Open Research Online

The Open University's repository of research publications and other research outputs

A note on the Weiss conjecture

Journal Item

How to cite:
Gill, Nick (2013). A note on the Weiss conjecture. Journal of the Australian Mathematical Society, 95(3) pp. 356-361.

For guidance on citations see FAQs.
© 2013 Australian Mathematical Society
Version: Accepted Manuscript
Link(s) to article on publisher's website:
http://dx.doi.org/doi:10.1017/S144678871300030X

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.

Abstract

Let G be a finite group acting vertex-transitively on a graph. We show that bounding the order of a vertex stabilizer is equivalent to bounding the second singular value of a particular bipartite graph. This yields an alternative formulation of the Weiss Conjecture.

2010 Mathematics subject classification: primary 20B25; secondary 05C25. Keywords and phrases: permutation group, vertex-transitive, singular value, Weiss Conjecture.

A NOTE ON THE WEISS CONJECTURE

NICK GILL

(June 5, 2013)

Throughout this note G is a finite group acting vertex-transitively on a graph $\Gamma=(V, E)$ of valency k. We say that G is locally-P, for some property P , if G_{v} is P on $\Gamma(v)$. Here v is a vertex of Γ, and $\Gamma(v)$ is the set of neighbours of v. With this notation we can state the Weiss Conjecture [9].

Conjecture 1. (The Weiss Conjecture) There exists a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if G is vertex-transitive and locally-primitive on a graph Γ of valency k, then $\left|G_{v}\right|<f(k)$.

A stronger version of this conjecture, in which 'primitive' is replaced by 'semiprimitive' has been recently proposed [7]. (A transitive permutation group is said to be semiprimitive if each of its normal subgroups is either transitive or semiregular.)

Our aim in this note is to connect the order of G_{v} to the singular value decomposition of the biadjacency matrix of a particular bipartite graph \mathcal{G}. This connection yields an alternative form of the Weiss conjecture (and its variants). Our main result is the following (we write λ_{2} for the second largest singular value of the biadjacency matrix of \mathcal{G}).

Theorem 1. For every function $f: \mathbb{N} \rightarrow \mathbb{N}$, there is a function g : $\mathbb{N} \rightarrow \mathbb{N}$ such that if G is a finite group acting vertex-transitively on a graph $\Gamma=(V, E)$ of valency k and $\lambda_{2}<f(k)$, then $\left|G_{v}\right|<g(k)$.

Conversely, for every function $g: \mathbb{N} \rightarrow \mathbb{N}$, there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if G is a finite group acting vertex-transitively on a graph $\Gamma=$ (V, E) of valency k and $\left|G_{v}\right|<g(k)$, then $\lambda_{2}<f(k)$.

All of the necessary definitions pertaining to Theorem 1 are discussed below. In particular the bipartite graph \mathcal{G} is defined in $\S 1$, and the singular value decomposition of its biadjacency matrix is discussed in $\S 2$.

Theorem 1 implies that, to any family of vertex-transitive graphs with bounded vertex stabilizer, we have an associated family of bipartite graphs with bounded second singular value, and vice versa. Proving the Weiss
© XXXX Australian Mathematical Society 0263-6115/XX $\$$ A2.00 +0.00

Conjecture (or one of its variants) is, therefore, equivalent to bounding the second singular value for a particular family of bipartite graphs.

Gowers remarks that singular values are the 'correct analogue of eigenvalues for bipartite graphs' (see the preamble to Lemma 2.7 in [4]). ${ }^{1}$ Thus bounding the second singular value of a bipartite graph is analogous to bounding the second eigenvalue of a graph; the latter task is a celebrated and much studied problem due to its connection to the expansion properties of a graph (see, for instance, [5]).

The fact that the Weiss Conjecture has connections to expansion has already been recognised [6] - we hope that this note adds to the evidence that it is a connection warranting a good deal more investigation.

