The Open University

Open Research Online

The Open University's repository of research publications and other research outputs

A note on the Weiss conjecture

Journal Item

How to cite:

Gill, Nick (2013). A note on the Weiss conjecture. Journal of the Australian Mathematical Society, 95(3) pp. 356-361.

For guidance on citations see \underline{FAQs} .

© 2013 Australian Mathematical Society

Version: Accepted Manuscript

Link(s) to article on publisher's website: http://dx.doi.org/doi:10.1017/S144678871300030X

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data <u>policy</u> on reuse of materials please consult the policies page.

oro.open.ac.uk

Abstract

Let G be a finite group acting vertex-transitively on a graph. We show that bounding the order of a vertex stabilizer is equivalent to bounding the second singular value of a particular bipartite graph. This yields an alternative formulation of the Weiss Conjecture.

2010 Mathematics subject classification: primary 20B25; secondary 05C25.

 $Keywords \ and \ phrases: \ permutation \ group, \ vertex-transitive, \ singular \ value, \ Weiss \ Conjecture.$

A NOTE ON THE WEISS CONJECTURE NICK GILL

(June 5, 2013)

Throughout this note G is a finite group acting vertex-transitively on a graph $\Gamma = (V, E)$ of valency k. We say that G is *locally*-P, for some property P, if G_v is P on $\Gamma(v)$. Here v is a vertex of Γ , and $\Gamma(v)$ is the set of neighbours of v. With this notation we can state the Weiss Conjecture [9].

CONJECTURE 1. (The Weiss Conjecture) There exists a function $f : \mathbb{N} \to \mathbb{N}$ such that if G is vertex-transitive and locally-primitive on a graph Γ of valency k, then $|G_v| < f(k)$.

A stronger version of this conjecture, in which 'primitive' is replaced by 'semiprimitive' has been recently proposed [7]. (A transitive permutation group is said to be *semiprimitive* if each of its normal subgroups is either transitive or semiregular.)

Our aim in this note is to connect the order of G_v to the singular value decomposition of the biadjacency matrix of a particular bipartite graph \mathcal{G} . This connection yields an alternative form of the Weiss conjecture (and its variants). Our main result is the following (we write λ_2 for the second largest singular value of the biadjacency matrix of \mathcal{G}).

THEOREM 1. For every function $f : \mathbb{N} \to \mathbb{N}$, there is a function $g : \mathbb{N} \to \mathbb{N}$ such that if G is a finite group acting vertex-transitively on a graph $\Gamma = (V, E)$ of valency k and $\lambda_2 < f(k)$, then $|G_v| < g(k)$.

Conversely, for every function $g : \mathbb{N} \to \mathbb{N}$, there is a function $f : \mathbb{N} \to \mathbb{N}$ such that if G is a finite group acting vertex-transitively on a graph $\Gamma = (V, E)$ of valency k and $|G_v| < g(k)$, then $\lambda_2 < f(k)$.

All of the necessary definitions pertaining to Theorem 1 are discussed below. In particular the bipartite graph \mathcal{G} is defined in §1, and the singular value decomposition of its biadjacency matrix is discussed in §2.

Theorem 1 implies that, to any family of vertex-transitive graphs with bounded vertex stabilizer, we have an associated family of bipartite graphs with bounded second singular value, and vice versa. Proving the Weiss

[©] XXXX Australian Mathematical Society 0263-6115/XX A2.00 + 0.00

Conjecture (or one of its variants) is, therefore, equivalent to bounding the second singular value for a particular family of bipartite graphs.

Gowers remarks that singular values are the 'correct analogue of eigenvalues for bipartite graphs' (see the preamble to Lemma 2.7 in [4]).¹ Thus bounding the second singular value of a bipartite graph is analogous to bounding the second eigenvalue of a graph; the latter task is a celebrated and much studied problem due to its connection to the expansion properties of a graph (see, for instance, [5]).

The fact that the Weiss Conjecture has connections to expansion has already been recognised [6] - we hope that this note adds to the evidence that it is a connection warranting a good deal more investigation.

1. The associated bipartite graph \mathcal{G} Our first job is to describe \mathcal{G} , and for this we need the concept of a *coset graph*. Let H be a subgroup of Gand let A be a union of double cosets of H in G such that $A = A^{-1}$. Define the coset graph $\operatorname{Cos}(G, H, A)$ as the graph with vertex set the left cosets of H in G and with edges the pairs $\{xH, yH\}$ such that $Hx^{-1}yH \subset A$. Observe that the action of G by left multiplication on the set of left cosets of H induces a vertex-transitive automorphism group of $\operatorname{Cos}(G, H, A)$.

The following result is due to Sabidussi [8].

PROPOSITION 2. Let $\Gamma = (V, E)$ be a G-vertex-transitive graph and va vertex of Γ . Then there exists a union S of G_v -double cosets such that $S = S^{-1}, \Gamma \cong Cos(G, G_v, S)$ and the action of G on V is equivalent to the action of G by left multiplication on the left cosets of G_v in G.

