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TRINITY SYMMETRY AND KALEIDOSCOPIC REGULAR

MAPS

DAN ARCHDEACON, MARSTON CONDER, AND JOZEF ŠIRÁŇ

Abstract. A cellular embedding of a connected graph (also known as a map)

on an orientable surface has trinity symmetry if it is isomorphic to both its dual
and its Petrie dual. A map is regular if for any two incident vertex-edge pairs

there is an automorphism of the map sending the first pair onto the second.
Given a map M with all vertices of the same degree d, for any e relatively prime

to d the power map Me is formed from M by replacing the cyclic rotation of

edges at each vertex on the surface with the e th power of the rotation. A map
is kaleidoscopic if all of its power maps are pairwise isomorphic. In this paper,

we present a covering construction that gives infinite families of kaleidoscopic

regular maps with trinity symmetry.

1. Introduction and basic concepts

The Platonic solids have fascinated people for thousands of years. They are very
symmetric — in some sense, the most symmetric shapes possible. More specifically,
they are the only spherical shapes with arc-transitive automorphism group. So
attention turns naturally to very symmetric nonspherical shapes — that is, to
discrete structures with large automorphism groups that lie on other surfaces, such
as regular maps. Regular maps have been highly studied and catalogued for small
orders and small genera. In this paper we aim to go even further.

There are important operations on maps, such as taking the dual, or taking the
Petrie dual (whose faces are the left-right paths of the original map), or forming a
new map by taking an integer e relatively prime to all vertex degrees and replacing
at every vertex the cyclic order of edges emanating from the vertex by the e th
power of that order. Any case in which such an operation yields a map isomorphic
to the original one may be regarded as an ‘external symmetry’ of the map. From
this point of view, one may say that a map has the ‘ultimate level of symmetry’ if
the map is regular and has all possible external symmetries. Our aim is to construct
such ‘super-symmetric’ maps.

We will make the above concepts more precise in the two subsections of this
Introduction. Our two main results are presented in Section 2. Techniques for
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proving our results are developed in Sections 3 and 4. The actual proofs are in
Sections 5 and 6, followed by concluding remarks in Section 7.

1.1. Maps and automorphisms. A map M is a cellular embedding of a con-
nected graph or multigraph G on a surface. For the most part these surfaces will
be connected and orientable, although we will make occasional mention of the dis-
connected or non-orientable cases. We can describe the embedding combinatorially
in terms of rotations. To begin with, we will do this for embeddings on orientable
surfaces. Fix an orientation on the surface, clockwise or anticlockwise, making the
surface oriented. This orientation induces a cyclic permutation of the edge-ends
incident with a vertex v, which we call the local rotation at v. A rotation is then
any product of local rotations (over any/all vertices), which is then a permutation
of the set E of all edge-ends of the underlying graph of the map. Let R be the
product of all local rotations. This rotation contains all the information needed to
recover the embedding. To see this, let I be the involutory permutation of the set
E that swaps the two ends of each edge. Then the pair (R, I) of permutations of E
completely determines the map. Indeed, orbits of the permutations I, R, and RI
can be identified with edges, vertices, and face boundary walks of the map, and
their mutual incidence is given by non-empty intersection of the orbits. We may
thus identify an oriented map M with the corresponding permutation pair (R, I)
acting transitively on the set of half-edges E , and write M = (E ;R, I).

We have seen that embeddings on oriented surfaces correspond to certain pairs of
permutations, and vice versa. To understand how this may be extended to arbitrary
surfaces, observe that every edge end of an embedded graph has two ‘sides’ on the
supporting surface; these sides are usually called flags (or blades, see [6]). This way,
for every edge of a graph we may associate a set of four flags. Let F be the set of
all flags of the embedded graph; observe that |F| = 2|E|. Let T be the involutory
permutation of F that interchanges the two flags associated with each edge-end, and
let L be the involutory permutation of F that interchanges the two flags appearing
at the same side of each edge. Observe the important relation LT = TL. Finally,
let C be the involutory permutation of F that interchanges every two flags forming
a ‘corner’ (two edge-ends meeting at a vertex on the boundary of a face).

