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Abstract 

As evermore applications and services are developed for 
wireless devices, the dramatic growth in user data traffic has 
led to the legacy channels becoming congested with the 
corresponding imperative of requiring more spectra. This has 
motivated both regulatory bodies and commercial companies 
to investigate strategies to increase the efficiency of the 
existing spectrum. With the emergence of cognitive radio 
technology, and the transference of TV channels from 
analogue to digital platforms, a unique opportunity to exploit 
spectrum by mobile digital service providers has emerged, 
commonly referred to as TV White Space (TVWS). One of the 
challenges in utilising TVWS spectrum is reliable primary user 
(PU) detection which is essential as any unlicensed secondary 
user has no knowledge of the PU and thereby can generate 
interference. This paper addresses the issue of PU detection by 
introducing a new dynamic spectrum access algorithm that 
exploits the unique properties of how digital TV (DTV) 
frequencies are deployed. A fuzzy logic inference model based 
on an enhanced detection algorithm (EDA) is used to resolve 
the inherent uncertain nature of DTV signals. Simulation 
results confirm EDA significantly improves the detection 
probability of a TVWS channel compared to existing PU 
detection techniques, while providing consistently low false 
positive detections. The paper also analyses the impact of the 
hidden node problem on EDA by modelling representative 
buildings and proposes a novel solution.  
 
1 Introduction 
 
The unused television (TV) bands which have arisen from the 
platform transference from analogue to digital TV (DTV) are 
commonly called TV White Space (TVWS) [1-3]. These have 
been created by the localised allocation of DTV frequencies, so  
frequencies not allocated in a particular geographical area are 
available for usage by, for example, cognitive radio networks 
(CRN), services and applications. Regulators including the 
Office of Communications (Ofcom) in the UK and the US 
Federal Communications Commission (FCC), have recently 
adopted proposals to allow new broadband devices to operate 
within TVWS [1], [2], [4].  
 
To allow CRN to access TVWS, both Ofcom and FCC have 
imposed a number of constraints relating specifically to the 
access methods and spectral definition [2], [4]. Concomitantly, 

the IEEE 802.22 community [2], [5], [6] have developed a 
framework standard for TVWS. All these constraints to some 
degree influence the secondary access channel performance of 
the sensing solutions presented in this paper. 
 
One of the major requirements of any system wanting to access 
TVWS is reliable detection of primary users (PU) to avoid 
interference to local users of the DTV system. Both Ofcom and 
FCC have favoured the geo-location database approach [2], 
however this strategy entails considerable expense and effort to 
implement and keep the database infrastructure updated. 
Furthermore, the geo-location database utilises theoretical 
algorithms for calculating the safety margins to protect the PU 
which are not based upon real life measurements. Due to these 
drawbacks, alternative sensing mechanisms are considered in 
this paper.  
 
This paper investigates a cross layer mechanism called the 
cross layer cognitive engine (CLCE) which shares information 
between the medium access control (MAC) and  physical 
layers, so sensing measurements can influence spectrum access 
decisions [3], [7]. The CLCE forms the basis of a new 
enhanced detection algorithm (EDA) which defines the way a 
TVWS channel is accessed. The EDA utilises the patterns in 
which the DTV frequencies are deployed to determine whether 
a PU is occupying a channel, and  importantly utilises an 
energy detector which exploits  local real-time measurements 
in the decision making.   
 
The benefits of using an energy sensing detection strategy as 
opposed to the more sophisticated cyclostationary or Wavelet 
detection techniques [5] [6] is the lower cost of implementation 
which is crucial when cognisance is made that this will be 
implemented in all distributed broadband wireless access 
points. To examine the vital trade-off between cost and 
performance, this paper will provide quantitative results on the 
performance and complexity of applying a covariance-based 
detector as the comparator to the proposed EDA solution. 
 
One of the key problems encountered within a sensing 
detection system is the "hidden node" issue which this paper  
both characterises and also proposes a solution within the EDA 
context. From this a flexible framework that is able to sense 
effectively TVWS channel access can be implemented.   
 
The remainder of this paper is organised as follows. Section 2 
provides a review of existing TVWS techniques which 
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highlight the main design challenges for dynamic access 
control, whilst the new CLCE/EDA implementation is 
presented in Section 3. Section 4 provides details of the test 
models used, while Section 5 discusses the simulation results 
for the CLCE/EDA paradigm. Section 6 explores possible 
solutions to the "hidden node" problem, with Section 7 
providing some concluding comments. 
 
