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Abstract: This paper presents the design and application of a web service architecture for 
providing shared access to web-based visual representations, such as dynamic models, 
simulations and visualizations. The Shared Representations (SR) system was created to 
facilitate the development of collaborative and co-operative learning activities over the web, 
and has been applied to provide shared group access to: a high-resolution image viewer, a 
virtual petrological microscope, and a forces and motion spring simulation. As well as 
explaining the architecture and three applications, we briefly present the findings from a user 
study looking at primary school children’s use of a shared spring simulation. The study 
findings indicate that shared access to a web-based simulation complements exploratory 
discussion and enables learners to demonstrate their understanding of a subject. Future work 
will explore how the system can be combined with dialogic support and embedded in 
activities to encourage learners with contrasting opinions to discuss and resolve their differing 
perspectives. 

Introduction 

Research on collaborative (and co-operative) learning has shown the importance of particular forms of 
talk for collective reasoning and learning. Productive talk depends on children’s communications skills and 
communication is known to be multimodal and situated. Pea (1993) writes about the social and material 
embeddedness of communication: 

 
“Conversations and interactions in everyday life take place in a rich referential field. The dense texture of 
human bodily orientation, gesture, and facial expression are known to communicate and continually transform 
on a moment-to-moment basis affective, cognitive, and social dimensions of relationships. Just as profoundly, 
there is a material environment to which attention can be directed, by gaze, pointing, and other means, in this 
conversational space. It, too, is transformed on a moment-to-moment basis. This material environment certainly 
includes physical objects, but it is also likely to include external representations, or inscriptions, such as 
writing and sketches, and in more formal settings, whether in school or work, such symbolic artifacts as 
equations, diagrams, maps, and designs.” (Pea, 1993, p. 286) 

 
Pea’s description of everyday talk draws attention to the role of the material environment for focusing 

attention and supporting communication through the appropriation of external representations. This paper 
develops a system for sharing access and control of web-based representations (e.g. models, simulations and 
visualizations) that can be used by members of a group to facilitate and structure discussion within dialogic 
learning activities.  

Conversations for learning 

This research draws on Mercer’s sociocultural discourse analysis, which distinguishes between 
disputational, cumulative and exploratory talk (Littleton & Mercer, 2013; Mercer & Littleton, 2007; Mercer, 
2007). Disputational talk is characterized by disagreements, by individualized decision-making, and by short 
confrontational interchanges between speakers. It is often associated with competitive behavior and poor 



learning outcomes. Cumulative talk involves speakers in friendly discourse with positive, but uncritical, 
exchanges that build on a common understanding through repetition, confirmation and elaboration. It is often 
useful at certain stages of the discussion (e.g. at the start). Exploratory talk, which is most clearly associated 
with productive learning, represents a social mode of thinking – so called ‘interthinking’ (Littleton & Mercer, 
2013) involving constructive engagement with other people’s ideas, based on reasoned justification and explicit 
consideration of alternative views. It draws on Mercer’s notion of a shared dynamic dialogic space, which is the 
focal point of children’s collective reasoning and co-construction of knowledge (Mercer, Hennessy, & 
Warwick, 2010). 

Web-based dynamic representations 

Web-based representations (e.g. models, simulations and visualisations), like other dynamic 
representations, provide a material object that can be used to help develop a practical awareness of a topic, but 
with the advantage that multiple people can access the representation over the web using a standard browser. In 
order to enhance communication within groups, this paper proposes a system for sharing access and control of 
web-based representations. The approach is intended to provide an opportunity for users to work together on the 
same representation via their web browser, as part of a shared dynamic dialogic space (rather than working 
independently on identical simulations). It is argued here that shared representations can be useful in 
collaborative and co-operative activities that require the learners to demonstrate and explain their understanding 
of a topic, thereby, providing them with opportunities to validate and improve their understanding. 

Recent developments in web standards offer the technical means for providing shared representations 
over the web. HTML5 better supports dynamic representations than previous HTML standards, as it introduces 
the canvas, line drawing and shape elements for creating visual representations (Berjon, Leithead, Navara 
Doyle, O’Connor, & Pfeiffer, 2012) and makes extensive use of within-page JavaScript calls to support 
dynamic interaction (Auborg, Song, & Steen, 2012). Furthermore, development libraries, such as JQuery and 
Tonic, provide layers of abstractions that facilitate interface and service development. These improvements 
have enabled web designers and developers to create visually engaging and interactive web applications (e.g. 
http://html5-showcase.com/).  

