
Open Research Online
The Open University’s repository of research publications
and other research outputs

Cedar Studio: an IDE supporting adaptive
model-driven user interfaces for enterprise applications
Conference or Workshop Item
How to cite:

Akiki, Pierre; Bandara, Arosha and Yu, Yijun (2013). Cedar Studio: an IDE supporting adaptive model-driven
user interfaces for enterprise applications. In: Fifth ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS 2013), 24-27 Jun 2013, London, UK.

For guidance on citations see FAQs.

c© 2013 ACM

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/2494603.2480332
http://eics-conference.org/2013

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82976531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/2494603.2480332
http://eics-conference.org/2013
http://oro.open.ac.uk/policies.html

Cedar Studio: An IDE Supporting Adaptive Model-Driven
User Interfaces for Enterprise Applications

Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu

Computing Department, The Open University

Walton Hall, Milton Keynes, United Kingdom

{pierre.akiki, a.k.bandara, y.yu}@open.ac.uk

ABSTRACT

Support tools are necessary for the adoption of model-

driven engineering of adaptive user interfaces (UI).

Enterprise applications in particular, require a tool that

could be used by developers as well as I.T. personnel

during all the development and post-development phases.

An IDE that supports adaptive model-driven enterprise UIs

could further promote the adoption of this approach. This

paper describes Cedar Studio, our IDE for building

adaptive model-driven UIs based on the CEDAR reference

architecture for adaptive UIs. This IDE provides visual

design and code editing tools for UI models and adaptive

behavior. It is evaluated conceptually using a set of criteria

from the literature and applied practically by devising

example adaptive enterprise user interfaces.

Author Keywords

IDE; Model-driven engineering; Adaptive user interfaces;

Enterprise applications; User interface simplification

ACM Classification Keywords

[Software Engineering]: D.2.11 Software Architectures -

Domain-specific architectures; D.2.2 Design Tools and

Techniques - User interfaces; [Information Interfaces and

Presentation]: H.5.2 User Interfaces – User-centered design

General Terms

Design; Human Factors

INTRODUCTION

The model-driven approach to UI development can serve as

a basis for devising adaptive UIs for enterprise applications

due to the possibility of applying different types of

adaptations on the various levels of abstraction [2].

Yet, practically implementing adaptive model-driven UIs

requires tools that support the creation of the necessary UI

models and adaptive behavior. Existing tools lack many

features required for supporting adaptive model-driven

enterprise user interfaces. From a model-driven engineering

perspective, such tools should be able to support the

modeling, generation, and synchronization of all the levels

of abstraction. Also, these tools should provide the ability

to devise the adaptive behavior both visually and through

code to support developers and I.T. personnel. Furthermore,

an IDE style UI could provide the necessary ease-of-use for

managing the complex user interface and adaptive behavior

artifacts of large-scale enterprise applications.

This paper provides an overview of Cedar Studio, our

Integrated Development Environment (IDE) that supports

the development of adaptive model-driven enterprise

application user interfaces based on the CEDAR reference

architecture, which promotes the use of interpreted runtime

models instead of code generation [1]. CEDAR is based on

the: CAMELEON reference framework [4], Three Layer

Architecture [11] and Model-View-Controller paradigm

[12]. The UI and adaptive behavior models created using

Cedar Studio are stored in a relational database, which

provides an easier means for managing these artifacts at

runtime. CEDAR’s implementation is offered as a service

consumed by Cedar Studio and technology specific APIs,

which allow more enterprise applications to integrate with

our solution. APIs can be devised for any presentation

technology (e.g., HTML, Swing, etc.) and used in

combination with Cedar Studio for developing adaptive

UIs. The adaptations currently supported by Cedar Studio

are primarily focused on UI simplification, which we define

as a mechanism for increasing usability through adaptive

behavior by providing users with a minimal feature-set and

an optimal layout based on the context-of-use (user,

platform, and environment). These adaptations are part of

our Role-Based UI Simplification (RBUIS) mechanism [2].