If M = (E ;R, I) is an oriented map, and C,L, T are the permutations of F
defined as above, then the two products CT and TL are permutations of F that
represent in a natural sense the effect of the two permutations R and I of edge-
ends, respectively. Furthermore, the permutation group generated by CT and TL
has two orbits on F , with the two flags associated with each edge-end always lying
in different orbits. We note that this description of a map by three involutions is
suitable also for maps on non-orientable surfaces, corresponding to the situation
where the permutation group generated by CT and TL has a single orbit on F .
In any case, we sometimes use the notation M = (F ;C,L, T ) if a representation
of the map M is necessary in terms of the three involutions C,L, T acting on the
flag set F . For more background on algebraic theory of maps, see the survey-type
papers [10, 6] and the monograph [9].

A map isomorphism θ : M → M ′ between two oriented maps M and M ′ is an
isomorphism of the underlying graphs that extends to a homeomorphism of the
corresponding surfaces and preserves the set of face boundary walks. In algebraic
terms, if M = (E ;R, I) and M ′ = (E ′;R′, I ′), then a map isomorphism θ : M →
M ′ will be identified with a bijection E → E ′ between the corresponding sets of
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edge-ends, such that θ(xR) = (θ(x))R
′

and θ(xI) = (θ(x))I
′

for every edge-end
x ∈ E . Note that by connectedness, a map isomorphism θ : M →M ′ is completely
determined by the image of any particular edge-end.

Let θ be a map isomorphism from M = (E ;R, I) to itself. Then θ commutes with
R and I in the sense explained before, and hence preserves the orientation of the
supporting surface. We call any such θ an orientation-preserving automorphism of
M . The family of all orientation-preserving automorphisms of M forms a group
under composition of mappings, called the orientation-preserving automorphism
group of M , and denoted by Aut+(M). By the remark at the end of the previous
paragraph we have |Aut+(M)| ≤ |E|, or, equivalently, |Aut+(M)| ≤ 2|E| where E
denotes the edge set of the underlying graph of the map. We therefore have an
upper bound on the number of orientation-preserving ‘symmetries’ of an oriented
map. If the equality |Aut+(M)| = 2|E| is achieved, the map M is called orientably-
regular. In that case, Aut+(M) acts regularly on the edge-ends of M , and M has
as much orientation-preserving symmetry as possible.

Given any oriented map M = (E ;R, I), we can form its oriented mate M−1 =
(E ;R−1, I). In general, M and M−1 need not be isomorphic, but if they are, then
the map M is called reflexible. In such a case, an isomorphism θ : M →M−1 with

the property that θ(xR) = (θx)R
−1

and θ(xI) = (θx)I for every x ∈ E is called
an orientation-reversing automorphism of M . From this point on, orientation-
preserving and orientation-reversing automorphisms (if any) will be simply called
automorphisms, and the group of all automorphisms of a map M will be denoted
by Aut(M).

If an oriented map M is reflexible, then Aut+(M) is a subgroup of index two in
Aut(M), while if M is not reflexible, then Aut+(M) = Aut(M), and M is called
chiral. In either case we have |Aut(M)| ≤ 2|E| = 4|E|. Oriented maps achieving
the equality |Aut(M)| = 4|E| are called regular, since in that case Aut(M) acts
regularly on the sides (or flags) of M . Such maps have as much symmetry as
possible.

In the general setting, when a map is represented as M = (F ;C,L, T ), a per-
mutation f of F is an automorphism of M if and only if for every flag x ∈ F one
has (xC)f = (xf )C , (xL)f = (xf )L, and (xT )f = (xf )T — that is, if and only if f
commutes with all of the three involutions in the algebraic description of M .

