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Abstract
Given the interdisciplinary nature of complex network studies, there is a practical need for dialogue between theorists
proposing graph measurements and those seeking to apply them into a domain. We consider this in the domain of
software complexity by highlighting the distinctive nature of networks representing software's internal structure and
also by describing the application of one such proposal, the offdiagonal complexity, against two examples of software.
The results showed the promise of using complex networks to measure software complexity but also demonstrated the
confounding effects of size. Based on that application we make proposals to improve the dialogue between theory and
experiment.

Software's importance and the need to measure complexity
Today's society is heavily dependant on software. It runs our computers, our phones and the internet, while managing
economies and communications.  This  pervasiveness means that  any improvement in understanding software has a
potentially enormous payback from better project management, control of costs and increased quality. Past practice of
software development could be seen as  a  chimera of  art-form and engineering with success  or  failure  in  projects
seemingly dependent on anecdotal wisdoms. While a comprehensive theoretical framework seems elusive, current and
future practice has become increasingly evidence-based and draws from a wide range of disciplines such as psychology,
sociology, data-mining and complexity theories.

That software is complex is also largely self-evident. Brooks (1987) (of “The Mythical Man-Month” fame) argues that
complexity is one of the fundamental essences associated with software. As such, understanding this inherent property
would make great inroads into understanding software overall. 

While there are several viewpoints into software such as its cognitive, computational, problem or solution complexity
(Cardoso et al. 2000), this paper focuses on the structural complexity of the code, arguing that it provides the most
direct understanding of the product.

Software as a complex network
The variety of coding languages, styles and paradigms makes processing and quantifying code hard to generalise. One
solution is  to abstract  the code into a  network graph,  with vertices representing a chosen unit  of code and edges
representing an arbitrary relationship between those units. By representing the interconnections between collaborating
modules, objects, classes, methods, and subroutines with a network graph, software becomes another domain capable of
investigation with the interdisciplinary toolset of complex networks.

The basic technique is well established (Myers 2003; Valverde & Solé 2003) and while more recent developments have
for instance considered graphing the entire socio-technical system  (Bird et al. 2009), obtaining a measurement that
represents the complexity of source code's basic structure and that can be connected to software development practice
remains desirable.

Software as typical
Software networks appear as typical complex networks exhibiting both small-world behaviour and having a long and
fat-tailed degree distribution obeying a power law. If they are constructed as directed graphs, the degree distributions of
the inward and outward links differ, with the exponent for incoming edges being less than that of the outgoing and
showing a better fit to the power law (Valverde & Solé 2003; Potanin et al. 2005; Concas et al. 2007; Louridas et al.
2008).

Solé & Valverde (2004) identify software networks as heterogeneous, scale-free and with some modular structure – a
characterisation that also includes a wide range of biological and technical systems. Based on an earlier work (Valverde
et al. 2002), they suggest this commonality is due to such systems being shaped through a processes of optimisation – a
suggestion that reflects software development well.

Technical and biological networks are typically disassortative, i.e. vertices with a high degree preferentially attach to
those with low degree, as opposed to social networks which typically show assortative mixing (Newman 2002). Perhaps



unsurprisingly, software networks have been empirically confirmed as disassortative (Solé & Valverde 2004; Gao et al.
2010).

Software networks can therefore be recognised as typical examples of complex graphs, but some aspects of software
create distinctive challenges and opportunities.

Software as atypical
Software networks demonstrate a wide variation of size, reflecting the range of available software from small tools to
major applications, but are generally large in comparison with other networks commonly used in complexity research
(Louridas et al. 2008; Moore 2011; Newman n.d.) 

Network Nodes

Les Miserables character co-appearance 77

American football games 115

Tomcat 4.1.40 (package to package dependencies) 181

C. elegans neural net 302

Netbeans 6.8 (package to package dependencies) 1,532

S. cerevisiae protein-protein interaction 1,870

Tomcat 4.1.40 (class to class dependencies) 2699

Netbeans 6.8 (class to class dependencies) 14,378

AS internet topology 22,963

BEA Weblogic 8.1 middleware platform (classes) 80,095

Table 1: Example sizes of real-world networks, with software networks in bold

The same software  network can be  considered at  different  resolutions,  i.e.  by  considering different  code  units  as
vertices. For example, in code written in Java, a popular programming language, one can consider classes (which group
related functions) and packages (which group related classes). While any scale-free network could be considered in the
same  way,  in  software  these  two  'granularity  levels'  (or  equivalent  ones  for  other  programming  languages)  are
particularly significant and represent meaningful and deliberate constructs to software developers. It is possible that the
complexity  of  software  networks  behaves  differently  at  different  resolutions  while  remaining  the  same  coherent
network.

