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ABSTRACT 
 
In addition to collisions and gravitational forces, there is a growing amount of evidence that 
photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed 
sunlight are primary mechanisms that are fundamental to the physical and dynamical 
evolution of small asteroids. The Yarkovsky effect causes orbital drift, and the Yarkovsky-
O'Keefe-Radzievskii-Paddack (YORP) effect causes changes in the rotation rate and pole 
orientation. We present an adaptation of the Advanced Thermophysical Model to 
simultaneously predict the Yarkovsky and YORP effects in the presence of global self-
heating that occurs within the large concavities of irregularly shaped asteroids, which has 
been neglected or dismissed in all previous models. It is also combined with rough surface 
thermal-infrared beaming effects, which have been previously shown to enhance the 
Yarkovsky-orbital-drift and dampen on average the YORP-rotational-acceleration by orders 
of several tens of per cent. Tests on all published concave shape models of near-Earth 
asteroids, and also on one hundred Gaussian-random-spheres, show that the Yarkovsky effect 
is sensitive to shadowing and global self-heating effects at the few per cent level or less. For 
simplicity, Yarkovsky models can neglect these effects if the level of accuracy desired is of 
this order. Unlike the Yarkovsky effect, the YORP effect can be very sensitive to shadowing 
and global self-heating effects. Its sensitivity increases with decreasing relative strength of 
the YORP-rotational-acceleration, and doesn't appear to depend greatly on the degree of 
asteroid concavity. Global self-heating tends to produce a vertical offset in an asteroid's 
YORP-rotational-acceleration versus obliquity curve which is in opposite direction to that 
produced by shadowing effects. It also ensures that at least one critical obliquity angle exists 
at which zero YORP-rotational-acceleration occurs. Global self-heating must be included for 
accurate predictions of the YORP effect if an asteroid exhibits a large shadowing effect. If 
global self-heating effects are not included then it is found in ~75 per cent of cases that better 
predictions are produced when shadowing is also not included. Furthermore, global self-
heating has implications for reducing the sensitivity of the YORP effect predictions to 
detailed variations in an asteroid's shape model. 
 
 
Keywords: 
radiation mechanisms: thermal; methods: numerical; minor planets, asteroids; celestial 
mechanics. 
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1. INTRODUCTION 
 
1.1 The Yarkovsky and YORP Effects 
 
The asteroidal Yarkovsky and Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effects are 
orbital drift and changing spin state, respectively, caused by the asymmetric reflection and 
thermal re-radiation of sunlight from an irregularly shaped asteroid (see review by Bottke et 
al. 2006). Fig. 1 shows a schematic of how these two effects arise for an ideal spherical 
asteroid with two wedges attached at different angles, which also has non-zero surface 
thermal inertia and is rotating in a prograde sense (copied from Rozitis & Green 2012). As 
non-zero thermal inertia causes a surface to retain heat, the highest surface temperatures are 
shifted away from the subsolar point leading to excess thermal emission on the afternoon side 
of the asteroid. The resulting net photon force pushes in the same direction as the orbital 
motion and causes the orbit to expand (Yarkovsky effect). The orbit would shrink if the 
asteroid rotates in a retrograde sense, as the situation would be reversed. This effect is also 
referred to as the diurnal Yarkovsky effect since its direction and magnitude is dependent on 
the asteroid rotation. A seasonal Yarkovsky effect also exists for asteroids with non-zero 
obliquities, which is caused by the alternate heating and delayed thermal emission of the two 
asteroid hemispheres. The seasonal effect always causes the orbit to shrink, and becomes 
important for asteroids with very high thermal inertias. As also shown in Fig. 1, photon 
torques created by reflected sunlight and thermally emitted radiation from the two wedges act 
in opposite directions about the asteroid centre of mass. Since the wedges are mounted at 
different angles the reflection and emission directions are also different and the torques do 
not cancel out. Depending on the shape asymmetry, the resultant torque increases or 
decreases the rotation rate and can also shift the orientation of the spin axis (YORP effect). 
Both effects have a number of important implications for the dynamical and physical 
evolution of small asteroids. 
 The Yarkovsky effect delivers asteroids smaller than 40 km in size from the main-belt 
to resonance zones capable of transporting them to Earth-crossing orbits, and dispersing 
asteroid families. It can make the very close encounters of potentially hazardous asteroids 
with the Earth very difficult to predict, such as the case of (54509) Apophis (Giorgini et al. 
2008; Shor et al. 2012), and adds complications for determining the ages of unbound asteroid 
pairs (Duddy et al. 2012, 2013). Direct detection of Yarkovsky orbital drift has been achieved 
by sensitive radar ranging for (6489) Golevka (Chesley et al. 2003), and by deviations from 
predicted ephemerides over a long time span for (152563) 1992 BF (Vokrouhlický, Chesley 
& Matson 2008) and for 54 other near-Earth asteroids (Nugent et al. 2012). It has also been 
indirectly detected through the observed orbital distribution of the Karin cluster asteroid 
family (Nesvorný & Bottke 2004). 
 YORP spin-up and spin-down of asteroids smaller than 40 km in size can explain 
their observed excesses of very fast and slow rotators (Pravec et al. 2008). Spin-up of small 
rubble pile asteroids (gravitational bound aggregates) can force them to change shape and/or 
undergo mass shedding (Holsapple 2010), and numerical simulations have demonstrated that 
continued spin-up can produce binary asteroids (Walsh, Richardson & Michel 2008). 
Approximately 15 per cent of near-Earth asteroids are inferred to be binaries (Pravec & 
Harris 2007), and radar observations of binary (66391) 1999 KW4 (Ostro et al. 2006) reveal 
shapes and orbital properties that are consistent with a formation by continued YORP spin-
up. Unbound asteroid pairs have been suggested to have formed from contact-binary 
asteroids that have undergone YORP-induced rotational fission (Pravec et al. 2010), and the 
clustering of spin axes observed in asteroid families can be explained by YORP-induced spin 
axis changes (Vokrouhlický, Nesvorný & Bottke 2003). YORP-rotational-acceleration has 
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been directly detected for asteroids (54509) YORP (Lowry et al. 2007; Taylor et al. 2007), 
(1862) Apollo (Kaasalainen et al. 2007; Ďurech et al. 2008a), and (1620) Geographos 
(Ďurech et al. 2008b) by observing very small phase shifts in their rotational light-curves 
over several years. A fourth probable detection exists for (3103) Eger (Ďurech et al. 2012) 
which remains to be conclusively confirmed.  
 
1.2 Modelling the Yarkovsky and YORP Effects 
 
To accurately predict the Yarkovsky and/or YORP effect acting on an asteroid, any model 
must take into account the asteroid's size and shape, mass and moment of inertia, surface 
thermal/reflection/emission properties, rotation state, and its orbit about the Sun. A variety of 
analytical, numerical, and semi-analytical models have been developed to study these effects, 
and these models are briefly reviewed in section 1.2 of Rozitis & Green (2012). In this work, 
a numerical model is developed and used since complex and more accurate physics for highly 
irregular shapes can be implemented more easily into numerical models than into their 
analytical counterparts. A typical Yarkovsky/YORP effect numerical model represents the 
irregular 3D shape of an asteroid by a mesh of triangular facets, and determines temperatures 
for each facet by non-linear 1D heat conduction whilst sometimes taking into account 
projected shadows. The photon recoil forces and torques are usually calculated by using the 
Planck function, the facet normal directions, and a Lambertian scattering/emission model. 
These are then summed across the asteroid surface, averaged over the asteroid rotation and 
orbit, and combined with an estimate of the asteroid's mass and moment of inertia to give the 
orbital drift and spin state change. 
 Using such models, the Yarkovsky-orbital-drift has been shown to be proportional to 
the cosine (diurnal effect) or sine (seasonal effect) of the asteroid obliquity, and inversely 
proportional to the asteroid diameter and bulk density (Bottke et al. 2006). In  a complicated 
way, it is dependent on the heliocentric distance, thermal inertia, rotation period, and Bond 
albedo, since they are all related to one another via the thermal parameter [see section 3.1 of 
Rozitis & Green (2012) for an example parameter study]. The Yarkovsky-orbital-drift is also 
not highly sensitive to subtle variations in an asteroid's shape. In contrast, the YORP-
rotational-acceleration is inversely proportional to the asteroid bulk density and to the square 
of the diameter and heliocentric distance (Rubincam 2000). It is independent of Bond albedo 
and thermal inertia (Čapek & Vokrouhlický 2004), and is sensitive in a complicated way to 
the asteroid obliquity and shape (Vokrouhlický & Čapek 2002). 
 For the current Yarkovsky and YORP effect detected asteroids, their theoretical 
predictions match the sign and strength of the observed values reasonably well using physical 
properties that have been inferred by various observational methods. However, light-curve 
observations of asteroid (25143) Itokawa fail to show a strong YORP-rotational-deceleration 
(Ďurech et al. 2008a) that is predicted by YORP effect modelling using the Hayabusa-derived 
shape models (Scheeres et al. 2007). It remains uncertain as to whether this is caused by an 
unknown non-uniform internal bulk density distribution (Scheeres & Gaskell 2008), or is a 
product of specific model assumptions and simplifications. 
 Further investigations into the YORP effect have revealed its predictions to be highly 
sensitive to unresolved shape features (Statler 2009) and to the shape model resolution 
(Breiter et al. 2009), such that the error in any prediction could have unity order. In particular, 
adding additional shape detail appears to add vertical offsets in the YORP-rotational-
acceleration versus obliquity prediction curves, which is demonstrated for example in figure 
14b of Statler (2009) and figure 1 of Breiter et al. (2009). Again, it is uncertain whether this 
high sensitivity to subtle shape variations is wholly or partly a product of specific model 
assumptions and simplifications. 
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 In an attempt to improve the accuracy of Yarkovsky and YORP effect models, our 
previous work has investigated the influence of rough surface thermal-infrared beaming on 
these effects using the Advanced Thermophysical Model or ATPM (Rozitis & Green 2011, 
2012). Thermal-infrared beaming has the tendency to re-radiate absorbed sunlight back 
towards the Sun in a non-Lambertian way, and is caused by unresolved surface roughness 
occurring at scales ranging from the diurnal thermal skin depth up to the resolution of the 
shape model used. It is the result of two different processes: a rough surface will have 
elements orientated towards the Sun that become significantly hotter than a flat surface; and 
multiple scattering of sunlight and re-absorption of emitted thermal radiation between 
interfacing rough surface elements increases the surface's capability of solar radiation 
absorption and heat retention [see figure 2 of Rozitis & Green (2012)]. It was found that 
beaming, on average, enhanced the Yarkovsky-orbital-drift whilst it dampened the YORP-
rotational-acceleration by orders of several tens of per cent. The Yarkovsky effect was 
sensitive to only the average degree of surface roughness, but the YORP effect was sensitive 
to both the average degree and the spatial distribution of surface roughness. 
 