2 Background 
 
Existing TVWS work [1-6] can be divided into three distinct 
sectors: practical implementations of TVWS networks, 
regulatory frameworks and the development of dynamic 
spectrum access (DSA) algorithms. 
 
The UK TVWS implementation and trial in [4] was undertaken 
in Cambridge and conducted by a consortium including Ofcom, 
BBC, Alcatel-Lucent and BT. The trial proved that both CRN 
and PU can co-exist in the TVWS spectrum, with the study 
also revealing that TVWS bandwidth availability affords 
potential benefits to providing broadband access, especially in 
rural areas. The one issue not analysed in this study was an 
examination of different sensing applications as only a geo-
location database was used for DSA. 
 
A broad review of the general regulatory landscape can be 
found in [1],[2],[5],[6], with [1] and [2] describing the UK , 
European and North American  regulatory issues and 
developments including sensing sensitivity thresholds. In 
contrast,[5] and [6] examine the IEEE 802.22 wireless regional 
area network (WRAN)  standard which is considered in North 
America. 
 
The next two examples of DSA algorithms in [5] and [6] form 
the benchmark on which the EDA can be compared. [5] 
explores spectrum sensing in the context of the main TV 
standards deployed in China, namely Digital Terrestrial 
Multimedia Broadcast (DTMB), China Multimedia Mobile 
Broadcasting (CMMB) and Phase Alternating Line–D/K 
(PAL-D/K). For the purposes of comparison, the DTMB was 
only reviewed since it is the standard that most resembles both 
the UK standard and IEEE 802.22 WRAN standard, where the 
detection probability and false detection targets are 90% and 
10% respectively in an 8MHz DTV channel. 
 
In [5], an autocorrelation algorithm for spectrum sensing was 
developed based upon the correlation of the frame headers 
using autocorrelation, comb correlation and decision blocks, 
though little insight into the noise regime applied during the 
experiments was provided. 
 
In contrast, [6] examines the development of spectrum sensing 
algorithms for ATSC in full (DTV), NTSC in full (analogue) 
and radio microphones in North America. The spectrum 
sensing algorithm for ATSC and NTSC is a unified signature- 
based spectrum sensing algorithm, (for ATSC this is the 
autocorrelation of the SYNC segment of the frame). The ATSC 

standard uses a 6MHz bandwidth and FCC has defined the 
sensing threshold at -116dBm, while in the UK, the bandwidth 
used is 8MHz and corresponding sensing threshold is -120dBm 
[2].In its conclusions, [6] states that spectrum sensing 
algorithms can be used to detect DTV primary signals so 
channel availability can be readily identified in order to deploy 
TVWS applications. 
 
3 The EDA implementation for DSA 
 
The rationale behind the EDA is to refine the CLCE [3], [7] to 
specifically achieve better channel allocation decisions, so the 
constituent blocks which have been implemented are those 
relating to mobility, decision and sensing. The EDA does not 
consider wireless microphones however, as [4] found that FM 
microphones produce strong inter-modulation products even in 
adjacent channels. This would mean that EDA could not use 
these channels because the noise level would be too high to 
utilise the channel for secondary access and hence would not 
interfere with any wireless microphones.  
 
The EDA exploits a priori information concerning the DTV 
system and shares this between the MAC and physical layers 
together with the cognitive cycle in making a spectrum access 
decision. The consequence of this cross layer processing (CLP) 
design is to transform an energy sensor into a feature sensor as 
will be evidenced in Section 5. This ensures consistently 
superior performance in terms of both detection and false 
detection probability compared with existing sensing 
techniques i.e., [5] and [6], and the stand-alone energy sensor. 
 
The EDA is divided into two distinct component blocks which 
will now be individually considered. 
 
3.1 Signal Sensing 
 
This block defines the various detection transitions covering 
the signal range from no signal through to weak uncertain and 
strong signals [3]. The different detection ranges assumes a 
mobile sensor of height 1.5m at each TVWS channel.  
 