In what follows we will extend the concept of symmetry of a map in several ways,
depending on certain operations on maps, which we will introduce next.

1.2. New maps from old. In this section we describe a number of methods of
forming (possibly) new maps from a given primal map M . We will first consider
operations that do not change the underlying graph of M .

Powers of maps: Taking the oriented mate of a map has a natural generaliza-
tion, obtained by replacing R−1 by any integral power Re of the rotation R, for
e relatively prime to the degree of every vertex of the map. For an oriented map
M , the degree of M is defined as the least common multiple of all vertex degrees
of M . If M = (E ;R, I) is an oriented map of degree d, and e is relatively prime to
d, then the map Me = (E ;Re, I) is called the e th power of M . In terms of flags, if
M = (F ;C,L, T ), then Me = (F ;Ce, L, T ) where Ce = (CT )e−1C. The e th power
of M has the same underlying graph as M , but, in general, the supporting surfaces
of M and Me may be different.
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One may form up to ϕ(d) powers of an oriented map M of degree d, where ϕ is
the Euler totient function. Some of these powers may be isomorphic to the original
map, and we will address this situation in Section 2. We note that the operation
of taking a power appears to have been first considered by Wilson in [20].

The Petrie dual: Suppose we begin a walk along some edge e, and when we first
encounter a vertex we continue the walk along the edge immediately to our left,
then at the next vertex we continue along the edge immediately to our right, and so
on, in an alternating left-right manner. Eventually a directed edge is repeated in the
same left-right sense, thereafter the walk is periodic. Each period is a closed walk
called a Petrie polygon. (It might also be called a left-right walk, more accurately
since it is not strictly a polygon, but we prefer the historic term.) Note that the
concept of ‘left-right’ needs the map M , so this is not just a graph theoretic concept.

Observe that the set of all Petrie polygons cover the set of all edges of the
embedded graph, with each edge lying in exactly two polygons. Now consider
another embedding of this graph on a surface, such that the Petrie polygons of M
are the faces. (It can be shown that such an embedding exists — that is, you never
get pinch points — and we will come back to this in a short while.) The resulting
map is called the Petrie dual (or sometimes the Petrial) of M , and denoted by
MP . The Petrie dual might not be on the same surface as the primal map M , and
it need not even be orientable; for example, the reader is invited to prove that that
the Petrie dual of the tetrahedral map on the sphere is a quadrangulation of the
projective plane.

If a map M is described in terms of three involutory permutations in the form
M = (F ;C,L, T ), then its Petrie dual is MP = (F ;C,LT, T ). This description is
valid for all maps.

Powers and the Petrie operation represent ways of modification of an embedding
without changing the underlying graph. We will now discuss two more operations
on maps that may change the underlying graph as well.

Geometric duals: As is commonly known, the geometric dual M∗ of a map M
can be formed from the embedding of the underlying graph by letting the faces of
M become the vertices of M∗, and letting each edge e of M become a dual edge
e∗ joining the faces of M on either side of e, so that the vertices of M become the
faces of M∗. If the supporting surface for M is oriented, then the rotation on the
dual is given by the order of edges around the primal faces. In algebraic terms, if
M and M∗ are represented by rotations R and R∗ and involutions I and I∗, then
R∗ = RI and I∗ = I. More generally, if the primal M is (F ;C,L, T ) then the dual
M∗ is (F ;C, T, L) — that is, with F∗ = F , C∗ = C, L∗ = T , and T ∗ = L. In other
words, the flag sets are the same, and the involutions describing the corners are the
same, but the concept of moving ‘longitudinally’ by L along an edge is swapped
with that of moving ‘transversally’ by T across an edge. Under either point of view,
we easily see that the process of taking the dual is involutory, so we may say “The
dual of the dual is the primal”.