Note that G is locally-transitive if and only if S is equal to a single double coset of G_v . From here on we fix v to be a vertex in V and we set S to be the union of double cosets of G_v in G such that $\Gamma \cong \operatorname{Cos}(G, G_v, S)$. Observe that $S(\{v\}) = \Gamma(v)$.

We are ready to define the regular bipartite graph \mathcal{G} . We define the two vertex sets, X and Y, to be copies of V. The number of edges between $x \in X$ and $y \in Y$ is defined to equal the number of elements $s \in S$ such that s(x) = y. Note that \mathcal{G} is a multigraph.

2. The singular value decomposition For V and W two real inner product spaces, we define a linear map

$$w \otimes v : V \to W, x \mapsto \langle x, v \rangle w.$$

With this notation we have the following result [4, Theorem 2.6].

¹The mathematics behind this remark is set down in [1]. An elementary first observation is that the eigenvalues of the natural biadjacency matrix of a bipartite graph may be negative, in contrast to the eigenvalues of the (symmetric) adjacency matrix of a graph. This pathology is remedied by studying the singular values as we shall see.

PROPOSITION 3. Let $\alpha: V \to W$ be a linear map. Then α has a decomposition of the form $\sum_{i=1}^{k} \lambda_i w_i \otimes v_i$, where the sequences (v_i) and (w_i) are orthonormal in V and W, respectively, each λ_i is non-negative, and k is the smaller of dim V and dim W.

The decomposition described in the proposition is called the *singular* value decomposition, and the values $\lambda_1, \lambda_2, \ldots$ are the *singular values* of α . In what follows we always assume that the singular values are written in non-increasing order: $\lambda_1 \ge \lambda_2 \ge \cdots$.

Now write \mathcal{A} for the biadjacency matrix of \mathcal{G} as a bipartite graph, i.e. the rows of \mathcal{A} are indexed by X, the columns by Y and, for $x \in X, y \in Y$, the entry $\mathcal{A}(x, y)$ is equal to the number of edges between x and y. Then \mathcal{A} can be thought of as a matrix for a linear map $\alpha : \mathbb{R}^X \to \mathbb{R}^Y$ and, as such, we may consider its singular value decomposition. From here on the variables $\lambda_1, \lambda_2, \ldots$ will denote the singular values of this particular map.

The next result gives information about this decomposition. (The result is [3, Lemma 3.3], although some of the statements must be extracted from the proof.)

LEMMA 4. 1. $\lambda_1 = t\sqrt{|V_1||V_2|}$ where t is the real number such that every vertex in V_1 has degree $t|V_2|$.

2. If f is a function that sums to zero, then $\|\alpha(f)\|/\|f\| \leq \lambda_2$.

Note that the only norm used in this note is the ℓ^2 -norm.

3. Convolution Consider two functions $\mu : G \to \mathbb{R}$ and $\nu : V \to \mathbb{R}$. We define the *convolution* of μ and ν to be

$$\mu * \nu : V \to \mathbb{R}, \ v \mapsto \sum_{g \in G} \mu(g)\nu(g^{-1}v).$$
(1)

In the special case where $\mu = \chi_S$, the characteristic function of the set S defined above, $\chi_S * \nu$ takes on a particularly interesting form:

$$(\chi_S * f)(v) = \sum_{g \in G} \chi_S(g) f(g^{-1}v) = \sum_{w \in V} \mathcal{A}(v, w) f(v).$$
(2)

Here, as before, \mathcal{A} is the biadjacency matrix of the bipartite graph \mathcal{G} . Equation (2) implies that the linear map $\alpha : \mathbb{R}^X \to \mathbb{R}^Y$, for which \mathcal{A} is a matrix, is given by $\alpha(f) = \chi_S * f$. This form is particularly convenient, as it allows us to use the following easy identities [3, Lemma 2.3].

LEMMA 5. Let f be a function on V that sums to 0, p a probability distribution over V, q a probability distribution over G, and U the uniform probability distribution over V. Then

- 1. $||f + U||^2 = ||f||^2 + \frac{1}{|V|}$.
- 2. $||p U||^2 = ||p||^2 \frac{1}{|V|}$.
- 3. $||q * (p \pm U)|| = ||q * p \pm U||.$
- 4. For k a real number, ||kp|| = k||p||.

4. The proof Theorem 1 will follow from the next result which shows that, provided k is not too large compared to |V|, the order of G_v is bounded in terms of λ_2 and k.

PROPOSITION 6. Either $|G_v| < \frac{\sqrt{2}\lambda_2}{k}$ or |V| < 2k.