A fuzzy logic function assigns the incoming RF input signal 
into three possible states, namely Unoccupied, Uncertain and 
Occupied, according to their membership functions 
 
In setting the detection thresholds, the unoccupied sensor 
output range lies between the DTV signal floor (-400dBm i.e. 
No DTV signal) and the sensor output which corresponds to a 
receive signal strength (RSS) of -120 dBm as defined in [2]. 
This Simulink model output will then determine XU the sensor 
threshold for the Unoccupied to Uncertain states. The output of 
the energy sensor is then given by: 
     
                    max XU = │ℱ(RSSy)│

2                             (1) 
                                     0 –T 

Where XU is the RF energy for a RSS of -120dBm at the 
receiver antenna (RSSy) and T is the sensing period. 
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The uncertainty band is defined between the sensor outputs at 
the aforementioned -120 dBm threshold through to the sensor 
output at XO, which is the distance which yields a 
corresponding RSSx probability of 99% that a user can 
correctly decode the DTV signal. To determine this threshold, 
an Egli model [8] was used with a distance which produces a 
bit error rate (BER) equal to 2x10-6 in the DTV receiver: 
          
The output of the energy sensor is given by: 

max XO = │ℱ(RSSx)│
2                                  (2) 

          0-T 

where X0  is the RF energy for a BER of  2 x 10-6  using the 
Egli propagation model terrain factor of 99% at a distance x, 
and RSSx is the received signal strength for a fade probability 
of 0.99 thereby giving a BER = 2 x 10-6.    

 
For comparative purposes, a basic RF detection algorithm has 
been also implemented in which the detection was stipulated 
using real data [9], [10] from the Bristol coverage area which 
only gives a binary response i.e., either ON (occupied) or OFF 
(unoccupied) with no uncertain state. This data was compared 
with results from the Egli propagation model with differing 
terrain factors until the best match was achieved which was 
obtained using a 97% terrain factor model. This terrain factor 
was then used in the simulation model to generate the requisite 
propagation data to analyse the performance of the EDA. 

 
A further comparison was made by investigating the use of a  
covariance detection method which can be used to negate the 
effect of the lower threshold being under the Gaussian noise 
floor (-105dBm). This method fits an autoregressive model to 
the signal by minimising the forward prediction error in a LS 
(least squares) sense to minimise the errors generated by the 
desired signal being below the noise floor. The respective 
covariance thresholds which correspond to the energy │ℱ│2 
thresholds are given by:  
 

max XU = cov│RSSy│                             (3) 
    0 -T 

max XO = cov│RSSx│                             (4)    

     0-T 
 
From these threshold calculations, the membership functions 
can be derived with the sensor output thresholds transitioning 
at a probability of 0.5.  
 
 
3.2 Spectrum Pattern Sensing 

 
The EDA scans Bx channels up and down from the channel 
under investigation, where Bx is an integer. For a particular 
channel which lies within the uncertainty range and any other 
channel which is either within Bx up or down and also lies 
within either the uncertain or occupied detection ranges, then 
the outcome is weighted according to a set of  fuzzy rules 
which will be defined shortly. This reflects that DTV channels 

in a local area are generally deployed in a cluster configuration 
in which another DTV channel either Bx channels up or down 
can be located. The EDA detection/false detection response 
against Bx for signal strength of -120dBm and averaged over 
15 Major DTV transmitter sites in the UK, is shown in Figure 
1: 
 

 
Figure 1 EDA Response with a signal of -120dBm and varying values of Bx 

Figure 2 shows the fuzzy logic inference model for EDA, 
which adopts a classic fuzzy logic framework [10], so the I/P A 
is the sensor output for the channel under investigation and the 
I/P B is the maximum sensor output for either Bx channels up 
or down from the reference channel. 

 

 
Figure 2 Enhanced Detection Algorithm (EDA) model 

The fuzzifier translates the input into a fuzzy set which is 
allocated a membership function. This can follow any defined 
function within MATLAB, but in this scenario a normal 
probability function is used for RF detection.  
 
