced) 1.73 0.62

r0 and γ , respectively. For ξ (r) we attempt to take into account the

information presented in the covariance matrix by estimating χ2 fits

to model ξ (r) values such that

χ 2 =
∑

i, j

[ξ̄ (ri ) − ξm(ri )] C−1
i, j [ξ̄ (r j ) − ξm(r j )], (20)

where C−1
ij is the inverse matrix of the covariance matrix and the

subscripts i and j are indices of separation bins. However, as has

been reported in previous clustering analyses (e.g. Scranton et al.

2002; Zehavi et al. 2002), the calculated covariance matrix is rather

noisy with anticorrelations between points (contrary to theoretical

expectations). Therefore, when calculating the best-fitting models,

we perform a simple χ 2 fit as before, without the covariances, and

take only the variances into account. As before, we fit over the scales

0.4 � r � 50.0 h−1 Mpc. For the case of the real-space correlation

function, we again find that a single power law may not fit the data

well with the best-fitting values (and related reduced χ 2) given in

Table 5. We find a value of γ to be 1.72 ± 0.06 and a correlation

length of r0 = 7.45 ± 0.35 (assuming a � cosmology). The errors on

these parameters are estimated from considering the 1σ deviation

from the minimized χ2 on the one-parameter fits. However, care

has to be taken when quoting the best-fitting values for the joint

two-parameter fits which are shown in Fig. 10. Here we find the

values of δ χ2 which correspond to the 1, 2 and 3σ levels for a

Figure 10. The joint two-parameter fits on r0 and γ for ξ (r). The contours

show the δχ2 = (2.3, 6.17, 11.8) corresponding to 1, 2 and 3σ . The crosses

show the deviations in r0 and γ that we find from the 32 best-fitting single

power law using the jackknife samples.

two-parameter fit. Also shown in Fig. 10 are the values for the

deviations in r0 and γ , if we find the 32 best-fitting single power-

law parameters from the jackknife samples. Jackknife appears to

confirm the χ2 error analysis with the assumption of Gaussian errors

in Fig. 10. This is somewhat surprising since we have ignored the

covariance between correlation function points in creating Fig. 10.

The explanation may be that the fit at the minimum is still poor

due to the deviant point at 2 h−1 Mpc in Fig. 9 and this causes the

error contours in Fig. 10 to be larger than they would be in the

absence of the deviant point. Including the full covariance matrix,

the � χ2 produces error contours significantly smaller than those in

Fig. 10 and also the jackknife errors, even though the χ2 at minimum

remained the same. Overall we take the errors in Fig. 10 supported

by the jackknife estimates as being reasonably representative of the

real error.

Now armed with our best-fitting single power-law model for ξ (r),

and we can proceed and see if modelling the redshift-space distor-

tions introduced into the clustering pattern reveals anything about

cosmological parameters.

4 L R G C L U S T E R I N G A N D C O S M O L O G I C A L
I M P L I C AT I O N S

Having calculated the z-space, projected and real-space correlation

functions for the 2SLAQ LRGs, we can now turn our attention to

using these results to see if we can determine cosmological param-

eters.

4.1 The ξ(σ, π) LRG measurements

Results for the 2D clustering of 2SLAQ LRGs are shown in the ξ (σ ,

π ) plots of Figs 11 and 12.

Galaxy peculiar velocities lead to distortions in the ξ (σ , π ) shape.

The predominant effect at large scales in σ is the coherent infall

that causes a flattening of the ξ (σ , π ) contours along the parallel

π direction and some elongation along the perpendicular σ direc-

tion. At small σ , the random peculiar motions of the galaxies cause

an elongation of the clustering signal along the π direction – the

so-called ‘Fingers-of-God’ effect. From the measurements of these

effects, determination of the coherent infall into clusters, given by

the parameter β, and the pairwise velocity dispersion, 〈w2
z〉1/2, can

be made. This calculation shall be performed in Section 4.2. Geo-

metric distortions also occur if the cosmology assumed to convert

the observed galaxy redshifts is not the same as the true, underlying

Figure 11. The ξ (σ , π ) contour plot for the 2SLAQ LRG Survey, assuming

a � cosmology of (�m, ��) = (0.3, 0.7). The ‘Finger-of-God’ effects, i.e.

elongation of contours in the π direction at small (�1 h−1 Mpc) scales, are

clearly seen. (The spikes at small π are a plotting artefacts).
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The 2SLAQ LRG two-point correlation function 583

Figure 12. The ξ (σ , π ) contour plot for the 2SLAQ LRG Survey, with a

�m = 1.0, EdS cosmology.

cosmology of the Universe. The reason for this is because the cos-

mology dependence of the separations along the redshift direction

is not the same as for the separations measured in the perpendicular

direction (Alcock & Paczynski 1979). We note that modelling the

geometric distortions and comparing to the presented data can yield

information on cosmological parameters.