1.3 Global Self-Heating 
 
The implementation of thermal-infrared beaming into the ATPM, described above, had local 
self-heating (i.e. multiple scattering of sunlight and radiative heat exchange) occurring within 
hemispherical craters. However, this implementation neglected global self-heating that can 
occur within large-scale concavities of an irregular shaped asteroid. In fact, all other 
Yarkovsky and YORP models do not include the effects of global self-heating by either 
assuming it has a negligible contribution or is too complicated to implement. The Statler 
(2009) YORP model did include a correction to the emission vector for surface elements 
whose sky is partly obscured by other parts of the asteroid surface. Since emission towards 
these other parts of the surface will be absorbed there is no net recoil force in these directions 
and so they do not contribute to the Yarkovsky and YORP effects. This partly accounts for 
global self-heating but doesn't consider that the obscuring parts of the surface are heated by 
the emission they absorb. 
 When no or 1D heat conduction is assumed, global self-heating provides a mechanism 
for heat to be transferred laterally across an asteroid surface. Fig. 2 demonstrates how global 
self-heating could affect the photon recoil force and torque predictions for an asteroid with a 
large scale concavity and zero thermal inertia. The large-scale concavity results in shadowed 
areas that occur at certain geometries, where no direct solar flux is received. In the absence of 
global self-heating, the shadowed areas have zero temperature and no photon recoil force and 
torque contributions. However, if the shadowed area receives reflected solar flux and emitted 
thermal radiation from the opposite side of the concavity that is illuminated then it will be 
heated and radiate thermal radiation of its own. It will now have small photon recoil force 
and torque components acting in opposite senses to those of the illuminated area. 
 To investigate how global self-heating affects the Yarkovsky and YORP effects in 
general, the adaptation of ATPM to make such predictions in the presence of global self-
heating, and also in the presence of combined global self-heating and thermal-infrared 
beaming is described in Section 2. In Section 3, the adapted ATPM is applied to all near-
Earth asteroids with a concave shape model and to one hundred synthetic asteroid shapes 
generated by the Gaussian-random-sphere method to investigate how shape, global self-
heating, and the Yarkovsky and YORP predictions are related. In Section 4, the combined 
effects of global self-heating and thermal-infrared beaming are investigated to see which of 
the two effects dominates. Further discussion of the results is given in Section 5, and the key 
results and conclusions are summarised in Section 6. 
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2. YARKOVSKY AND YORP MODELLING 
 
2.1 Model Overview 
 
As in Rozitis & Green (2012), the Yarkovsky and YORP effect model presented here is 
adapted from the ATPM which was developed to calculate the surface temperature 
distributions and thermal emissions of atmosphereless planetary bodies (Rozitis & Green 
2011). Fig. 3 displays a schematic giving an overview of the physics and geometry used in 
the ATPM. The global shape model of a planetary body is described in terms of the triangular 
facet formalism, and the unresolved surface roughness of each shape facet is represented by a 
separate topography model. Any surface roughness representation can be used in the 
topography model, but hemispherical craters are utilised since they can accurately reproduce 
the thermal-infrared beaming effects caused by a range of surface roughness morphologies 
and spatial scales, and are easy to parameterise. The degree of surface roughness for each 
shape facet is specified by a roughness fraction, fR, that dictates the fraction of the shape facet 
area represented by the hemispherical crater model, and the remaining fraction, (1 - fR), 
represented by a smooth and flat surface. Since each shape facet has an individually assigned 
roughness fraction it enables different surface roughness distributions to be created across a 
modelled planetary body's surface. 
 When evaluating the diurnal temperature variations, both types of facet (shape and 
roughness) are larger than the diurnal thermal skin depth (~1 cm) so that lateral heat 
conduction can be neglected and only 1D heat conduction perpendicular and into the surface 
can be considered. However, only shape facets are considered larger than the seasonal 
thermal skin depth (~1 to 10 m) for the same approximations to apply when evaluating the 
seasonal temperature variations. Therefore, the 1D heat conduction equation is solved with a 
surface boundary condition throughout: an asteroid rotation when evaluating the diurnal 
temperature variations for both types of facet; and an asteroid orbit when evaluating the 
seasonal temperature variations for just the shape facets. Roughness facets are then assumed 
to follow the same seasonal temperature variations as their parent shape facets. 
 The effects of local and global self-heating are included in the facet surface boundary 
conditions. In particular, the shape facet surface boundary conditions include direct and 
multiple scattered solar radiation, shadowing, and re-absorbed thermal radiation from 
interfacing shape facets (i.e. global self-heating). Likewise, the roughness facet surface 
boundary conditions include direct and multiple scattered solar radiation, shadowing, and re-
absorbed thermal radiation from interfacing roughness facets (i.e. local self-heating), but they 
also include additional components of multiple scattered solar radiation and re-absorbed 
thermal radiation from interfacing shape facets (i.e. combined local and global self-heating). 
Shadowing of both types of facet is determined by standard ray-triangle intersection tests, and 
radiative heat exchange between interfacing facets is solved by using view-factors. 
 If a completely smooth surface is assumed then roughness facets can be neglected 
from the model and only shape facets are iterated on. However, if a non-smooth surface is 
assumed then the model must iterate on both shape and roughness facets, which it does in a 
two step procedure. In the two step procedure, shape facets are iterated on first with the 
effects of global self-heating included until they all reach convergence, and then the 
roughness facets are iterated on with the effects of both local and global self-heating included 
until they reach convergence. During the second step, the global self-heating effects on the 
roughness facets are calculated using the results of the shape facets determined in the first 
step. Depending on the assumed surface properties and the degree of shape concaveness the 
model may require up to 1000 revolutions to converge to a solution.  
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 Once the facet illumination fluxes and temperature variations are calculated they are 
transformed to reflected and thermally emitted photon recoil forces. These forces are directed 
along vectors that are anti-parallel to the surface normal of facets, or along vectors that take 
into account the surface normal of facets and directions where reflected/emitted photons are 
re-absorbed. The total photon force for each shape facet is calculated by weighting the rough 
and smooth force components by the shape facet's roughness fraction, and is then converted 
to a photon torque by taking the cross product of the total photon force vector with the shape 
facet position vector about the asteroid centre of mass. The Yarkovsky-orbital-drift and 
YORP-rotational-acceleration are then determined by summing the photon forces and torques 
over all shape facets, averaging over the asteroid rotation and orbit, and by taking into 
account the asteroid mass, moment of inertia, and pole orientation. Certain aspects of this 
modelling process are described in more detail in the following subsections. 
 
2.2 Thermal Modelling 
 
Following the methodology outlined in Rozitis & Green (2011, 2012), the temperature T for 
each shape and roughness facet is determined by solving the energy balance equation, which 
leads to the surface boundary condition: 

( ) ( )[ ] ( ) ( )( ) ( ) ( ) 0
d
d

4
111 4

0
0

RADTHSCATSUNB =−
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where ε is the emissivity, σ is the Stefan-Boltzmann constant, AB is the Bond albedo, S(τ) 
indicates whether the facet is shadowed at normalised time τ, ATH is the albedo at themal-
infrared wavelengths, P is the rotational (diurnal temperature variation) or orbital (seasonal 
temperature variation) period, Γ is the thermal inertia, and z is the normalised depth below the 
asteroid surface. ψ(τ) is a function that returns the cosine of the Sun illumination angle at 
normalised time τ, and FSUN is the integrated solar flux at the distance of the asteroid. 
FSCAT(τ) and FRAD(τ) are the total multiple scattered sunlight and re-emitted thermal fluxes 
incident on a facet, respectively, at normalised time τ. The normalised time and depth, τ and 
z, are related to the actual time and depth, t and x, via τ = t/P and z = x/ld, where ld is the 
diurnal or seasonal thermal skin depth. 
 In the absence of an internal heat source, heat conduction is described by the 
normalised 1D heat conduction (diffusion) equation 
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and since the amplitude of subsurface temperature variations decreases exponentially with 
depth, it implies an internal boundary condition given by 
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T .          (3) 

