
Open Research Online
The Open University’s repository of research publications
and other research outputs

Engineering adaptive user interfaces for enterprise
applications
Conference or Workshop Item
How to cite:

Akiki, Pierre (2013). Engineering adaptive user interfaces for enterprise applications. In: Fifth ACM SIGCHI
Symposium on Engineering Interactive Computing Systems (EICS 2013), 24-27 Jun 2013, London, UK.

For guidance on citations see FAQs.

c© 2013 ACM

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/2494603.2480333
http://eics-conference.org/2013/pgrm/posters.html

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/2494603.2480333
http://eics-conference.org/2013/pgrm/posters.html
http://oro.open.ac.uk/policies.html

Engineering Adaptive User Interfaces
for Enterprise Applications

Pierre A. Akiki

Computing Department, The Open University

Walton Hall, Milton Keynes, United Kingdom

pierre.akiki@open.ac.uk

ABSTRACT

The user interface (UI) layer is considered an important

component in software applications since it links the users

to the software’s functionality. Enterprise applications such

as enterprise resource planning and customer relationship

management systems have very complex UIs that are used

by users with diverse needs in terms of the required features

and layout preferences. The inability to cater for the variety

of user needs diminishes the usability of these applications.

One way to cater for those needs is through adaptive UIs.

Some enterprise software providers offer mechanisms for

tailoring UIs based on the variable user needs, yet those are

not generic enough to be used with other applications and

require maintaining multiple UI copies manually. A generic

platform based on a model-driven approach could be more

reusable since operating on the model level makes it

technology independent. The main objective of this research

is devising a generic, scalable, and extensible platform for

building adaptive enterprise application UIs based on a

runtime model-driven approach. This platform primarily

targets UI simplification, which we defined as a mechanism

for increasing usability through adaptive behavior by

providing users with a minimal feature-set and an optimal

layout based on the context-of-use. This paper provides an

overview of the research questions and methodology, the

results that were achieved so far, and the remaining work.

Author Keywords

Adaptive user interfaces; Simplification;

Enterprise applications; Model-driven engineering

ACM Classification Keywords

[Software Engineering]: D.2.11 Software Architectures -

Domain-specific architectures; D.2.2 Design Tools and

Techniques - User interfaces; [Information Interfaces and

Presentation]: H.5.2 User Interfaces – User-centered design

INTRODUCTION

Enterprise applications (e.g., enterprise resource planning,

customer relationship management, etc.) generally serve

various purposes in an enterprise’s functional business

areas such as: Accounting, finance, marketing, inventory,

etc. The heavy dependence on these applications drives

business owners to ask for UIs that maximize employee

efficiency and effectiveness. Yet, as existing research [22]

and industry reports [17] have shown, enterprise applications

are regarded as lacking in usability and incapable of

catering for the variety in user needs. Adaptive behavior has

been suggested as a means for enhancing usability [6] and

some works particularly suggested applying it to enterprise

application UIs [22]. Also, it has been used for tailoring UIs

based on several aspects such as: “Accessibility” [14],

“Culture” [20], “Natural Context” [7], etc.

A model-driven development approach could form a basis

for devising adaptive UIs due to the ability of representing

UIs on multiple levels of abstraction that can be loaded and

adapted at runtime. The CAMELEON reference framework

[9] represents UIs on multiple levels of abstraction: (1)

Tasks Models can be represented as ConcurTaskTrees [19]

and Domain Models as UML class diagrams, (2) Abstract

User Interface (AUI), represents the UI independent of any

modality (e.g., Graphical, Voice, etc.), (3) Concrete User

Interface (CUI), represents the UI as concrete widgets (e.g.,

Buttons, Labels, etc.), and (4) Final User Interface (FUI), is

the running UI rendered in a presentation technology.

The primary objective of this research is devising a generic,

scalable, and extensible platform for building adaptive

enterprise application UIs based on a runtime model-driven

approach. The main target of this platform would be UI

simplification, which we defined [2] as a mechanism for

increasing usability through adaptive behavior by providing

users with a minimal feature-set and an optimal layout

based on the context-of-use (user, platform, environment).

The remainder of the paper is organized as follows: The

next section states and explains the proposed research

questions. Then, the related work is briefly discussed and

evaluated in the context of the research questions. Later, the

research methodology is explained. Afterwards, the results

that the research has yielded so far are presented. Finally,

the conclusions are given and the remaining work is stated.