The following five fuzzy rules are then applied to the two EDA 
input energy values, I/P A and I/P B (1 to Bx) in Figure 2: 
 

1. IF (I/P A) = unoccupied THEN (O/P) = 
unoccupied. 

2. IF (I/P A) = uncertain AND (I/P B-2 to Bx) ) = 
unoccupied THEN (O/P) = unoccupied.  

3. IF (I/P A) = uncertain AND (I/P B-2 to Bx) = 
occupied AND (I/P B-1) = occupied THEN (O/P) 
= unoccupied. 
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4.  IF (I/P A) = uncertain AND (I/P B-2 to Bx) 
=uncertain AND (I/P B-1) = occupied THEN 
(O/P) = occupied. 

5. IF (I/P A) = occupied THEN (O/P) = occupied. 
 

Note, in rules 3 and 4, the interrogation of B-1 enables the 
EDA to satisfactorily resolve the scenario where there are 
strong adjacent noise components present. 
 
These five rules uniquely govern the detection behaviour of the 
EDA in classifying the various channel energy measurements. 
The final block is the de-fuzzifier where a crisp output is 
produced using the centre of area method [11]. The de-
fuzzifier output (O/P) follows a linear function, so 0 to 0.49 
represents an unoccupied channel, while 0.5 to 1 reflects that it 
is occupied.   
 
4 Test Models  
 
The Test Models used had a generic specification and took the  
form of the model shown in Figure 3. 
 

i) The Noise Figure used for the DTV receiver was  
7 and for the sensor 10 [5], [6]. 

ii)  The adjacent lower channel interference 
generator is formed by a 16 QAM transmitter 
simulating a 5MHz LTE interferer [4]. 

iii)  Gaussian noise is specified at -105dBm at a 
bandwidth of 8MHz. 

iv) Sensing time T = 50ms 
 

 
Figure 3 Test platform 

The probability results were obtained by averaging the results 
over adjacent noise ranges and for 15 major DTV regions 
across the UK which have differing frequency deployment 
patterns, though all have 5 channels that use 64 QAM and 1 
that uses 256 QAM modulation schemes.  
 

5 Results Discussion 
 
The following three experiments were conducted with a noise 
regime comprising a Gaussian noise floor of -105dBm and a 
lower adjacent channel interferer of between -400dBm to -
28dBm.  The DTV channel specifications are defined in [8] 
and [9]. 
  
The test platform used for the above experiment is shown in 
Figure 3 and was developed using Simulink with Matlab test 
scripts.  
 
The first experiment examined the detection probability of 
EDA against distance, while the second and third series of 
experiments focused on transceiver bench testing strategy with 
results being averaged over the 15 major transmitter sites to 
aggregate the effect of the spectrum deployment patterns. 
 

 
 

5.1 Distance versus Detection Probability 
 
The detection performance of the EDA was compared with the 
two existing techniques [5] and [6] and a basic RF energy 
detector using the test platform in Figure 3. The experiments 
were performed for distances of between 60Km and 130Km 
for  a transmitter power of 100KW. 
 

 
Figure 4 Detection probability plots 

The corresponding detection results are plotted in Figure 4 
which was based on a sensor placed in the Mendip transmitter 
region at a height of 1.5m. The detection probabilities were 
calculated by taking sensor readings over the range from 40Km 
to 110Km. The results clearly show the EDA algorithm 
outperformed the basic algorithm but no comparison can be 
made with [5] or [6] due to no distance experiments were 
documented for these DSA algorithms. By comparing the 
corresponding received signal-to-noise ratio (SNR) values at 
these two distances, from Figure 4 it can be seen a net 35dB 
SNR improvement has been achieved by EDA to corroborate 
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the rationale for applying fuzzy rules for channel allocation 
within the CLCE design. 
 
5.2 Signal Strength versus probability of detection 
The second series of experiments analysed the probability of 
detection against the incoming signal strength between -
125dBm and  -75dBm. 
 
The motivation for these tests was to be able to compare the 
performance of the EDA against other algorithms in the study 
[5] which used signal strength as a reference. The sensor signal 
strength is attenuated by the ratio of the difference between 
antenna heights caused by reflection losses, though there is no 
diffraction parameters applied because the model is not based 
on a propagation model like Egli. The first set of tests used the 
signal strength against detection probability using the same 
noise regime has defined above. The results are shown in 
Figure 5. 
 

  
Figure 5   Detection Probabilities versus Signal Strength 

The IEEE 802.22 specification [5] has been used for 
comparison with a detection probability threshold of 90% and 
a false detection rate of 10%, hence the parameter used is Bx=5 
from Figure 1. 
 