It is interesting to compare algebraic descriptions of the primal map M =
(F ;C,L, T ) with its dual M∗ and Petrie dual MP . These are obtainable by re-
placing the ordered pair (L, T ) by (T, L) and (LT, T ) respectively. Since L and
T are commuting involutions, the group 〈L, T 〉 is isomorphic to the Klein four-
group Z2×Z2, with automorphism group Aut(Z2×Z2) ∼= S3, and the assignments
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(L, T ) 7→ (T, L) and (L, T ) 7→ (LT, T ) give two of its six automorphisms. The third
involutory automorphism comes from the assignment (L, T ) 7→ (L,LT ), which cor-
responds to what is known as the opposite of the map M . The other two non-trivial
automorphisms (each of order 3) may be called trialities. Disregarding the iden-
tity, we obtain a total of five non-trivial operators on maps in this way; these were
introduced by Wilson in [20] and further studied in [21, 11].

The primal map, the geometric dual map, and the Petrie dual map can be
described in a succinct way through the concept of a ‘medial’ map, as follows.

Medial maps: Let M be a map on a surface S based on an embedded graph G.
We form the medial graph of M , denoted by med(M), by taking as vertices the
edges of M , and then joining two vertices by an edge in med(M) if they represent
consecutive edges in a face of M (or, equivalently, if they represent two consecutive
edges in the rotation around a vertex of M∗). The medial graph embeds in S in a
natural way which we call the medial map of M , and we also denote by med(M).
The medial graph is 4-regular and face-2-colorable: one class of faces corresponds
to the vertices of M , say the black faces, and the other class corresponds to the
faces of M , say the white faces. Observe that both the black faces and the white
faces partition the edges of the medial. Also med(M) is isomorphic to med(M∗),
with the only difference between them being that the role of black faces and white
faces are interchanged. Moreover, any 4-regular face-2-colorable map on a surface
is the medial map of a pair (M,M∗).

The Petrie dual of M can also be described in terms of med(M). Recall that
the medial map is 4-regular. A straight-ahead walk, or SAW, in the medial map is
formed by walking along a edge, and whenever a vertex is encountered, continuing
not along the left or right edge, but directly along the opposite edge. The set of
SAWs partition the edges of the medial graph. We may call the set of SAWs the
grey faces of the medial. The medial map of the Petrie dual can be formed by
taking the embedding of the medial graph using the white faces and the grey faces.
Hence the medial graphs of M and MP are the same, but are embedded differently.

2. Our main results

We will be interested in maps that have the ‘absolutely highest level of sym-
metry’. What should this be? To begin with, one should require such a map to
be regular — that is, to have the largest possible number of map automorphisms.
Recall from Section 1.1 that a finite map M = (F ;C,L, T ) is regular if and only if it
has |F| automorphisms. But there are two more ways of thinking about symmetries
of maps.

In Section 1.2 we introduced operations that form the geometric dual and the
Petrie dual of a map, and mentioned the six Wilson operators [20] generated by
these two types of duality. A natural way to proceed is to consider maps that are
invariant with respect to Wilson’s operations. We say that the map M is self-dual
or self-Petrie if M is isomorphic to M∗ or MP , respectively. The map M is said
to have trinity symmetry if it is both self-dual and self-Petrie, that is, if the maps
M , M∗ and MP are pairwise isomorphic.

From the algebraic description, we immediately obtain the observation that if
M has trinity symmetry, then all the six maps obtained by Wilson’s operations are
isomorphic to each other [20]. Also it is obvious from the definition of regularity
that if M is regular, then so are the maps M∗ and MP , as well as the remaining
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three maps obtained by Wilson’s operations. Regular maps with trinity symmetry
could therefore be considered to be the ‘most symmetric’ maps with respect to au-
tomorphisms and dualities. Infinite families of such regular maps were constructed
in [15].

But can one look for even more symmetries in regular maps with trinity symme-
try? In Section 1.2 we discussed powers of maps. If a power of a map is isomorphic
to the original map, this isomorphism can be viewed as an additional ‘external
symmetry’ of the map.