A finite difference numerical technique is used to solve the problem by equations (1)-(3), and 
a Newton-Raphson iterative technique is used to solve the surface boundary condition (full 
details of which are given in Rozitis & Green 2011). Typically, 400 time steps and 40 to 60 
depth steps going to a maximum depth of one or two thermal skin depths are used to solve the 
problem defined here. The terms in equation (1) that are functions of normalised time τ are 
more specifically functions of rotational phase when determining the diurnal temperature 
variation, and functions of orbital phase when determining the seasonal temperature 
variation. The orbital phase functions are determined by averaging their rotational phase 
counterparts at each orbital point, which is similar to the approach developed by 
Vokrouhlický & Farinella (1998) for numerically evaluating the seasonal Yarkovsky effect. 
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 The additional flux contributions from multiple scattered sunlight and re-absorbed 
thermal emission are calculated using view factors. The view factor from facet i to facet j, fi,j, 
is defined as the fraction of the radiative energy leaving facet i which is received by facet j 
assuming Lambertian emission (Lagerros 1998). It is 

j
ji

ji
jiji a

d
f 2

,
,,

coscos
π

θθ
ν= ,         (4) 

where νi,j indicates whether there is line-of-sight visibility between the two facets, θi is facet 
i's emission angle, θj is facet j's incidence angle, di,j is the distance separating facet i and j, 
and aj is the surface area of facet j. The view factor given by equation (4) is an approximation 
since it applies to situations where the separation distance is large relative to the facet area. A 
more accurate way to calculate view factors in situations where the separation distances are 
very small is given in Rozitis & Green (2011, 2012). The view factors between two shape 
facets or between two roughness facets are calculated by either one of these two methods. 
However, the view factor between a roughness facet and a non-parent shape facet, fi,k,j, is 
calculated by 

i

k
jijkijki ff

θ
θ

ν
cos
cos

,,,,, =  ,         (5) 

where k is a roughness facet of shape facet i, νi,k,j indicates whether there is line-of-sight 
visibility between roughness facet k and shape facet j, and θk is roughness facet k's emission 
angle. In this case, fi,j is the view factor between shape facets i and j, and θi is shape facet i's 
emission angle. Equation (5) allows roughness-shape view factors to be easily calculated 
from already existing shape-shape view factors. 
 Utilising the view factors, the multiple scattered flux leaving shape facet i, Gi(τ), is 
written as 
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which can be efficiently solved using a Gauss-Seidel iteration. Similarly, the multiple 
scattered flux leaving roughness facet k, Gk(τ), is written as 
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where the third term within the brackets acts as a constant during this iteration since it has 
already been determined in the shape facet iteration given by equation (6). After the Gauss-
Seidel iterations have converged to a solution then the total multiple scattered flux incident 
on a facet is given by 

( ) ( )
B

SCAT A
GF ττ = .          (8) 

Only single scattering is considered for thermal emission since planetary surfaces absorb 
most of the incoming radiation at thermal-infrared wavelengths, i.e. ATH ~ 0. For shape 
facets, the total incident re-emitted thermal flux is calculated using 
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where Tj(τ) is the surface temperature of shape facet j at normalised time τ. For roughness 
facets, it is calculated using 
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where the second term again acts as a constant during the roughness facet iteration since it 
has already been determined during the first shape facet iteration. 
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2.3 Photon Forces and Torques 
 
There are three types of photons that can impose a recoil force and torque on an asteroid 
surface: absorbed solar, reflected solar, and thermally radiated. However, only reflected solar 
and thermally radiated photons are considered because it has been previously shown that 
absorbed solar photons produce negligible asteroidal orbital perturbations (Žižka & 
Vokrouhlický 2011) and zero net torque when averaged over the asteroid orbit (Nesvorný & 
Vokrouhlický 2008; Rubincam & Paddack 2010). 
 Both reflected solar and thermally radiated photons are assumed to have isotropic 
(Lambert) emission profiles from a smooth flat facet with a clear view of the sky. This results 
in a net recoil force anti-parallel to the facet surface normal. However, if other facets are 
visible to it above its local horizon then photons emitted towards these facets will be re-
absorbed resulting in an absorption recoil force that cancels out its emittance recoil force. 
Taking this into account [see section 2.3 of Rozitis & Green (2012) for a more detailed 
derivation], the photon recoil force acting on shape facet i, pi(τ), is given by 
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where ai and ni(τ) are the facet area and normal, respectively, and c is the speed of light. Ei(τ) 
is the radiant emittance of the facet, which is Gi(τ) for reflected solar photons and εσTi

4(τ) for 
thermally radiated photons. fi,j(τ) is the unit vector associated with view factor fi,j giving the 
direction from shape facet i to shape facet j. Similarly, the photon recoil force acting on 
roughness facet k, pk(τ), is given by 
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 When transformed into a suitable co-ordinate system [see section 2.3 of Rozitis & 
Green (2012) for more details], the total smooth and rough surface recoil forces for shape 
facet i, psmooth,i(τ) and prough,i(τ), can be combined as a function of its roughness fraction fR,i to 
give the total recoil force, ptotal,i(τ), as 

( ) ( ) ( ) ( )τττ iiiii ff ,rough,R,smooth,R,total 1 ppp +−= .               (13) 
The photon torque associated with the total recoil force for shape facet i, φtotal,i(τ), is then 

( ) ( ) ( )τττ iiil ,total,tota prφ ×= ,                  (14) 
where ri(τ) is shape facet i's position vector about the asteroid centre of mass. 
 
2.4 Evaluation of the Yarkovsky and YORP Effects  
 
The total photon force and torque acting on an asteroid at a specific point i in its orbit, Pi and 
Φi, can be calculated by summing the recoil forces and torque from each shape facet across 
the asteroid surface and then by rotation averaging. For determination of the Yarkovsky-
orbital-drift, the total force can be split into components that act along: the Sun-asteroid 
vector, the vector defining the plane of the orbit, and the vector perpendicular to these two. 
These force vectors have magnitudes Px,i, Pz,i, and Py,i respectively. The orbit-average rate of 
change in semimajor axis, da/dt, for a general orbit is given by 
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where a and PORB are the semimajor axis and period of the orbit, respectively, G is the 
gravitational constant, MSUN is the mass of the Sun, and MAST is the asteroid mass. ΔE is the 
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total change in orbital energy integrated over the orbit, and can be found by the summation 
over n orbital positions: 
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where Δti is the time spent at each orbital position, and vi are the orbital velocity components 
for the directions defined by the Pi force components (note that vz is always zero in this 
geometry). 
 The YORP-torques can also be transformed into suitable meaningful components. 
These are the rate of change in angular velocity (rotational acceleration), dωi/dt, the rate of 
change in obliquity, dξi/dt, and the precession in longitude, dλi/dt (Bottke et al. 2006). Using 
the total torque, Φ i, these can be calculated by 
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where Cω is the asteroid moment of inertia about its shortest axis, ω is the angular rotation 
rate, and d is the unit vector of the rotation pole direction. d⊥1 and d⊥2 are the unit vectors: 
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where o is the unit vector defining the plane of the asteroid orbit. The orbit-averaged YORP-
torque for a general orbit can be determined over n orbital positions using 

∑
=

∆=
n

i

i
i

ORB t
Y

t
Pt

Y
1 d

d1
d
d ,                  (22) 

where Y denotes the three different components of YORP-torque, and dYi/dt is the YORP-
torque strength at orbital position i given by equations (17)-(19).  
 Alternatively, the YORP-rotational-acceleration for a particular asteroid can be 
described by a non-dimensional "YORP-coefficient" that is multiplied by a modified solar 
constant which is then scaled accordingly to the asteroid's size, density, and orbital properties 
(Rossi, Marzari & Scheeres 2009; Rozitis & Green 2013). The YORP-coefficient, CY, 
contains combined information on the asteroid's shape, moment of inertia, and obliquity; and 
allows the normalised strengths of the YORP effects for different asteroids to be directly 
compared. In this case, the YORP-rotational-acceleration acting on an asteroid is given by 
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where G1 is the modified solar constant (~6.4 x1016 kg m s-2), and ρ and D are the asteroid 
bulk density and diameter respectively. 
 
2.5 Measuring Shape Concaveness and Degree of Global Self-Heating 
 
To investigate in general how global self-heating within large concavities of asteroids 
influences their Yarkovsky and YORP effect predictions, this work utilises two useful 
measurements of each asteroid shape model. The first useful measurement is the convex 
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volume to concave volume ratio (hereafter referred to as simply the "volume ratio"), which 
gives an indication of the degree of concavity for a given shape model. This is obtained by 
fitting a convex hull to the concave shape model to remove all concavities from the asteroid 
(by utilising a method such as O'Rourke 1998), and then by measuring the volume of both 
shape model variants and taking their ratio. The convex hull fitting procedure is equivalent to 
"gift wrapping" the asteroid, and the resulting convex shape model is very similar to those 
obtained from asteroid light-curve inversion techniques (e.g. Kaasalainen, Torppa & 
Muinonen 2001). The second useful measurement is the mean total view factor, <tview>, 
which gives an indication of the overall degree of self-heating that would occur for a given 
shape or topography model (Rozitis & Green 2011). It is also the mean fraction of sky 
obscured by other parts of the shape/topography model for any given facet, and for a 
shape/topography model consisting of m facets it is calculated from the individual facet view 
factors using 
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Fig. 4 shows an example total view factor distribution for the radar-derived concave shape 
model of asteroid (6489) Golevka (Hudson et al. 2000). As indicated, large total view factors 
occur within deep and large concavities, such as the one located at the south pole, where 
global self-heating occurs most. 
 