1. The associated bipartite graph \mathcal{G} Our first job is to describe \mathcal{G}, and for this we need the concept of a coset graph. Let H be a subgroup of G and let A be a union of double cosets of H in G such that $A=A^{-1}$. Define the coset graph $\operatorname{Cos}(G, H, A)$ as the graph with vertex set the left cosets of H in G and with edges the pairs $\{x H, y H\}$ such that $H x^{-1} y H \subset A$. Observe that the action of G by left multiplication on the set of left cosets of H induces a vertex-transitive automorphism group of $\operatorname{Cos}(G, H, A)$.

The following result is due to Sabidussi [8].
Proposition 2. Let $\Gamma=(V, E)$ be a G-vertex-transitive graph and v a vertex of Γ. Then there exists a union S of G_{v}-double cosets such that $S=S^{-1}, \Gamma \cong \operatorname{Cos}\left(G, G_{v}, S\right)$ and the action of G on V is equivalent to the action of G by left multiplication on the left cosets of G_{v} in G.

Note that G is locally-transitive if and only if S is equal to a single double coset of G_{v}. From here on we fix v to be a vertex in V and we set S to be the union of double cosets of G_{v} in G such that $\Gamma \cong \operatorname{Cos}\left(G, G_{v}, S\right)$. Observe that $S(\{v\})=\Gamma(v)$.

We are ready to define the regular bipartite graph \mathcal{G}. We define the two vertex sets, X and Y, to be copies of V. The number of edges between $x \in X$ and $y \in Y$ is defined to equal the number of elements $s \in S$ such that $s(x)=y$. Note that \mathcal{G} is a multigraph.
2. The singular value decomposition For V and W two real inner product spaces, we define a linear map

$$
w \otimes v: V \rightarrow W, x \mapsto\langle x, v\rangle w
$$

With this notation we have the following result [4, Theorem 2.6].

[^0]Proposition 3. Let $\alpha: V \rightarrow W$ be a linear map. Then α has a decomposition of the form $\sum_{i=1}^{k} \lambda_{i} w_{i} \otimes v_{i}$, where the sequences $\left(v_{i}\right)$ and $\left(w_{i}\right)$ are orthonormal in V and W, respectively, each λ_{i} is non-negative, and k is the smaller of $\operatorname{dim} V$ and $\operatorname{dim} W$.

The decomposition described in the proposition is called the singular value decomposition, and the values $\lambda_{1}, \lambda_{2}, \ldots$ are the singular values of α. In what follows we always assume that the singular values are written in non-increasing order: $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots$.

Now write \mathcal{A} for the biadjacency matrix of \mathcal{G} as a bipartite graph, i.e. the rows of \mathcal{A} are indexed by X, the columns by Y and, for $x \in X, y \in Y$, the entry $\mathcal{A}(x, y)$ is equal to the number of edges between x and y. Then \mathcal{A} can be thought of as a matrix for a linear map $\alpha: \mathbb{R}^{X} \rightarrow \mathbb{R}^{Y}$ and, as such, we may consider its singular value decomposition. From here on the variables $\lambda_{1}, \lambda_{2}, \ldots$ will denote the singular values of this particular map.

The next result gives information about this decomposition. (The result is [3, Lemma 3.3], although some of the statements must be extracted from the proof.)

Lemma 4. 1. $\lambda_{1}=t \sqrt{\left|V_{1}\right|\left|V_{2}\right|}$ where t is the real number such that every vertex in V_{1} has degree $t\left|V_{2}\right|$.
2. If f is a function that sums to zero, then $\|\alpha(f)\| /\|f\| \leqslant \lambda_{2}$.