We shall closely follow the methods of Hoyle et al. (2002) and

da Ângela et al. (2005), hereafter H02 and dA05, respectively. In

this section, we first discuss large-scale, linear and small-scale non-

linear z-space distortions and how they are parametrized by β and

〈w2
z〉1/2, respectively. We then use β to find the bias of LRGs at the

survey redshift. Next, we employ information gained in studying the

geometric distortions to perform the ‘Alcock–Paczynski test’ as one

route to calculating cosmological parameters. However, we realize

there is a degeneracy in the (β, �m) plane with this approach and thus

employ further constraints from the evolution of LRG clustering to

break this degeneracy.

4.2 Redshift-space distortions, β and pairwise velocities

When measuring a galaxy redshift, one is actually measuring a sum

of velocities.2 The total velocity comes from the Hubble expansion

plus the motion induced by the galaxy’s local potential, where this

second term is coined the ‘peculiar velocity’, i.e.

vTot = vH + vpec. (21)

The peculiar velocity itself contains two terms,

vpec = vrand + vCI. (22)

The first term, vrand is due to the small-scale random motion of

galaxies within clusters. The second term, vCI is the component

due to coherent infall around clusters, where the infall is caused by

the streaming of matter from underdense to overdense regions; this

leads to a ‘flattening’ in the perpendicular σ direction away from

equidistant contours in ξ (σ , π ). This extension is parametrized by

β, which takes into account the large-scale effects of linear z-space

distortions. Kaiser (1987) showed that, assuming a pure power-law

model for the real-space correlation function (which is fair for the

2SLAQ LRG data), one can estimate β in the linear regime using

ξ (s) = ξ (r )

(
1 + 2

3
β + 1

5
β2

)
, (23)

2 This section strongly follows Hawkins et al. (2003) and Croom et al. (2005).

and more generally

ξ (σ, π ) =
[

1 + 2(1 − γμ2)

3 − γ
β + 3 − 6γμ2 + γ (2 + γ )μ4

(3 − γ )(5 − γ )
β2

]
× ξ (r ), (24)

where μ is the cosine of the angle between r and π (the distance

along the line of sight), and γ is slope of the power law (Matsubara

& Suto 1996).

Even though the ‘Kaiser limit’ is a widely used method for esti-

mating β, drawbacks using this approach, under the assumption of

Gaussianity, have been known for some time (Hatton & Cole 1998).

Scoccimarro (2004) has recently reported on the limitations of as-

suming a Gaussian distribution in the pairwise velocity dispersion

σ 12, even at very large scales. Scoccimarro’s argument is that even

at large scales, linear theory cannot be applied since one still has

the effect of galactic motions induced on subhalo scales, i.e. galax-

ies that are separated by very large distances are still ‘humming’

about inside their own dark matter haloes. Thus for the remainder

of the paper, we make a note of the new formalism in Scoccimarro

(2004), but continue to use the Kaiser limit, acknowledging its short-

comings. We justify this by noting that we need better control on

our ‘first-order’ statistical and systematic errors before applying the

‘second-order’ Scoccimarro corrections. Future analysis may use

the 2SLAQ LRG and QSO sample to make comparisons for small-

and large-scale effects in the redshift distortions using both the new

Scoccimarro expression as well as the Kaiser limit.