2.6 Model Variants 
 
To understand how global self-heating affects the Yarkovsky and YORP effect predictions, 
six different variants of ATPM with varying complexity are used to try and separate out the 
influences of each physical process included. The first four model variants assume a smooth 
surface such that the effects of rough surface thermal-infrared beaming are not included. The 
first and most basic model variant is the 'convex' model, which uses a convex shape model 
produced from the concave shape model by convex hull fitting. Since the shape is convex 
there is automatically no shadowing and global self-heating effects included. This level of 
model complexity is the same as that used in YORP effect predictions when using light-curve 
derived shape models (e.g. Kaasalainen et al. 2007; Ďurech et al. 2008a,b; Ďurech et al. 
2012). The second model variant is the 'pseudo-convex' model, which uses a concave shape 
model but both shadowing and global self-heating effects are not included. This level of 
model complexity is equivalent to that used in some previous YORP effect models (e.g. 
Scheeres 2007; Scheeres & Gaskell 2008; Steinberg & Sari 2011). The third model variant is 
the 'shadowing' model, which uses a concave shape model but only shadowing effects are 
included. Most Yarkovsky and YORP effect models currently in use today have this level of 
model complexity (e.g. Čapek 2007; Statler 2009; Breiter et al. 2009). The fourth and final 
smooth model variant is the 'self-heating' model, which uses a concave shape model and both 
shadowing and global self-heating effects are included. No previous Yarkovsky or YORP 
effect model has this level of complexity. The final two model variants include rough 
surfaces such that the effects of rough surface thermal-infrared beaming are included. These 
are the 'rough shadowing' and the 'rough self-heating' models, and are equivalent to their 
smooth surface model counterparts, i.e. the 'shadowing' and the 'self-heating' models, that 
now do include rough surface thermal-infrared beaming effects. To allow direct comparison 
of the predictions, the 'convex' model variant assumes the same asteroid mass and moment of 
inertia as that used in the other model variants that utilise the concave shape models. Table 1 
summarises these different model variants used. 
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3. GLOBAL SELF-HEATING SENSITIVITY 
 
3.1 Test Asteroids 
 
The influence of global self-heating on the Yarkovsky and YORP effect predictions is studied 
using different concave shape models that are representative of near-Earth asteroid shapes. 
These include all published radar derived shape models, the spacecraft derived shape models 
of asteroids (433) Eros and (25143) Itokawa, and one hundred artificial Gaussian-random-
sphere shape models [see appendix A of Rozitis & Green (2012) for a method of generation 
based on Muinonen and Lagerros 1998]. The physical properties of these asteroids and their 
corresponding shape models are summarised in Table 2. The bulk density quoted for each 
asteroid is either that measured/assumed in their corresponding shape model paper or it is 
assumed to be 2500 kg m-3. Furthermore, asteroid (4179) Toutatis is assumed to rotate around 
its long axis rather than in its observed tumbling rotation state. 
 Some of the interesting physical and shape properties for this selection of asteroids 
are compared in Fig. 5. Shown in Fig. 5a is the volume ratio plotted as a function of rotation 
period for the real asteroid shapes. Although the sample size is small, these real asteroid 
shapes appear to cluster at relatively low volume ratios (~1.02) at rotation periods between 2 
and 4 hours. For asteroids with rotation periods outside of this range, the volume ratios 
appear to be more randomly distributed. Asteroids larger than ~0.15 km in diameter have also 
been observed to not exceed a critical spin rate of ~2 hours, which suggests that they are low 
bulk density rubble piles held together by self-gravitation only (Pravec, Harris & 
Michalowski 2002). Since these low volume ratio asteroids are close to the critical spin rate 
and have diameters larger than ~0.15 km, then perhaps migration of loose material fills in any 
large concavities due to their rubble pile nature. This process could be similar to that 
demonstrated in numerical simulations of binary asteroid formation by YORP spin-up 
(Walsh, Richardson & Michel 2008).   
 Fig. 5b shows the mean total view factor for both the real asteroid shapes and the 
Gaussian-spheres as a function of volume ratio. In general, as the volume ratio increases so 
does the mean total view factor, which is as expected. 
 Fig. 5c and Fig. 5d show the frequency distributions for the test asteroid shape models 
when binned into specific volume ratio and YORP-coefficient ranges. The YORP-coefficient 
values used here are calculated assuming 0° obliquity and no global self-heating effects. In 
both figures, the real asteroid shapes and Gaussian-spheres are plotted separately for 
comparison purposes. The real asteroid shapes occur most frequently at low volume ratios 
and low YORP-coefficient values, and their frequency appears to drop exponentially at larger 
values. However, the Gaussian-spheres show different frequency distributions to those of the 
real asteroid shapes. Most of the Gaussian-spheres fall within a narrow volume ratio range of 
1.04 to 1.12, and tend to have higher YORP-coefficient values than the real asteroid shapes. 
These differences could be caused by the apparent excess of "KW4-like" objects (i.e. highly 
spherical asteroids with pronounced equatorial ridges) that have low volume ratios and low 
YORP-coefficient values in the list of real asteroid shapes used [i.e. asteroids (29075) 1950 
DA, (66391) 1999 KW4a, (136617) 1994 CC, (276049) 2002 CE26, and 2008 EV5]. It is 
also possible that the spherical harmonic coefficients derived by Muinonen & Lagerros 
(1998) for Gaussian-random-sphere shape model generation do not produce shapes that are 
representative of near-Earth asteroids. 
 In the rest of this section, global self-heating effects are studied without rough surface 
thermal-infrared beaming effects included in order to determine their unique influence on the 
Yarkovsky and YORP effect predictions. The four smooth surface model variants described 
in Section 2.6 and Table 1 are therefore used; and, for simplicity and like other works, a 
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circular orbit is assumed to remove the dependence of the rotation pole longitude parameter 
when performing obliquity studies. 
 
3.2 Yarkovsky Effect Sensitivity 
 
The Yarkovsky effect sensitivity to global self-heating is studied for two different asteroid 
thermal inertias at which the diurnal and seasonal orbital drift rates are maximised. The 
diurnal component is maximised at a thermal inertia of 200 J m-2 K-1 s-1/2, which is also equal 
to the thermal inertia derived for km-sized near-Earth asteroids by Delbo' et al. (2007). The 
seasonal component is maximised at a thermal inertia of 2000 J m-2 K-1 s-1/2, which is 
equivalent to the thermal inertia of a bare rock surface. A Bond albedo of 0.1 is assumed for 
both the diurnal and seasonal component predictions.  
 Yarkovsky effect predictions using the four different smooth surface model variants 
produce orbital drift rates that are very similar to one another and only differ at the few per 
cent level or less. Shown in Fig. 6 are the percentage differences in orbital drift rate as a 
function of obliquity for the 'convex', 'pseudo-convex', and 'self-heating' models relative to 
the 'shadowing' model and averaged across all test asteroids. The error bars on the 'self-
heating' model prediction differences represent the one-sigma ranges of difference variations 
caused by the range of test asteroids used. The morning and afternoon temperature 
distribution asymmetries that drive the Yarkovsky effect are not significantly affected by 
global self-heating for the test asteroids used, and hence explains the very low sensitivity of 
the predicted orbital drift rate to it. However, for the diurnal component (see Fig. 6a), the 
'convex', 'pseudo-convex', and 'self-heating' model predictions all show a slight enhancement 
on average (maximum of ~1.4 per cent) over the 'shadowing' model prediction. This is 
because all three offer a means to provide a very small fractional addition of radiative input 
energy from the Sun over that provided in the 'shadowing' model. For the seasonal 
component (see Fig. 6b), the 'pseudo-convex' predictions are most similar to the 'shadowing' 
model predictions, and both the 'convex' and 'self-heating' model predictions show a slight 
enhancement on average (maximum of ~3.6 per cent) in comparison. These very small 
differences are perhaps more related to the different thermal emission directions between the 
model variants rather than their differences in input radiative energy. The 'pseudo-convex' 
and 'shadowing' models utilise the same set of thermal emission directions whilst the 'convex' 
and 'self-heating' models each have a different set. 
 
