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ABSTRACT

Context. In recent years mid- and far infrared spectra of planetary nebulae have been analysed and lead to more accurate abundances.
It may be expected that these better abundances lead to a better understanding of the evolution of these objects.
Aims. The observed abundances in planetary nebulae are compared to those predicted by the models of Karakas (2003, Thesis, Monash
Univ. Melbourne) in order to predict the progenitor masses of the various PNe used. The morphology of the PNe is included in the
comparison. Since the central stars play an important role in the evolution, it is expected that this comparison will yield additional
information about them.
Methods. First the nitrogen/oxygen ratio is discussed with relation to the helium/hydrogen ratio. The progenitor mass for each PNe
can be found by a comparison with the models of Karakas. Then the present luminosity of the central stars is determined in two
ways: first by computing the central star effective temperature and radius, and second by computing the nebular luminosity from
the hydrogen and helium lines. This luminosity is also a function of the initial mass so that these two values of initial mass can be
compared.
Results. Six of the seven bipolar nebulae can be identified as descendants of high mass stars (4−6 M�) while the seventh is ambiguous.
Most of the elliptical PNe have central stars which descend from low initial mass stars, although there are a few caveats which are
discussed. There is no observational evidence for a higher mass for central stars which have a high carbon/oxygen ratio. The evidence
provided by the abundance comparison with the models of Karakas is consistent with the HR diagram to which it is compared. In the
course of this discussion it is shown how “optically thin” nebulae can be separated from those which are “optically thick”.

Key words. stars: abundances – planetary nebulae: general – infrared: ISM – stars: early-type – galaxies: abundances

1. Introduction

Planetary nebulae (hereafter PNe) are an advanced stage of
stellar evolution of low and intermediate mass stars. After the
asymptotic giant branch (AGB) phase is completed, these stars
evolve through the PN stage before ending their lives as white
dwarfs. The gaseous nebula seen now as PN is the remnant of
the deep convective envelope which once surrounded the core.
This core is now seen as the central star of the PN. The present
abundances in the nebula reveal information about the chemi-
cal processes that took place during the AGB. These processes,
which have first been discussed by Iben & Renzini (1981) and
Renzini & Voli (1981), change the abundances according to the
mass of the star involved and the initial abundances in the star.
Thus by investigating the PN abundances it may be possible to
assign an initial mass to the star.

Models have been made of the evolution of stars of different
masses. These were initiated with the discussion of Paczynski
(1971) followed by the detailed calculations of Schönberner
(1983), Vassiliadis and Wood (1993) and Blöcker (1995). These
models refer mostly to post AGB evolution. Models referring to
evolution on the AGB have been made by several authors, e.g.
Marigo et al. (2003) and Karakas (2003). The latter models pre-
dict changes in the chemical composition which have occurred
during the evolution and which have been brought to the surface

� Based on observations with ISO, an ESA project with instruments
funded by ESA Member States (especially the PI countries: France,
Germany, the Netherlands and the United Kingdom) and with the par-
ticipation of ISAS and NASA.

and subsequently expelled as the nebula. It is these models which
will be used to compare with observed PN abundances because
not only do they follow a star of a given mass over its entire life,
but the same is done for an entire sequence of possible masses
for several different initial abundances.

The purpose of the present paper is to compare these models
with the abundances which we have observed. These abundances
have been determined with the help of mid and far infrared ob-
servations either from ISO or Spitzer and are quite accurate be-
cause they are less affected by possible temperature variations
or gradients in the nebula. These observations have already been
used (Pottasch & Bernard-Salas 2008 to better determine PN
abundance gradients in the galaxy. In an ideal case it might be
expected that a comparison of models with observations will
lead to: 1) knowledge of the individual properties of the cen-
tral stars; and 2) confirmation or suggestion for improvement of
the models. In practice these goals are rather difficult to reach
because of shortcomings of both the observations as well as the
models. On the observational side are uncertainties in the effec-
tive temperature of the central star, their distances, as well as
the accuracy of the measurements. The models presently avail-
able are uncertain because the physical conditions in the actual
star-nebula system is poorly known. For example, the mass loss
along the AGB (and post AGB) is physically not well understood
and the initial conditions may not be realistic. Thus models used
for comparison are taken from different authors who may use
different mass loss rates. Therefore core masses are used where
possible although initial masses are given for the Karakas mod-
els because the author identifies them as such.
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Table 1. Elemental abundance of PNe with far-infrared data in addition to optical and UV data.

PNe He/H C/H N/H O/H Ne/H S/H Ar/H R� Morph Ref.
×10−4 ×10−4 ×10−4 ×10−4 ×10−5 ×10−6 (kpc)

BD+30 3639 7.3 1.1 4.6 1.9 0.64 5.2 7.6 R a
Hb 5 0.123 4.5 4.5 2.2 0.70 5.5 6.0 B b
He 2-111 0.185 1.1 3.0 2.7 1.6 1.5 5.5 6.2 B c
Hu 1-2 0.127 1.6 1.9 1.6 0.49 0.42 1.1 7.9 B d
IC 418 >0.072 6.2 0.95 3.5 0.88 0.44 1.8 8.8 E e
IC 2165 0.104 4.8 0.73 2.5 0.57 0.45 1.2 9.8 E e, ∗
IC 4191 0.123 1.49 7.7 4.7 1.6 4.45 7.0 E p
M 1-42 0.161 10.5 7.5 8.3 4.4 2.8 8.6 3.0 E h
Me 2-1 0.1 7.0 0.51 5.3 0.93 0.91 1.6 5.8 R r
Mz 3 >0.080 <16. 3.0 2.3 1.2 1.0 5.0 6.3 B q
NGC 40 >0.046 19 1.3 5.3 1.4 0.56 3.4 7.9 E f
NGC 2022 0.106 3.66 0.99 4.74 1.34 0.63 2.7 9.4 E p
NGC 2440 0.119 7.2 4.4 3.8 1.1 0.47 3.2 8.9 B g
NGC 5315 0.124 4.4 4.6 5.2 1.6 1.2 4.6 6.3 R i
NGC 5882 0.108 2.2 1.6 4.8 1.5 1.3 2.9 7.2 E e, ∗
NGC 6153 0.140 6.8 4.8 8.3 3.1 1.9 8.5 6.9 E f
NGC 6302 0.170 0.6 2.9 2.3 2.2 0.78 6.0 6.4 B j
NGC 6445 0.151 7.4: 2.4 7.4 2.0 0.79 3.8 5.8 B k
NGC 6537 0.149 1.7 4.5 1.8 1.7 1.1 4.1 6.0 B c
NGC 6543 0.118 2.5 2.3 5.5 1.9 1.3 4.2 8.1 E a
NGC 6741 0.110 6.4 2.8 6.6 1.8 1.1 4.9 6.5 E l
NGC 6818 0.099 5.4 1.26 4.8 1.27 0.94 2.7 6.6 E p
NGC 6886 0.107 14.3 4.2 6.5 2.0 1.0 2.1 7.7 E o
NGC 7027 0.106 5.2 1.5 4.1 1.0 0.94 2.3 7.4 E m
NGC 7662 0.088 3.6 0.67 4.2 0.64 0.66 2.1 8.2 E l
IC 2448 0.094 2.7 0.55 2.5 0.64 0.20 1.2 8.0 E s
NGC 2392 0.080 3.3 1.85 2.9 0.85 0.50 2.2 8.4 E t
NGC 6826 0.10 4.8 0.58 3.95 1.5 0.26 1.4 8.0 E u
NGC 3242 0.092 1.95 1.35 3.8 0.90 0.28 1.7 8.1 E v
NGC 6369 0.102 - 0.79 4.0 0.79 0.60 1.6 7.2 R v
NGC 6210 0.092 1.2 0.70 4.9 1.2 0.74 2.3 7.0 R w
NGC 2792 0.103 1.1 0.68 2.1 0.74 0.43 1.6 8.2 E x
NGC 1535 0.085 1.6 0.21 2.6 0.53 0.13 1.1 9.9 E z

Notes. (�) Galactocentric distance assuming the Sun is at 8 kpc from the center, Morphology: R = round, E = elliptical, B = bipolar.
(∗) Higher resolution observations.