Loosely coupled systems 

The concept of a loosely coupled system generally refers to a system that is comprised of independent 
parts (Glassman, 1973). This has been a useful concept for discussing organizational structures (Weick, 1976; 
Orton & Weick, 1990)  and more recently, the concept has been adopted for describing desirable characteristics 
for web service architectures (Kaye, 2003; Pautasso & Wilde, 2009). In these examples, the loose coupling of 
related parts indicates that the parts of a natural or created system have minimal knowledge or awareness of one 
another and, therefore, can operate independently as part of the system.  

The concept of a loose coupling is applied here to describe the relationship between the web server and 
the web clients (i.e. each web browser) used by a group of people (referred to as users). In a shared simulation, 
for example, the server holds the values of the simulation parameters, such as an object’s weight. For the user 
controlling the weight of the object in the simulation, any changes they make are periodically sent to the server 
to update the value of the corresponding parameter (stored in a database). The simulation running in the other 
group members’ browsers periodically check for and retrieve changes to the simulation’s parameters from the 
web server. In this way, every client runs their own version of the simulation, but by sharing any changes made 
to the underlying parameters, the simulation running in each client behaves identically. 

By setting the frequency of the periodic parameter checks to once a second, for example, every client 
will reflect a change within two seconds of the change being made (i.e. with a maximum delay of one second 
before the client currently in control updates the server, and a further second for each client to update their local 
value). This loose coupling enables the group size to be scaled to hundreds of users; although in practice 
multiple smaller-groups are more typically needed (e.g. a class of 30 pupils working in six groups, with four 
pupils in each group), and shorter update frequencies can be used if a quicker response is needed.  

By using time to trigger the updating and checking of a representation’s shared set of parameters, this 
approach can be used with any HTML5 page without modification, providing the JavaScript parameters used 
within the page can be identified and stored by the shared representation system.  



Summary: Goal and basic approach 

The goal of producing a system for sharing access and control over HTML5 pages is to enable a group 
of people to simultaneously explore a shared resource. This can be contrasted with accessing identical 
resources, which is how an HTML5 page is currently experienced. That is, when each user views a web page, 
their browser executes the JavaScript elements contained in the page, in order to give it a dynamic behavior, but 
the user’s actions do not affect anyone else currently viewing the same page. In the case of visual 
representations, the user could dynamically change the selection of data sets and charts used for visualization, or 
the physical property values of a simulation. By storing the changes made by one user and reflecting that 
change in the web browsers of other group members’ accessing the same page, the shared representation system 
effectively gives shared access to the same resource. The system could either be used by groups of co-located 
people or by geographically distributed groups. In both cases, the intended learning context would include the 
opportunity for verbal discussion either face-to-face or online (e.g. using VoIP telephony), as part of a 
collaborative and co-operative learning activity.  

Design 

This section explains the key design elements of the system that allows a group of users to share 
control of a web-based representation. First, the components of the system are introduced. The RESTful service 
that enables the system to create, read, edit and delete parameters using HTTP methods (i.e. web page requests) 
is then presented; and the code wrapper that associates the shared system with an existing HTML5 
representation is described. Finally, the rationale and use of the three core data structures for managing groups 
of users, views and parameters are explained. 

System architecture  

The Shared Representation (SR) system is made up of a set of PHP, JavaScript and HTML5 files that 
are added to existing web-based representations on a web server, to provide a loosely coupled form of shared 
access and control over those representations for groups of users. Figure 1 illustrates the components of the SR 
system and their communication connections. The system can be accessed by any HTML5 compliant browser 
application (i.e. web client) running on phones, tablets, laptops or desktop computers. The SR system wrapper 
uses: the Tonic REST framework to provide a RESTful web service for handling parameter requests, the PHP 
scripting language for processing data, and a MySQL database for retrieving and storing data.  

 

 
Figure 1. A schematic representation of the architecture used to implement the SR system. 

RESTful service  

REST stands for Representational State Transfer and is a set of architectural principles for designing 
web services, originally proposed in Roy Fielding’s PhD thesis (Fielding, 2000), which are now used widely 
(Richardson & Ruby, 2007; Rodriguez, 2008). The extent to which these principles are followed varies, but four 
core aspects are common, namely the use of: HTTP methods, stateless requests, structured web addresses (i.e. 
URIs), and simple data formats (e.g. XML and JSON).  