3.3 YORP Effect Sensitivity 
 
It has previously been demonstrated that the YORP-rotational-acceleration is independent of 
thermal inertia and Bond albedo (e.g. Čapek & Vokrouhlický 2004), even in the presence of 
rough surface thermal-infrared beaming (Rozitis & Green 2012). Like the diurnal Yarkovsky 
effect predictions described previously, fixed values of thermal inertia and Bond albedo of 
200 J m-2 K-1 s-1/2 and 0.1 are assumed respectively. 
 Fig. 7 shows the YORP-rotational-acceleration predictions as a function of obliquity 
and model variant for all of the real asteroid shapes tested. As indicated, a huge range of 
sensitivities to the different model variant complexities is apparent, which range from almost 
no sensitivity [e.g. asteroid (4660) Nereus] to lots of sensitivity [e.g. asteroid (6489) 
Golevka]. Although not shown, the Gaussian-sphere YORP-rotational-acceleration 
predictions show a similar sensitivity range. From a qualitative point of view, the 'convex' 
predictions tend to produce obliquity trends that are similar in shape to the 'pseudo-convex', 
'shadowing', and 'self-heating' obliquity trends but have magnitudes that are easily a factor of 
two or more different. The 'pseudo-convex', 'shadowing', and 'self-heating' obliquity trends 
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are very similar to one another in terms of shape and magnitude but tend to be vertically 
offset from one another. The vertical offset between the 'self-heating' and 'shadowing' trends 
tends to occur in the opposite direction to that between the 'shadowing' and 'pseudo-convex' 
trends. Furthermore, the 'pseudo-convex' critical angles (i.e. the obliquity angles at which 
zero YORP-rotational-acceleration occurs) for the test asteroids appear to be in better 
agreement with the 'self-heating' critical angles than the 'shadowing' critical angles. 
 To quantify the differences exhibited between the four model variant predictions, four 
types of measurement of their YORP-rotational-acceleration versus obliquity functions 
(hereafter referred to as simply the "YORP-function") are made for each test asteroid. The 
first measurement type is the YORP-function difference of the 'convex', 'pseudo-convex', and 
'shadowing' predictions relative to the 'self-heating' predictions, which is assumed to be the 
most correct of the four predictions. It basically gives the ratio of the absolute area bound 
between the YORP-function of interest and the 'self-heating' YORP-function divided by the 
absolute area bound by the 'self-heating' YORP-function and the x-axis (i.e. zero YORP-
rotational-acceleration at all obliquities), and is given in terms of a percentage. This YORP-
function difference, YFD, can be calculated using 
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where dω/dt(ξ) is the YORP-rotational-acceleration as a function of obliquity. If YFD is 
greater than 100 per cent then zero YORP-rotational-acceleration at all obliquities provides a 
better match to the 'self-heating' predictions than the YORP-function of interest. Generally, if 
YFD is between 50 and 100 per cent then the YORP-function of interest provides a rough 
match to the 'self-heating' predictions that is better than zero YORP-rotational-acceleration at 
all obliquities. A reasonable match is obtained for YFD between 10 and 50 per cent, and a 
good match is obtained for YFD below 10 per cent. Obviously, the predictions are identical if 
YFD is 0 per cent. The second measurement type gives the fraction, measured in terms of a 
percentage, of the obliquity space where the 'convex', 'pseudo-convex', and 'shadowing' 
YORP-functions provide the best match to the 'self-heating' YORP-function for each test 
asteroid. The third measurement type is the critical angle at which zero YORP-rotational-
acceleration occurs for each YORP-function. In some cases there is more than one critical 
angle [i.e. asteroids (2063) Bacchus, (4769) Castalia, (6489) Golevka, (25143) Itokawa, 
(29075) 1950 DA, (52760) 1998 ML14, and (66391) 1999 KW4a], and for these cases all of 
their critical angles are noted and compared. In two other cases [i.e. asteroids (4769) Castalia 
and (8567) 1996 HW1], there are no critical angles since they have non-zero YORP-
rotational-acceleration at all obliquities, and for these cases the obliquity angle which 
produces the smallest magnitude of YORP-rotational-acceleration is noted and compared. 
The fourth and final measurement type is the obliquity-averaged vertical offsets between the 
'shadowing' and 'pseudo-convex' YORP-functions, <shadowing-pseudo-convex>, and the 
'self-heating' and 'shadowing' YORP-functions, <self-heating-shadowing>, measured in terms 
of the YORP-coefficient. Taking their ratio, <self-heating-shadowing>/<shadowing-pseudo-
convex>, allows the magnitude and direction of the vertical offsets to be compared. Table 3 
summarises the results of these comparison tests for each asteroid shape investigated. 
 Shown in Fig. 8 are the YORP-function differences for the 'convex', 'pseudo-convex', 
and 'shadowing' predictions plotted as functions of volume ratio and 'self-heating' YORP-
coefficient for all of the test asteroid shapes used. As indicated, there appears to be no trend 
with volume ratio but a loose trend seems to exist with YORP-coefficient, i.e. the YORP-
function differences decrease with increasing YORP-coefficient. The 'convex' predictions are 
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on average the worst and have many test asteroid shapes with YFD values greater than 100 
per cent. The 'pseudo-convex' and 'shadowing' predictions appear to produce similar YFD 
values but, as indicated in Table 3, the 'pseudo-convex' predictions produce the lowest values, 
and therefore the best match to the 'self-heating' predictions, for 90 out of the 124 asteroid 
shapes tested. For comparison, the 'convex' and 'shadowing' predictions produce the best 
match for only 6 and 28 out of the 124 asteroid shapes tested respectively.  
 Similarly, as summarised in Table 3, the 'pseudo-convex' predictions produce the best 
match to the 'self-heating' predictions for the largest fraction of the obliquity space when 
averaged across all asteroid test shapes, i.e. ~66 per cent. This is much greater than the ~5 per 
cent for the 'convex' predictions, and more than double the ~29 per cent for the 'shadowing' 
predictions. In terms of having the largest fraction of the obliquity space for an individual 
object, the 'pseudo-convex' predictions produce the best match to the 'self-heating' predictions 
for 94 out of the 124 asteroid shapes tested, which compares against the 5 and 25 asteroid 
shapes for the 'convex' and 'shadowing' predictions respectively. 
 Fig. 9 compares the 'convex', 'pseudo-convex', and 'shadowing' derived critical angles 
against the 'self-heating' derived critical angles for the set of test asteroid shapes used. Again, 
the 'pseudo-convex' derived critical angles best match those derived from the 'self-heating' 
model variant by showing the strongest correlation. As summarised in Table 3, the 'pseudo-
convex' model variant produces the best match for 93 out of the 124 asteroid shapes tested, 
which compares against the 13 and 15 asteroid shapes for the 'convex' and 'shadowing' model 
variants respectively. There were 3 test asteroid shapes [i.e. asteroids (4769) Castalia, 
(52760) 1998 ML14, and one Gaussian-sphere] in which neither of the 'convex', 'pseudo-
convex', and 'shadowing' model variants produced the same number of critical angles as that 
predicted by the 'self-heating' model variant. Furthermore, for the two cases that previously 
had no critical angles in their 'shadowing' predictions [i.e. asteroids (4769) Castalia and 
(8567) 1996 HW1], the vertical offsets induced by global self-heating ensured that they had 
at least one critical angle in their 'self-heating' predictions. 
 Finally, Fig. 10 shows the vertical offset ratios, <self-heating-
shadowing>/<shadowing-pseudo-convex>, as functions of volume ratio and YORP-
coefficient. As shown, and also summarised in Table 3, 114 out of the 124 test asteroid 
shapes have negative ratios indicating that the global self-heating induced offsets are 
generally opposite in direction to those induced by shadowing. However, there appears to be 
no trend with volume ratio or YORP-coefficient, and the vertical offset ratios fall within a 
range described by a median value with a 1-σ spread of -0.85 +0.36/-0.55 (n.b. a ratio of -1 
indicates that they are exactly equal and opposite). These vertical offsets can be explained in 
terms of the available radiative input energy from which YORP-torque is generated. 
Including shadowing effects removes some of this available radiative input energy, and 
causes the vertical offset between the 'shadowing' and 'pseudo-convex' predictions. When 
global self-heating effects are included then some degree of this energy is put back, and 
causes a vertical offset of opposite direction between the 'self-heating' and 'shadowing' 
predictions. The opposite direction nature of the vertical offsets explain why the 'pseudo-
convex' predictions are generally a better match to the 'self-heating' predictions than the 
'shadowing' predictions. 
 
4. COMBINED GLOBAL SELF-HEATING AND THERMAL-INFRARED BEAMING 
 
In Section 3, global self-heating effects were studied without rough surface thermal-infrared 
beaming effects included. Since the Yarkovsky effect predictions were found to be not very 
sensitive to global self-heating then it is clear that rough surface thermal-infrared beaming 
effects would dominate, as they typically enhance the orbital drift rate by several tens of per 
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cent (see Rozitis & Green 2012). However, the YORP-rotational-acceleration predictions 
have been shown to be very sensitive to both global self-heating and thermal-infrared 
beaming, and it is initially not clear as to how they would combine. In particular, the YORP-
rotational-acceleration is dampened by several tens of per cent on average by thermal-
infrared beaming, and is highly sensitive to the spatial distribution of surface roughness. 
 To investigate how they would combine, four extreme examples of global self-heating 
and thermal infrared beaming sensitivity are chosen from the real asteroid test shapes shown 
in Fig. 7. These asteroids include: (1620) Geographos which shows very little global self-
heating sensitivity despite its large concavities, (6489) Golevka which is very sensitive to 
both global self-heating and thermal-infrared beaming, (8567) 1996 HW1 which has non-zero 
YORP-rotational-acceleration at all obliquities for its 'shadowing' predictions, and (52760) 
1998 ML14 which has multiple critical angles. The two rough surface model variants 
described in Section 2.6 and Table 1, i.e. 'rough shadowing' and 'rough self-heating', are 
applied to these four test cases.  Like the study presented in Rozitis & Green (2012), the 
degree of roughness is allowed to vary in a patchy way across the asteroid surfaces, and one 
thousand independent random realisations of the possible surface roughness distributions 
were made to evaluate the degree of scatter in the predictions. 
 Fig. 11 shows the YORP-rotational-acceleration predictions as a function of obliquity 
and model variant for these four test cases. As demonstrated, the 'rough shadowing' and 
'rough self-heating' YORP-rotational-acceleration predictions are both on average dampened 
by the same amount by thermal-infrared beaming for all four test cases and across all 
obliquity values. Furthermore, they both show the same degree of sensitivity to the potential 
variation of roughness across the asteroid surface. The main conclusions from Rozitis & 
Green (2012) regarding the influence of rough surface thermal-infrared beaming on the 
Yarkovsky and YORP effects are therefore still valid in the presence of global self-heating 
effects. 
 
