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Abstract

Let G be a finite group acting vertex-transitively on a graph. We show that bounding
the order of a vertex stabilizer is equivalent to bounding the second singular value of a
particular bipartite graph. This yields an alternative formulation of the Weiss Conjecture.
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A NOTE ON THE WEISS CONJECTURE

NICK GILL

(June 5, 2013)

Throughout this note G is a finite group acting vertex-transitively on a
graph Γ = (V,E) of valency k. We say that G is locally-P, for some property
P, if Gv is P on Γ(v). Here v is a vertex of Γ, and Γ(v) is the set of neighbours
of v. With this notation we can state the Weiss Conjecture [9].

Conjecture 1. (The Weiss Conjecture) There exists a function f : N→ N
such that if G is vertex-transitive and locally-primitive on a graph Γ of va-
lency k, then |Gv| < f(k).

A stronger version of this conjecture, in which ‘primitive’ is replaced by
‘semiprimitive’ has been recently proposed [7]. (A transitive permutation
group is said to be semiprimitive if each of its normal subgroups is either
transitive or semiregular.)

Our aim in this note is to connect the order of Gv to the singular value
decomposition of the biadjacency matrix of a particular bipartite graph G.
This connection yields an alternative form of the Weiss conjecture (and its
variants). Our main result is the following (we write λ2 for the second largest
singular value of the biadjacency matrix of G).

Theorem 1. For every function f : N → N, there is a function g :
N→ N such that if G is a finite group acting vertex-transitively on a graph
Γ = (V,E) of valency k and λ2 < f(k), then |Gv| < g(k).

Conversely, for every function g : N→ N, there is a function f : N→ N
such that if G is a finite group acting vertex-transitively on a graph Γ =
(V,E) of valency k and |Gv| < g(k), then λ2 < f(k).

All of the necessary definitions pertaining to Theorem 1 are discussed
below. In particular the bipartite graph G is defined in §1, and the singular
value decomposition of its biadjacency matrix is discussed in §2.

Theorem 1 implies that, to any family of vertex-transitive graphs with
bounded vertex stabilizer, we have an associated family of bipartite graphs
with bounded second singular value, and vice versa. Proving the Weiss
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Conjecture (or one of its variants) is, therefore, equivalent to bounding the
second singular value for a particular family of bipartite graphs.

Gowers remarks that singular values are the ‘correct analogue of eigen-
values for bipartite graphs’ (see the preamble to Lemma 2.7 in [4]).1 Thus
bounding the second singular value of a bipartite graph is analogous to
bounding the second eigenvalue of a graph; the latter task is a celebrated
and much studied problem due to its connection to the expansion properties
of a graph (see, for instance, [5]).

The fact that the Weiss Conjecture has connections to expansion has
already been recognised [6] - we hope that this note adds to the evidence
that it is a connection warranting a good deal more investigation.

1. The associated bipartite graph G Our first job is to describe G,
and for this we need the concept of a coset graph. Let H be a subgroup of G
and let A be a union of double cosets of H in G such that A = A−1. Define
the coset graph Cos(G,H,A) as the graph with vertex set the left cosets
of H in G and with edges the pairs {xH, yH} such that Hx−1yH ⊂ A.
Observe that the action of G by left multiplication on the set of left cosets
of H induces a vertex-transitive automorphism group of Cos(G,H,A).

The following result is due to Sabidussi [8].

Proposition 2. Let Γ = (V,E) be a G-vertex-transitive graph and v
a vertex of Γ. Then there exists a union S of Gv-double cosets such that
S = S−1, Γ ∼= Cos(G,Gv, S) and the action of G on V is equivalent to the
action of G by left multiplication on the left cosets of Gv in G.

Note that G is locally-transitive if and only if S is equal to a single
double coset of Gv. From here on we fix v to be a vertex in V and we set
S to be the union of double cosets of Gv in G such that Γ ∼= Cos(G,Gv, S).
Observe that S({v}) = Γ(v).

We are ready to define the regular bipartite graph G. We define the two
vertex sets, X and Y , to be copies of V . The number of edges between
x ∈ X and y ∈ Y is defined to equal the number of elements s ∈ S such
that s(x) = y. Note that G is a multigraph.

2. The singular value decomposition For V and W two real inner
product spaces, we define a linear map

w ⊗ v : V →W,x 7→ 〈x, v〉w.

With this notation we have the following result [4, Theorem 2.6].

1The mathematics behind this remark is set down in [1]. An elementary first observation
is that the eigenvalues of the natural biadjacency matrix of a bipartite graph may be
negative, in contrast to the eigenvalues of the (symmetric) adjacency matrix of a graph.
This pathology is remedied by studying the singular values as we shall see.
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Proposition 3. Let α : V →W be a linear map. Then α has a decom-
position of the form

∑k
i=1 λiwi ⊗ vi, where the sequences (vi) and (wi) are

orthonormal in V and W , respectively, each λi is non-negative, and k is the
smaller of dimV and dimW .