References. a) Bernard-Salas et al. 2003, A&A 406, 165; b) Pottasch et al. 2006; c) Pottasch et al. 2000, A&A, 363, 767; d) Pottasch et al. 2003,
A&A, 401, 205; e) Pottasch et al. 2004, A&A, 423, 593; f) Pottasch et al. 2003, A&A, 409, 599; g) Bernard-Salas et al. 2002, A&A, 387, 301;
h) Pottasch et al. 2007, A&A, 471, 865; i) Pottasch et al. 2002, A&A, 393, 285; j) Pottasch et al. 1999, A&A, 347, 975; k) van Hoof et al. 2000,
ApJ, 532, 384; l) Pottasch et al. 2001, A&A, 380, 684; m) Bernard-Salas et al. 2001, A&A 367, 949; o) Pottasch & Surendiranath 2005, A&A,
432, 139; p) Pottasch et al. 2005, 436, 965; q) Pottasch & Surendiranath 2005, A&A, 444, 861; r) Surendiranath et al. 2004, A&A, 421, 1051;
s) Guiles, S. et al. 2007, ApJ, 660, 1282; t) Pottasch et al. 2008, A&A, 481, 393; u) Surendiranath & Pottasch 2008, A&A, 483, 519; v) Pottasch
& Bernard-Salas 2008, A&A 490, 715; w) Pottasch et al. 2009, A&A, 499, 249; x) Pottasch et al. 2009, A&A, 502, 189; z) unpublished.

The abundances observed are listed in Table 1. No indication
is given there of the spectrum of the central star. A few of these
stars are Wolf-Rayet stars for which it may be that some of the
evolutionary calculations may not apply. These are the central
stars of BD+30 3639, NGC 40, NGC 5315 and NGC 6369. This
can be kept in mind when making the comparisons.

The objects were selected to be IR bright (in the diaphragm
of the instrument used). This was first done with the ISO spec-
trometer where almost all of the usable PN spectra were inves-
tigated. Later the Spitzer IR spectra of PNe have been investi-
gated. Most of these spectra are as bright or nearly as bright as
the ISO PNe. This may at first suggest a bias toward PNe with
massive central stars because these initially evolve at the highest
luminosity. But the period of high luminosity is expected to be
very short so that very few, if any, high mass central star PNe are
expected. We therefore may expect that many low mass central
star PNe have been observed, not only because of much longer

evolution time but also because of the much greater number of
low mass objects present. It is expected that most of the observed
PNe are reasonably local objects, within a few kpc of the sun.

Nevertheless a confrontation of the models with the obser-
vations, even with these limitations, can give interesting insights
into the evolution of the PN system. In Sect. 2 the morphology
of the nebulae will be discussed, first in relation to the nitro-
gen/oxygen ratio observed in the nebula, and then the helium
abundance will be introduced into the discussion. In Sect. 3 the
effective temperature of the central star and the various ways
of determining it will be discussed. Then the luminosity of the
central stars will be discussed. Because the luminosity is depen-
dent on the distance of the nebula this will also be discussed
in this section. In addition a digression will be made into the
long-standing question of whether or not a nebula is “thick”
to photons which ionize hydrogen. This can be done because
two different methods of obtaining the nebular luminosity are
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available, one which makes no assumption concerning the nebu-
lar “thickness” and one which is dependent on this assumption.
In Sect. 4 we investigate whether the expected relation between
abundance and luminosity can be seen. Conclusions and discus-
sion are given in the last section.

2. Morphology and abundance

There is a long history of discussion of the nebular morphol-
ogy and its relation with the nebular abundance. In 1971 Greig
(1971) classified the large majority of PN in two categories de-
pending on their shape. He called these categories B (binebu-
lous) and C (centric). He noted that the B nebulae have stronger
forbidden lines of N ii and O ii although he did not directly relate
this to abundance. Greig (1972) also noted that the B nebulae
have kinematic properties indicating that they are the younger
group. Several years later Peimbert (1978) classified the PN
solely on the basis of the nebular abundance in four classes. His
type I nebulae are nitrogen and helium rich while type II are an
intermediate population having nitrogen and helium abundances
close to solar. Type III, called “high velocity” does not have a
substantially different composition as type II while type IV is
a poorly understood group called “halo” PN which is small in
number and will not concern us here.

In the five years that followed it became clear that those neb-
ulae classified as type I also showed morphological similarities.
This is summarized in an article by Peimbert & Torres-Peimbert
(1983) where many, but certainly not all, the PN listed as type I
show morphology given as filamentary and bipolar. The use of
abundance to indicate morphology, for example by calling a neb-
ula type I on the basis of an abundance determination, a practice
which for some years was common, led to false morphological
classification. The morphological classifications listed in Col. 10
of Table 1 are based on detailed study, generally based on op-
tical photographs, which is summarized by Manchado (2003).
We also adopt the system which he gives dividing PN into three
classes: bipolar (B), elliptical (E) and round (R). This system
is not universally used, probably because it is not obvious that
there is a fundamental difference between elliptical and round.
The classification given is taken mostly from Phillips (2003)
who takes this mostly, but not always, from earlier discussions in
the literature. Because not all our nebulae are listed by Phillips
we have also used other sources (e.g. Stanghellini et al. 1993 and
Manchado et al. 1996). There is general agreement as to the clas-
sification for more than 90% of the PN but there are cases of dis-
agreement. Stanghellini et al. have classified IC 4191, NGC 5315
and NGC 6369 irregular, but we follow all other observers (e.g.
Phillips 2003) in calling them E or R. There is also speculation
in the literature concerning the uncertainty introduced by projec-
tion effects but we have not attempted to include this uncertainty.

2.1. Nitrogen/oxygen ratio

As discussed above, we have investigated the abundances in a
large number of PNe using the mid and far infrared observa-
tions from ISO or Spitzer.The resulting abundances are summa-
rized in Table 1, which has been taken mostly from Pottasch &
Bernard-Salas (2008) but include a few new results. We regard
these results as more accurate than other abundances found in
the literature and have the advantage that they have been derived
in the same way, which is why we have only used this sample.

A histogram of the nitrogen/oxygen (N/O) ratio for the
33 PN listed in Table 1 is plotted as Fig. 1. Six of the seven bipo-
lar nebulae have a very high log N/O ratio, between 0 and 0.4.

Fig. 1. Histogram of the nitrogen/oxygen ratio of the PNe listed in
Table 1. Round PNe are not included in this plot because of the small
number of objects.

The single exception to this is NGC 6445 which clearly has a
lower value. Of the five round nebulae (not plotted), four have
values of log N/O less than −0.66. The fifth nebula (NGC 5315)
has a much higher log N/O ratio (−0.05), closer to that of
the bipolar PN. All the elliptical nebulae have log N/O less
than −0.8, but mostly in the range −1.0 to −0.4, with the ex-
ception of M1-42. This is a rather weak nebula and has been less
well studied than the other PN. Thus we confirm the correla-
tion between shape and N/O ratio and show that the morphology
seems to change at a log N/O ratio of about −0.1.

2.2. Helium vs. N/O

The helium, nitrogen and oxygen abundances with respect to hy-
drogen are listed in Table 1. The values of N/O are plotted in
Fig. 2 as a function of He/H. The elliptical PNe are plotted as di-
amonds and the bipolar PNe as asterisks. It can be seen that six
of the seven bipolar nebulae lie on the upper right hand side of
the figure, while NGC 6445 lies somewhat by itself with a rather
low N/O ratio but a rather high value of He/H. The two elliptical
PNe which have a high N/O ratio and thus lie close to the six
bipolar nebulae are M1-42 and NGC 5315. The abundances pre-
dicted by Karakas (2003) for stars of different initial masses are
labeled with numbers in the figure indicating the masses used.
These masses are connected with lines for each of the three dif-
ferent values of heavy element abundance Z.