Note that the only norm used in this note is the ℓ^{2}-norm.
3. Convolution Consider two functions $\mu: G \rightarrow \mathbb{R}$ and $\nu: V \rightarrow \mathbb{R}$. We define the convolution of μ and ν to be

$$
\begin{equation*}
\mu * \nu: V \rightarrow \mathbb{R}, v \mapsto \sum_{g \in G} \mu(g) \nu\left(g^{-1} v\right) . \tag{1}
\end{equation*}
$$

In the special case where $\mu=\chi_{S}$, the characteristic function of the set S defined above, $\chi_{S} * \nu$ takes on a particularly interesting form:

$$
\begin{equation*}
\left(\chi_{S} * f\right)(v)=\sum_{g \in G} \chi_{S}(g) f\left(g^{-1} v\right)=\sum_{w \in V} \mathcal{A}(v, w) f(v) . \tag{2}
\end{equation*}
$$

Here, as before, \mathcal{A} is the biadjacency matrix of the bipartite graph \mathcal{G}. Equation (2) implies that the linear map $\alpha: \mathbb{R}^{X} \rightarrow \mathbb{R}^{Y}$, for which \mathcal{A} is a matrix, is given by $\alpha(f)=\chi_{S} * f$. This form is particularly convenient, as it allows us to use the following easy identities [3, Lemma 2.3].

Lemma 5. Let f be a function on V that sums to $0, p$ a probability distribution over V, q a probability distribution over G, and U the uniform probability distribution over V. Then

1. $\|f+U\|^{2}=\|f\|^{2}+\frac{1}{|V|}$.
2. $\|p-U\|^{2}=\|p\|^{2}-\frac{1}{|V|}$.
3. $\|q *(p \pm U)\|=\|q * p \pm U\|$.
4. For k a real number, $\|k p\|=k\|p\|$.
5. The proof Theorem 1 will follow from the next result which shows that, provided k is not too large compared to $|V|$, the order of G_{v} is bounded in terms of λ_{2} and k.

Proposition 6. Either $\left|G_{v}\right|<\frac{\sqrt{2} \lambda_{2}}{k}$ or $|V|<2 k$.
Proof. Let v be a vertex in V. We define two probability distributions, $p_{S}: G \rightarrow \mathbb{R}$ and $p_{v}: V \rightarrow \mathbb{R}$, as follows:

$$
p_{S}(x)=\left\{\begin{array}{ll}
\frac{1}{|S|}, & x \in S, \\
0, & x \notin S,
\end{array} \quad p_{v}(x)= \begin{cases}1, & x=v \\
0, & \text { otherwise }\end{cases}\right.
$$

Observe that $\left\|p_{S}\right\|=\frac{1}{\sqrt{|S|}}=\frac{1}{\sqrt{k\left|G_{v}\right|}}$ and $\left\|p_{v}\right\|=1$. Observe that $\left(p_{S} *\right.$ $\left.p_{v}\right)(w)=0$ except when $w \in S(\{v\})=\Gamma(v)$. A simple application of the Cauchy-Schwarz inequality (or see [2, Observation 3.4]) gives

$$
\frac{1}{k}=\frac{1}{|\Gamma(v)|} \leqslant\left\|p_{S} * p_{v}\right\|^{2}
$$

Define $f=p_{v}-U$ and observe that f is a function on V that sums to 0 . Lemma 4 implies that $\|(\alpha f)\| /\|f\| \leqslant \lambda_{2}$. Using this fact, the identities in Lemma 5 , and the fact that $\chi_{S}=|S| p_{S}$, we obtain the following:

$$
\begin{aligned}
\frac{1}{k} & \leqslant\left\|p_{S} * p_{v}\right\|^{2} \\
& =\left\|p_{S} *(f+U)\right\|^{2} \\
& =\left\|p_{S} * f+U\right\|^{2} \\
& =\left\|p_{S} * f\right\|^{2}+\frac{1}{|V|} \\
& =\frac{1}{|S|^{2}}\left\|\chi_{S} * f\right\|^{2}+\frac{1}{|V|} \\
& =\frac{1}{|S|^{2}}\|\alpha(f)\|^{2}+\frac{1}{|V|} \\
& \leqslant \frac{1}{|S|^{2}} \lambda_{2}^{2}\|f\|^{2}+\frac{1}{|V|} \\
& =\frac{1}{|S|^{2}} \lambda_{2}^{2}\left\|p_{v}-U\right\|^{2}+\frac{1}{|V|} \\
& <\frac{\lambda_{2}^{2}}{|S|^{2}}+\frac{1}{|V|} .
\end{aligned}
$$