The REST service used in the shared representations system is built using Tonic, a RESTful 
development library for PHP (James, 2009). HTTP methods are used for creating, reading, editing and deleting 
information stored by the system, specifically using the: POST, GET, PUT and DELETE methods 
(respectively). Each request is handled independently, so all of the context or state information needed to 
process a request is included with that request. This includes the user’s group and authentication details. The 
path structure of the URIs is mapped to an intuitive structure for the system, so a specific representation is 
requested by name in the URI (i.e. http://hostname/[system]/[name]), and any actions associated with that 
representation are referred to by additional terms added to the path (i.e. http://hostname/[application]/[name]/ 
[action]). Finally, the data returned from the service (e.g. the parameters and their values) is passed using the 
JavaScript Object Notation (JSON), a data interchange format developed by Douglas Crockford (2009). JSON 
represents data textually either as a collection of name/value pairs (e.g. {“firstName” : “John”, “lastName” : 
“Smith”}) or as an ordered list of values (e.g. {“assignmentMarks” : [“61”, “53”, “64”, 71”]}).  

Code wrapper 

A wrapper is used to associate the shared representation system with a HTML5 page. This includes the 
Tonic PHP library and the application-specific extensions, as well as a single file containing the page-specific 
properties. This customized property file includes the initialization and mapping functions used to: parse the 
JSON data returned from the server by a GET request into the data structure used by the HTML5 page; and to 
generate the JSON data sent to the server by POST and PUT requests from the data structure used by the 
HTML5 page. 

The visual effect of the wrapper, is a control bar added to the page (see Figure 5). The control bar 
initially contains the title of the current view, a navigable list of available views, and a ‘join’ button; the page is 
unaffected otherwise and can be used as a single (i.e. not-shared) page. Once the user clicks on the join button 
and signs-in, they are part of a group and the control bar is updated accordingly. The control bar for a signed-in 
user toggles the state of the ‘join’ button to a ‘leave’ button, which the user clicks on to leave the group session. 
The control bar for an authenticated user also includes: a toggle button to take ‘control’ or ‘release’ control of 
the representation; the name of the signed-in user; a (handshaking) button to toggle the user’s connection with 
the group; and a floating list of the signed-in group members, and their control and sharing status indicators.  

Groups of users 

Organizing users into groups and managing their membership for group activities can be quite 
challenging as the group membership may change at anytime and therefore need adjustment, for example, to 
accommodate absentees or changing social dynamics (Dillenbourg & Tchounikine, 2007). The approach taken 
here is to organize groups hierarchically, so that individual users can be associated directly with a group or 
indirectly through a subgroup (Collins, Mulholland, & Gaved, 2012). This enables the creation of grouping 
structures that can be used across a set of activities with a minimal amount of duplication. So, for example, a 
head of a school department might be associated with a group at the top of a user-grouping tree, which has a 
separate subgroup for each teacher within the department. The teacher-level groupings can then have 
corresponding subgroups for each class, and further class-level subgroups for each set of groupings used by the 
teacher with that class. The data structure used to represent user group hierarchies is illustrated in Figure 2. 

 

 
Figure 2. A schematic representation of the data model used for storing users accounts and organizing them 
hierarchically (see Figure 5 for an example application). 



When a user accesses a shared representation, the URI they access it through includes an identifier for 
the representation and an identifier for the requested group-level. In this way, the same representation identifier 
can be used across groups. For example, if a class of pupils were working in pairs with a shared simulation each 
pair within the class would have a unique URI containing the common representation identifier and a distinct 
group-level identifier. The system uses the requested group-level to determine the group members by including 
signed-in users associated with that group, that group’s subgroups, and groups along the path from that group to 
the top of the group tree. This hierarchical structure enables switching between regularly used groupings (such 
as pairs, groups of four, and so on), by modifying the URIs group identifier. Furthermore, the group level that a 
user is associated with is used in such a way as to minimize duplication across groups. So that, for example, a 
teacher can be associated at the level of a class rather than every subgroup within a class, but they can join any 
subgroup by using the corresponding group identifier. 

Groups of views 

In many contexts where representations are used to explore real-world data or processes, several 
related representations are involved. To support switching between representations, another hierarchical tree 
structure has been used for representations. In this case, when each shared representation is defined, identifiers 
are used to associate the representation with an immediate parent representation (if applicable) and the top (i.e. 
root) representation for that group of representations (see Figure 3). For implementation convenience, a group 
containing just one representation has no parent identifier and the root identifier refers to the representation 
itself.  