The small-scale random motions of the galaxies, vrand, leads to an

extension in the π direction of ξ (σ , π ). We denote the magnitude

of this extension by 〈w2
z〉1/2 (≡σ 12); this is usually expressed in a

Gaussian form (e.g. dA05)

f (wz) = 1√
2π〈w2

z 〉1/2
exp

(
−1

2

|wz |〈
w2

z

〉1/2

)
. (25)

Now we can combine these small-scale non-linear z-space distor-

tions with the Kaiser formulae, and hence the full model for ξ (σ ,

π ) is given by

ξ (σ, π ) =
∫ ∞

−∞
ξ ′[σ, π − wz(1 + z)/H (z)] f (wz) dwz, (26)

where ξ ′[σ , π − wz(1 + z)/H(z)] is given by equation (24) and

f(wz) by equation (25). Using these expressions and our 2SLAQ

LRG data, we can calculate β and 〈w2
z〉1/2 for the LRGs. At this

juncture, it is important to note the scales we consider in our model.

As can be seen from the data presented in Section 3, a power-law fits

the data best on scales from 1 to 20 h−1 Mpc. Thus, when computing

the full model for ξ (σ , π ) (equation 26), we only use data with 1 <

σ < 20 h−1 Mpc and 1 < π < 20 h−1 Mpc (as shown in Figs 11 and

12).

Returning to Kaiser (1987), the value of β can be used to deter-

mine the bias, b, of the objects in question,

β � � 0.6
m

b
, (27)

provided you know the values of �m, where �m(z) is given by

�m(z) = �0
m(1 + z)3

�0
m(1 + z)3 + �0

�

, (28)

for a flat universe. The importance of the bias is that it links the

visible galaxies to the underlying (dark) matter density fluctuations,

δg = b δm, (29)
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where the g and the m subscripts stand for galaxies and mass, re-

spectively. However, the precise way in which galaxies trace the un-

derlying matter distribution is still poorly understood. Recent work

by, e.g. Blanton et al. (2006), Schulz & White (2006), Smith, Scoc-

cimarro & Sheth (2007) and Coles & Erdogdu (2007) suggests that

bias is potentially scale dependent and we note that we do not take

this into account in the current analysis. Thus, for our purposes, we

restrict ourselves to the very simple relation, ξg = b2ξm , where b is

the linear bias term and leave further investigation of the bias for

massive galaxies at intermediate redshift to a future paper. On the

above model assumptions we now proceed to estimate the cosmo-

logical parameters, �m and β.

4.3 Cosmological parameters from ξ(σ, π) models

The ratio of observed angular size to radial size varies with cos-

mology. If we have an object which is known to be isotropic, i.e.

where transverse and radial intrinsic size are the same, fixing the

ratio of the intrinsic radial and transverse distances yields a relation

between the measured radial and transverse distances depending

on cosmological parameters. This comparison is often called the

‘Alcock–Paczynski’ test (Alcock & Paczynski 1979; Ballinger et al.

1996). In order to perform this test, we assume galaxy clustering is,

on average, isotropic and we compare data and model cosmologies.

Following H02 and dA05, for the following sections, we define

several terms.

(i) The underlying cosmology – i.e. the true, underlying, un-

known cosmology of the Universe.

(ii) The assumed cosmology – the cosmology used when mea-

suring the 2PCF and ξ (σ , π ) from the 2SLAQ LRG Survey. Initially

in a redshift survey, the only information available is the object’s

position on the sky and its redshift. In order to convert this into

a physical separation, you must assume some cosmology. As was

mentioned earlier, we have considered two Assumed cosmologies,

the � (�m, ��) = (0.3, 0.7) and the EdS(�m, ��) = (1.0, 0.0) cases.

(iii) The test cosmology – the cosmology used to generate the

model predictions for ξ (σ , π ) which are then translated into the

assumed cosmology.

We compare the geometric distortions in both the data and the

model relative to the same assumed cosmology. Thus, the key to this

technique lies in the fact that when the test cosmology matches the

underlying cosmology, the distortions introduced into the clustering

pattern should be the same in model as in the data. The model

should then provide a good fit to the data, providing the redshift-
space distortions have been properly accounted for. We can then

endeavour to find values of �m and β. We assume that for all further

discussions, the cosmologies described are spatially flat and choose

to fit the variable �0
m, hence fixing �0

� = 1 − �0
m.