Software networks evolve as the code is modified in response to fault fixing and feature requests, but also as a result of
refactoring  activity.  This  activity  occurs  when  developers  attempt  to  rework  the  code  structure  while  preserving
functionality.  While refactoring is  tricky to isolate from other  coding activity,  this  offers  a network that  has been
changed, hopefully simplified, and yet remains functionally the same. Software networks can also evolve by widespread
deletion, as functionality is split out of the main product in a sort of software 'cell division'. The reverse can also happen
as existing external products are absorbed wholesale. Even under more routine development it is uncertain what growth
models are being applied; as a designed product it is clearly neither stochastic nor perfectly deterministic. The earlier
suggestion that an optimisation process is at work seems likely, but it is unclear exactly what developers are optimising
for. 

Despite this apparent chaos, the evolution of software size is well described with an inverse square model that results in
a decaying growth curve. In this model St is the size value of release t and E is a model parameter (Turski 2006):

St=St−1E/St−1
2

The evolution of software complexity is not as well described, although it is argued that complexity will increase as
software  evolves  (Lehman  &  Fernández-Ramil  2006).  Directly  measuring  software  complexity  by  measuring  its
representation as a complex network firstly requires identifying a proposed measure and then applying it to example
software.

Example: Offdiagonal complexity
Proposed by J.C. Claussen (2007) following earlier discussions and preprints, this measure is capable of distinguishing
complex networks from those with a regular or random structure. Its basis is the observation that for complex networks
the values in a node-node degree correlation matrix are more evenly spread along the offdiagonals. Such correlations
between the degrees of pairs of nodes allows the construction of an approximative complexity estimator from the



entropy of the normalised distribution. 

We computed  the  offdiagonal  complexity  (OdC)  of  two  medium-sized  software  networks  through  their  evolution
(Moore 2011). This required the development of software implementing OdC, a process that encountered practical
difficulties such as interpreting the mathematical notations, which appeared to vary between the original and citing
authors, limited examples and apparent errors in the examples given. While these issues were neither insurmountable
nor unexpected they did cause uncertainty in validating the software implementation.

Two major free and open source software projects, the integrated development environment Netbeans (n.d.) and Apache
webserver component Tomcat (n.d.), were used as datasets. The available stable releases of each software project were
converted into network graphs and their OdC values taken alongside established size measures, such as the number of
Java classes, using a custom toolset christened  netMetric (n.d.). For each release two network graphs were created,
giving views of the software at different resolutions: one to represent the dependencies between Java packages (referred
to as 'p2p') and another to represent dependencies between Java classes ('c2c' and considered the more detailed).

Netbeans showed nearly a fourfold increase in size, supporting previous understandings of software evolution such as
Lehman's 6th law of continuing growth (Lehman & Fernández-Ramil 2006). However the evolution of OdC behaved
differently, challenging Lehman's 2nd law of increasing complexity.

The change of OdC behaviour after release 5.5.1 appears to be due to the removal of J2EE (Java Enterprise Edition)
functionality  into  a  separate  product  and  suggests  that  removal  allowed  the  product  to  continue  growing  in  size
significantly without comparable OdC increases. While the releases studied for Netbeans were the major stable versions
(and not for instance the developers' in-progress snapshots), these releases can be categorised as 'new' or 'maintenance'.
As can be seen in Figure 1, there is no discernible difference between new releases and their corresponding maintenance
releases (e.g. 5.5 and 5.5.1).  Normally, maintenance releases correct defects of the previous release by changing the
code within code units instead of changing the software's higher-level structure. 

A similar pattern of 'punctuated equilibrium', in which sharp changes are followed by a stable period, has been observed
in the evolution of other systems, e.g. in Eclipse (a similar product to Netbeans) (Wermelinger et al. 2011). The most
drastic change was observed when the Rich Client Platform was added, causing a major restructuring of Eclipse's
software architecture.

Tomcat showed far less distinctive evolution in either size or OdC. This is understandable as a consequence of Tomcat
implementing a fixed specification meaning that beyond defect fixes the software changes little.  

As  well  as  measuring  the  entire  software  system,  selected  subsystems  were  investigated  in  the  same  manner.  In
Netbeans, each subsystem demonstrated its own evolutionary pattern for both size and OdC in agreement with other
works showing that software evolution proceeds differently in different areas of the codebase (Gall et al. 1997; Godfrey
& Tu 2000). Tomcat again showed little evolution within subsystems. These observations on software networks suggest
that growth and perhaps complexity arise from localised changes in the network. 