 

 
Figure 3. A schematic representation of the data model used for storing shared representations and organizing them 
hierarchically (see Figure 6 for an example application). 

Using representation identifiers, a set of views can be navigated by links to the current view’s 
immediate parent view and immediate sub-views. So, for example, a microscope slide of a rock sample could be 
associated with a parent view of the rock the sample was taken from, and sub-views showing specific areas of 
interest on the slide. As a user navigates from one view to another the identifier for the current view is stored by 
the system (for the corresponding pair of representation and group identifier values) and used to update the 
current view for each group member. In this way, the system enables the user that is currently in control to 
switch the view for everyone in the group. When a user joins a group and requests a view that is not the current 
focus of the group, the system will bring them directly to the view that is the current focus.  

Groups of parameters 

Only one person can be in control of a parameter at a time, but depending on the system being 
represented, the parameters of a representation can be grouped so that one person could control a set of 
parameters, which might include all the parameters or a subset of them. This is particularly useful in contexts 
where a learning activity is designed to create differences between group members to encourage discussion 
(Dillenbourg & Tchounikine, 2007). For example, in the case of a science simulation one user could change a 
property value, such as the speed of a component, and their partner could be given the task of inferring what 
was changed from observing the differences in the simulation’s behavior. The data structure used to represent 
parameter sets is illustrated in Figure 4. 

 



 
Figure 4. A schematic representation of the data model used for storing sets of control parameters (see Figure 7 for 
an example application). 

Within the system, where representation parameters are separated into more than one group, an ordered 
set of parameter labels are stored so that the corresponding set of toggle buttons can be added to the control bar 
for taking and releasing control over each group of parameters. When no parameter control groups are identified 
for a representation, the system presents a single toggle button (labeled control/release) for one user to take 
control or release control of the representation.  

Applications 

This section briefly illustrates how the SR system has been applied to provide shared group access to: a 
high-resolution image viewer, a (virtual) petrological microscope, and a forces and motion spring simulation. 

Shared image viewer 

The HTML5 Zoomify viewer is a widget for accessing high-resolution images as a collection of tiled 
images (see http://www.zoomify.com/html5.htm). A plug-in extension for image manipulation programs, like 
PhotoShop, can be used to transform a single high-resolution image into a collection of Zoomify image tiles. To 
create a shared image viewer, the JavaScript parameters of the HTML5 Zoomify viewer (i.e. x, y position and 
zoom level) were identified and used in the corresponding initialization and mapping functions of the SR 
property file, and a suitable set of user accounts and groups were created. Figure 5 shows the resulting 
application accessed by two users, one currently controlling the viewer (left) and the other watching (right). The 
actions of the user controlling the viewer will be shown in every user’s browser, actions of other users (not in 
control) will be reverted by the system when it retrieves the stored set of parameters from the REST service.  

 

  
Figure 5. A shared Zoomify image viewer, showing screen views from two users in a group; one that is controlling 
the view (left) and one that is following (right). 



Shared virtual petrological microscope 

The virtual microscope application was configured in a similar way to the image viewer; the JavaScript 
parameters of the HTML5 virtual microscope were used to set up the property file. In this case, the application 
typically uses sets of representations, so a rock sample slide is associated with rotation point views at specific 
points of interest on the slide. Therefore, additional information was stored regarding the grouping of views 
when configuring each example. Figure 6 shows two associated views: a slide view (left) and one of three 
associated rotation views (right). 

 

  
Figure 6. A shared petrological virtual microscope, showing a screen view of a slide containing multiple sub-views of 
interesting slide areas (left) and an example of the rotation view for one of the sub-views. 

Shared forces and motion spring simulation 

This application followed a similar configuration process for identifying the JavaScript parameters of a 
HTML5 spring simulation as described above. However, it also split the control parameters into distinct sets so 
that a user could take control (or release control) of: the spring constant and mass, the damping constant, or the 
speed of the driver motor. In the simulation, sliders on the left of the screen control parameters, the simulation is 
in the middle, and the behavior of the simulation is reported on the right hand side of the screen. As well as 
controlling the movement of the spring by dragging the motor slider, the user can drag the blue handle up-and-
down to explore how the spring and mass behave. Figure 7 illustrates how two group members can take control 
of separate groups of simulation parameters.  