An individual comparison between the observed abundances
and those predicted by Karakas is difficult because the initial
values of helium and the heavy elements (Z) is not known for
the PNe. The value of Z can be partially computed from the ob-
served abundances but several important elements are not ob-
served. Even for observed elements such as oxygen and carbon
it is possible (although unlikely) that important amounts are tied
up in dust and therefore not observable. But still important con-
clusions can be drawn from Fig. 2. First of all, the observed
points appear to lie between the curves for Z = 0.02 and 0.008,
i.e. there is a general agreement between the predicted and ob-
served abundances. Four PNe seem to be in the range of PNe
with initial mass greater than 5 M�. Three of them are bipo-
lar nebulae: NGC 6302, NGC 6537 and He2-111. They appear
to have passed the stage of hot-bottom burning. The fourth PN,
M1-42, is difficult to compare with the theoretical curves be-
cause the high abundances indicate that it may have a high value
of Z, and perhaps a high initial helium abundance since it lies
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Fig. 2. The N/O abundance ratio is plotted as a function of He/H. The
dashed lines connect the results of the models of Karakas for a given
value of Z. The ciphers give the initial masses of the individual mod-
els. The individual measured PN abundances are from Table 1. Those
referred to in the text also have their names given.

much closer to the galactic center than the other PNe. Three
other bipolar PNe, NGC 2440, Hb5 and Hu1-2 appear to have
a slightly lower initial mass, between 4 M� and 5 M�, a value
of Z = 0.008 or somewhat higher, and have also have under-
gone hot-bottom burning, which destroys carbon to produce ni-
trogen and possibly some oxygen as well. The elliptical neb-
ula NGC 5315 is also in this category. The three elliptical PNe
NGC 6153, NGC 6886 and NGC 2392 have rather high N/O ra-
tios indicating initial masses slightly above 4 M�. They have
different He/H ratios however which could indicate that they are
stars of different initial helium abundances. All the other PNe are
very close to the Z = 0.008 curve for stars between initial masses
of 1 M� and 4 M�, and are all elliptical PNe. The only exception
is the bipolar PN NGC 6445, whose N/O ratio indicate that it is
in this initial mass range but it has a much higher He/H ratio and
therefore difficult to understand. The large majority of the nebu-
lae can be interpreted with central star masses which agree with
the helium and nitrogen abundances predicted by Karakas.

2.3. The Carbon abundance

The question now arises whether the observed carbon abun-
dances fit into this picture. Carbon abundances are somewhat
more uncertain than nitrogen abundances because all the observ-
able ions are in the ultraviolet which makes them much more de-
pendent on correct extinction and electron temperature determi-
nation. We lack four determinations of carbon in these nebulae
because of the very large extinction in the ultraviolet spectrum
of these nebulae which made it impossible to measure the carbon
lines. In Fig. 3 the N/O ratio has been plotted against the C/O ra-
tio for those PNe with carbon abundances. The predicted values
of these ratios (Karakas 2003) as a function of stellar mass for
initial values of Z = 0.004, 0.008 and 0.02 are shown as points
connected by dashed lines. It may be seen that a very similar
picture emerges as that drawn from the N/O vs. He/H plot. The
only three PNe which are close to the 5 M� and 6 M� lines are
again the bipolar nebulae NGC 6302, NGC 6537 and He2-111.
M1-42 now is separated from this group and is in the neigh-
borhood of the two other bipolar PNe Hu1-2 and NGC 2440. In
Hb5 the extinction is too high for the carbon lines to be mea-
sured. The last bipolar nebula, NGC 6445 is again at a position
of lower initial mass. Again NGC 5315 and NGC 6153 are at

Fig. 3. N/O plotted against C/O. The lines and points are the same as in
the caption to Fig. 2.

a position predicted for a mass of 4.5 M�, as are NGC 2392
and NGC 6886. The low helium abundance of these two PNe
placed them in a more anomalous position in Fig. 2, but both
the N/O and C/O ratios indicate that they are evolved from stars
of initial mass somewhat more than 4 M�. NGC 6741 has about
this mass as well.

The remaining PNe have lower initial mass. When the
C/O ratio greater than unity and the log N/O ratio is less
than −0.46, the initial mass is probably between 2 M� and
3.5 M�. Probably the nebulae IC 418, IC 2165, NGC 40,
NGC 7027, IC 2448, Me 2-1, BD+30 3639 and NGC 6826 are in
this category. A log C/O ratio lower than −0.15 combined with
a log N/O ratio less than −0.46 indicates an initial mass less
than 2 M�. The extreme example is the central star of NGC 6210
which probably has the smallest initial mass (equal to or less
than unity). Because the initial stellar abundances are not known
this should only be taken as an indication.

3. Stellar mass and luminosity

After the thermally pulsing AGB phase terminates, low to inter-
mediate mass stars evolve at near constant luminosity to higher
temperature. The ejected envelope becomes ionized and it is
seen as a planetary nebula. Models made of single star evolu-
tion through this phase (Schönberner 1983; Vassiliadis & Wood
1993; Blöcker 1995) show that the constant stellar luminosity is
a strong function of the core mass of the star. Thus determination
of the luminosity provides a second method of determining the
initial stellar mass which may be compared to the mass found
from the abundances in the previous section. This is the purpose
of the present section. First the effective temperature will be dis-
cussed, then the radius of the central star will be found using the
visual magnitude of the central star. The distance of the PN plays
an important role in determining the luminosity and a subsection
is devoted to this subject.

The stellar luminosity can also be determined by measure-
ments of the planetary nebula alone, even when the central star
is not visible. The measurement used is either the amount of ra-
diation which will ionize hydrogen or the amount of radiation
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Table 2. Comparison of measured stellar magnitudes.

Nebula (1) (2) (3)
NGC 2440 17.63 17.49 17.6
NGC 7027 16.04 16.53 16.18

which will doubly ionize helium. For the first case all the hy-
drogen ionizing radiation must be measured i.e. no ionizing ra-
diation can escape from the nebula without causing at least one
hydrogen ionization. For the second case this must be true for ra-
diation which doubly ionizes helium. The luminosity determined
in this way can be directly compared with that determined from
the measurement of the central star. This is because both meth-
ods have the same dependence on the PN distance so that the
distance is unimportant in the comparison. Interesting conclu-
sions can be drawn about the “optical thickness” of the nebula
as well.

3.1. Stellar temperature

The effective temperature of the central stars can be determined
from the Zanstra method providing the spectral distribution of
radiation resembles that of a blackbody and that all the photons
which are able to ionize both hydrogen and ionized helium are
actually absorbed, i.e. the nebula is “optically deep” for these ra-
diation fields. This is because the Zanstra method compares the
total amount of ionizing radiation (every photon which ionizes
hydrogen produces a single Hβ photon and the Hβ flux is mea-
sured) with the flux in the visible part of the spectrum (as mea-
sured by the stellar visual magnitude). Consider first the stellar
magnitude determination.

3.1.1. Stellar magnitude

The difficulty in measuring the magnitude of the central star is
the result of the presence of nebular emission in the diaphragm.
This must be large enough so that the star remains in the di-
aphragm. This is especially difficult when the star is very faint
in the visible. In recent years this situation has improved: Hubble
Space Telescope (HST) measurements have become available so
that the image of the star is no longer broadened by the seeing.
For most of the faint central stars magnitudes from the HST are
now available. These are listed in the second column of Table 4.
Theseare measured values and they must still be corrected for
extinction. The extinction constant C is listed in Col. 3 and the
reference in Col. 4 of the table. The accuracy can be judged by
comparing the two central stars for which multiple measure-
ments are available; these are shown in Table 2,

where Col. (1) are the HST measurements of Wolff et al.
(2000), Col. (2) are HST measurements of Ciardullo et al. (1999)
and Col. (3) are the ground based measurements made by Heap
& Hintzen (1990a). Very faint central stars are difficult to mea-
sure. We list the HST measurement of Matsuura et al. (2005) for
NGC 6537 in Table 4 but for NGC 6302 and He2-111 the central
stars are too faint or too obscured to permit measurement.

