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Abstract. This paper lays the foundations for a new framework for nu-
merically and computationally applying information geometric methods
to statistical modelling.

1 Introduction

The power and elegance of information geometry have yet to be fully exploited
in statistical practice. To this end, computational information geometry aims
to provide operational tools to help resolve important, long-standing problems.
For reasons of implementation, all random variables considered take a finite
number of values. The key idea of this paper is to represent statistical models –
sample spaces, together with probability distributions on them – and associated
inference problems, inside adequately large but finite dimensional spaces. In these
embedding spaces the building blocks of information geometry in statistics can be
numerically computed explicitly and the results used for algorithm development.
Accordingly, after a possible initial discretisation, the space of all distributions
for the random variable of interest can be identified with the simplex,

∆k :=

{
π = (π0, π1, . . . , πk)> : πi ≥ 0 ,

k∑
i=0

πi = 1

}
, (1)

together with a unique label for each vertex, representing the random variable.
Modulo discretisation, this structure therefore acts as a universal model. Clearly,
the multinomial family on k+ 1 categories can be identified with the relative in-
terior of this space, int(∆k), while the extended family, (1), allows the possibility
of distributions with different support sets.

The starting point for much of statistical inference is a working model for
observed data comprising a set of distributions on a sample space. A working
model M can be represented by a subset of ∆k and may be specified by an
explicit parameterisation. Computational information geometry explicitly uses
the information geometry of ∆k to numerically compute statistically important
features of M. These features include: properties of the likelihood, which can
be nontrivial in many of the examples considered here; the adequacy of first
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order asymptotic methods – notably, via higher order asymptotic expansions;
curvature based dimension reduction; and inference in mixture models, [3].

A fuller version of this paper, which also outlines further developments in
computational information geometry in statistics, is available as [2]. For brevity,
all formal proofs are given there.

2 Discretisation

The approach taken in this paper is inherently discrete and finite. Sometimes, of
course, this can be with zero loss. In general, though, suitable finite partitions
of the sample space can be used, for which an appropriate theory is developed.
While this is clearly not the most general case mathematically speaking it does
provide an excellent foundation on which to construct a computational the-
ory. Furthermore, since real world measurements can only be made to a fixed
precision all models can – arguably, should – be thought of as fundamentally
categorical. The relevant question for a computational theory is then: what is
the effect on the inferential objects of interest of a particular selection of such
categories? This key question is addressed in Theorems 1 and 2.

Example 1. An example in [10] concerns survival times Z for leukaemia patients
measured in days from the time of diagnosis. Originally from [6], there are 43
observations. Here the data, while being treated as continuous, is only recorded
at integer number of days. Thus, as far as any statistical analysis that can
be carried out is concerned, there is literally zero loss in treating it as sparse
categorical.

For illustrative purposes, a further level of coarseness is added here, by se-
lecting bins of size 4 days. The parameter of interest is the mean lifetime, µ. In
panel (a) of Fig. 1 it is shown that there is effectively no inferential loss in such
a choice. The solid line is the likelihood function based on binning the data to
bins of width four days, using a multinomial approximation. The dots in this
panel are the log-likelihood for the raw data based on the continuous censored
exponential model. As can be clearly seen there is no real inferential loss in the
binning and discretisation process.

In order to use the high dimensional simplex models with continuous random
variables it is necessary to truncate and discretise the sample space into a finite
number of bins. The following theorems show that the information loss in doing
this is arbitrarily small for a fine enough discretisation and that the key to
understanding the information in general is controlling the conditional moments
in each bin of the random variables of interest, uniformly in the parameters of
the model.