5. DISCUSSION 
 
As demonstrated in Section 3.2 and Fig. 6, the Yarkovsky effect is not that sensitive to 
shadowing or global self-heating effects. This is because they do not significantly affect the 
morning and afternoon temperature distribution asymmetries that drive the Yarkovsky effect. 
For simplicity, Yarkovsky only prediction models can neglect shadowing or global self-
heating effects if the desired level of accuracy required is of the order of a few per cent. Even 
convex shape models, such as those derived from light-curve inversion (e.g. Kaasalainen, 
Torppa & Muinonen 2001), are good enough to achieve this level of accuracy. However, 
since the Yarkovsky effect is highly sensitive to the level of thermal inertia and average 
degree of surface roughness then effects related to these properties still need to be included in 
an appropriate model (e.g. Rozitis & Green 2012). 
 Unlike the Yarkovsky effect, the YORP effect can be very sensitive to shadowing and 
global self-heating effects, as demonstrated in Section 3.3 and Fig. 7. This is because they 
change the total radiative input energy available to individual surface elements by different 
amounts, and therefore affect the way their individual photon torques combine. However, as 
demonstrated in Fig. 7, not every asteroid shape model with large concavities is affected by it 
[e.g. asteroid (1620) Geographos]. Also, as demonstrated in Fig. 8, the sensitivity does not 
appear to depend on the degree of concavity, and it is the magnitude of the YORP-coefficient 
that is important. For example, asteroids with relatively weak YORP-coefficients are more 
susceptible to the effects of shadowing and global self-heating. Generally, if there is a large 
difference between the 'pseudo-convex' and the 'shadowing' YORP predictions then it is 
likely that global self-heating will induce a large difference too. In these high sensitivity 
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cases, global self-heating should be included to make accurate predictions. However, for the 
less sensitive cases then the 'pseudo-convex' model variant (no shadowing or global self-
heating effects) could be used to make suitable predictions, as it produced a better match to 
the 'self-heating' model variant in ~75 per cent of cases tested. This is because the YORP-
function vertical offsets produced by global self-heating tend to cancel out those generated by 
shadowing, and the 'self-heating' predictions end up close to the original 'pseudo-convex' 
predictions. As indicated in Fig. 8 and Table 3, the 'pseudo-convex' predictions are most 
similar to the 'self-heating' predictions with the 'convex' predictions being the worst match. In 
Section 4, it was demonstrated that rough surface thermal-infrared beaming in the presence of 
global self-heating affected the YORP predictions in the same way as described previously in 
Rozitis & Green (2012). If surface roughness and its thermal-infrared beaming are not 
explicitly modelled then one can simply assume that it will on average dampen the predicted 
YORP-rotational-acceleration by several tens of per cent, and add an additional uncertainty 
of a similar size due to potential variations in roughness across the surface [see figure 20 of 
Rozitis & Green (2012)]. 
 The YORP-function vertical offsets produced by shadowing and global self-heating 
effects are similar in magnitude to those seen in figure 14b of Statler (2009) and figure 1 of 
Breiter et al. (2009). In these works, the vertical offsets were caused by adding more detail to 
the shape models of test Gaussian-spheres and that of asteroid (25143) Itokawa, and grew 
larger with increasing shape detail. When more shape detail is added it increases the number 
of projected shadows that can be generated, and also increases the degree of self-heating that 
the global shape can undergo. Since these works did not consider global self-heating effects 
and only shadowing ones, then the increasing amount of radiative input energy lost by 
shadowing is potentially not being put back by global self-heating. If this is the case then the 
increasing vertical offsets caused by shadowing would be reduced or cancelled out by 
increasing vertical offsets of opposite direction by global self-heating, which also ensure that 
at least one critical angle exists. Once global self-heating has been accounted for then the 
different shape detail YORP-functions would more or less overlap, and therefore reduce the 
detailed shape sensitivity of the YORP effect predictions. The end result would be similar to 
that shown in figure 1 of Scheeres & Gaskell (2008), which shows overlapping 'pseudo-
convex' YORP-functions for different resolutions of the (25143) Itokawa shape model. The 
variation between the YORP-functions in this case is a lot less than the offset YORP-
functions shown in figure 1 of Breiter et al. (2009). However, even when accounting for any 
global self-heating offsets it still appears that a YORP-rotational-deceleration should have 
been detected for (25143) Itokawa by now (Ďurech et al. 2008a), and a non-uniform internal 
bulk density distribution would be the likely cause for its non-detection (Scheeres & Gaskell 
2008). Repeating the studies of Statler (2009) and Breiter et al. (2009) with global self-
heating effects included should verify this and is a subject for future work. However, Fig. 7 
already demonstrates that the 'self-heating' prediction is very similar to the 'pseudo-convex' 
prediction for the lowest resolution spacecraft-derived shape model of (25143) Itokawa. 
 Related to the YORP shape sensitivity problem, the step from a convex shape model 
to a concave one is an extreme example of more detail being added to an existing shape 
model. Fig. 8 demonstrates that for large YORP-coefficients, the 'convex' predictions can be 
very similar to the 'self-heating' predictions that use the concave shape model for some test 
case asteroids [e.g. asteroid (4660) Nereus]. This presumably happens when the large-scale 
global shape asymmetries that cause the majority of the YORP-torque are still retained in the 
detail of a convex shape model. For an asteroid with a measured YORP-rotational-
acceleration, its YORP-coefficient can be determined using knowledge of its orbital 
properties, a measurement of its diameter, and an assumption of its bulk density (see equation 
23). Its measured YORP-coefficient can then be used to estimate how accurate a YORP 
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prediction made from its light-curve-derived convex shape model would be by comparing it 
to the test asteroids displayed in Fig. 8. One of the current YORP effect detected asteroids, 
(1862) Apollo, has a large YORP-coefficient value of (1.9 ± 0.4) x10-2 (Rozitis & Green 
2013), which Fig. 8 indicates could have a YORP-function with good accuracy. This could 
explain why Ďurech et al. (2008a) obtain a light-curve-derived convex shape model that 
produces a YORP-rotational-acceleration prediction that agrees well with the measured value 
for realistic physical properties. 
 
6. SUMMARY AND CONCLUSIONS 
 
The ATPM presented in Rozitis & Green (2011) has been adapted to simultaneously predict 
the Yarkovsky and YORP effects acting on an asteroid with the effects of global self-heating 
included. It has also been combined with rough surface thermal-infrared beaming, which was 
investigated in Rozitis & Green (2012). This is the first such model of its kind, and a detailed 
investigation into the influence of shadowing and global self-heating effects on all published 
concave shape models of near-Earth asteroids, and also on one hundred artificial Gaussian-
random-spheres, was performed. 
 The Yarkovsky effect was found not to be highly sensitive to shadowing or global 
self-heating effects, as they only affected the orbital drift predictions by a few per cent or 
less. For simplicity, these effects can be neglected from Yarkovsky only prediction models if 
the desired level of accuracy is of this order. Furthermore, convex shape models, such as 
those derived from light-curve inversion (e.g. Kaasalainen, Torppa & Muinonen 2001), are 
also sufficient to achieve this level of accuracy. However, the effects of rough surface 
thermal-infrared beaming must still be included, which typically enhance the orbital drift by 
several tens of per cent (Rozitis & Green 2012). 
 Unlike the Yarkovsky effect, the YORP effect can be very sensitive to shadowing and 
global self-heating effects, and the sensitivity appears to depend on the relative strength of 
the YORP-rotational-acceleration (i.e. weaker relative strengths are more sensitive) rather 
than the degree of concavity. Global self-heating tends to produce a vertical offset in an 
asteroid's YORP-rotational-acceleration versus obliquity curve that is opposite in direction 
and roughly equal in magnitude to that produced by shadowing, and ensures that at least one 
critical angle exists at which zero YORP-rotational-acceleration occurs. The net result is that 
a YORP prediction that includes both shadowing and global self-heating effects sometimes 
ends up being quite similar to a prediction that doesn't include either effect, i.e. a 'pseudo-
convex' model. Indeed, in ~75 per cent of cases tested, a model that neglects both shadowing 
and global self-heating effects produced a better match to the predictions of a model that 
includes both effects rather than a model that includes only shadowing. A true 'convex' model 
still produces a rather inaccurate prediction except for some asteroids that have relatively 
large YORP-rotational-acceleration values. A simple way to assess whether global self-
heating should be included in a prediction for a specific asteroid is to see whether there is a 
large difference between predictions that do and do not include shadowing. The effects of 
rough surface thermal-infrared beaming when combined with global self-heating still affect 
the predictions in the same way as described in Rozitis & Green (2012). In particular, the 
YORP-rotational-acceleration is on average dampened by several tens of per cent, and is 
highly sensitive to the spatial distribution of surface roughness. 
 Finally, the vertical offsets caused by shadowing and global self-heating are similar to 
those seen in studies of the shape sensitivity of the YORP effect, e.g. figure  14b of Statler 
(2009) and figure 1 of Breiter et al. (2009). Since these studies only included shadowing and 
no global self-heating effects then the implication from this work is that the predictions using 
different shape model variants of the same asteroid could more or less overlap once global 
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self-heating has been included, e.g. like figure 1 of Scheeres & Gaskell (2008) which was 
produced using a 'pseudo-convex' model. If this is the case then this would reduce the overall 
shape sensitivity of the YORP effect, and perhaps make it possible to make predictions with 
realistic uncertainties for asteroids with very detailed shape models (such as those obtained 
from spacecraft or from very high resolution radar observations). However, this remains to be 
confirmed, and the detailed shape sensitivity of the YORP effect in the presence of global 
self-heating and rough surface thermal-infrared beaming effects will be studied in detail in a 
future paper. 
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APPENDIX A: ROZITIS & GREEN (2012) ERRATA 
 
A.1 Better View Factor Unit Vector 
 
The better view factor unit vector fi,j(τ) given in equation (15) of Rozitis & Green (2012) is 
currently not normalised and needs to be divided by the total view factor fi,j to give it unit 
length. 
 