The decomposition described in the proposition is called the singular
value decomposition, and the values λ1, λ2, . . . are the singular values of α.
In what follows we always assume that the singular values are written in
non-increasing order: λ1 > λ2 > · · · .

Now write A for the biadjacency matrix of G as a bipartite graph, i.e.
the rows of A are indexed by X, the columns by Y and, for x ∈ X, y ∈ Y ,
the entry A(x, y) is equal to the number of edges between x and y. Then
A can be thought of as a matrix for a linear map α : RX → RY and, as
such, we may consider its singular value decomposition. From here on the
variables λ1, λ2, . . . will denote the singular values of this particular map.

The next result gives information about this decomposition. (The result
is [3, Lemma 3.3], although some of the statements must be extracted from
the proof.)

Lemma 4. 1. λ1 = t
√
|V1||V2| where t is the real number such that

every vertex in V1 has degree t|V2|.

2. If f is a function that sums to zero, then ‖α(f)‖/‖f‖ 6 λ2.

Note that the only norm used in this note is the `2-norm.

3. Convolution Consider two functions µ : G→ R and ν : V → R. We
define the convolution of µ and ν to be

µ ∗ ν : V → R, v 7→
∑
g∈G

µ(g)ν(g−1v). (1)

In the special case where µ = χS , the characteristic function of the set
S defined above, χS ∗ ν takes on a particularly interesting form:

(χS ∗ f)(v) =
∑
g∈G

χS(g)f(g−1v) =
∑
w∈V
A(v, w)f(v). (2)

Here, as before, A is the biadjacency matrix of the bipartite graph G.
Equation (2) implies that the linear map α : RX → RY , for which A is a
matrix, is given by α(f) = χS ∗ f . This form is particularly convenient, as
it allows us to use the following easy identities [3, Lemma 2.3].

Lemma 5. Let f be a function on V that sums to 0, p a probability
distribution over V , q a probability distribution over G, and U the uniform
probability distribution over V . Then
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1. ‖f + U‖2 = ‖f‖2 + 1
|V | .

2. ‖p− U‖2 = ‖p‖2 − 1
|V | .

3. ‖q ∗ (p± U)‖ = ‖q ∗ p± U‖.

4. For k a real number, ‖kp‖ = k‖p‖.

4. The proof Theorem 1 will follow from the next result which shows
that, provided k is not too large compared to |V |, the order of Gv is bounded
in terms of λ2 and k.

Proposition 6. Either |Gv| <
√
2λ2
k or |V | < 2k.

Proof. Let v be a vertex in V . We define two probability distributions,
pS : G→ R and pv : V → R, as follows:

pS(x) =

{
1
|S| , x ∈ S,
0, x /∈ S,

pv(x) =

{
1, x = v,

0, otherwise.

Observe that ‖pS‖ = 1√
|S|

= 1√
k|Gv |

and ‖pv‖ = 1. Observe that (pS ∗
pv)(w) = 0 except when w ∈ S({v}) = Γ(v). A simple application of the
Cauchy-Schwarz inequality (or see [2, Observation 3.4]) gives

1

k
=

1

|Γ(v)|
6 ‖pS ∗ pv‖2.

Define f = pv − U and observe that f is a function on V that sums to
0. Lemma 4 implies that ‖(αf)‖/‖f‖ 6 λ2. Using this fact, the identities
in Lemma 5, and the fact that χS = |S|pS , we obtain the following:

1

k
6 ‖pS ∗ pv‖2

= ‖pS ∗ (f + U)‖2

= ‖pS ∗ f + U‖2

= ‖pS ∗ f‖2 +
1

|V |

=
1

|S|2
‖χS ∗ f‖2 +

1

|V |

=
1

|S|2
‖α(f)‖2 +

1

|V |

6
1

|S|2
λ22‖f‖2 +

1

|V |

=
1

|S|2
λ22‖pv − U‖2 +

1

|V |

<
λ22
|S|2

+
1

|V |
.
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Since |S| = k|Gv| we can rearrange to obtain

k >
|V |

1 +
λ22|V |
k2|Gv |2

.

Observe that if
λ22|V |
k2|Gv |2 6 1, then

k >
|V |

1 +
λ22|V |
k2|Gv |2

>
|V |
2
.

and the result follows. On the other hand, if
λ22|V |
k2|Gv |2 > 1, then

k >
|V |k2|Gv|2

k2|Gv|2 + |V |λ22
>
|V |k2|Gv|2

2|V |λ22

and we conclude that |Gv|2 < 2λ22/k as required.

Finally we can prove Theorem 1.

Proof. The previous lemma implies that if λ2 < f(k) for some function
f : N → N then |Gv| < g(k) for some function g : N → N. (Note that if
|V | 6 2k, then |Gv| 6 |G| 6 (2k)!.)

For the converse, Lemma 4 implies that λ1 = t
√
|X| · |Y | where t is the

real number such that every vertex in X has degree t|Y |. Now recall that
|X| = |Y | = |V | and observe that every vertex in X has degree k|Gv|. Thus
we conclude that λ1 = k|Gv|. Since λ2 6 λ1 the result follows.
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