The relation between the separations σ and π in the test and

assumed cosmologies (referred to by the subscripts ‘t’ and ‘a’, re-

spectively) is the following (Ballinger et al. 1996; H02; dA05):

σt = f⊥σa = Bt

Ba

σa, (30)

πt = f‖πa = At

Aa

πa, (31)

where A and B are defined as follows (for spatially flat cosmologies):

A = c

H0

1√
�0

� + �0
m(1 + z)3

, (32)

Figure 13. Likelihood contours of �0
m–β(z = 0.55) using the geometric

method of the Alcock–Paczynski test and modelling the redshift-space dis-

tortions. The best-fitting values are �m = 0.10+0.35
−0.10 and β(z = 0.55) = 0.40 ±

0.05 with a velocity dispersion of σ = 330 km s−1. Note how a value of

�m ∼ 0.3 is not ruled out but also the large degeneracy along the �m direc-

tion. A � cosmology is assumed, along with a model where γ = 1.72 and a

(starting) value of r0 = 7.45 h−1 Mpc.

B = c

H0

∫ z

0

dz′√
�0

� + �0
m(1 + z′)3

. (33)

In the linear regime, the correlation function in the assumed cosmol-

ogy will be the same as the correlation function in the test cosmology,

given that the separations are scaled appropriately, i.e.

ξt(σt, πt) = ξa(σa, πa). (34)

Details on the fitting procedure are given in dA05 (Section 7.7).

Using this Alcock–Paczynski distortion test, we calculate values of

�m − β for the assumed � cosmology, and present them in Fig. 13.

We first note that the constraint here is almost entirely on β rather

than �m. Using the ξ (r) fit with a (starting) r0 = 7.45 h−1 Mpc

and γ = 1.72, we find that �m = 0.10+0.35
−0.10 and β(z = 0.55) =

0.40 ± 0.05 with a velocity dispersion of σ = 330 km s−1 from a

χ 2 minimization. We have checked these errors by repeating the

above calculations on the 32 ‘jackknife’ subsamples. In order to

make the jackknife calculations less computationally intensive, the

velocity dispersion is held fixed at 330 km s−1 in every case. Com-

paring the error contours in Fig. 13 with the jackknife estimates, we

again find that the jackknife errors for β at ±0.05 are comparable

to, if not smaller than, those in the error contours in Fig. 13. The

jackknife error in �m at ±0.14 is comparable to the error contour in

Fig. 13. As in Fig. 10, this agreement may be surprising given that

we have ignored the covariance in ξ (σ , π ) points which is almost

certainly non-negligible. Again we argue that a relatively poor χ2 fit

at minimum may be responsible, leading to a somewhat fortuitous

agreement of the formal and jackknife error. But on the grounds

of the jackknife results we believe that the error contours shown in

Fig. 13 are reasonably realistic and we shall quote these hereafter.

We have also fitted ξ (σ , π ) assuming an EdS cosmology. In prin-

ciple this should give the same result as assuming the � model. We

show these �m–β fits in Fig. 14. We find that the best fit is now

�m = 0.40+0.6
−0.25 and β = 0.45+0.20

−0.10 (χ2 minimization) with a velocity
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Figure 14. Likelihood contours of �0
m–β(z = 0.55) using the geometric

method of the Alcock–Paczynski test and modelling the redshift-space dis-

tortions, assuming an EdS cosmology. The best-fitting values are �m =
0.40+0.60

−0.25 and β = 0.45+0.20
−0.10 using a model with γ = 1.67 and a (starting)

correlation length of r0 = 5.65 h−1 Mpc. A value of �m ∼ 1.0 lies within

our 1σ contour but again there is a large degeneracy along the �m direction.

dispersion of σ = 330 km s−1. A model with γ = 1.67 and a (start-

ing) correlation length of r0 = 5.65 h−1 Mpc is used. Thus the β and

the velocity dispersion values are reasonably consistent with the pre-

vious result. However, the value of �m assuming an EdS cosmology,

is somewhat higher than the best fit found assuming a � cosmology.

We assume that the high degeneracy of �m coupled with slightly

different ξ (r) models in the two cases is causing this discrepancy.

The contours in Fig. 14 certainly suggest that the constraint on �m

is much less strict in the EdS assumed case.

We have investigated other systematics in the �m–β fits. Return-

ing to an assumed � cosmology, there is some small dependence

on the model assumed for ξ (r). For example, if the slope γ = 1.69

from fitting ξ (r) in the more limited range 0.4 < r < 20 h−1 Mpc is

assumed then we find that �m = 0.10 ± 0.29 and β(z = 0.55) =
0.35 ± 0.16 with a velocity dispersion of σ = 300 km s−1. Further,

if instead of using ξ (r), wp(σ ) is used with slope γ = 1.83 over

the usual 0.4 < r < 50 h−1 Mpc range, we find that the best-fitting

model prefers a very low value of �m = 0.02 ± 0.15 and β(z =
0.55) = 0.40 ± 0.05 with a velocity dispersion of σ = 360 km s−1.