Theorem 1. Let f(x; θ), θ ∈ Θ, be a parametric family of density functions with
common support X ⊂ Rd each being continuously differentiable on the relative
interior of X , assumed non-empty. Further, let X be compact, while{∥∥∥∥ ∂∂xf(x; θ)

∥∥∥∥ |x ∈ X}
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Fig. 1. Computational information geometry: likelihood approximation and dimension
reduction

is uniformly bounded in θ ∈ Θ by M , say.
Then, for any ε > 0 and for any sample size N > 0, there exists a finite,

measurable partition {Bk}K(ε,N)
k=0 of X such that: for all (x1, . . . , xN ) ∈ XN , and

for all (θ0, θ) ∈ Θ2 ∣∣∣∣log

{
Likd(θ)

Likd(θ0)

}
− log

{
Likc(θ)

Likc(θ0)

}∣∣∣∣ ≤ ε, (2)

where Likd and Likc are the likelihood functions from the discretised and con-
tinuous distributions respectively.

The following result looks at the case where the family that is discretised is
itself an exponential family and so the tools of classical information geometry
can be applied. In general, after discretisation a full exponential family does not
remain full exponential and there is information loss. However, the following
results show that this loss can be made small enough to be unimportant for
inference and that all information geometric results on the two families can be
made arbitrarily close.

Theorem 2. Let f(x; θ) = ν(x) exp
{
θT s(x)− ψ(θ)

}
, x ∈ X , θ ∈ Θ, be an

exponential family which satisfies the regularity conditions of [1], p. 16. Further,
assume that s(x) is uniformly continuous and s(X ) is compact.

Then, for any ε > 0, there exists a finite measurable partition {Bk}K(ε)
k=0 of

X such that, for all choices of bin labels sk ∈ s(Bk), all terms of Amari’s infor-
mation geometry for f(x; θ) can be approximated to O(ε) by the corresponding
terms for the family{

(πi(θ), si)|πi(θ) :=

∫
Bi

f(x; θ)dx, si ∈ s(Bi)
}
.

In particular:

(a) For all θ, and any norm,

‖µd(θ)− µc(θ)‖ = O(ε)

where µd(θ) =
∑K(ε)
k=0 skπk(θ) and µc(θ) =

∫
X xf(x; θ)dx.



(b) The expected Fisher information for θ of f(x; θ), Ic(θ), and the expected
Fisher information for {πk(θ)}, Id(θ), satisfy

‖Id(θ)− Ic(θ)‖∞ = O(ε2).

(c) The skewness tensors Tc(θ), see [1], p. 105, of f(x; θ) and Td(θ) for {πk(θ)}
satisfy

‖Td(θ)− Tc(θ)‖∞ = O(ε3).

In continuous examples, like Example 1, a compactness condition is used
to keep the underlying geometry finite. A following paper will look at the case
where the compactness condition is not needed. In this case, infinite dimensional
simplexes, and their closures, are used as the ‘space of all distributions’, the
extension of classical information geometry here requiring careful consideration
of convergence.

3 Information geometry of extended multinomial model

3.1 Affine geometries

Information geometry is constructed from two different affine geometries related
in a non-linear way via duality and the Fisher information, see [1] or [13]. In the
full exponential family context, one affine structure (the so-called +1 structure)
is defined by the natural parameterization, the second (the −1 structure) by
the mean parameterization. The closure of exponential families has been studied
by [4], [5], [14] and [19] in the finite dimensional case and by [7] in the infinite
dimensional case. One important difference in the approach taken here is that
limits of families of distributions, rather than pointwise limits, are central.

This paper constructs a theory of information geometry following that intro-
duced by [1] via the affine space construction introduced by [18] and extended
by [15]. Since this paper concentrates on categorical random variables, the fol-
lowing definitions are appropriate. Consider a finite set of disjoint categories or
bins B = {Bi}i∈A. Any distribution over this finite set of categories is defined
by a set {πi}i∈A which defines the corresponding probabilities. Note in a mild
abuse of notation we identify a bin Bi with its label i.

Definition 1. The −1-affine space structure over distributions on B := {Bi}i∈A
is (Xmix, Vmix,+) where

Xmix =

{
{xi}i∈A|

∑
i∈A

xi = 1

}
, Vmix =

{
{vi}i∈A|

∑
i∈A

vi = 0

}

and the addition operator + is the usual addition of sequences.