The results for [5] in Figure 5 reveal a probability of 0.9 was 
achieved  at -114dBm in contrast to the EDA using energy 
detector simulation which achieved -122dBm, so representing 
an improvement of 8dBm in signal strength. When comparing 
the EDA using the covariance detector an improvement of 
6dBm is achieved, so overall only a 3dBm improvement was 
gained by the covariance detector compared with the energy 
detector 
 
5.3 Probability of detection versus probability of false 

detection for different values of SNR 
 

The third set of experiments sought to analyse the relationship 
between the detection and false detection probability against 
the SNR in the interval -22dB to -18dB. The tests analysed the 
EDA probability of detection against the false detection rate so 
that they could be equitably compared with [6]. The 
corresponding results are displayed in Figure 6. 
 

 
Figure 6 Probability of detection against probability of false detection for 

different values of SNR 

The EDA results reveal a significant improvement over [6] due 
to the detection probability becoming certain i.e., 1 before the 
false detection rate achieves 0.24. In [6], this explicit condition 
is only achieved between 0.7 and 1 depending upon the SNR. 
Another interesting feature of the EDA is that it reduces the 
fluctuations in the detection and false detection probability 
with SNR as evidenced by the corresponding EDA results in 
the SNR range between 18dB to 22dB. 
 
The corresponding results for the covariance detector EDA 
displayed no significant improvement over the energy detector 
EDA. However by analysing the computation complexity of 
the two models using the Halstead approach [13], it was found 
the covariance detector model was more than an order of 
magnitude higher in terms of complexity, than the 
corresponding Fourier-based energy detector. 
 
6 Review of the Hidden Node Issue 
 
This well-known problem [1, 2, 3] is caused by an unlicensed 
secondary user (SU) being shielded from the PU by an 
obstacle, so the sensor does not detect the PU. The SU then 
makes a decision to use the same channel to transmit, so 
causing interference to the primary receiver 
 
This section investigates the impact on the EDA at Bx=5. The 
model assumed a distance of 30Km and 60Km respectively 
from the DTV transmitter with the obstruction buildings being 
5m and 15m away from the sensor. 
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The obstruction heights were taken from a study on building 
heights and typologies in the Royal Borough London [11] 
which are categorised as: i) Typical height - 15m  ii) Local 
landmark - 22.5m. iii) District landmark - 60m. 
iv)Metropolitan landmark - 90m. The corresponding results 
below characterise the EDA response in the presence of the 
“Hidden Node” issue. 
     

 
Figure 7 Probability of detection against sensor heights for different types of 

obstructions 
From the results it can be observed that rural and small towns 
could be serviced from a sensor at a height of 6m which can 
for instance, be achieved by deploying lamppost TVWS 
cognitive devices. In contrast, for large towns and cities, sensor 
heights of 30m and 42m are needed respectively. It is evident 
from Figure 7 that the lowest sensor antenna height to obtain a 
detection probability of 1 is 6m which implies that a base 
station architecture is required i.e., sensor antenna height 
greater than 1.5m.When the building category increases in 
height so does the required sensor antenna height so mobile 
sensors are unable to operate in any category and distributed 
sensors at differing heights are required to ensure PU 
information can be distributed to all users.  
 
7 Conclusion 
 
This paper has shown that an enhanced detection algorithm 
(EDA) consistently out performs existing PU detection 
algorithms when applying the IEEE 802.22 WRAN standard of 
90% for detection and 10% false detection thresholds. In 
comparing the covariance detector with the energy detector 
there was negligible improvement gained for the added 
complexity incurred, so the overall conclusion is for an energy 
detector to be used with the EDA. 
 
This paper has demonstrated that a sensing strategy is feasible 
for TVWS applications and with the further study outlined to 
gain detection probabilities of 100% will start to persuade the 
regulatory bodies to re-think their geo-location database 
decisions. Further work is intended to enable the EDA to be 
adaptive and achieve the detection probability of 100% in all 
circumstances. 

When the “hidden node” issue was examined it was seen that 
when a sensor height of 1.5m (mobile sensor) is used the 
probability of detection is very limited and only becomes 
feasible for heights at 6m or more. Indeed in large cities the 
use of distributed sensors on top of buildings would have to be 
considered. 
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