Following [14], we call a non-zero integer e an exponent of the map M if the e th
power map Me is isomorphic to M . Since a product of two exponents is again an
exponent, we can speak of the exponent group of a map. If d is the degree of M ,
then the exponent group of M is isomorphic to a subgroup of Z∗d, the multiplicative
group of units in the ring Zd.

Maps that have ‘all possible exponents’ are of special interest. We call a map M
kaleidoscopic if every integer e relatively prime to the degree of M is an exponent of
M . Thus a kaleidoscopic map M of degree d has ϕ(d) exponents, and its exponent
group is isomorphic to Z∗d. In particular, since −1(≡ d−1 mod d) is relatively prime
to d, a kaleidoscopic map has to be reflexible. A ‘residual finiteness’ construction
for kaleidoscopic regular maps was presented in [18].

Maps that are regular, kaleidoscopic, and have trinity symmetry, may therefore
be designated as the ‘absolutely most symmetric maps’. But are there any such
maps at all? Well, yes: a trivial example is a cycle of length two embedded on the
sphere. More complex examples are not easy to find. Using our main results we
give many such examples in Section 7.

We now state our first main result.

Theorem 2.1. If there is an oriented regular kaleidoscopic map M of degree d
with trinity symmetry, then for any integer n ≥ 2, there is an oriented regular
kaleidoscopic map of degree dn with trinity symmetry and automorphism group
isomorphic to (Zn)1+ε o Aut(M), where ε is the number of edges of M .

Applying Theorem 2.1 to the spherical embedding of a cycle of length two, we
obtain a family of examples in which we have, additionally, a full description of the
automorphism groups of the maps. We state this as a separate result.

Theorem 2.2. For every integer n ≥ 1, there is a map Mn of degree 2n with 2n2

vertices on an orientable surface of genus n3 − 2n2 + 1 such that :

(i) Mn is regular, kaleidoscopic, and has trinity symmetry, and
(ii) the automorphism group of Mn has order 8n3 and defining presentation

Aut(Mn) = 〈 a, b, c, z | a2, b2, c2, z2, abc, (az)2n, (bz)2n, (cz)2n, (azbzcz)2 〉.

We note that it was suggested a long time ago by Wilson in the course of prepa-
ration of his doctoral dissertation [20] that the group with the above presentation
has order 8n3 and is the automorphism group of a regular map with trinity sym-
metry, and that this was checked by the same author by computer for all n ≤ 50
[22]. We prove it (and the fact that each Mn is kaleidoscopic) for all n.

The rest of the paper is concerned with the proof of both of the two theorems
above, along with development of corresponding theory.

We conclude this section with a note on the history of the problem. Wilson
[20] appears to be the first to have considered, back in the 1970’s, constructions
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of regular maps with extra symmetry properties – namely, orientably-regular maps
that are self-dual and self-Petrie, and orientably regular maps isomorphic to their
powers. Although significant advances in the theory of orientably-regular and regu-
lar maps were made in the 1980s and 1990s (see e.g. [13, 17] for surveys), including
new methods of constructing spherical self-dual maps [2] and a detailed treatment
of exponents [14], a non-trivial example of a kaleidoscopic regular map with trinity
symmetry was still beyond reach. This can be explained by the results of this arti-
cle: the first non-trivial (that is, admitting exponents other than ±1) example of a
kaleidoscopic regular map with trinity symmetry has genus 9 and a census covering
regular maps of such a genus was not available until 2001 [7]. Constructions of infi-
nite families of kaleidoscopic orientably-regular maps and orientably-regular maps
with trinity symmetry, based on residual finiteness of groups, were given in [18] and
[15], but despite their algebraic similarity, it appears impossible to unify them to
yield the ‘absolutely most symmetric maps’ as furnished by the main results of this
paper.