In Definition 1, the space of (discretised) distributions is a −1-convex subspace of
the affine space (Xmix, Vmix,+). A similar affine structure for the +1-geometry,
once the support has been fixed, can be derived from the definitions in [18] pages
9 – 13, or as described in [15] page 82.



3.2 Geometry of extended trinomial distribution

To illustrate the information geometry of the extended multinomial distribution,
the trinomial case is now described explicitly. The general case follows by obvious
extensions, see [2]. The case when the dimension is so large that numerically
evaluating sums becomes impractical is considered in [9].

Example 2. An explicit example of the information geometry of the extended
trinomial model is shown in Fig. 2. The closed simplex in panel (a) represents the
set of multinomial distributions with bin probabilities (π0, π1, π2) where πi ≥ 0.

In this example, a vector bT = (1, 2, 3) was chosen, and the parallel lines in
panel (a) are level sets of the mean of bTX, where X is the trinomial random
variable. These are −1-geodesics, and it is immediate that they extend to the
boundary in a very natural way. These lines are also shown in panel (b), but
now in the +1 (or natural) parameterization and so are non-linear.

(a) −1−geodesics in −1−simplex
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Fig. 2. The information geometry of the extended trinomial model

Panel (d) shows the relative interior of the extended trinomial in the +1-affine
parameterization. The straight lines represent one dimensional full exponential

families with probabilities of the form
{

πi exp(θbi)∑2
k=0 πk exp(θbk)

}2

i=0
, each πk > 0. These

are +1 -geodesics in the direction b through the base-point (π0, π1, π2). It is
a standard result that these +1 parallel lines are everywhere orthogonal, with
respect to the metric defined by the Fisher information matrix, to the −1-parallel
lines shown in panels (a) and (b).

The key step in understanding the simplicial nature of the +1-geometry is to
see how the limits of the +1-parallel lines are connected to the boundary of the
simplex. This is made clear in panel (c), where the +1-geodesics are plotted in
the −1-affine parameters as curves. The limits of the curves lie on the boundary
of the simplex. The closure of the +1-representation multinomial is defined to
make these continuous limits defined “at infinity” in the +1-parameters and is
shown schematically as the dotted triangle in panel b.



3.3 The shape of the likelihood

Potentially high dimensional simplicial structures being the natural spaces in
which to base computational information geometry, a primary question is to look
at the way that the likelihood, or log-likelihood, behaves in them. First note two
important issues: in typical applications the sample size will be much smaller
than the dimension of the simplex, while the simplex contains sub-simplexes
with varying support. These two statements mean that our standard intuition
about the shape of the log-likelihood function will not hold. In particular, the
standard χ2-approximation to the distribution of the deviance does not hold.

It will be convenient to call the face of the simplex spanned by the vertices
(bins) having strictly positive counts the observed face, and the face spanned by
the complement of this set the unobserved face. In the −1-representation, the
log-likelihood is strictly concave on the observed face, strictly decreasing in the
normal direction from it to the unobserved face and, otherwise, constant. For
more details of the geometry of the observed face see the paper [3].

Theorem 3. Let the observed counts be {ni}ki=0 and define two subsets of the
index set {0, · · · , k} by P = {i|ni > 0} and Z = {i|ni = 0}. Let Vmix =
{(v0, . . . , vk)|

∑
vi = 0}, and further define the set V 0 ⊂ Vmix by {v ∈ Vmix|vi =

0 ∀i ∈ P}.
(a) The set V 0 is a linear subspace of Vmix. The log-likelihood is constant on

−1 affine subspaces of the form π + V 0.
(b) Select k∗ ∈ Z and consider the vector subspace of Vmix defined by

V k
∗

:= {v ∈ Vmix|vi = 0 if i ∈ Z\{k∗}} .

Then Vmix can be decomposed as a direct sum of vector spaces Vmix = V 0⊕V k∗ .