The consistency of these different models to give values of �m, β

and a pairwise velocity dispersion, albeit at a cost of a very loose

constraint on �m, is re-assuring and summarized in Table 6. Since

w(θ ) also seems to indicate a flatter (γ = −1.67 ± 0.07) slope in

the 1 < r < 20 h−1 Mpc range of interest for ξ (σ , π ) we take our

‘best bet’ estimates to be the values for γ = −1.72 given above.

Table 6. Best-fitting model values of �m, β and pairwise velocity disper-

sion, 〈w2
z〉1/2, using redshift-space distortions alone and assuming a � cos-

mology.

r0 γ Range (h−1 Mpc) Measure �m β 〈w2
z〉1/2 (km s−1)

7.45 1.72 0.4–50 ξ (r) 0.10 0.40 330

7.30 1.83 0.4–50 wp(σ ) 0.02 0.40 360

7.60 1.68 0.4–20 ξ (r) 0.10 0.35 300

7.34 1.80 0.4–20 wp(σ ) 0.10 0.45 360

These values also give a good overall fit to ξ (s). We next introduce

a further constraint to break the �m–β degeneracy.

4.4 Further constraints on Ω0
m and β(z) from LRG clustering

evolution

Matsubara & Suto (1996) and Croom & Shanks (1996) pointed out

that by combining low- and high-redshift clustering information,

further constraints on �m and �� would be possible. The basic idea

described in this section is that the �m : β(z) degenerate set obtained

from LRG clustering evolution is different from the �m : β(z) degen-

erate set obtained from analysing LRG redshift-space distortions;

by using these two constraints in combination, the degeneracies may

be lifted. Thus the way we proceed to break the degeneracy is to

combine our current 2SLAQ LRG results with constraints derived

from consideration of LRG clustering evolution.

From the value of the mass correlation function at z = 0, linear

perturbation theory can be used, assuming a test �m, to compute

the value of the mass correlation function in real space at z = 0.55.

This can then be compared to the measured LRG ξ (r) at z = 0.55

to find the value of the bias b(z = 0.55). The clustering of the mass

at z = 0 can be determined if the galaxy correlation function is

known, assuming that the bias of the galaxies used, b(z = 0), is

independent of scale. Fortunately, recent galaxy redshift surveys

have obtained precise measurements of the clustering of galaxies at

z ≈ 0. In practice we shall start from ξ (s) at z = 0 and 0.55 and use

equation (23) to derive ξ (r) in each case.

We therefore follow da Ângela et al. (2005) and start by intro-

ducing the volume averaged 2PCF ξ̄ where

ξ̄ (s) =
∫ s

0
4πs ′2ξ (s ′) ds∫ s

0
4πs ′2 ds

. (35)

We do this so that non-linear effects in the sample should be in-

significant due to the s2 weighting, setting the upper limit of the

integral s = 20 h−1 Mpc. To calculate equation (35) at z = 0, we use

the double-power-law form that is found by the 2dFGRS to describe

ξ (s) (Hawkins et al. 2003, fig. 6) in the numerator.

Then, the equivalent averaged correlation function in real space

can be determined by

ξ̄ (r , z = 0) = ξ̄ (s, z = 0)

1 + (2/3)β(z = 0) + (1/5)β(z = 0)2
, (36)

where ξ̄ (s) comes from equation (35) and we take the value of β for

the 2dFGRS as β(z = 0) = 0.49 ± 0.09 (Hawkins et al. 2003). Now

the real-space mass correlation is obtained with

ξ̄mass(r , z = 0) = ξ̄ (r , z = 0)

b(z = 0)2
, (37)

where b(z = 0) is given for each test cosmology by

b(z = 0) = �0.6
m (z = 0)

β(z = 0)
. (38)

Once we have determined the real-space correlation function of

the mass at z = 0, its value at z = 0.55 is obtained using linear

perturbation theory. Hence, at z = 0.55, the real-space correlation

function of the mass will be

ξ̄mass(r , z = 0.55) = ξ̄mass(r , z = 0)

G(z = 0.55)2
. (39)

Here, ξ̄mass(r ) is the volume-averaged correlation function (with

1 � r � 20 h−1 Mpc) and G(z) is the growth factor of perturba-
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tions, given by linear theory (Peebles 1980; Carroll, Press & Turner

1992) and depends on cosmology – in this case the test cosmology.