3.1.2. Stellar radius

Once the stellar magnitude is known, the stellar radius can be
determined if the distance is known. This uncertain quantity will
be discussed presently; the distances used are listed in Col. 10 of

Table 4. Further it is assumed that the stars radiate as blackbodies
so that the following equation can be used:

(RS

d

)2
= 4.808 × 10−18 ×

(
e

1.439
λT − 1

)
× 10

−mvo
2.5 (1)

where d is the distance, λ is 5480 Å, T is the stellar temperature
and mvo is the magnitude after correction for extinction. The re-
sultant stellar radius is listed in Col. 11 of Table 4. The stellar
temperature used is listed in Col. 8 of Table 4 and is discussed
below. It does not have a large effect on the value of the radius.

3.1.3. Zanstra temperature

The Zanstra temperature measures the ratio of the amount of
ionizing radiation to the amount of radiation in the visual spec-
trum. TZ(H) uses the Hβ flux and thus measures the amount of
radiation which can ionize hydrogen, while TZ(HeII) measures
the amount of radiation which can completely ionize helium. In
converting the ratio to a temperature it is assumed that the stellar
spectrum is a blackbody, that all the ionizing radiation is ab-
sorbed by the nebula, and that the continuum visual flux is mea-
sured by the stellar magnitude.

Zanstra temperatures have been measured for many years
and several papers have published extensive tables of these tem-
peratures (e.g. Phillips 2003). The most uncertain measurement
in the determination is the stellar magnitude because, as dis-
cussed above, nebular light must be avoided. The values we have
found are listed in Cols. 5 and 6 of Table 4 and are not essentially
different from those given in the literature. One of the most dis-
cussed aspects of the results can be seen in the table: in about
30% of the nebulae the value of TZ(H) is substantially lower than
TZ(HeII). The reason for this has been debated in the literature;
the most often cited reason is the assumption that the nebula is
“optically deep” to radiation which ionizes hydrogen is wrong
and that some of this radiation escapes the nebula without being
registered. This has the consequence that TZ(H) is too low and
that TZ(HeII) is the more nearly correct value. It is difficult to
confirm this because not only is the total nebular mass uncertain,
its distribution in the nebula is also unknown. Another explana-
tion for this difference could also be that the stellar spectrum is
not well represented by a blackbody.

3.1.4. Energy balance temperature

The Energy Balance method, first introduced by Stoy (1933),
measures the average excess energy per ionizing photon. This
can be found from the ratio of the intensity of collisionally ex-
cited nebular lines to Hβ. It has the advantage that only the neb-
ular spectrum has to be known; no measurement of the central
star flux is necessary. It has the further advantage that it is ap-
plicable both to optically thin as well as optically thick nebulae.
The method is also independent of the nebular model as long
as all the collisionally excited lines are measured. In practice
sometimes a correction must be made for unmeasured lines. The
entire spectrum must be measured but for most PN the visible
and ultraviolet lines are the most important. For very low tem-
perature central stars the infrared nebular spectrum can be the
most important.

Once the ratio of collisional line intensity to Hβ (called R)
is known a difficulty arises in interpreting this measurement in
terms of a stellar effective temperature; it is necessary to know
whether the star emits as a blackbody or some particular model
atmosphere. Since this is not known it is assumed here that the
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star emits as a blackbody. Preite-Martinez & Pottasch (1983)
have calculated the effective temperatures found when a vari-
ety of model atmospheres of different effective temperatures are
used as ionizing source. They found that for a fixed value of the
ratio R the model atmospheres give a slightly lower value of ef-
fective temperature than the blackbody.

The exact status of the nebula also has an effect on the effec-
tive temperature found. Preite-Martinez & Pottasch (1983) cal-
culated three cases. In the first case the nebula is optically thin to
all ionizing radiation. In the second case the nebula is optically
thick to He+ ionizing radiation and in the third case the nebula
is optically thick to all ionizing radiation. These authors com-
pare the effective temperatures derived for 52 central star using
all of these three assumptions. They find that all three assump-
tions give similar results. We have redone the calculations using
the case which is thick to He+ ionizing radiation and thin to hy-
drogen ionizing radiation (case two); the effective temperatures
found are listed in Col. 8 of Table 4. As can be seen from the
table, temperatures can now be found even when the central star
is unobservable. The Energy balance temperature is rather simi-
lar to the HeII Zanstra temperature TZ(HeII), sometimes slightly
lower, sometimes slightly higher.

3.1.5. Spectroscopic temperatures

Stellar temperatures may also be obtained from a model atmo-
sphere analysis of the spectrum. Because high resolution spectra
are needed this has only been done for very bright stars. The
results can be found in Mendez et al. (1988), Kudritzki et al.
(1997) and Pauldrach et al. (2004). As Pauldrach et al. (2004)
point out, the model atmosphere analysis is difficult; the results
using hydrogen line profiles can differ according to which hydro-
gen line is used. Mendez et al. (1988) and Kudritzki et al. (1997)
base their temperatures on the analysis of hydrogen and helium
line profiles while Pauldrach et al. (2004) base their tempera-
tures on the analysis of metal line profiles in the ultraviolet. The
results are quite similar. The results are given in Table 3 where,
considering the consistency of the different determinations, we
estimate the error to be of the order of 10 to 15%.

Although only six spectroscopic temperatures have been
measured for our nebulae, it is interesting to compare them with
what has been found from the Zanstra and Energy Balance meth-
ods. For two of the nebulae, IC 418 and NGC 6826, no TZ(HeII)
can be measured. In both cases there is good agreement be-
tween the spectroscopic temperature and Teff derived from TZ(H)
and TEB. In two other cases, NGC 3242 and NGC 1535, there
is reasonably good agreement between the spectroscopic tem-
perature and Teff derived from TZ(HeII) and TEB, but definitely
higher than that found from TZ(H). This could also be true for
IC 2448 because the spectroscopic temperature is more uncer-
tain for this central star. It is definitely not true for the central
star of NGC 2392 where both TZ(HeII) and TEB indicate a very
much higher temperature. This will presently be discussed in
more detail.

3.1.6. Effective temperature

In Col. 8 of Table 4 the estimated value of the effective tem-
perature Teff is given. For those PNe where both TZ(HeII) and
TEB have been measured, they are always quite similar. Of these
27 cases the average value of Teff is similar (within 15%) to
the hydrogen Zanstra temperature TZ(H) in 15 cases. In the
other 12 cases TZ(H) is considerably lower than Teff , possibly

Table 3. Spectroscopic temperatures.

Nebula Teff
1 Teff

2 Teff
3

NGC 2392 40 000 45 000 47 000
NGC 3242 75 000 75 000 75 000
IC 418 39 000 37 000 36 000
NGC 6826 44 000 50 000
NGC 1535 70 000
IC 2448 65 000

Notes. (1) Pauldrach et al. (2004); (2) Kudritzki et al. (1997); (3) Mendez
et al. (1988).

indicating that the nebulae are optically thin. We shall return
to this subject in the next section. Four of the nebulae are not
hot enough to form a substantial amount of ionized helium. In
these cases substantial weight is given to TEB which in two cases
is very similar to TZ(H). In the other two cases TEB is higher
than TZ(H) and an average of the two temperatures is used. For
Mz 3 the temperature is determined from the best fitting nebular
model (see Pottasch & Surendiranath 2005c). The value of Teff
for NGC 6302 is discussed below.

3.2. PN distances

Distances to PNe are uncertain because the usual method for as-
tronomical distance determination, parallax, is applicable to only
a very limited number of nebulae. In this situation two options
are available. One can use less accurate methods for determin-
ing individual distances or one can assume that all nebulae have
a particular property in common and use this property to obtain
a statistical distance. There is an extensive literature for deter-
mining distances with the assumption that all nebulae have the
same ionized mass. Especially the work of Cahn et al. (1992)
or more recently the work of Stanghellini et al. (2008), which
calibrates the mass using Magellanic Cloud PNe measurements,
have been used. Both these determinations assume that the PNe
are optically thin to hydrogen ionizing radiation but attempt to
correct this assumption for the smaller high density nebulae.