3.4 Spectrum of Fisher information

With π(0) denoting the vector of all bin probabilities except π0, the Fisher infor-
mation matrix for the +1 parameters, when viewed as the variance-covariance
matrix for the score [20] Def. 2.79 page 111, can be written explicitly as a func-
tion of the probabilities. It is given by the sample size times

I(π) := diag(π(0))− π(0)πT(0),

see [20] page 674. Its explicit spectral decomposition is, in all cases, an example
of interlacing eigenvalue results, (see for example [11], Chapter 4). In particular,
suppose {πi}ki=1 comprises g > 1 distinct values λ1 > · · · > λg > 0, λi occurring
mi times, so that

∑g
i=1mi = k. Then, the spectrum of I(π) comprises g simple

eigenvalues {λ̃i}gi=1, the roots of an explicit polynomial, satisfying

λ1 > λ̃1 > · · · > λg > λ̃g ≥ 0, (3)

together, if g < k, with {λi : mi > 1}, each such λi having multiplicity mi − 1.

Further, λ̃g > 0⇔ π0 > 0, while each λ̃i (i < g) is typically (much) closer to λi
than to λi+1, making it a near replicate of λi.



In this way, the Fisher spectrum mimics key features of the bin probabilities.
Of central importance, one or more eigenvalues are exponentially small if and
only if the same is true of the bin probabilities, the Fisher information matrix
being singular if and only if one or more of the {πi}ki=0 vanishes. Again, typi-
cally, two or more eigenvalues will be close when two or more corresponding bin
probabilities are.

3.5 Closure

Given a full exponential family embedded in the high-dimensional sparse simplex
an important question is to identify its limit points – how it is connected to the
boundary. It is generally true and, shown in a concrete example in Fig. 2 (c),
that one dimensional exponential families limits lie at vertices, and the vertex
is determined by the rank order of the components of the tangent vector of the
+1-geodesic. In general, see [2], finding the limit points is a problem of finding
redundant linear constraints. As shown in [8], this can be converted, via duality,
into the problem of finding extremal points in a finite dimensional affine space.

3.6 Total positivity and the convex hull

The -1-convex hull of an exponential family is of great interest, mixture models
being widely used in many areas of statistical science. In particular they are ex-
plored further in [3] in this volume. Here we simply state the main result, a simple
consequence of the total positivity of exponential families [12], that, generically,
convex hulls are of maximal dimension. In this result, “generic” means that the
+1 tangent vector which defines the exponential family has components which
are all distinct.

Theorem 4. The −1-convex hull of an open subset of a generic one dimensional
exponential family is of full dimension.

4 Example

The following example illustrates these results and also shows an application of
dimension reduction based on information geometry.

Example 1 (continued). For illustrative purposes, the data is censored at a fixed
value such that the censored exponential distribution gives a reasonable, but
not perfect, fit. It is assumed the random variable Z has an exponential dis-
tribution, but only Y = min{Z, t} is observed. As discussed in [17], this gives
a one-dimensional curved exponential family inside a two dimensional regular
exponential family.

Figure 1 shows some of the details of the geometry of the curved exponential
family which is created after censoring. The censoring value was chosen at 750.
The log-likelihood plot, panel (a), shows appreciable skewness, which suggests
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that standard first order asymptotics might be improved by the higher order
asymptotic methods of classical information geometry. Panel (b) shows the cen-
sored exponential (solid curve) embedded in the two-dimensional full exponential
family in the +1-parameterization. The dashed contours are the log-likelihood
contours in the full exponential family. It is clear, even visually, that there is not
much +1 curvature for this family on this inferential scale. So this is an example
where the curved exponential family behaves inferentially like a one-dimensional
full exponential family. In particular, the dimension reduction techniques found
in [16], can be used. Illustrating the effectiveness of this idea, panel (c) shows how
well a saddlepoint based approximation does at approximating the distribution
of the maximum likelihood estimator of the parameter of interest.
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