Cedar Studio provides developers and I.T. personnel with

an ease of access to all the visual design and code editing

tools in one place. Currently, it supports visual design tools

for the following artifacts: (1) Task Models, (2) Domain

Models, (3) Abstract UI (AUI) Models, (4) Concrete UI

(CUI) Models, and (5) Goal Models. Also, it supports

automatic generation and synchronization between various

levels of abstraction (Task Model, AUI, and CUI) and

offers the possibility of making manual changes at any

level. Additionally, Cedar Studio supports a combination of

visual design and code editing tools that are necessary for

implementing adaptive UI behavior including: (1) Visual

Adaptive Behavior Workflows and (2) Dynamic Scripts for

optimizing a UI’s layout, (3) Visual Role Assignments and

(4) Code-Based Rules for minimizing a UI’s feature-set to a

Authors’ Version

EICS’13, London, United Kingdom, Forthcoming

particular context, and (5) SQL-based Model Constraints

for verifying manually created models.

Cedar Studio is meant to be used during various phases of

the software lifecycle (development, deployment, and post-

deployment). The UI models are created at development

time and the adaptive UI behavior could be added at

deployment time according to the needs of each enterprise.

The remainder of this paper is structured as follows: The

next section briefly describes the gaps in existing tools.

Then, we present the features of Cedar Studio and the

process of using it for devising adaptive model-driven

enterprise application UIs. Afterwards, we assess Cedar

Studio based on criteria from the literature [18]. Finally, we

give the conclusions and state our future work.

RELATED WORK

This section provides a brief overview of existing software

tools that target model-driven and adaptive user interfaces.

Some tools supporting the development of model-driven

UIs such as UsiComp [10], Xplain [9], Damask [14], and

Gummy [15] are early stage research prototypes that do not

provide an IDE style UI that generally helps developers and

I.T. personnel in managing a large number of artifacts (e.g.,

UI models, code files, etc.) for real-life enterprise

applications. Other similar tools such as SketchiXML [5],

IdealXML [17], GraphiXML [16] just target specific phases

of the UI construction process. MASP [7] provides tool

support for devising adaptive UI layouts for home systems

but does not provide a canvas-style visual design tool for

devising WIMP style concrete UIs. Some approaches such

as Supple [8] partially implement model-driven engineering

of user interfaces, which is reflected in the accompanying

tools that do not support all the levels of abstraction. Cedar

Studio was developed in the form of an IDE that is aimed at

providing integrated features and full support for the model-

driven approach to user interface development.

There are commercial tools for supporting model-driven UI

construction. Leonardi [24] is a UI design tool owned by

the W4 company. Since Leonardi is a rapid application

development tool, it limits its UI representation to the CUI

level of abstraction. Additionally, various frameworks and

tools (e.g., OpenXava [25], Himalia [26], etc.) provide

different model-driven approaches for constructing UIs.

Yet, the tight coupling of these tools with programming

languages (e.g., Java, .NET, etc.) discourages their adoption

as a generic solution. The UIs created with Cedar Studio

are technology independent and are interpreted by separate

APIs that could target any presentation technology.

A survey [21] on model-driven engineering tools for

developing UIs included: ACCELEO, AndroMDA, ADT,

AToM3, DSL Tools, Kermeta, ModFact, Merlin, MDA

Workbench, MOFLON, OptimalJ, QVT Partners, SmartQVT,

and UMLX. The models generated by these tools are static

hence only adaptable at design-time whereas Cedar Studio

is intended to support both user interface and adaptive

behavior models that can be interpreted at runtime.

The next section presents Cedar Studio and explains how it

can be used for simplifying UIs using adaptive behavior.

CEDAR STUDIO FEATURES AND PROCESS

This section presents the features of Cedar Studio, and

explains the process of using this tool to devise adaptive

model-driven UIs. Cedar Studio allows the process to start

at any level of abstraction but we only demonstrate it

starting from the task model due to space limits.