Once the value of ξ̄mass(r , z = 0.55) is obtained for a given test

cosmology, the process to find β(z = 0.55) is similar to the one used

to find ξ̄mass(r , z = 0), but now the steps are performed in reverse:

ξ̄ (s, z = 0.55) can be measured in a similar way as ξ̄ (s, z = 0). The

bias factor at z ≈ 0.55 is given by

b2(z = 0.55) = ξ̄ (r , z = 0.55)

ξ̄mass(r , z = 0.55)
, (40)

where ξ̄mass(r ) is given by equation (39) and ξ̄ (r , z = 0.55) is ob-

tained by

ξ̄ (r , z = 0.55) = ξ̄ (s, z = 0.55)

1 + (2/3)β(z = 0.55) + (1/5)β(z = 0.55)2
.

(41)

The value of β(z = 0.55) = �0.6
m (z = 0.55)/b(z = 0.55) will be ob-

tained, for the given test value of �m(z = 0) by solving the second-

order polynomial formed by substituting ξ̄ (r , z = 0.55) from equa-

tion (40) into equation (41) (see H02). The confidence levels on

the computed values of β(z = 0.55) are calculated by combining

appropriately in quadrature the errors on ξ̄ (s, z = 0.55), ξ̄ (s, z =
0), β(z = 0.55) and β(z = 0).

Combining this clustering evolution constraint with those from

z-space distortions breaks the degeneracy in the �m–β plane. We

can now work out the joint two-parameter best-fitting regions. This

is shown in Fig. 15, where the 1, 2 and 3σ error bars are plot-

ted (dashed lines). The best-fitting two-parameter calculations has

�m = 0.25, β = 0.45 denoted by the cross in Fig. 15. When we

consider the 1σ error on each quantity separately we find �m =
0.25+0.10

−0.15, β = 0.45 ± 0.05 with a 〈w2
z〉1/2 of 330 km s−1. A model

ξ (r) is assumed with γ = 1.72 and r0 = 7.45 h−1 Mpc, as is a �

cosmology.

The case of the combined constraint for the EdS assumed cos-

mology is shown in Fig. 16. The ξ (r) model with γ = 1.67 and

r0 = 5.65 h−1 Mpc is assumed and we find �m = 0.35 ± 0.15 and

Figure 15. Joint likelihood contours of �0
m–β(z = 0.55) using the geo-

metric method of the Alcock–Paczynski test, modelling the redshift-space

distortions and including the evolution of clustering constraints, assuming

the � cosmology. Here we see that the best-fitting joint constraint values are

�m = 0.25+0.10
−0.15, β = 0.45 ± 0.05 (marked with the cross) with a 〈w2

z〉1/2 of

330 km s−1.

Figure 16. Joint likelihood contours for �0
m–β(z = 0.55) using the geo-

metric method of the Alcock–Paczynski test, modelling the redshift-space

distortions and including the evolution of clustering constraints, assuming

an EdS cosmology. The joint best fit has �m = 0.35 ± 0.15, β = 0.45 ±
0.05 (marked with the cross) and a 〈w2

z〉1/2 of 330 km s−1. When the joint

constraints are considered, a value of �m = 1.0 can be ruled out at the 3σ

level.

Figure 17. The ratio of the redshift-space correlation function to the real-

space correlation function, measured from the 2SLAQ LRG Survey. We

assume a � cosmology for these measurements and fitting over the scales of

5– 50 h−1 Mpc find that β = 0.47 ± 0.14, in very good agreement with our

redshift-space distortion/evolution of clustering technique measurements.

β = 0.45 ± 0.05. Although the 3σ contours still reject the EdS

model, the rejection is less than in the � assumed case. Overall we

conclude that the combined constraints on β are the strongest with

β = 0.45 ± 0.05 consistently produced whatever the assumed cos-

mology or ξ (r) model. Though the combined constraints on �m are

less strong and give �m ≈ 0.3 ± 0.15, they still appear consistent

with the standard � model.