RESEARCH QUESTIONS

This work will answer the following main research question

from which three sub-questions were derived:

Authors’ Version

EICS’13, London, United Kingdom, Forthcoming

How can adaptive UI behavior be leveraged for simplifying

enterprise applications in order to increase their usability?

Software companies attempt to develop user interfaces that

are capable of accommodating the vast majority of an

application’s target users. Due to the differences in end-user

needs, when user interfaces are concerned one does not fit

all. For example, if a UI is developed with full functionality

it might be over-bloated for basic users. Yet, removing

functionality would prevent advanced users from fulfilling

their tasks. Also, certain CUI related choices (e.g., type of

widgets, layout grouping, etc.) might allow some users to

perform their tasks more efficiently in certain contexts-of-

use (e.g., a different widget grouping for a mobile phone UI

than for a desktop UI, novice users could have widget

preferences such as radios over combos, etc.). Another,

scenario involves daily tasks that require the use of

functionality scattered across multiple UIs. Monitoring user

behavior could allow this functionality to be grouped under

one UI to make the fulfillment of daily tasks more efficient.

Identifying the various user needs, especially for generic

enterprise applications, would be difficult to do at design

time. Furthermore, developing and maintaining multiple

editions of the same UI is costly especially for enterprise

applications comprising thousands of user interfaces. The

simplification theme targeted in this research is meant to

address the existing variety in the needs of enterprise users

by leveraging adaptive user interfaces. The following sub-

questions elaborate more on the research specifics.

1. What is an effective way to automatically simplify

individual enterprise application user interfaces based

on each end-user’s needs?

2. What is an effective way to compose new user interfaces

at runtime from existing ones based on user behavior?

3. What will be the impact of the devised simplification

mechanism on the end-users’ satisfaction and efficiency?

RELATED WORK

Based on the previously presented research questions, this

section discusses the related work in terms of the ability to:

 Minimize a user interface’s feature-set and optimize its

layout at runtime

 Decompose existing user interfaces into smaller parts at

runtime and use those parts to recompose new UIs

Several existing works discuss adapting the feature-set of

UIs such as: “Multi-layered UI” [21], “training wheels UI”

[10], and “two-interface design” [18]. Yet, these works are

theoretical and there is still a need for a tool supported

solution that allows developers to minimize a UI’s feature-

set in practice at runtime based on the users’ needs.

Other works use different approaches to target layout

adaptation. The Comet [8] is introduced as a set of widgets

that support UI plasticity but only target the adaptation of

individual widgets and not the entire layout. Supple [14] is

a system capable of generating UIs adapted to each user’s

motor abilities by treating UI generation as an optimization

problem. Yet, Supple does not support the various possible

levels of abstraction thereby preventing designer input from

being made at the CUI level making it difficult to adopt for

enterprise applications. Another adaptation approach [5]

defines content personalization at design-time, which is

stated to be a major limitation. MASP [7] targets ubiquitous

UIs in smart environments and promotes runtime modeling

of UIs. MASP relies on code for devising the UI and uses a

box-based layouting tool to segment the UI for runtime

manipulation. This technique does not make it possible to

simplify the UI at the widget level since the manipulation is

done on the segments that group multiple widgets. It also

does not allow new UIs to be created at runtime since the

adaptations expect a code-based UI as input.

Graceful degradation is used as a method for supporting

UIs on multiple devices [13] and could be used for

decomposing/recomposing UIs. Yet, this method’s main

limitation lies in its design-time application that relies on

designer annotations hence it would not work when the

adaptations are only known at runtime. An interesting

approach would be to combine annotations with automated

procedures based on user behavior. Another approach

called (de)composition seems to complement some aspects

of the graceful degradation process [16]. It aims towards

supporting reusability at a high level design without the

need for applying constant copy and paste operations. The

authors mention the applicability of (de)composition both at

design/run-time but all the given examples were restricted

to design-time. Decomposing/Composing UIs at runtime

would also require adapting the functionality behind the UI.

RESEARCH METHODOLOGY

Easterbrook et al. [11] differentiate between “knowledge”

and “design” research questions. They note that knowledge

questions focus on “the way the world is”, whereas design

questions focus on establishing “better ways to do software

engineering”. Empirical research is usually the path chosen

by researchers posing knowledge questions as opposed to

an engineering approach taken for design questions.