Task Models

The task model design tool, illustrated in Figure 1, supports

visual composition of task models using ConcurTaskTrees

(CTT) [20]. The importance of this tool is that it provides

designers with the ability to visually design task models and

allocate roles to them through the dialog shown in Figure 2

while maintaining the ability to allocate roles through more

general code-based rules using a code editor. This visual

and code-based combination for applying RBUIS in

enterprise scenarios could enhance the expressive match

denoting the closeness between the means for applying

design choices and the problem at hand [19].

Figure 1. Task Model Design Tool

This tool supports a tree layout algorithm that can

automatically adjust the presentation of large task models.

Visual and code-based support is provided for the

simplification process through role allocation to tasks. The

lock-shaped button on each task allows a visual allocation

of access rights using the UI shown in Figure 2. A default

policy (“All-Roles”) is implicitly assigned to grant access to

all the roles on any given task. This policy could be

overridden by explicitly assigning roles from different

groups (Figure 2 - a) to each task. The concrete operation

(e.g. hide, disable, etc.) and the ability to reverse it by the

user are specified for each role (Figure 2 - b). A task can

inherit or override roles assigned to its parent task

(Figure 2 - c). The order of each role can be changed to

indicate its priority. An assignment can be made to indicate

the priority source (Figure 2 - d).

Figure 2. Visual Role Allocation on Tasks

The allocation of roles to tasks can also be done through

SQL-based rules. RBUIS rules are written in the form of an

SQL condition conforming to our meta-model [2]. This

condition is assigned roles and allocated to the task models

on which it should be executed. Cedar Studio provides an

editor for RBUIS rules and the ability to validate the SQL

syntax and display errors in the “Error List”.

Due to possible human errors in the allocation of roles to

tasks, model verification is required. The example SQL-

based constraint illustrated in Figure 3 retrieves all the tasks

not accessible by any user in the system. These tasks are

then displayed in the “Error List” as errors or warnings.

Furthermore, the SQL syntax itself can be validated in a

similar manner to how RBUIS rules are validated.

Figure 3. Model Checking Constraints Code Editor

The second level of abstraction, namely AUI models can be

automatically generated from task models. It is possible to

visually override the default mapping using the UI shown in

Figure 4 by allocating each task one or more AUI elements.

This option spares the designers from having to individually

add, delete, or modify elements on the canvas.

Figure 4. Mapping Task Model to AUI

Abstract User Interface Models

The generated AUI is easily modifiable through the visual

design tool illustrated in Figure 5. Simplicity is the main

advantage of this tool that supports the specification of

AUIs with basic building blocks on a flow-style layout

canvas, which could be used by non-technical designers.

Figure 5. Abstract User Interface Design Tool

Since AUI models are a modality independent representation,

the design canvas shows each element as a box with a

name, icon, and color. This tool allows AUI containers to

be nested within one another and provides an easy-to-use

flow style for visually manipulating the AUI elements. The

properties box allows the modification of an element’s

properties including its type. As suggested in existing

literature [22], placeholder elements are used upon deletion

to maintain the mapping between the models. The type of

the placeholder can be switched to an AUI element type

without affecting the mapping. New elements can be added

from the toolbar and manually mapped to their related tasks

in the task model.

CUI models can be automatically generated from AUI

models similarly to how AUI models are generated from

task models. An interface, similar to the one in Figure 4, is

also provided for manually adjusting the default mappings.

Concrete User Interface Models

The input of the human designer is highly desirable for

achieving higher usability [22] through the manipulation of

concrete objects rather than just an abstract representation

[6]. Providing a robust CUI design tool helps designers in

providing their input on the look on feel of the UI. Visual

user interface builders provide a graphical means for

expressing graphical concepts thereby providing a low

threshold due to the reduction of the learning curve [18].

Figure 6. Concrete User Interface Design Tool

Cedar Studio provides a feature-rich CUI design tool

(Figure 6) by seamlessly integrating and extending the

“Windows Forms” design tool of “Visual Studio .NET”.