Since $|S|=k\left|G_{v}\right|$ we can rearrange to obtain

$$
k>\frac{|V|}{1+\frac{\lambda_{2}^{2}|V|}{k^{2}\left|G_{v}\right|^{2}}}
$$

Observe that if $\frac{\lambda_{2}^{2}|V|}{k^{2}\left|G_{v}\right|^{2}} \leqslant 1$, then

$$
k>\frac{|V|}{1+\frac{\lambda_{2}^{2}|V|}{k^{2}\left|G_{v}\right|^{2}}} \geqslant \frac{|V|}{2}
$$

and the result follows. On the other hand, if $\frac{\lambda_{2}^{2}|V|}{k^{2}\left|G_{v}\right|^{2}}>1$, then

$$
k>\frac{|V| k^{2}\left|G_{v}\right|^{2}}{k^{2}\left|G_{v}\right|^{2}+|V| \lambda_{2}^{2}}>\frac{|V| k^{2}\left|G_{v}\right|^{2}}{2|V| \lambda_{2}^{2}}
$$

and we conclude that $\left|G_{v}\right|^{2}<2 \lambda_{2}^{2} / k$ as required.
Finally we can prove Theorem 1.
Proof. The previous lemma implies that if $\lambda_{2}<f(k)$ for some function $f: \mathbb{N} \rightarrow \mathbb{N}$ then $\left|G_{v}\right|<g(k)$ for some function $g: \mathbb{N} \rightarrow \mathbb{N}$. (Note that if $|V| \leqslant 2 k$, then $\left|G_{v}\right| \leqslant|G| \leqslant(2 k)!$.)

For the converse, Lemma 4 implies that $\lambda_{1}=t \sqrt{|X| \cdot|Y|}$ where t is the real number such that every vertex in X has degree $t|Y|$. Now recall that $|X|=|Y|=|V|$ and observe that every vertex in X has degree $k\left|G_{v}\right|$. Thus we conclude that $\lambda_{1}=k\left|G_{v}\right|$. Since $\lambda_{2} \leqslant \lambda_{1}$ the result follows.

References

[1] B. Bollobás and V. Nikiforov, 'Hermitian matrices and graphs: singular values and discrepancy', Discrete Math. 285 (2004), no. 1-3, 17-32.
[2] L. Babai, N. Nikolov, and L. Pyber, 'Product growth and mixing in finite groups', Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms (New York), ACM, 2008, pp. 248-257.
[3] N. Gill, 'Quasirandom group action', 2013. Submitted. Preprint available on the Math arXiv: http://arxiv.org/abs/1302.1186.
[4] W. T. Gowers, 'Quasirandom groups', Comb. Probab. Comp. 17 (2008), 363387.
[5] A. Lubotzky, 'Discrete groups, expanding graphs and invariant measures', Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2010, With an appendix by Jonathan D. Rogawski, Reprint of the 1994 edition.
[6] C. Praeger, L. Pyber, P. Spiga, and E. Szabó, 'Graphs with automorphism groups admitting composition factors of bounded rank', Proc. Amer. Math. Soc. 140 (2012), no. 7, 2307-2318.
[7] P. Potočnik, P. Spiga, and G. Verret, 'On graph-restrictive permutation groups', J. Combin. Theory Ser. B 102 (2012), no. 3, 820-831.
[8] G. Sabidussi, 'Vertex-transitive graphs', Monatsh. Math. 68 (1964), 426-438.
[9] R. Weiss, ' s-transitive graphs', Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), Colloq. Math. Soc. János Bolyai, vol. 25, North-Holland, Amsterdam, 1981, pp. 827-847.

Department of Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK e-mail: n.gill@open.ac.uk

[^0]: ${ }^{1}$ The mathematics behind this remark is set down in [1]. An elementary first observation is that the eigenvalues of the natural biadjacency matrix of a bipartite graph may be negative, in contrast to the eigenvalues of the (symmetric) adjacency matrix of a graph. This pathology is remedied by studying the singular values as we shall see.