PROOF. Let v be a vertex in V. We define two probability distributions, $p_S: G \to \mathbb{R}$ and $p_v: V \to \mathbb{R}$, as follows:

$$p_S(x) = \begin{cases} \frac{1}{|S|}, & x \in S, \\ 0, & x \notin S, \end{cases} \qquad p_v(x) = \begin{cases} 1, & x = v, \\ 0, & otherwise. \end{cases}$$

Observe that $||p_S|| = \frac{1}{\sqrt{|S|}} = \frac{1}{\sqrt{k|G_v|}}$ and $||p_v|| = 1$. Observe that $(p_S * p_v)(w) = 0$ except when $w \in S(\{v\}) = \Gamma(v)$. A simple application of the Cauchy-Schwarz inequality (or see [2, Observation 3.4]) gives

$$\frac{1}{k} = \frac{1}{|\Gamma(v)|} \leqslant ||p_S * p_v||^2.$$

Define $f = p_v - U$ and observe that f is a function on V that sums to 0. Lemma 4 implies that $||(\alpha f)||/||f|| \leq \lambda_2$. Using this fact, the identities in Lemma 5, and the fact that $\chi_S = |S|p_S$, we obtain the following:

$$\begin{aligned} \frac{1}{k} &\leqslant \|p_{S} * p_{v}\|^{2} \\ &= \|p_{S} * (f+U)\|^{2} \\ &= \|p_{S} * f+U\|^{2} \\ &= \|p_{S} * f\|^{2} + \frac{1}{|V|} \\ &= \frac{1}{|S|^{2}} \|\chi_{S} * f\|^{2} + \frac{1}{|V|} \\ &= \frac{1}{|S|^{2}} \|\alpha(f)\|^{2} + \frac{1}{|V|} \\ &\leqslant \frac{1}{|S|^{2}} \lambda_{2}^{2} \|f\|^{2} + \frac{1}{|V|} \\ &= \frac{1}{|S|^{2}} \lambda_{2}^{2} \|p_{v} - U\|^{2} + \frac{1}{|V|} \\ &< \frac{\lambda_{2}^{2}}{|S|^{2}} + \frac{1}{|V|}. \end{aligned}$$

Since $|S| = k|G_v|$ we can rearrange to obtain

$$k > \frac{|V|}{1 + \frac{\lambda_2^2 |V|}{k^2 |G_v|^2}}.$$

Observe that if $\frac{\lambda_2^2 |V|}{k^2 |G_v|^2} \leqslant 1$, then

$$k > \frac{|V|}{1 + \frac{\lambda_2^2 |V|}{k^2 |G_v|^2}} \ge \frac{|V|}{2}.$$

and the result follows. On the other hand, if $\frac{\lambda_2^2 |V|}{k^2 |G_v|^2} > 1$, then

$$k > \frac{|V|k^2|G_v|^2}{k^2|G_v|^2 + |V|\lambda_2^2} > \frac{|V|k^2|G_v|^2}{2|V|\lambda_2^2}$$

and we conclude that $|G_v|^2 < 2\lambda_2^2/k$ as required.

Finally we can prove Theorem 1.

PROOF. The previous lemma implies that if $\lambda_2 < f(k)$ for some function $f : \mathbb{N} \to \mathbb{N}$ then $|G_v| < g(k)$ for some function $g : \mathbb{N} \to \mathbb{N}$. (Note that if $|V| \leq 2k$, then $|G_v| \leq |G| \leq (2k)!$.)

For the converse, Lemma 4 implies that $\lambda_1 = t\sqrt{|X| \cdot |Y|}$ where t is the real number such that every vertex in X has degree t|Y|. Now recall that |X| = |Y| = |V| and observe that every vertex in X has degree $k|G_v|$. Thus we conclude that $\lambda_1 = k|G_v|$. Since $\lambda_2 \leq \lambda_1$ the result follows.

References

- B. Bollobás and V. Nikiforov, 'Hermitian matrices and graphs: singular values and discrepancy', *Discrete Math.* 285 (2004), no. 1-3, 17–32.
- [2] L. Babai, N. Nikolov, and L. Pyber, 'Product growth and mixing in finite groups', Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms (New York), ACM, 2008, pp. 248–257.
- [3] N. Gill, 'Quasirandom group action', 2013. Submitted. Preprint available on the Math arXiv: http://arxiv.org/abs/1302.1186.
- [4] W. T. Gowers, 'Quasirandom groups', Comb. Probab. Comp. 17 (2008), 363– 387.
- [5] A. Lubotzky, 'Discrete groups, expanding graphs and invariant measures', Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2010, With an appendix by Jonathan D. Rogawski, Reprint of the 1994 edition.

- [6] C. Praeger, L. Pyber, P. Spiga, and E. Szabó, 'Graphs with automorphism groups admitting composition factors of bounded rank', Proc. Amer. Math. Soc. 140 (2012), no. 7, 2307–2318.
- [7] P. Potočnik, P. Spiga, and G. Verret, 'On graph-restrictive permutation groups', J. Combin. Theory Ser. B 102 (2012), no. 3, 820–831.
- [8] G. Sabidussi, 'Vertex-transitive graphs', Monatsh. Math. 68 (1964), 426–438.
- [9] R. Weiss, 's-transitive graphs', Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), Colloq. Math. Soc. János Bolyai, vol. 25, North-Holland, Amsterdam, 1981, pp. 827–847.

Department of Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK e-mail: n.gill@open.ac.uk