The statistical distances will not be used here because PNe
evolve from stars of a wide range of stellar masses and we do
not wish to exclude the possibility that PNe of different stellar
mass produce nebulae with different properties. Averaging any
of these properties may lead to systematic errors in the individ-
ual distances found from these average properties. This in turn
could introduce systematic errors in evolution calculations made
using them. In addition Ciardullo et al. (1999) measured accurate
distances of a small sample of binary PNe and concluded that for
these nebulae the statistical distances are overestimates. Instead
we determine distances using three methods which, while giv-
ing somewhat more uncertain individual distances, are much less
likely to have systematic errors.

These methods are well known and are long in the literature.
The first method is the expansion distances where the expansion
is measured at two epochs, usually separated by 3 to 5 years. The
measurements are made in both the optical (HST measurements
are desirable) and at radio frequencies (VLA measurements are
usually used). Expansion velocities must also be known but they
cannot be measured in the plane of the sky in which the expan-
sion is observed. The measured radial velocities are therefore
used in the hope that these are very similar. In addition there
may be gradients in the velocity which must be taken into ac-
count. Because the nebular density decreases between the two
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Table 4. Central star magnitude, temperature and luminosity.

PNe mV C Ref. TZ(H) TZ(HeII) TEB Teff Hβ dist RS/R� LS/L�
meas. (3) (4) (5) (6) (7) (8) ×1011 kpc (11) (12) (13) (14)

BD+30 10.28 0.50 9 31 500 30 000 30 000 29.5 1.0 1.66 1870 2450
Hb 5 17.1 1.60 8 105 000 130 000 145 000 140 000 11.9 2.3 0.128 5600 2700 4550
He 2-111 200 000: 1.34 2.5 650
Hu 1-2 17.76 0.60 6 100 000 145 000 130 000 140 000 2.22 1.5 0.0335 390 210 540
IC 418 10.23 0.33 1 34 000 36 000 35 000 58.3 1.0 1.3 1850 3700
IC 2165 17.47 0.59 2 132 00 135 000 120 000 134 000 4.98 1.5 0.0774 1750 1810 2680
IC 4191 16.4 0.48 11 79 000 90 000 97 000 90 000 5.25 2.1 0.099 580 750 1300
M 1-42 17.4 0.63 h 63 000 81 000 100 000 85 000 1.0 5.0 0.179 1500 810 1690
Me 2-1 18.40 0.28 2 130 000 145 000 142 000 145 000 0.935 2.3 0.0273 300 210 480
Mz 3 1.65. 39 500 29.6 1.3 2300
NGC 40 11.55 0.605 1 35 000 40 000 38 000 17.3 0.8 0.683 875 570
NGC 2022 15.75 0.38 1 11 59 000 108 000 105 000 108 000 1.79 1.8 0.099 1200 220 1500
NGC 2440 17.63 0.50 2 208 000 205 000 180 00 200 000 9.1 2.0 0.037 2000 1900 2100
NGC 5315 14.3 0.54 3 65 000 76 000 66 000 70 000 13.3 2.0 0.306 2020 1720
NGC 5882 13.42 0.33 1 50 000 64 000 70 000 67 000 12.7 1.2 0.231 979 590 1070
NGC 6153 15.55 1.14 1 77 000 87 000 80 000 82 000 21.5 1.2 0.169 1200 1000 2000
NGC 6302 300 000: 300.000: 56. 1.6 8000 7400
NGC 6445 18.72 1.06: 3 185 000 175 000 175 000 180 000 8.7 1.8 0.0348 1200 1380 1170
NGC 6537 21.6 1.79 5 410 000 350 000 350 000: 12.8 2.0 0.0147 2950 4200 3700
NGC 6543 11.29 0.10 1 47 000 58 000 56 000 30.8 1.0 0.457 1840 1050
NGC 6741 20.09 1.1 4 205 000 219 000 230 000 220 000 4.1 1.9 0.184 710 850 400
NGC 6818 17.02 0.35 3 140 000 155 000 138 000 145 000 7.43 2.0 0.048 940 1270 2150
NGC 6886 18.76 0.70 6 145 000 145 000 156 000 152 000 2.34 2.6 0.038 680 670 690
NGC 7027 16.07 1.3 2 10 165 000 160 000 234 000 180 000 134. 0.9 0.0716 4820 5300 4100
NGC 7662 14.00 0.18 1 80 000 108 000 95 000 103 000 15.3 1.2 0.118 1400 770 2500
IC 2448 14.26 0.27 1 48 000 83 000 91 400 85 000 2.35 1.4 0.147 1160 151 850
NGC 2392 10.63 0.22 1 37 000 78 000 80 000 80 000 6.83 1.5 0.845 26000 490 4450
NGC 6826 10.68 0.07 1 34 000 45 000 42 000 12.8 1.4 0.98 2680 1120
NGC 3242 12.32 0.12 12 57 000 90 000 70 000 80 000 21.4 0.55 0.14 740 260 1600
NGC 6369 15.91 2.12 3 12 69 000 71 000 70 000 70 000 61.6 1.2 0.40 3250 2850 2900
NGC 6210 12.66 0.14 7 51 000 61 000 69 000 65 000 11.0 1.57 0.36 2070 890 1060
NGC 2792 16.89 0.80 1 11 82 000 135 000 126 000 130 000 3.05 1.9 0.079 1600 430 1570
NGC 1535 12.11 0.08 1 40 000 76 000 87 000 80 000 4.8 2.1 0.519 9900 680 2500

Notes. Hβ in units erg cm−2 s−1, Col. 7 is the energy balance temperature, Col. 8 is the effective temperature, Col. 12 1s the luminosity found
from the magnitude and effective temperature of the central star, Col. 13 is the luminosity found from the nebular hydrogen line, Col. 14 is the
luminosity found fron the nebulae ionized helium line.

References. 1) Ciardullo et al. (1999); 2) Wolff et al. (2000); 3) Gathier & Pottasch (1988); 4) Sabbadin et al. (2005); 5) Matsuura et al. (2005);
6) Heap et al. (1990b); 7) Pottasch et al. (2009); 8) Tylenda et al. (2003); 9) Crowther et al. (2006); 10) Zijlstra et al. (2008); 11) Preite-Martinez
et al. (1991); 12) Pottasch & Bernard-Salas (2008).

measured epochs, the ionization front appears to move more
quickly than the matter and this must also be taken into ac-
count. A discussion with many results is given by Terzian (1997)
and the effect of the ionization front is discussed by Mellema
(2004). In addition, Schönberner et al.(2005) have made and
applied kinematic models of several PNe to obtain expansion
distances. There is general agreement for the four PNe com-
mon to the results of both Mellema (2004) and Schönberner
et al.(2005), which indicate some of the expansion distances
given by Terzian (1997) should be increased. The increases de-
pend on the individual models and are thus uncertain. Both au-
thors estimate that the results Terzian (1997) should on average
increase by about 30%. These possible increases are taken into
account in our distance estimates, although other methods, es-
pecially extinction distances, may place important limits on the
increase. For the PNe we are discussing 9 expansion distances
are known (NGC 3242, NGC 6210, NGC 6302, NGC 6543,
NGC 7027, NGC 7662, IC 418, IC 2448 and BD+30 3639).

The second method is the extinction distance. In this method
the extinction of field star of known distance located within a
small distance from the nebula in the plane of the sky (usu-
ally less than 0.5 degrees) is measured and a plot is made of

reddening as a function of distance in that direction. The red-
dening of the PNe is placed on this diagram and the distance
read off. This method assumes that the extinction is rather uni-
form over the 0.5 degrees (or smaller) used, and that the PNe
is located in the galactic plane where the extinction increases
with distance. This is a rather time consuming process. It has
been done for NGC 2440, NGC 2792, NGC 5315, NGC 5882,
NGC 6543, NGC 6741, NGC 7027 and IC 2448 among the PNe
we are interested in (see Gathier et al. 1986a; Martin 1994).

There is a variant of this method which instead of measur-
ing the extinction of the PN and nearby sources, measures the
21 cm neutral hydrogen radio line absorption of the PN and
nearby sources. This method has the advantage that the velocity
of the absorption line is measured so that it may be ascertained
whether the nebula is on the near or far side of a particular spi-
ral arm. This method has been used for NGC 6369, NGC 6537,
NGC 6886 and NGC 7027 (of the PNe which interest us). This
method is again limited to PNe near the galactic plane (see
Gathier et al. 1986b).