Offdiagonal complexity was shown to be realistically computable and to show informative behaviour as the software
evolved  through  its  releases.  However  a  strong  correlation  with  size  (Pearson's  r=0.86)  limits  its  usefulness  in
evaluating software complexity since size is easier and quicker to measure. However, with refinement, the use of degree
correlations in an entropy measure could still provide a measurement distinct from size. Claussen (2008) offers the “full
OdC” as a way of comparing networks of different size, and Anastasiadis et al. (2005) replaced the Boltzman-Gibbs

Figure 1: Netbeans size and OdC evolution for packages named org.netbeans.* and their classes
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entropy in OdC with the generalised Tsallis, and suggested that changing the parameter involved in Tsallis' entropy
could make OdC sensitive to particular structures. Unfortunately there was no suggestion as to what those structures
might be. Building the correlation matrix using the idea of a remaining degree distribution à la Newman (2002) might
also improve sensitivity to structural complexity.

We also computed the OdC on simulated Barabási–Albert (BA) and Erdős–Rényi (ER) graphs, observing a rapidly
decreasing sensitivity as the number of vertices increased. This suggests that the OdC is most useful for smaller graphs
with less than ~300 vertices. These scaling properties demonstrate that measures that appear promising when applied to
graphs with tens of vertices lose their practicality applied to the typically much larger software networks. Indeed it
suggests that the measure is reflecting a complexity arising from size and not just from structure. This confounding
effect of size when measuring complexity is a significant practical issue.

Practical issues
Based on the experience with OdC we make several  suggestions for proposed graph measurements that  would be
helpful for experimentalists, e.g. software engineering researchers like us, interested in complexity metrics.

The scaling properties should be described. Ideally a proposal should be insensitive to size, but a linear or
monotonic relationship with size would still be of practical use since software size can be measured and
thus accounted for.
Describing  the  computability  of  the  metric  with  a  'big  O'  notation  would  allow  an  assessment  of
practicality. The availability of this was instrumental in choosing to experiment with OdC.
Providing  a  reference  algorithm  in  any  coding  language,  including  pseudo-code,  could  improve
understanding, especially for non-mathematicians.
Offering downloadable example networks with correct values published would help in verifying software
implementations.
A discussion on how the proposal  behaves (if  at  all)  against network properties such as diameter or
average degree, and what type of network it is relevant for, would help in assessing its suitability to
measure software networks. A proposal that for instance focused on polytrees would be unsuitable since
they don't represent software networks. 
Any suggestions as to what structural features it may be sensitive to would also support the assessment of
usefulness.

Ideally this information could be curated into a repository allowing the easy selection of proposals for experiment.
While admittedly creating more work for the theorists, the advantage is the increased visibility of their proposal with a
faster take up and feedback against real world networks. The nature and form of that feedback should be suggested by
theorists as part of establishing a dialogue between theorists and those wanting to apply measurement proposals.

The availability of multiple datasets such as the Qualitas Corpus  (Tempero et al. 2010), Helix  (Rajesh Vasa & Jones
2010) and the Software-artifact Infrastructure Repository  (Do et al. 2005), alongside toolsets for creating call graphs
such as netMetric (n.d.), DependencyFinder (n.d.) and Doxygen (n.d.), provide a ready and extensive source of graphs
for analysis. Software is a dynamic process with large amounts of ancillary information (such as changelogs) creating
software networks whose evolution is potentially observable step-by-step. Measuring complexity in the structure of
software remains elusive, but approached through complex networks it is a potentially rich field for study.

Figure 2: OdC in synthetic networks

0 250 500 750 1000
0.0

1.0

2.0

3.0

4.0

5.0

BA ER

vertices in graph

O
dC

0 5000 10000 15000 20000
0.0

1.0

2.0

3.0

4.0

5.0

BA ER

vertices in graph
O

dC



Conclusions
In  this  paper  we  have  shown  how  software  networks  offer  some  distinctive  challenges  and  opportunities  when
measuring complexity which could be of interest to theorists, particularly in terms of how complex networks evolve.
The application of the offdiagonal complexity to a software network has been described and shown to be of interest but
limited practical  use for measuring software complexity.  Based on that,  proposals  are made in the anticipation of
fostering  a  positive  dialogue  between  theorists  proposing  graph  measures  and  those  investigating  their  practical
application.
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