This research follows an engineering approach containing a

mixture of both design and knowledge questions. The

design questions aim towards coming up with an effective

technique for developing enterprise UIs with simplification

capabilities based on existing research work. On the other

hand, the knowledge question aims towards answering how

this technique would perform in a practical scenario.

Several engineering techniques will be employed in this

research to answer sub-questions 1 and 2. The proposed

techniques include modeling, implementing support tools

and prototypes, and conducting performance evaluations.

Surveys will be used for the preliminary investigations

whereas lab based usability studies will be conducted for

confirmatory validation purposes to answer sub-question 3.

RESULTS

This section discusses the parts of the research that have

been accomplished so far.

CEDAR Architecture

The CEDAR architecture [1], illustrated in Figure 1, serves

as a reference for devising adaptive model-driven enterprise

application UIs. This architecture is based on the: (1) Three

Layer Architecture [15] (Adaptive System Layering), (2)

CAMELEON reference framework [9] (UI Abstraction),

and (3) Model-View-Controller paradigm (Implementation).

CEDAR promotes the use of interpreted runtime models

instead of code generation for providing more flexibility in

performing advanced UI adaptations at runtime. A practical

implementation [1] based on CEDAR showed that runtime

UI rendering does not negatively impact performance. A

major part of CEDAR has been implemented to support our

UI simplification mechanism described in the next section.

Figure 1: The CEDAR Architecture

Role-Based UI Simplification (RBUIS)

Role-Based UI Simplification (RBUIS) [2] is a mechanism

that merges role-based access control (RBAC) [12] with

adaptive behavior for simplifying UIs. In RBUIS, roles are

divided into groups representing the aspects based on which

the UI will be simplified such as computer literacy, job title,

etc. RBUIS supports feature-set minimization by assigning

roles to task models for providing users with a minimal

feature-set based on the context-of-use. The assignment

could be done by I.T. personnel but there is also a potential

for engaging end-users in the process [3]. Layout optimization

is supported by assigning roles to workflows that represent

adaptive UI behavior visually and through code and can be

applied on CUI models. Furthermore, RBUIS promotes

user feedback for refining the adaptation operations. Hence,

users are allowed to reverse feature-set minimizations and

layout optimizations, and to choose possible alternative

layout optimizations. A user-study [2] showed that applying

RBUIS enhances the usability of complex user interfaces.

(a) Initial Item Maintenance UI

(b) Simplified Item Maintenance UI

Figure 2: User Interface Simplification with RBUIS

The example illustrated in Figure 2 demonstrates how

RBUIS can be applied to simplify UIs by minimizing the

feature-set (sales information and delete button are removed

in this case) and optimizing the layout (combo-boxes are

substituted with radio-buttons in this case). Additionally,

the example shows a chameleon icon in the corner of the

simplified UI (Figure 2 – b). This icon allows users to view

a list of adaptations on which they can provide feedback.

The change between versions (a) and (b) is based on the set

of roles representing different aspects such as computer

literacy, job title, etc. When an enterprise user logs into the

system and activates a UI, the version that is loaded on the

screen is dynamically adapted according to the roles that

have been assigned to the session’s user identifier.

Cedar Studio

The Cedar Studio IDE [4] provides tool support for

building enterprise applications based on the CEDAR

architecture. Cedar Studio allows developers and I.T.

personnel to apply RBUIS using a set of visual design and

code editing tools that support the creation of UI models

and adaptive behavior. Automatic generation between the

levels of abstraction (Task, AUI, and CUI) is supported

with the possibility to make manual changes at any level.

The CUI designer of Cedar Studio is shown in Figure 3.

Figure 3: The Cedar Studio IDE

CONCLUSIONS AND REMAINING WORK

This paper presented an overview of an ongoing PhD work

on simplifying enterprise application user interfaces

through engineering adaptive behavior. The proposed

research questions and methodology were explained and the

results obtained so far were presented.

In order to fully answer the research questions some work

still has to be done. A technique complementary to RBUIS

will be proposed to answer the second question on composing

new UIs at runtime by monitoring user behavior. This

technique will provide the ability to combine features from

multiple UIs into a new UI to make it easier to accomplish

tasks that require partial features from different UIs. This

process has to take into consideration both the layout and

the code-behind in order to maintain the UI’s functionality.