In addition use can be made of the average extinction (in
magnitudes per kpc) in various directions. Such maps have been
made by several authors but because a relatively limited number
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of stars are used, these maps are averages over relatively large
areas and are more uncertain than when a small area is studied
in depth. Results of this method are given for a large number
of PNe by Pottasch (1984) and Sabbadin (1986). The results of
these two authors generally agree when the same nebulae are
compared. We will use them when no other individual distance
is available.

Another method of distance determination is from the spec-
troscopic measurements of the central star. These measure-
ments have already been discussed in Sect. 3.1.5 for determin-
ing the central star temperatures for which, with the exception
of NGC 2392, reasonable agreement was obtained with the tem-
peratures found from the nebular spectrum. The same discus-
sions (Pauldrach et al. 2004; Kudritzki et al. 1997; and Mendez
et al. 1988) derive the distance and mass of various bright cen-
tral stars. These distances are not included in the present dis-
cussion. The reason for this is the following. The large masses
and distances found by Pauldrach et al. are improbable. This
has been convincingly demonstrated by Napiwotzki (2006), who
found that the kinematic properties of these nebulae are inconsis-
tent with the masses and distances given by these authors. This
reasoning can be extended to the distances found by Kudritzki
et al. which are very similar. Some, but not all, of the distances
found by Mendez et al. (1992) are similar to those given by
Pauldrach et al. and Kudritzki et al. There are six PNe in com-
mon between Mendez et al. and those used by us. For one PN,
NGC 1535, the same distance is given. For two other nebulae,
IC 2448 and NGC 3242 there is a strong discrepancy between the
expansion distance as given by Mellema (2004) or Schönberner
et al. (2005) in the sense that Mendez et al. give values of 3.5 and
1.8 kpc while the expansion distance is considerably lower, 2.1
and 0.55 kpc respectively. For the remaining 3 PNe, NGC 6826,
NGC 2392 and IC 418 our individual distances are about 45%
smaller than those given by Mendez et al. (1992). For the single
PN for which an optical parallax is available, NGC 7293, Harris
et al. (2007) measure a distance of 219 pc while Mendez et al.
(1992) give the higher value of 300 pc. We regard the values of
Mendez et al. as rather high and do not give tham much weight.

Distances may also be determined from the nebular spec-
trum. When making a model of the nebula to explain, not only
the relative intensity of the lines relative to hydrogen, but the
absolute hydrogen line intensities as well, the distance of the
nebula is one of the unknown quantities (along with the stellar
radius and temperature and the nebular density and temperature).
Our experience with such models indicate that the distances de-
termined in this way have an accuracy of about 20%. Model
distances are available for NGC 2792, NGC 6826, NGC 6886,
NGC 6741, NGC 6445, Hu1-2, Hb5, Me2-1 and Mz3. In addi-
tion the distance to NGC 1535 has been measured by the fact
that it is a double star and the companion has a spectroscopic
parallax.

In this way individual distances are known for 32 of the
33 PNe being studied. The only exception is He2-111 for which
a statistical distance has been used. We feel that the distances
listed in Table 4 are an improvement over the older ones shown
in our previous paper.

3.2.1. Comparison with statistical distances

In the above we have discussed the reason for not using the sta-
tistical distances. Here we compare the individual distances with
the statistical distances found in the literature. There are two rea-
sons for doing this. First, to show that on average the statistical
distances are not very different from the individual distances.

This is to counter a possible remark when the nebular lumi-
nosities are discussed, that increasing PNe distances by a large
amount is a reasonable alternative. Secondly we wish to demon-
strate that bipolar PNe are affected in a different way than ellip-
tical PNe when statistical distances are determined, thus demon-
strating the bias discussed above.

There are many statistical distance scales in the literature and
for clarity only two of them will be discussed here. These are the
often used scale of Cahn et al. (1992, hereafter CKS) who cali-
brate distances using “well known” PNe distances, and the more
recent distances of Stanghellini et al. (2008, hereafter SVV) who
make use of the PNe in the Large Magellanic Cloud as calibra-
tors. Both scales assume that all PNe are optically thin to hydro-
gen ionizing radiation and have the same ionized mass, but in
both scales a correction to this assumption is made for nebulae
considered optically thick. The differences between the distances
given by these two sources is usually not large.

Of the 32 PNe (excluding He2-111 for which no individual
distance is available), the individual distances to 20 nebulae are
found to be the same as the statistical given by CKS, 8 PNe have
larger individual distances and 4 PNe have smaller individual
distances. Compared to the distances given by SSV, 14 PNe have
the same distance, 2 PNe are larger than given by SSV and 11
PNe have smaller distances. Having the same distance is defined
as being within 33% of the larger of the two distances. Note
that in the comparison with SVV there are slightly less PNe in
common.

But if only the bipolar nebulae are considered a somewhat
different picture emerges. Of the 7 bipolar nebulae (again ex-
cluding He2-111) the distances to 5 of them are larger than given
by CKS, 2 are at the same distance and there are no PNe at
smaller distances. For SVV these numbers are 2, 3 and 0 re-
spectively. Thus while the individual distances are rather similar
to the statistical distances for the whole sample, they are on the
whole larger than the statistical distances for the bipolar nebulae.
This illustrates the danger of using statistical distances which av-
erages out the differences in different classes of nebulae. For the
two PNe which on the basis of the nebular abundance evolve
from the most massive stars, NGC 6537 and NGC 6302, we find
distances twice as high as given by CKS or SSV.

3.3. Luminosity

3.3.1. Luminosity from central star.

Once the effective temperature Teff , the stellar radius, and the
distance to the PNe are known the luminosity can be calculated.
Using the relation:

LS/L� = (RS/R�)2 × (Teff/T�)4 (2)

the stellar luminosity given in Col. 12 of Table 4 is found. It is
difficult to estimate the error of this luminosity. The distance is
not well known so that the error could be as much as 30%; for in-
dividual objects it might be even higher. This introduces an error
of a factor of two in the luminosity and is probably the largest
error. The stellar magnitude and extinction value are probably
reasonably well known and are not likely to introduce an error
of more than 20% unless the wrong star has been measured. We
shall return to this presently. The effective temperature, which is
related to the assumption of blackbody radiation, may also be in
error. An error of 10% in temperature leads to an uncertainty of
40% in luminosity.
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3.3.2. Luminosity from nebular emission

The luminosity can also be determined from the emission lines
of either hydrogen or ionized helium, at least when the nebula
absorbs all the ionizing radiation. Consider hydrogen: every pho-
ton with energy greater than 13.6 eV emitted by the central star
ionizes one hydrogen atom and then produces a single Hβ pho-
ton. Thus the Hβ luminosity can be converted to the total lumi-
nosity of the star above 13.6 eV. When the temperature is known
this can be converted to the total stellar luminosity. This may be
written as:

LS/LHβ = C1 × T/G1(T ) (3)

where

C1 =
π4kαB(H)

15hνHβαHβ
(4)

LHβ = 4πd2FHβ (5)

and G1(T) is an integral shown as Eq. (VII-8) whose values
are tabulated in Table VII-4 by Pottasch (1984). FHβ is listed in
Col. 9 of Table 4. The luminosity computed in this way has al-
ready been used by Pottasch & Acker (1989). It is similar to the
Zanstra method in the assumptions as well as in the equations.
Like the Zanstra method the luminosity can also be computed
from the λ4686 Å line of ionized helium. The equations then
become:

LS/L4686 = C2T/G4(T ) (6)

where

C2 =
π4kαB(He+)

15hν4686α4686
(7)

LHe4686 = 4πd2F4686 (8)

where the references are the same as above.
The function T/Gx(T ) has a minimum value for both hy-

drogen and ionized helium. For hydrogen the function does not
change by more than 25% between temperatures of 45 000 K
and 150 000 K. Within this range small errors in the temperature
will have only a reasonably small effect on the luminosity.
Outside of this range, and especially at the lower temperatures,
an error in the temperature will have a much larger effect. This
should be taken into account when comparing the luminosities
determined in the different ways. For the luminosities found
from the ionized helium line, the range of temperature where
the effect is small is between 140 000 K and 800 000 K. Again a
small error in temperature will have a much large effect at lower
temperatures. This is illustrated in the PN NGC 6302. The cen-
tral star, which is not visible, has an uncertain energy balance
temperature of 300 000 K (Preite-Martinez & Pottasch 1983).
The luminosity computed from the λ4686 line is 7400 L�. This
value is only slightly dependent on the temperature between
200 000 K and 500 000 K. The value found from the Hβ line
is much more sensitive to the temperature and only at a value
close to 300 000 K can the same luminosity be computed. This
fixes the temperature.