3. Voltages, lifts, and automorphisms

The proofs of our main results involve regular coverings of maps, with branch
points at vertices as well as face centers. These can be constructed by means of
corner voltage assignments, as introduced in [3] and studied in extended generality
in [1]. We first briefly describe the techniques involved, including lifts of automor-
phisms.

Let M = (F ;C,L, T ) be a map and let H be a group, called the voltage group.
A corner voltage assignment on M in H is any mapping α : F → H such that
α(xC) = (α(x))−1 for every flag x ∈ F . The pair (M,α) gives rise to a lift Mα

of the map M , defined as follows. Let F ′ = F × H and let C ′, L′ and T ′ be
permutations of the set F ′ defined by

(x, g)C
′

= (xC , gα(x)), (x, g)L
′

= (xL, g) and (x, g)T
′

= (xT , g) for all (x, g) ∈ F ′.

The action of the permutation group 〈C ′, L′, T ′〉 on the set F ′ need not be transitive.
Every connected component of this action determines a map, and the connected
components are pairwise isomorphic maps. Hence we may denote by Mα any such
connected component, and still write Mα = (F ′;C ′, L′, T ′), with the understanding
that the action of the group 〈C ′, L′, T ′〉 refers to it action on a connected component
— that is, to some subset of the flag set F ′ on which the group acts transitively.

To describe the connected components we first need to introduce one further con-
cept. A flag-walk in the map M = (F ;C,L, T ) is a sequence W = (x0, x1, . . . , xk)
of flags with the property that for 1 ≤ i ≤ k we have xi = xi−1

Xi for some
Xi ∈ {C,L, T}. The flag-walk W is closed if xk = x0, and based at x if x is the ini-
tial flag x0. The voltage α(W ) of W is defined as the product α(W ) = a1a2 . . . ak
of elements of the voltage group H, where ai = 1 if xi = xi−1

L or xi−1
T , and

ai = α(xi−1) if xi = xi−1
C , for 1 ≤ i ≤ k. Now for any flag x ∈ F , let Hx be the

set of all voltages α(W ) of closed flag-walks W based at x. Then Hx is a subgroup
of H, sometimes called the local group at x. All such local groups are conjugate to
each other in H, and the index of each Hx in H is equal to number of (pairwise
isomorphic) connected components to which the notation Mα refers. The reason
for this (see [3]) is that flags (x, h) and (x, h′) lie in the same component of the lift
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if and only if h′ = hα(W ) for some close walk at x, and this happens if and only if
h′ and h are in the same coset of the local group.

Next, let πα : Mα → M be the covering projection associated with the lift α,
that takes each (x, g) ∈ F × H to x ∈ F . This is a map homomorphism in the
sense that παX = X ′πα for each X ∈ {C,L, T}, and gives a regular covering of M
by Mα (and a regular covering of the corresponding surfaces) in terms of algebraic
topology.

For completeness, let us mention that corner voltage assignments are equivalent
to ordinary voltage assignments on the underlying graph of the medial map of M .
Indeed, the edges of med(M) correspond to 2-element flag-sets of the form {x, xC},
effectively consisting of the ends of an edge. Note that it is difficult to work with
exponents of lifted maps in terms of medial maps, since the operation of taking a
power of a map destroys the medial; hence we prefer working with flags.

We now turn to the question of ‘lifting’ map isomorphisms and automorphisms.
The reason for this is that our construction will employ corner voltage assignments
on a map with trinity symmetry and all possible exponents, in order to lift to a
covering map that has the same properties. To do this, we need to ensure that
isomorphisms between the various duals and powers will lift to isomorphisms of the
covering maps. We also want the covering maps to be regular, so we need to ensure
that the automorphisms in the regular base map will lift to automorphisms in the
covering map.

To make the concept of lifting of a map isomorphism more precise, let M and
N be maps and let f : M → N be a map isomorphism. Let α and β be corner
voltage assignments on M and N in the same group H, and let πα and πβ be the

respective covering projections. Then a mapping f̃ : Mα → Mβ is said to be a lift
of f if fπα = πβ f̃ .