This design tool has been time tested through its usage in

developing UIs for many enterprise applications. Similar to

that of the AUI, the CUI design tool supports placeholders

upon deletion in addition to complete deletion of elements

which could be manually replaced and mapped to the AUI

model. A rich toolbar is provided including both basic (e.g.,

date-time picker) and advanced (e.g., data grid) widgets

required by enterprise applications.

Adaptive Behavior Workflows

Workflows are common in enterprise applications for

representing business rules. Our approach takes advantage

of workflows to represent adaptive behavior both visually

and through code. This approach gives the opportunity for

both developers and I.T. personnel to implement this

behavior through a straight forward visual canvas (Figure 7

- a). Similar to the task model design and role assignment

tool, the visual and code-based combination also enhances

expressive match. Furthermore, expressive leverage by

promoting reusability [19] is achieved by supporting the

integration of reusable visual components and scripts.

Workflows can be assigned roles and the CUI models to be

executed on. We integrated the “Windows Workflow”

design tool of “Visual Studio .NET”. This tool provides a

rich set of visual programming constructs (Figure 7 - b),

which can be dynamically extended with custom activities

(Figure 7 - c) written in “C#” or “VB.NET”. One of the

extensions we have built supports calling adaptive behavior

written in the scripting language “Iron Python”. Cedar

Studio stores workflows in an XML format that allows any

workflow to be dynamically loaded and executed.

Figure 7. Adaptive Behavior Workflow Design Tool

Cedar Studio supports an “Iron Python” script editor.

Scripts are created separately and can be called from within

any workflow by selecting the script, specifying the method

to call, and passing it the appropriate parameters. The entire

process is done visually through the workflow design tool.

Testing Adapted UIs from within Cedar Studio

Cedar Studio provides developers with the ability to run the

devised UIs with and without adaptations using “Run” and

“Run As” commands respectively. By combining this feature

with the previously described design tools, we achieved

flexibility in terms of supporting rapid design changes that

can be performed and evaluated by the developers [19].

The “Run” command simply executes the initial version of

the UI whereas “Run As” prompts the developer to enter a

user identifier and executes the UI version corresponding

that user’s roles. This functionality allows developers to test

UIs and adaptive behavior from within the IDE.

The UI illustrated in “Figure 8 – Left” represents a fully-

featured “Sales Invoice”, which is one of the cases we used

for testing RBUIS and Cedar Studio. We considered a role

called “Cashier” requiring a simplified version of this UI.

By allocating the role “Cashier” to the appropriate tasks,

applying the necessary adaptive behavior workflows, and

running the UI with a user allocated the role “Cashier”, the

version illustrated in “Figure 8 – Right” will be displayed.

When the user’s role is modified (e.g., Cashier to Manger,

Novice to Expert, etc.), the adaptation will dynamically

change according to the new role. This conforms to the

concept of multi-layer interface design [23].

Figure 8. Sales Invoice Initial Version (Left) and Simplified Version (Right)

ASSESSING CEDAR STUDIO

Cedar Studio was practically assessed by constructing a few

enterprise resource planning (ERP) UIs, such as the one

shown in Figure 8, and basic adaptive behavior. One of the

main observed strengths of using Cedar Studio in practice

is in its design tools (AUI, CUI, and Workflow) that are

based on existing mature Visual Studio components. The

task model design tool can be developed further to reach the

same level of maturity and the code editors can be enhanced

by adding intelligent-sense. In the future this assessment

will be expanded and applied in an industrial scenario.

In the previous sections we described the advantages of

Cedar Studio in terms of criteria such as flexibility,

expressive match, and expressive leverage. In this section,

we assess Cedar Studio based on another set of criteria

recommended for user interface development tools [18]:

 Threshold and Ceiling: The “threshold” represents the

difficulty in learning and using the tool, and the “ceiling”

relates to how advanced the tool’s outcome can be. An

ideal tool would have a low threshold and a high ceiling.

 Path of Least Resistance: Developers should be guided

to construct the UI in an appropriate manner by making

the right approach easier to follow than the wrong one.

 Predictability: Any automated approach provided by the

tool should be predictable to the developers using it.