As another check, we can use the ratio ξ (s)/ξ (r) to determine β

from equation (23) (see Fig. 17). We assume that β is scale inde-

pendent, the z-space distortions are only affected by the large-scale

infall and are not contaminated by random peculiar motions. Fitting
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over the scales, 5 < s < 50 h−1 Mpc, we find β = 0.47 ± 0.14, which

is consistent with our determination using the distortions. The 1σ

error comes from a standard χ 2 analysis using the ξ (s)/ξ (r) ratios

and their errors; these are derived from adding the jackknife errors

on ξ (s) and ξ (r) in quadrature. We note that this procedure does not

take into account the non-independence of the correlation function

points, suggesting that the relatively large error quoted above on β

may still be a lower limit.

The low values of �m ≈ 0.30 and the value of β = 0.45 we find

from the 2SLAQ LRG Survey are in line with what is generally

expected in the current standard cosmological model. Although the

constraint on β is tight, the constraint on �m is less so and in partic-

ular the EdS value is not rejected at 3σ when clustering distortions

only are considered. However, when the combined evolution and

redshift distortions are considered, the EdS value is rejected at the

3σ level.

Using equations (40) and (41), �m(z = 0) = 0.30 ± 0.15 and

β(z = 0.55) = 0.45 ± 0.05, we find that b(z = 0.55) = �0.6
m (z =

0.55)/β(z = 0.55) = 1.66 ± 0.35, showing that the 2SLAQ LRGs

are highly biased objects. This can be compared with the value for

SDSS LRGs at redshift z = 0.55 which are found to have a value of

b = 1.81 ± 0.04 (Padmanabhan et al. 2007a, fig. 13). The 2SLAQ

LRG value is consistent with this SDSS LRG value; of course a

slightly lower bias may have been expected for 2SLAQ LRGs due

to the bluer/lower luminosity selection cut. If we assume the value

found in recent studies of �m(z = 0) = 0.25 (Cole et al. 2005;

Eisenstein et al. 2005; Percival et al. 2007a,b; Tegmark et al. 2006),

then our estimate of b becomes b = 1.56 ± 0.33.

Although we leave discussion about the bias estimate and the

accuracy of the β model to a future paper, at the referee’s request,

we compare the non-linear mass correlation function as numeri-

cally calculated for the standard cosmology (Colı́n et al. 1999) to

the 2SLAQ LRG ξ (r), in Fig. 9. The errors in ξ (σ , π ) are smaller

at separations 5–20 h−1 Mpc, than at 1 h−1 Mpc, so our estimates of

bias from ξ (σ , π ) are weighted towards these larger scales where

there appears to be approximate consistency with the relative am-

plitudes of ξmass and ξ (r) in Fig. 9. Thus, as mentioned previously,

our working assumption from here on will be that there is no ef-

fect of scale-dependent bias on our �m–β fits and we leave further

investigation of this issue for future work.

Finally, taking the value of b(z = 0.55) = 1.66 ± 0.35, we can

relate b(z = 0) to b(0.55) using the bias evolution model (Fry 1996)

b(z) = 1 + [b(0) − 1]G(�m(0), ��(0), z), (42)

where G(�m(0), ��(0), z) is the linear growth rate of the density per-

turbations (Peebles 1980, 1984; Carroll et al. 1992). There are many

other bias models, but here we are making the simple assumptions

that galaxies formed at early times and their subsequent clustering

is governed purely by their discrete motion within the gravitational

potential produced by the matter density perturbations. This model

would be appropriate, e.g. in a ‘high-peak’ biasing scenario where

early-type galaxies formed at a single redshift and their comoving

space density then remained constant to the present day. There may

be evidence for such a simple evolutionary history in the observed

early-type stellar mass/luminosity functions (e.g. Metcalfe et al.

2001; Wake et al. 2006; Brown et al. 2007). From equation (42),

and taking b(0.55) = 1.66, implies a value today of b(0) = 1.52 at

z ∼ 0.1. This leads to a predicted correlation length today of

r0(z = 0) = 8.5 ± 1.6 h−1 Mpc (assuming �CDM) which is

consistent with the 2dFGRS value of r0 = 8.0 ± 1.0 h−1 Mpc

found from averaging the same two matched luminosity bins from

table 2 of Norberg et al. (2002), and previously used in our Fig. 7.