The luminosities found from the Hβ line are listed in Col. 13
of Table 4, and the luminosities found the λ4686 line are given
in Col. 14 of the same table.

3.3.3. Comparison of stellar and nebular luminosities

Both the stellar and nebular luminosities have the same depen-
dence on the distance so that a comparison of the two does not
involve the distance.

On making this comparison the general impression is of rea-
sonably good agreement between the stellar and nebular lumi-
nosities. On closer inspection we can distinguish several cases.
Case 1 are those PNe where the stellar luminosity (Col. 12 in
Table 4) and the λ4686 luminosity (Col. 14) agree and are both
higher than theHβ luminosity. We regard these PNe as optically
thin to hydrogen ionizingradiation and optically thick to radia-
tion which doubly ionizes helium. For these cases we use the
average of Cols. 12 and 14 as the luminosity of the exciting star.
There are eight cases: Hb5, Hu1-2, M1-42, Me2-1, NGC 2022,
NGC 5882, IC 2448 and NGC 2792. In case 2 are those nebulae
where all three luminosities agree. These are regarded as op-
tically deep to both hydrogen and doubly ionized helium. For
these eight cases the average value of all three luminosities is
used. These are NGC 2440, NGC 5315, NGC 6445, NGC 6537,
NGC 6886, NGC 6369, NGC 6741 and NGC 7027. Then there
are those nebulae (case 3) where the stellar luminosity agrees
with that determined from the Hβ luminosity, while that deter-
mined by the doubly ionized helium luminosity is about a factor
of two higher. This is probably due to the use of a slightly too
low effective temperature, since in all cases the temperature de-
pendence of the luminosity is quite large. The PNe involved are
IC 2165, IC 4191, NGC 6153 and NGC 6818. Here the stellar lu-
minosity is used (Col. 12). These PNe are considered optically
thick to all ionizing radiation fields. It is likely that NGC 7662
and NGC 3242 should be included in this group because here
again the doubly ionize helium luminosity is about twice the
stellar luminosity, but because these nebulae are optically thin
to hydrogen ionizing radiation the hydrogen luminosity is lower.
Case 4 are the five PNe which have low temperature central
stars and thus do not have a HeII luminosity. Since these neb-
ulae have low temperature central stars the nebular luminosity
is a very strong function of the temperature. For these five PNe
(BD+30 3639, IC 418, IC 40, NGC 6543 and NGC 6826) we use
an average luminosity giving double weight to luminosity deter-
mined from the star.

We have now discussed 30 of the 33 PNe. For NGC 6210 the
stellar luminosity is twice the nebular luminosity. We will use
an average value of the three luminosities listed. The problem
concerning NGC 2392 is greater. The stellar luminosity for this
object is an order of magnitude greater than the nebular lumi-
nosity. It is also much greater than for all the other nebulae. The
problem probably lies with the temperature we have assigned to
this star. As discussed in Sect. 3.1.5 and Table 4 the spectrum
of this star is not more than 50 000 K, much less the value of
80 000 K which has been used. But a blackbody of 50 000 K does
not have enough ultraviolet radiation to produce the observed
nebular spectrum. Thus there must be an additional source of
ultraviolet radiation. This could be another hotter star. This has
been suggested several times in the literature because of the in-
compatibility of the nebular and stellar spectrum. Ciardullo et al.
(1999) have examined HST photographs of this nebula and have
found a faint star at 2.65′′ from the bright “central star”. This star
is only seen through the red (I) filter; it is invisible in the visible
(V). It is therefore likely to be a red star unless it has a very un-
usual spectrum. In any case, the stellar luminosity listed for this
star in Table 4 is certainly not correct. If one wishes to assign
a luminosity to the exciting star, we suggest using the nebular
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luminosity found from the λ4686 line. The PNe is clearly opti-
cally thin to radiation capable of ionizing hydrogen.

The luminosities for NGC 1535 show a great similarity to
those of NGC 2392. Again the stellar luminosity is consider-
ably higher than the nebular luminosities and the nebula is opti-
cally thin to radiation capable of ionizing hydrogen. But in this
case the effective temperature which we have assigned to the
central star is not very different from the spectroscopic temper-
ature shown in Table 3 (although only a single determination is
available). It is possible that in this case the nebula is optically
thin to radiation capable of doubly ionizing helium. We find it
difficult to assign a luminosity to this central star.

There are 25 PNe which have both hydrogen and ionized he-
lium Zanstra temperatures. We define the ratio TZ(HeII)/TZ(H)
as the Zanstra ratio. Ignoring NGC 6210, there are 12 optically
thick PNe and 12 optically thin PNe as found above by a con-
sideration of their luminosities. The Zanstra ratio for the 12 op-
tically thick PNe varies between 0.95 and 1.17 with a median
value of 1.03. For the 12 optically thin PNe the Zanstra ra-
tio varies between 1.12 and 2.1 with a median value of 1.65.
We conclude the assumption that the star radiates as a black-
body is reasonable and consistent. Furthermore those PNe with
a Zanstra ratio greater than 1.2 are optically thin, while those
lower than 1.1 are optically thick. Between values 1.1 and 1.2
further information is necessary.

3.4. Core mass and the HR diagram

In the earlier discussions of the work of Karakas (2003) her var-
ious models have been identified by their initial mass, just as
Karakas has done. A more direct mass to use in discussing the
HR diagram is the core mass, as it avoids uncertainties in the as-
sumed mass loss. The Z = 0.008 (Z = 0.02) models of Karakas
labeled with the initial masses of 1, 1.5, 2.5, 4.0 and 6.0 M�
have core mass values of 0.60(0.57), 0.63(0.60), 0.66(0.66),
0.84(0.79) and 0.95(0.93) M�. The values of Z for the PN con-
sidered can be calculated from the abundances in Table 1. The
abundances are in general rather similar to the solar abundances
as given by Asplund et al. (2005). These authors calculate the
solar valule of Z = 0.0134. Thus most of the Z values calcu-
lated from Table 1 lie between 0.008 and 0.02 in approximate
agreement with their position in Figs. 2 and 3.

In this section the luminosities determined above are used to
compare with the luminosities other models predict in order to
see if they agree with the core masses given by Karakas. It would
have been more consistent to compare with tracks of the original
models of Karakas but she has not given post AGB tracks for
these models.

The effective temperature and the luminosity of the central
stars shown in Table 4 are plotted as points in Fig. 4. The indi-
vidual PN is identified on the left side of the diagram. Several
different models are plotted as solid lines on the figure. The core
mass and initial heavy element abundance Z used in the model is
shown in the diagram. Not shown on the diagram are the phase of
the helium shell flash cycle at which the ejection is assumed to
occur and the mass loss rate used in making that model. The
mass loss rate in particular is a very poorly known quantity and
can result in large uncertainties in the models. In Fig. 4 the re-
sults of Vassiliadis & Wood (1993) are used for the core mass
M = 0.57 M�, M = 0.67 M� and 0.91 M� models (the first has
Z = 0.016, the two other models have Z = 0.008), and the results
of Schönberner (1983) for the M = 0.55 M� model.