 Moving Targets: The tool should be able to keep up with

the rapid developments in user interface technology.

Upon designing and developing Cedar Studio we tried to

meet the above mentioned criteria as much as possible.

It might not be feasible to achieve low threshold and high

ceiling in all cases. This is due to the learning curve created

by any additional features that would allow the tool to

produce a more advanced outcome. Yet, we aimed towards

achieving a proper balance between threshold and ceiling.

We integrated automated generation and synchronization

between models (low threshold), alongside the possibility

of conducting manual adjustments (high ceiling).

Furthermore, if developers understand the semantics of the

model they can use the visual design tools to produce an

advanced outcome (medium threshold / high ceiling). In the

cases where coding could be used a visual design tool

alternative was provided (e.g., Visual Workflows instead of

Scripts, Visual Role Assignments instead of RBUIS Rules)

or the language the most familiar to developers was chosen

(e.g., SQL instead of OCL for Model Verification).

The path of least resistance is maintained by allowing

developers to easily apply the model-driven approach. The

automated generation of models representing the various

levels of abstraction and the mapping between them saves

the time of having to perform the model design and

mapping manually. The automatic generation preserves

predictability by allowing developers to customize the

default mappings between the different model elements

(e.g., abstract input to text box). Furthermore, the support

for visual adjustment and resynchronization provides an

easy way to customize what was automatically generated.

Concerning the Moving Targets criteria, the model-driven

approach supported by Cedar Studio was initially created to

absorb the effect of changes in technology and requirements.

The model-driven approach allows our IDE to be

independent from presentation technologies and to evolve

more easily alongside them. If new techniques for building

UIs or even new UI types emerge in the future, models are

a good approach to cope with such change since it is

possible to rely on the existing abstract representations to

regenerate different types of concrete user interfaces.

CONCLUSIONS AND FUTURE WORK

This paper presented an overview of Cedar Studio, an IDE

for developing adaptive model-driven enterprise application

user interfaces. Cedar Studio supports model-driven UI

development, based on the CEDAR architecture, through a

set of visual design and code editing tools that can be used

by both developers and I.T. personnel. Additionally, Cedar

Studio supports integrated testing of the devised adaptive

behavior by running the developed UI from within the IDE

itself. The supported adaptive behavior is primarily targeted

at the simplification of enterprise UIs by minimizing the

feature-set and optimizing the layout based on the context-

of-use. We evaluated Cedar Studio conceptually based on a

set of criteria suggested by the literature and practically by

developing example adaptive enterprise application UIs.

Currently, the user interface models (Task, AUI, and CUI)

are supported by visual design tools. We plan on extending

Cedar Studio with a code view for each of these models for

supporting XML-based representations, which could make

it easier to define and manage larger models. UI description

languages (UIDL) provide technology independent XML-

based representation for user interfaces. One promising

UIDL to consider is UsiXml [13]. Also, we intend to extend

an early-stage tool that we developed in the spirit of Cedar

Studio for engaging user communities in the adaptation

process [3]. We intend to evaluate Cedar Studio with an

industrial case study. The study would involve asking both

developers and I.T. personnel to use the tool for developing

real-life user interfaces and providing their feedback on

how Cedar Studio and the model-driven approach compare

to their traditional development techniques and tools.

ACKNOWLEDGMENTS

This work is partially funded by ERC Advanced Grant

291652.

REFERENCES

1. Akiki, P.A., Bandara, A.K., and Yu, Y. Using

Interpreted Runtime Models for Devising Adaptive User

Interfaces of Enterprise Applications. ICEIS'12,

SciTePress (2012), 72-77.

2. Akiki, P.A., Bandara, A.K., and Yu, Y. RBUIS:

Simplifying Enterprise Application User Interfaces

through Engineering Role-Based Adaptive Behavior.

EICS'13, ACM (2013), Forthcoming.

3. Akiki, P.A., Bandara, A.K., and Yu, Y. Crowdsourcing

User Interface Adaptations for Minimizing the Bloat in

Enterprise Applications. EICS'13, ACM (2013),

Forthcoming.