A comprehensive performance study will be conducted to

test the entire simplification technique in an industrial

scenario. Additionally, more lab studies will be conducted

to test the usability of the produced outcome using several

example UIs from existing enterprise applications.

ACKNOWLEDGMENTS

This PhD is funded through a three year studentship granted

by the Computing Department at The Open University U.K.

REFERENCES

1. Akiki, P.A., Bandara, A.K., and Yu, Y. Using

Interpreted Runtime Models for Devising Adaptive User

Interfaces of Enterprise Applications. ICEIS'12,

SciTePress (2012), 72-77.

2. Akiki, P.A., Bandara, A.K., and Yu, Y. RBUIS:

Simplifying Enterprise Application User Interfaces

through Engineering Role-Based Adaptive Behavior.

EICS'13, ACM (2013), Forthcoming.

3. Akiki, P.A., Bandara, A.K., and Yu, Y. Crowdsourcing

User Interface Adaptations for Minimizing the Bloat in

Enterprise Applications. EICS'13, ACM (2013),

Forthcoming.

4. Akiki, P.A., Bandara, A.K., and Yu, Y. Cedar Studio:

An IDE Supporting Adaptive Model-Driven User

Interfaces for Enterprise Applications. EICS'13, ACM

(2013), Forthcoming.

5. Bacha, F., Oliveira, K., and Abed, M. A Model Driven

Architecture Approach for User Interface Generation

Focused on Content Personalization. RCIS'11, IEEE

(2011), 1-6.

6. Benyon, D. Adaptive systems: a solution to usability

problems. User Modeling and User-Adapted Interaction

3, 1 Springer (1993), 65-87.

7. Blumendorf, M., Lehmann, G., and Albayrak, S.

Bridging Models and Systems at Runtime to Build

Adaptive User Interfaces. EICS'10, ACM (2010), 9-18.

8. Calvary, G., Coutaz, J., Dâassi, O., Balme, L., and

Demeure, A. Towards a New Generation of Widgets for

Supporting Software Plasticity: The "Comet". Eng. HCI

and Interactive Systems. Springer (2005), 306-324.

9. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L., and Vanderdonckt, J. A Unifying Reference

Framework for Multi-Target User Interfaces. Interacting

with Computers 15, 3, Elsevier (2003), 289-308.

10. Carroll, J.M. and Carrithers, C. Training Wheels in a

User Interface. CACM 27, 8, ACM (1984), 800-806.

11. Easterbrook, S., Singer, J., Storey, M.-A., and Damian,

D. Selecting Empirical Methods for Software

Engineering Research. Guide to Advanced Empirical

Software Engineering, Springer (2008), 285-311.

12. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., and

Chandramouli, R. Proposed NIST Standard for Role-

Based Access Control. TISSEC, ACM (2001), 224-274.

13. Florins, M. and Vanderdonckt, J. Graceful Degradation

of User Interfaces as a Design Method for Multiplatform

Systems. IUI'04, ACM (2004), 140-147.

14. Gajos, K.Z., Weld, D.S., and Wobbrock, J.O.

Automatically Generating Personalized User Interfaces with

Supple. Artificial Intelligence, Elsevier (2010), 910-950.

15. Kramer, J. and Magee, J. Self-Managed Systems: an

Architectural Challenge.FOSE'07, IEEE (2007), 259-268.

16. Lepreux, S., Vanderdonckt, J., and Michotte, B. Visual

Design of User Interfaces by (De)Composition. DSV-

IS'07, Springer-Verlag (2007), 157-170.

17. Lykkegaard, B. and Elbak, A. IDC - Document at a

Glance - LC52T. International Data Corporation (2011).

18. McGrenere, J., Baecker, R.M., and Booth, K.S. An

Evaluation of a Multiple Interface Design Solution for

Bloated Software. CHI'02, ACM (2002), 164-170.

19. Paterno, F. Model-based Design and Evaluation of

Interactive Applications. Springer-Verlag (1999).

20. Reinecke, K. and Bernstein, A. Improving Performance,

Perceived Usability, and Aesthetics with Culturally

Adaptive User Interfaces. TOCHI 18, ACM (2011), 1-29.

21. Shneiderman, B. Promoting Universal Usability with

Multi-Layer Interface Design. CUU'03, ACM (2003), 1-8.

22. Singh, A. and Wesson, J. Evaluation Criteria for

Assessing the Usability of ERP Systems. SAICSIT '09,

ACM (2009), 87-95.