A.2 Figure 7c 
 
Unfortunately, the seasonal Yarkovsky effect acting on asteroid (1620) Geographos displayed 
in figure 7c of Rozitis & Green (2012) was calculated incorrectly. The miss-calculation 
affected the shape and magnitude of the prediction with obliquity, and the corrected plot is 
shown in Fig. A1. This was produced using its light-curve-derived convex shape model 
(Ďurech et al. 2008b), and by assuming a Bond albedo of 0.1, thermal inertia values of 200 
and 2000 J m-2 K-1 s-1/2 for the diurnal and seasonal components respectively, and a smooth 
surface. 
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Tables 
 
Table 1: Summary of ATPM model variants. 
Model 
Variant 

Shape 
Type 

Shadowing 
Effects 

Global Self-
Heating Effects 

Rough Surface 
Thermal-Infrared 
Beaming Effects 

Example Equivalent 
Model(s) 

'Convex' Convex N/A N/A No 
Kaasalainen et al. 2007 
Ďurech et al. 2008a,b 

Ďurech et al. 2012 

'Pseudo-
Convex' Concave No No No 

Scheeres 2007 
Scheeres & Gaskell 2008 

Steinberg & Sari 2011 

'Shadowing' Concave Yes No No 
Čapek 2007 
Statler 2009 

Breiter et al. 2009 
'Self-Heating' Concave Yes Yes No N/A 
'Rough 
Shadowing' Concave Yes No Yes Rozitis & Green 2012 

'Rough Self-
Heating' Concave Yes Yes Yes N/A 
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Table 2: Summary of test asteroid physical and shape properties. 

Asteroid 
Shape 
Model 

Reference 

Number 
of 

Vertices 

Number 
of 

Concave 
Facets 

Number 
of Convex 

Facets 

Convex 
Volume / 
Concave 
Volume 

Mean 
Total 
View 

Factor 
(x0.01) 

Diameter 
of 

Equivalent 
Volume 
Sphere 
(km) 

Bulk 
Density 
(kg m-3) 

Mass (kg) 
Moment 
of Inertia 
(kg m2) 

Semimajor 
Axis (AU) 

Rotation 
Period 

(hr) 

Yarkovsky 
Semimajor 

Axis 
Drift*    

(m yr-1) 

YORP-
Coefficient* 

(x0.01) 

(433)  
Eros 

Thomas et 
al. 2002 3897 7790 2204 1.189 0.820 16.849 2670 6.7 x1015 5.0 x1023 1.458 5.270 3 1.736 

(1580) 
Betulia 

Magri et 
al. 2007 1148 2292 1246 1.016 0.127 5.390 2000 1.6 x1014 6.4 x1020 2.196 6.132 7 1.611 

(1620) 
Geographos 

Hudson & 
Ostro 1999 2048 4092 854 1.124 1.167 2.568 2500 2.2 x1013 3.1 x1019 1.246 5.223 21 5.470 

(2063) 
Bacchus 

Benner et 
al. 1999 256 508 224 1.084 0.270 0.631 2500 3.3 x1011 2.5 x1016 1.078 14.904 78 0.138 

(2100) 
Rashalom 

Shepard et 
al. 2008 1148 2292 586 1.043 0.798 2.280 2400 1.5 x1013 1.0 x1019 0.832 19.797 18 0.331 

(4179) 
Toutatis 

Hudson & 
Ostro 1995 1600 3196 630 1.135 1.007 2.447 2500 1.9 x1013 7.1 x1018 2.529 129.840 21 2.251 

(4486) 
Mithra 

Brozovic 
et al. 2010 3000 5996 726 1.302 4.654 1.691 2000 5.1 x1012 2.6 x1018 2.202 67.500 30 4.564 

(4660) 
Nereus 

Brozovic 
et al. 2009 1148 2292 1116 1.009 0.056 0.333 2000 3.9 x1010 6.7 x1014 1.489 15.160 146 1.249 

(4769) 
Castalia 

Hudson & 
Ostro 1994 2048 4092 1810 1.086 0.947 1.084 2500 1.7 x1012 3.4 x1017 1.063 4.095 48 0.362 

(6489) 
Golevka 

Hudson et 
al. 2000 2048 4092 610 1.162 3.688 0.530 2700 2.1 x1011 7.3 x1015 2.498 6.026 60 0.168 

(8567) 
1996 HW1 

Magri et 
al. 2011 1392 2780 726 1.262 3.277 2.023 2000 8.7 x1012 9.6 x1018 2.046 8.762 25 2.322 

(10115) 
1992 SK 

Busch et 
al. 2006 510 1016 512 1.032 0.266 1.005 2300 1.2 x1012 1.5 x1017 1.249 7.318 54 1.851 

(25143) 
Itokawa 

Gaskell et 
al. 2006 25350 49152 2614 1.132 1.548 0.327 1950 3.6 x1010 7.8 x1014 1.324 12.132 178 0.408 

(29075) 
1950 DA 
prograde 

Busch et 
al. 2007 1020 2036 666 1.031 0.201 1.161 3000 2.5 x1012 3.4 x1017 1.699 2.122 28 0.925 

(29075) 
1950 DA 
retrograde 

Busch et 
al. 2007 510 1016 552 1.014 0.050 1.298 3500 4.0 x1012 8.4 x1017 1.699 2.122 17 0.065 

(33342) 
1998 WT24 

Busch et 
al. 2008 4000 7996 1924 1.035 0.279 0.415 3000 1.1 x1011 2.2 x1015 0.718 3.697 124 2.196 

(52760) 
1998 ML14 

Ostro et al. 
2001 512 1020 388 1.060 1.699 0.992 2500 1.3 x1012 1.3 x1017 2.412 14.980 39 0.319 

*Calculated using 0° obliquity, a thermal inertia of 200 J m-2 K-1 s-1/2, a Bond albedo of 0.1, and assuming no global self-heating effects. 
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Table 2 (continued): Summary of test asteroid physical and shape properties. 

Asteroid 
Shape 
Model 

Reference 

Number 
of 

Vertices 

Number 
of 

Concave 
Facets 

Number 
of Convex 

Facets 

Convex 
Volume / 
Concave 
Volume 

Mean 
Total 
View 

Factor 
(x0.01) 

Diameter 
of 

Equivalent 
Volume 
Sphere 
(km) 

Bulk 
Density 
(kg m-3) 

Mass (kg) 
Moment 
of Inertia 
(kg m2) 

Semimajor 
Axis (AU) 

Rotation 
Period 

(hr) 

Yarkovsky 
Semimajor 

Axis 
Drift*    

(m yr-1) 

YORP-
Coefficient* 

(x0.01) 

(54509) 
YORP 

Taylor et 
al. 2007 288 572 190 1.165 3.367 0.113 2500 1.9 x109 3.0 x1012 1.006 0.203 368 3.521 

(66391) 
1999 
KW4a 

Ostro et al. 
2006 4586 9168 1576 1.030 0.601 1.317 1970 2.4 x1012 4.6 x1017 0.642 2.765 59 0.058 

(66391) 
1999 
KW4b 

Ostro et al. 
2006 1148 2292 1648 1.005 0.021 0.451 2810 1.3 x1011 3.8 x1015 0.642 17.422 70 0.134 

(136617) 
1994 CC 

Brozović 
et al. 2011 2000 3996 1148 1.020 0.289 0.620 2100 2.6 x1011 1.0 x1016 1.638 2.389 77 0.045 

(276049) 
2002 CE26  

Shepard et 
al. 2006 1148 2292 1490 1.007 0.086 3.459 900 2.0 x1013 2.5 x1019 2.233 3.293 23 0.188 

1998 KY26 Ostro et al. 
1999 2048 4092 2294 1.026 0.269 0.026 2500 2.4 x107 1.7 x109 1.232 0.178 1134 1.452 

2008 EV5 Busch et 
al. 2011 2000 3996 924 1.032 1.079 0.405 3000 1.0 x1011 1.8 x1015 0.958 3.725 120 0.276 

Gaussian-
Spheres 

Rozitis & 
Green 
2012 

578 1152 268-504 1.043-
1.236 

0.452-
3.711 1.000 2500 1.3 x1012 (1.6-3.1) 

x1017 1.000 6.000 42-59 0.051-7.700 

*Calculated using 0° obliquity, a thermal inertia of 200 J m-2 K-1 s-1/2, a Bond albedo of 0.1, and assuming no global self-heating effects. 
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Table 3: Comparison of YORP effect predictions made by the different ATPM model variants for the set of test asteroid shapes used. 
 YORP Function Difference (%) Best Obliquity Match (%) Critical Angles (°) Vertical YORP-Coefficient Offsets (x0.01) 

Asteroid 'Convex' 'Pseudo-
Convex' 'Shadowing' 'Convex' 'Pseudo-

Convex' 'Shadowing' 'Convex' 'Pseudo-
Convex' 'Shadowing' 'Self-

Heating' 