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L., and Vanderdonckt, J. A Unifying Reference

Framework for Multi-Target User Interfaces. Interacting

with Computers 15, 3, Elsevier (2003), 289-308.

5. Coyette, A. and V, J. A Sketching Tool for Designing

Anyuser, Anyplatform, Anywhere User Interfaces.

INTERACT'05, Springer-Verlag (2005), 12-16.

6. Demeure, A., Meskens, J., Luyten, K., and Coninx, K.

Design by Example of Graphical User Interfaces

Adapting to Available Screen Size. Computer-Aided

Design of User Interfaces VI, Springer, (2009), 277-282.

7. Feuerstack, S., Blumendorf, M., Schwartze, V., and

Albayrak, S. Model-based Layout Generation. AVI '08,

ACM (2008), 217-224.

8. Gajos, K.Z., Weld, D.S., and Wobbrock, J.O.

Automatically Generating Personalized User Interfaces with

Supple. Artificial Intelligence, Elsevier (2010), 910-950.

9. García Frey, A., Calvary, G., and Dupuy-Chessa, S.

Xplain: An Editor for Building Self-Explanatory User

Interfaces by Model-Driven Engineering. EICS'10,

ACM (2010), 41-46.

10. García Frey, A., Céret, E., Dupuy-Chessa, S., Calvary,

G., and Gabillon, Y. UsiComp: An Extensible Model-

Driven Composer. EICS'12, ACM (2012), 263-268.

11. Kramer, J. and Magee, J. Self-Managed Systems: an

Architectural Challenge. FOSE'07, IEEE (2007), 259-268.

12. Krasner, G.E., Pope, S.T. A Description of the Model-

View-Controller User Interface Paradigm in the

Smalltalk-80 System. JOOP 1, 3, SIGS (1988), 26-49.

13. Limbourg, Q. and Vanderdonckt, J. USIXML: A User

Interface Description Language Supporting Multiple

Levels of Independence. ICWE'04 Workshops, Rinton

Press (2004), 325-338.

14. Lin, J. and Landay, J.A. Employing Patterns and Layers

for Early-Stage Design and Prototyping of Cross-Device

User Interfaces. CHI'08, ACM (2008), 1313-1322.

15. Meskens, J., Vermeulen, J., Luyten, K., and Coninx, K.

Gummy for Multi-Platform User Interface Designs:

Shape me, Multiply me, Fix me, Use me. AVI'08, ACM

(2008), 233-240.

16. Michotte, B. and Vanderdonckt, J. GrafiXML, a Multi-

target User Interface Builder Based on UsiXML.

ICAS'08, IARIA (2008), 15-22.

17. Montero, F. and López-Jaquero, V. IdealXML: An

Interaction Design Tool. Computer-Aided Design of

User Interfaces, Springer (2007), 245-252.

18. Myers, B., Hudson, S.E., and Pausch, R. Past, Present,

and Future of User Interface Software Tools. TOCHI 7,

1, ACM (2000), 3-28.

19. Olsen,Jr., D.R. Evaluating User Interface Systems

Research. UIST'07, ACM (2007), 251-258.

20. Paterno, F. Model-based Design and Evaluation of

Interactive Applications. Springer-Verlag (1999).

21. Pérez-Medina, J.-L., Dupuy-Chessa, S., and Front, A. A

Survey of Model Driven Engineering Tools for User

Interface Design. Task Models and Diagrams for User

Interface Design. Springer (2007), 84-97.

22. Pleuss, A., Botterweck, G., and Dhungana, D.

Integrating Automated Product Derivation and

Individual User Interface Design. VaMoS'10,

Universitat Duisburg-Essen (2010), 69-76.

23. Shneiderman, B. Promoting Universal Usability with

Multi-Layer Interface Design. CUU'03, ACM (2003), 1-8.

24. LEONARDI. http://www.leonardi-free.org.

25. OpenXava. http://www.openxava.org.

26. Himalia.net. http://bit.ly/HimaliaDotNet.