As can be seen in the diagram, two of the three PNe
(NGC 6537 and NGC 6302) for which it was concluded on the
basis of their abundance that they originate from high mass stars,
indeed are in the high mass region of the HR diagram. The third
PN (He2-111) might also be in this region but the temperature
determination is too uncertain to be sure of this. The three other
bipolar PNe, NGC 2440, Hb5 and Hu1-2 whose abundance indi-
cated a somewhat lower core mass, are in a rather higher mass
portion of the HR diagram. The precise value of the initial mass
agrees less well, since on the basis of the abundances we pre-
dicted in Sect. 2 that these PNe originated from an initial mass
of 4 M� to 5 M� which following Karakas (2003) corresponds
to a core mass of slightly higher than 0.8 M� while in the HR
diagram they are in the position of the 0.67 M� track. In addi-
tion several other PNe lie in the same position. NGC 6886 has a
high N/O ratio and on this basis was suspected to originate from
a higher mass star. The bipolar PN NGC 6445, which because of
its high He/H and low N/O ratios was considered enigmatic, is
also in this region. But so are NGC 7027 and NGC 6741 whose
abundances would place them in the group of low initial mass
objects. Also enigmatic are NGC 5315 and M1-42 which on the
basis of both high He/H and N/O ratios might be expected to
have somewhat higher core masses, are in the region of low mass
objects on the HR diagram.

On the other hand, the majority of PNe which on the basis
of their abundances are thought to have evolved from low mass
stars, do indeed fall in the low mass region of the HR diagram.
We have checked to see whether those PNe which are carbon
rich (C/O≥ 1) have a special position on the HR diagram, but
we find them to be at positions indistinguishable from other low
initial mass objects.

To summarize, there is a qualitative agreement between the
two ways of approaching stellar evolution: by either looking at
the nebular abundances or the position of the central star on the
HR diagram. The three bipolar PNe whose high N/O and He/H
leads to the prediction (Karakas 2003) that they have core masses
of 0.85 M� to 0.95 M� are in a position on the HR diagram that
is consistent with the theoretical 0.9 M� tracks of Vassiliadis &
Wood (1993) or the 0.91 M� tracks of Blöcker (1995) (not shown
in Fig. 4). The other three bipolar PNe with somewhat lower
abundances and where the predictions of Karakas lead us to ex-
pect a slightly lower core mass, probably between 0.8 M� and
0.88 M�, show less good agreement with the model tracks. In
Fig. 4 these PNe agree with the 0.67 M� tracks of Vassiliadis &
Wood (1993) but they also agree with one of the 0.6 M� tracks
of Blöcker (1995).

Regarding the elliptical PNe: many of the central stars fall
near the tracks of stars of core mass between 0.55 M� and
0.57 M� on the HR diagram. Stars of these masses are not ex-
pected to show abundance changes which are at present observ-
able, in agreement with the observations. Karakas (2003) pre-
dicts a core mass of 0.6 M� for these PNe, more in line with
the value of 0.58 M� expected from the average measured white
dwarf masses. The reason that the observed luminosity does not
agree with that predicted from the models is not clear. If the ob-
served luminosity were too low, the most likely cause would be a
possible underestimate of the observed PNe distance. To obtain
agreement with the model luminosity the average distance would
have to be increased by 70%. We regard this as unlikely for an
average value, although it may occasionally occur for individual
PNe.The other possibility is that the relationship between core
mass and luminosity found for the low core mass models is not
entirely correct.
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Fig. 4. The HR diagram. The models for core masses of 0.57, 0.67 and 0.91 M� are taken from Vassiliadis & Wood (1993) while the 0.55 M� model
is from Schönberner (1983).

4. Summary and conclusions

We have determined the masses of a selection of 33 well-
studied nebulae PNe by comparing the observed nebular abun-
dances with that predicted by the evolutionary models of
Karakas (2003), which is the first systematic study of the evolu-
tion of lower mass stars. A secondary purpose is to see whether
the masses determined in this way are consistent with the evolu-
tionary tracks computed by Schönberner (1983), Blöcker (1995)
and Vassiliadis & Wood (1993). The abundances used in this
comparison are helium, oxygen, nitrogen and carbon. The mor-
phology is also considered in this comparison but in a simpli-
fied form. The PNe are divided into two categories: bipolar and
elliptical (including round nebulae). The result of the compar-
ison of He vs. N/O (Sect. 2.2) indicate four PNe have core
masses greater than 0.9 M�; three of these nebulae are bipolar
(NGC 6302, NGC 6537 and He2-111). There are also four neb-
ulae which appear to have a slightly lower initial mass, between
0.85 M� and 0.9 M� and have also undergone hot-bottom burn-
ing. Again three of these PNe are bipolar (NGC 2440, Hb5 and
Hu1-2). Thus 6 of the 7 bipolar nebular in our selection have
abundances which indicate that they originated from initially
high mass stars. The only bipolar nebula which appears to be
an exception is NGC 6445 which has a high He/H ratio but a

low N/O ratio which is difficult to understand on the basis of the
models of Karakas.

NGC 5315 appears to be an elliptical PN with a high mass.
There are three other elliptical nebulae which on the basis of a
rather high N/O ratio seem to originate from stars of rather high
mass. These are NGC 6153, NGC 6886 and NGC 2392. A un-
likely explanation is that these PNe are really bipolar seen edge
on making them look round. Two of these PNe do not have a
high He/H ratio however, making this interpretation appear too
simplified. All the other elliptical PNe have N/O and He/H ra-
tios which do not substantially differ from solar and therefore
have a core mass of less than approximately 0.7 M�, using the
evolutionary models of Karakas (2003). We cannot determine
the mass more precisely for these nebulae, except to say that in
the models of Karakas those PNe with a high carbon abundance
(C/O≥ 1) have the higher mass.

An HR diagram for these nebulae was then constructed in or-
der to see if the position of the PNe on this diagram can confirm
the conclusions drawn from the comparison of the abundances
with the predictions of Karakas. The effective temperature of the
central stars is determined, usually with an error that is less than
10%. The determination of the luminosity can be made in two
ways. First by computing it from the temperature and radius of
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the central star, and secondly by finding it from the nebular emis-
sion in both the hydrogen and helium lines. The second method
has the additional assumption that the nebula is “optically deep”
to ionizing radiation of hydrogen or helium. We find that the
luminosity determined from the ionized helium line is usually
approximately equal to the luminosity found from the central
star, indicating that the nebula absorbs all radiation which can
doubly ionize helium. For about 30% of the nebulae the hydro-
gen ionizing radiation gives a lower luminosity indicating that
in these cases the nebula is “optically thin” to this radiation. In
this way a method has been found to determine which nebulae
are “optically deep” to the various radiation fields. Probably the
largest uncertainty in the luminosity is the distance determina-
tion so that a subsection is devoted to a discussion of the dis-
tances used. The resultant HR diagram is shown in Fig. 4. The
high masses found from the abundances for the six bipolar PNe
are consistent with their position on the HR diagram. The posi-
tion of the seventh bipolar PN, NGC 6445, is consistent with it
being a high mass object, leaving its rather low N/O ratio as a
problem. The position of NGC 6886 is consistent with a rather
high mass. Most of the elliptical PNe have positions consistent
with low core masses. The biggest problems are: 1) NGC 7027,
whose HR position indicates a high mass while its abundances
give a low mass; 2) NGC 5315 whose position indicates a low
mass while its abundance gives a high mass. M1-42 is also a
problem but its distance is very poorly known and some of the
observations are not very good. NGC 2392 has a different prob-
lem since the luminosity determined from the star is improbably
high. The effective temperature that we have determined for this
central star does not apply to the star measured in the visual.
The most likely solution is that this central star is a binary and
the secondary, which is unseen in the visual, is of a much higher
temperature and is responsible for the high degree of ionization
found. The possible presence of a hotter star has been suspected
earlier; Ciardullo et al. (1999) have looked for it but have found
only a very faint nearby star. If this is the source of ionization it
cannot be a main sequence star because if this was so it would be
too distant to be associated with the nebula. But the ionization
source could be a star which is too close to the bright star to be
observed.

In general it appears that the initial masses as determined
from the observed abundances in conjunction with the models
of Karakas (2003) are consistent with the initial masses pre-
dicted using the evolutionary models of Schönberner (1983),
Blöcker (1995) and Vassiliadis & Wood (1993). But being con-
sistent is only a first step and both the models and the observed
abundances should both be improved. Furthermore the various
cases which appear to give inconsistent results must be under-
stood before we can speak of agreement.
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