(But note that the 2dFGRS ξ (s) shown in Fig. 7 might imply a some-

what lower value for the 2dFGRS clustering amplitude in this bin

than r0 = 8.0 ± 1.0 h−1 Mpc.)

Therefore, these correlation function evolution results suggest

that there seems to be no inconsistency with the idea that the LRGs

have a constant comoving space density, as may be suggested by the

luminosity function results. But, we note that the luminosity function

results of Wake et al. (2006) apply to a colour-cut sample, (where

2SLAQ LRGs are carefully matched to SDSS LRGs) whereas our

clustering results are only approximately matched to the 2dFGRS.

It will be interesting to see if this result holds when the clustering

of the exactly matched high and low-redshift LRGs are compared

(see Wake et al., in preparation).

5 C O N C L U S I O N S

We have performed a detailed analysis of the clustering of 2SLAQ

LRGs in redshift space as described by the 2PCF. Our main conclu-

sions are as follows.

(i) The LRG 2PCF, ξ (s), averaged over the redshift range 0.4 <

z < 0.8, shows a slope which changes as a function of scale, being

flatter on small scales and steeper on large scales, consistent with

the expected effects of redshift-space distortions.

(ii) The best-fitting single power-law model to the real-space

2PCF of the 2SLAQ LRG Survey has a clustering length of r0 =
7.45 ± 0.35 h−1 Mpc and a power-law slope of γ = 1.72 ± 0.06

(assuming a � cosmology) showing LRGs to be highly clustered

objects.

(iii) Evidence for a change in the slope of the projected correlation

function, which is a prediction of HOD models, is seen in the 2SLAQ

LRG Survey results, while a stronger feature is observed in the

angular correlation function of the LRGs. A direct explanation for

this remains unclear.

(iv) From redshift distortion models and the geometric Alcock–

Paczynski test we find �m = 0.10+0.35
−0.10 and β(z = 0.55) = 0.40 ±

0.05 with a velocity dispersion of σ = 330 km s−1, assuming a �

cosmology. With EdS as the assumed cosmology, �m = 0.40+0.60
−0.25

and β = 0.45+0.20
−0.10 with the best-fitting velocity dispersion remaining

at σ = 330 km s−1. However, in both cases, we also find a degeneracy

along the �mass,0–β plane.

(v) By considering the evolution of clustering from z ∼ 0 to

zLRG = 0.55 we can break this degeneracy and find that �m =
0.25+0.10

−0.15 and β = 0.45 ± 0.05 (with a 〈w2
z〉1/2 of 330 km s−1) as-

suming a � cosmology.

When the EdS cosmology is assumed, we find �m = 0.35 ± 0.15

and β = 0.45 ± 0.05 (again 〈w2
z〉1/2 = 330 km s−1). When the joint

constraints are considered, a value of �m = 1.0 can be ruled out at

the 3σ level.

We believe these estimates of β(z = 0.55) are reasonably robust

but the values of �m are less well constrained, although the above

estimate for �m = 0.30 ± 0.15 is in agreement with concordance

values.

(vi) If we assume a � cosmology with �m(z = 0) = 0.3 and

β(z = 0.55) = 0.45 then the value for the 2SLAQ LRG bias at

z̄ = 0.55 is b = 1.66 ± 0.35, in line with other recent measurements

of LRG bias (Padmanabhan et al. 2006).

(vii) Assuming this b(z = 0.55) = 1.66 value, and adopting a

simple ‘high-peak’ bias prescription which assumes LRGs have a

constant comoving space density, we predict r0 = 8.5 ± 1.6 h−1 Mpc

for LRGs at z ≈ 0.1. This is not inconsistent with the observed result

for luminosity matched 2dFGRS ‘LRGs’ at this redshift.
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The clustering and redshift-space distortion results complement

the other results from the 2SLAQ Survey, e.g. Wake et al. (2006),

Wake et al. (in preparation) and da Ângela et al. (2006).

LRGs may be considered to be ‘red and dead’ but they have re-

cently been realized to be very powerful tools for both constraining

galaxy formation and evolution theories as well as cosmological

probes. Future projects utilizing LRGs (e.g. to measure the baryon

acoustic oscillations or to study LRGs at higher redshift/fainter mag-

nitudes) will give us more insights into today’s greatest astrophysical

problems, including the epoch of massive galaxy formation and the

acceleration of the cosmological expansion.
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