The special case where M = N and α = β is particularly important. For any h ∈
H, the bijection ih defined on flags of Mα by ih(x, g) = (x, hg) is an automorphism
of Mα, and is a lift of the identity automorphism of M . Such automorphisms are
known as deck transformations, and these form a group isomorphic to the voltage
group. Also as a general consequence of the theory of lifts [3] we know that if a

map isomorphism f : M → N lifts onto an isomorphism f̃ : Mα → Mβ , then all
such lifts of f have the form ihf̃ where h ranges over all elements of the voltage
group. In particular, if an isomorphism has a lift, then the number of its lifts is
equal to the order of the voltage group H.

We note that the concept of a lift can be defined in greater generality for map
homomorphisms, but this is not of concern to us here.

Tools for lifting map isomorphisms and automorphisms are prevalent in the lit-
erature. The best one for us comes from the following result, which is a slight
modification of Theorem 9 of [3]; see also Propositions 6 and 7 in [1].

Theorem 3.1. Let M and N be maps with corner voltage assignments α and β in
some group H. Then a map isomorphism f : M → N lifts to a map isomorphism
f̃ : Mα → Nβ if and only if for any closed flag-walk W with origin at a fixed flag
the following condition is satisfied: α(W ) = 1H if and only if β(f(W )) = 1H . 2

In particular, when M = N and α = β this gives a criterion for lifting automor-
phisms from M to Mα, namely that the automorphism of M has to preserve the
set of walks with net voltage 1H . It also has nice implications for lifting regular
maps. If the map M is regular, with flag set F , and all of the |F| automorphisms
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of M lift to automorphisms of the map Mα (obtained from M by a corner voltage
assignment α : F → H), then every automorphism f of M lifts onto |H| automor-

phisms of Mα of the form ihf̃ ; it then follows (with the help of some more general
theory from [3]) that the collection of all such lifted automorphisms of Mα forms a
group that acts transitively on the flags of Mα, so Mα is also a regular map. We
state this as a separate result; see [3] for details.

Theorem 3.2. Let M be a regular map with a corner voltage assignment α in a
group H. If all automorphisms of M lift to automorphisms of Mα, then Mα is a
regular map. 2

4. Lifts and exponents

Let M = (F ;C,L, T ) be a map and let Mα be a regular lift of M , that is, a
regular covering of M . If e is an integer relatively prime to both the degree of M
and the degree of Mα, then (Mα)e is a regular covering of Me, and it follows that
there is a voltage assignment β on Me such that (Me)β is isomorphic to (Mα)e. In
this section we work out a ‘canonical’ form for β, which will be useful later.

Let α be a corner voltage assignment on M in some group H. Recall that this
means that for any flag-walk W = (x0, x1, . . . xk) in M we have α(W ) = a1a2 . . . ak
where ai = 1 if xi = xi−1

L or xi−1
T , and ai = α(xi−1) if xi = xi−1

C . Also let D
denote the degree of M — that is, the least common multiple of the degrees of all
vertices of M .

To compute the degree of the lift Mα, we first need to determine the degrees of
individual vertices of the lift. By general theory, this can be done as follows. Let
v be a vertex of M of degree d, let x be any flag at v, and let o be the order of

the element α(v;x) = α(x)α(xCT ) . . . α(x(CT )d−1

) in the group H; this order may
depend on v but not on the choice of the flag x at v. Then any vertex of Mα that
is a lift of v has degree od in Mα. It follows that the degree Dα of Mα is the
least common multiple of such products od taken over all vertices of M . Hence, in
particular, Dα is a multiple of D.