 

  
Figure 7. A shared forces and motion spring simulation, showing screen images from two users in a group, each in 
control of different sets of parameters (left = spring constant and mass; right = damping constant). 



User study 

The following study was carried out using an earlier prototype of the SR system to help validate the 
loosely coupled approach for sharing group access and control over web-representations. The findings presented 
here were used as part of a successful funding application that enabled the SR system to be developed further as 
described.  

Method 

The study involved 14 pairs of children from two primary schools in southern England (14 boys and 14 
girls) with an average age of 10 years six months. Each child completed an individual pre-test, which consisted 
of eight questions. The first four questions were about a static spring, where either the mass or the strength of 
the spring was changed (referred to as static). The next two questions were about a static spring, where the mass 
and the strength of the spring were changed (referred to as inter). The children were shown a picture of a spring 
and asked what would happen, whether the spring would go down, go up or stay the same. The last two 
questions were on dynamic springs, where the spring was moving up and down and either the mass or the 
strength of the spring was changed (referred to as dynamic). The children were shown a picture of the spring 
and asked whether the weight would move up and down quicker, slower or stay the same. 

After the pre-test, the children operated a shared spring simulation in pairs and worked through a 
scripted protocol. They each had an Apple iPad, which was wirelessly connected to a web server containing the 
shared representation system (see Figure 8). The protocol consisted of a series of questions where the children 
were asked to agree on what would happen to a static spring if the mass were changed and/or the strength of the 
spring was changed. They then changed the mass and/or strength of the spring and observed what happened. A 
further set of questions concerned what would happen if the mass and/or strength of the spring were changed 
when the spring was moving up and down, as with the previous set of questions the children had to collectively 
agree an answer before they could change the mass and/or spring strength and observe what would happen.  

This protocol was based on the work of Howe and her colleagues (2007) on collaborative learning in 
science. After they worked in pairs on the shared spring simulation the children completed a post-test (which 
was the same as the pre-test). As well as comparing the pre and post test scores the activity was video recorded, 
but the analysis is not reported on here. 

 

  
Figure 8. A shared spring simulation showing two different users (left and right) accessing the same simulation, but 
controlling different simulation parameters. 



Results 

Table 1 shows that the children had significantly improved on the: static problems (t=4.1, df=27, 
p=0.00033953), interactive problems (t=2.8, df=21, p=0.01), dynamic problems (t=2.9, df=21, p=0.01), and 
overall (t=5.7, df=27, p=0.00000468).  

 Pre-test Post-test   
 Mean SD Mean SD T  
Static 2.8 1.3 3.8 0.7 4.1  
Inter 0.9 0.9 1.4 0.7 2.8  
Dynamic 1.1 0.5 1.5 0.6 2.9  
Total 4.7 1.8 6.6 1.4 5.7  

Table 1. Mean pre-test and post-test score from a study exploring primary school children’s use of a shared spring 
simulation (in each case the improvement in scores was statistically significant at a level p <= 0.01). 

Discussion 

The significant improvements in test scores can be attributed to the use made of the shared simulation. 
However, it was not possible to have control groups in this study and therefore the use made of the shared 
simulation could not be compared to other approaches. Nonetheless, the results support the argument that using 
a shared representation as part of dialogic learning activity is beneficial. Further discourse analysis of the 
recorded sessions will help identify how the representation was used and the influence it had on the children’s 
talk. 

Conclusion and future work 

This paper has presented the rationale, design and development of a software system for sharing access 
to web-based representations. The purpose of developing the system was to enable further investigation into the 
effective use of visual representations within groups, as a complementary support for exploratory discussion 
within dialogic learning activities. The key aspects of this generic system, which enable it to be applied flexibly 
across domains and levels of education, are: the adoption of a RESTful web service for managing loosely 
coupled representations; the wrapping of the system with (existing) widgets using a customizable code wrapper; 
and the hierarchical structuring of groups, views and control parameters. One of the applications of this system 
has been found to improve primary children’s understanding of gravitational forces and motion when used by 
children working in pairs. 

Future work will continue to develop the SR system through refining the implementation, informed by 
user trials and new applications. Additional studies are planned to explore how shared representations can be 
embedded within dialogic learning activities, and how the logged activities of each user can be appropriated to 
guide group formation and provide effective scaffolding for the user. 
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