<Shadowing 
- Pseudo-
Convex> 

<Self-
Heating - 

Shadowing> 
Ratio 

(433)  
Eros 61.0 2.52 27.9 0 100 0 53.8 58.1 63.5 58.5 0.224 -0.231 -1.033 

(1580) 
Betulia 32.6 4.61 9.54 0 80 20 58.9 58.3 59.7 58.0 0.101 -0.079 -0.774 

(1620) 
Geographos 42.7 3.99 4.32 10 40 50 50.0 54.5 53.9 54.6 0.067 -0.128 -1.912 

(2063) 
Bacchus 597 5.46 47.1 0 100 0 56.0 18.4, 63.2 13.0, 65.3 17.8, 62.9 0.068 -0.073 -1.072 

(2100) 
Rashalom 48.3 6.99 31.5 0 100 0 56.2 50.3 44.1 52.3 -0.041 0.049 -1.179 

(4179) 
Toutatis 44.7 4.27 0.816 0 0 100 62.1 59.8 60.7 60.8 0.023 0.009 0.379 

(4486) 
Mithra 51.0 20.1 37.9 0 80 20 53.6 53.6 60.6 53.2 -0.936 0.716 -0.764 

(4660) 
Nereus 7.48 0.645 4.41 0 100 0 56.2 56.1 55.2 56.2 -0.027 0.028 -1.035 

(4769) 
Castalia 944 153 473 10 90 0 58.8 56.3 None 

(40.0*) 15.1, 61.4 0.331 -0.289 -0.872 

(6489) 
Golevka 448 100 96.3 0 70 30 54.9 32.1, 66.9 10.6 48.4 0.172 -0.305 -1.776 

(8567) 
1996 HW1 58.9 72.0 148 60 20 20 61.6 61.5 None 

(90.0*) 51.2 -1.278 1.027 -0.803 

(10115) 
1992 SK 41.8 1.22 2.56 0 100 0 56.9 55.7 55.4 55.9 -0.019 0.026 -1.396 

(25143) 
Itokawa 73.1 15.1 33.7 30 40 30 24.2, 65.4 62.2 66.9 61.7 -0.159 0.135 -0.848 

(29075) 
1950 DA 
prograde 

85.1 0.837 7.74 0 100 0 43.2, 76.2 55.5 54.2 55.5 -0.042 0.042 -0.993 

(29075) 
1950 DA 
retrograde 

65.7 1.40 3.60 0 100 0 60.5 23.1, 62.8 23.6, 62.6 23.2, 62.9 -0.003 0.003 -1.064 

(33342) 
1998 WT24 46.3 1.64 4.02 10 50 40 54.6 53.4 51.6 52.9 -0.043 0.039 -0.917 

(52760) 
1998 ML14 128 145 131 20 30 50 65.6 65.3 66.8 25.8, 46.5, 

70.3 -0.003 -0.051 14.655 

*Obliquity which produces the smallest magnitude of YORP-rotational-acceleration. 
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Table 3 (continued): Comparison of YORP effect predictions made by the different ATPM model variants for the set of test asteroid shapes 
used. 
 YORP Function Difference (%) Best Obliquity Match (%) Critical Angles (°) Vertical YORP-Coefficient Offsets (x0.01) 

Asteroid 'Convex' 'Pseudo-
Convex' 'Shadowing' 'Convex' 'Pseudo-

Convex' 'Shadowing' 'Convex' 'Pseudo-
Convex' 'Shadowing' 'Self-

Heating' 

<Shadowing 
- Pseudo-
Convex> 

<Self-
Heating - 

Shadowing> 
Ratio 

(54509) 
YORP 64.4 8.16 32.8 10 70 20 56.1 55.5 57.8 53.9 0.489 -0.451 -0.921 

(66391) 
1999 
KW4a 

487 103 171 0 80 20 55.5 43.7 48.0, 62.2 41.1, 70.6 0.015 -0.020 -1.379 

(66391) 
1999 
KW4b 

6.72 3.79 3.31 20 40 40 62.1 62.8 63.1 62.8 0.007 -0.003 -0.488 

(136617) 
1994 CC 367 5.36 11.3 0 80 20 56.0 62.3 61.1 62.3 0.002 -0.002 -0.944 

(276049) 
2002 CE26  57.0 1.53 6.93 0 100 0 45.6 46.2 46.6 45.9 0.004 -0.005 -1.186 

1998 KY26 36.0 4.53 10.4 0 90 10 58.8 58.1 60.1 58.7 0.065 -0.078 -1.203 
2008 EV5 63.6 4.22 3.62 0 50 50 58.2 58.5 58.5 58.9 0.014 -0.008 -0.605 

Gaussian-
Spheres** 

40.5 
+80.2 / 
-28.7 

4.85 
+14.8 / 
-3.22 

6.91 
+20.0 / 
-3.91 

0 
+10 / 

-0 

70 
+30 / 
-40 

30 
+20 / 
-30 

56.4 
+3.3 / 
-5.5 

56.2 
+3.4 / 
-5.2 

55.3 
+4.2 / 
-8.9 

56.2 
+3.1 / 
-5.9 

-0.027 
+0.157 / 
-0.120 

0.027 
+0.115 / 
-0.141 

-0.820 
+0.406 / 
-0.593 

Average 90.7 14.2 23.3 5 66 29 56.4 55.5 52.9 54.7 N/A N/A -0.782 
Best 
Match 
Frequency 

6 90 28 5 94 25 13 93 15 3*** N/A N/A N/A 

**Median and 1-σ spread. ***Number of test asteroids in which neither of the 'convex', 'pseudo-convex', and 'shadowing' predictions match the 
'self-heating' critical angle predictions. 
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Figure Captions 
 
Figure 1: Schematic of the Yarkovsky and YORP effects on the orbit and spin properties of a 
small asteroid (copied from Rozitis & Green 2012). 
 
Figure 2: Schematic of global self-heating occurring inside a large concavity of an asteroid. 
 
Figure 3: Schematic of the ATPM where the terms FSUN, FSCAT, FRAD, kc(dT/dx), and εσT4 
are the direct sunlight, multiple-scattered sunlight, re-absorbed thermal radiation, conducted 
heat, and thermal radiation lost to space, respectively (copied from Rozitis & Green 2011). 
 
Figure 4: Asteroid (6489) Golevka radar-derived concave shape model (Hudson et al. 2000) 
and total view factor distribution. The green line corresponds to Golevka's north pole. The 
view on the left is a side view whilst that on the right is a view of Golevka's south pole. 
 
Figure 5: Physical and shape properties for the test asteroids used. (a) Convex to concave 
volume ratio as a function of rotation period for the real asteroid shapes split into different 
rotation period groups. (b) Mean total view factor as a function of convex to concave volume 
ratio for both the real asteroid shapes and the Gaussian-spheres. The line is the best linear fit 
to the trend indicated, and the equation and R2 value of the fit is given next to it. (c) Shape 
model frequency distributions as functions of convex to concave volume ratio for both the 
real asteroid shapes and the Gaussian-spheres. (d) Shape model frequency distributions as 
functions of YORP-coefficient for both the real asteroid shapes and the Gaussian-spheres. 
The YORP-coefficient values used here are calculated assuming 0° obliquity and no global 
self-heating effects. 
 
Figure 6: Mean percentage difference of the 'convex', 'pseudo-convex', and 'self-heating' 
(legend) orbital drift predictions relative to the 'shadowing' predictions as a function of 
obliquity (x-axis) for: (a) the diurnal Yarkovsky effect, and (b) the seasonal Yarkovsky 
effect. The error-bars on the 'self-heating' predictions represent the 1-sigma ranges of 
difference variations caused by the range of test asteroids used 
 
Figure 7: YORP-rotational-acceleration acting on all real asteroid shapes used as a function 
of obliquity (x-axis) and model variant (legend). 
 
Figure 8: YORP-function difference for the 'convex' (left panels), 'pseudo-convex' (middle 
panels), and 'shadowing' (right panels) model variants as functions of convex to concave 
volume ratio (top panels) and 0° obliquity 'self-heating' YORP-coefficient (bottom panels). 
All test asteroid shapes used are plotted (legend of top left panel), and the median values of 
the different model variants are also indicated by the horizontal lines (legend of bottom left 
panel). 
 
Figure 9: Comparison of the 'convex' (left panel), 'pseudo-convex' (middle panel), and 
'shadowing' (right panel) critical angles with the 'self-heating' critical angles (x-axis). The 
diagonal lines represent the trend if the two compared values were exactly equal to one 
another. All test asteroid shapes used are plotted (legend of middle panel). 
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Figure 10: YORP-function vertical offset ratios, <self-heating-shadowing>/<shadowing-
pseudo-convex>, as functions of volume ratio (left panel) and YORP-coefficient (right 
panel). All test asteroid shapes used are plotted (legend of left panel), and the median value is 
also indicated by the horizontal line. 
 
Figure 11: YORP-rotational-acceleration acting on four extreme case asteroids as a function 
of obliquity and model variant. The red and blue lines represent model predictions with and 
without global self-heating effects included respectively. The solid, dashed-dotted, and dotted 
lines represent model predictions with smooth, 50% rough, and 100% rough surfaces 
respectively. The error-bars represent the 1-sigma uncertainty on the 50% rough surface 
predictions when the degree of surface roughness is allowed to vary in a patchy way across 
the surface. 
 
Figure A1: The diurnal and seasonal Yarkovsky-orbital-drifts acting on asteroid (1620) 
Geographos as a function of obliquity. The seasonal effect has been multiplied by a factor of 
-1 so that it can be plotted on the same axes as the diurnal effect. This is a corrected version 
of figure 7c given in Rozitis & Green (2012).  
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Figure 6: 
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Figure 7: 
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Figure 7 (continued): 
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Figure A1: 
 

 