We are now ready to discuss powers of M . Since our interest is in powers that
work for both M and Mα, consider an arbitrary positive integer e relatively prime
to Dα; then also e is relatively prime to D. As noted earlier, the e th power Me

of M is the map (F ;Ce, L, T ) where Ce = (CT )e−1C. Define a corner voltage
assignment β = αe on Me by setting

β(x) = αe(x) = α(x)α(xCT ) · · ·α(x(CT )e−1

) for each flag x ∈ F .

This effectively assigns the pair (Me, αe) to the pair (M,α). Note that the integer
e depends on both M and α. We would like to have an assignment of the form
(M,α, e) 7→ (Me, αe, f), for some suitably defined integer f . An extra bonus would
accrue if this correspondence was involutory, meaning that one could interchange
the roles of M and Me and have (Me)f = M and (αe)f = α. We will show that
this can be done.

Note first that the power e was taken as an arbitrary integer relatively prime
to Dα, the degree of Mα. Hence a natural first step is to find the degree Dαe

of (Me)αe . Again by taking a flag x at a vertex v of degree d in Me, we see
that the degree of any lift of v in (Me)αe is d times the order of the element

αe(v;x) = αe(x)αe(x
CeT ) . . . αe(x

(CeT )d−1

) in G.
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Lemma 4.1. The degrees of Mα and (Me)αe are the same, that is, Dα = Dαe .

Proof. Let yj = x(CT )ej for 0 ≤ j ≤ d − 1. Since Ce = (CT )e−1C, we have

CeT = (CT )e. We evaluate αe(v;x) with the help of the fact that α(x(CT )d) = α(x)
as follows:

αe(v;x) = αe(x)αe(x
CeT ) · · ·αe(x(CeT )d−1

)

= αe(x)αe(x
(CT )e) · · ·αe(x((CT )e)d−1

)
= αe(y0)αe(y1) · · ·αe(yd−1)

=
∏
i α(y0

(CT )i)
∏
i α(y1

(CT )i) · · ·
∏
i α(yd−1

(CT )i)

=
∏
i α(x(CT )i)

∏
i α(x(CT )e+i

) · · ·
∏
i α(x(CT )e(d−1)+i

)

=
∏
j α(x(CT )j )

∏
j α(x(CT )d+j

) · · ·
∏
j α(x(CT )d(e−1)+j

)

= [α(x)α(xCT ) . . . α(x(CT )d−1

)]e

= [α(v;x)]e,

where the products
∏
i and

∏
j are taken over the ranges 0 ≤ i ≤ e − 1 and

0 ≤ j ≤ d − 1, respectively. Since e is relatively prime to d, the elements α(v;x)
and αe(v;x) = [α(v;x)]e have the same order in H. Therefore by the theory
explained earlier, the lifted maps Mα and (Me)αe have the same degree. �

We may now carry through our plan as indicated. Let f be an arbitrary positive
integer such that ef ≡ 1 mod Dα, that is, such that ef = tDα + 1 = tDαe + 1 for
some positive integer t. By the definition of powers of maps, it follows that (Me)f

is isomorphic to M , with an isomorphism provided by the identity mapping on the
common set of flags F . Next, given the voltage assignment β on Me as above, let
us by analogy introduce a corner voltage assignment γ = βf on M = (Me)f by
letting

γ(x) = βf (x) = β(x)β(xCeT ) · · ·β(x(CeT )f−1

)

for any x ∈ F . Since (Me)f is isomorphic to M , successive application of the
exponent e to M followed by f to Me does not change the map M . We show that
a similar thing holds for the voltage assignments just introduced.

Lemma 4.2. With the above notation, we have α = γ, or equivalently, (αe)f = α.

Proof. We carry out a computation similar to the one in the proof of Lemma 4.1.
Let x ∈ F be a flag at a vertex v of degree d in M , and let o be the order of the

element α(v;x) = α(x)α(xCT ) . . . α(x(CT )d−1

) in G. Then since od divides Dα, we

see that ef = tDα + 1 = ods + 1 for some integer s. Now let yj = x(CT )ej for
0 ≤ j ≤ f − 1. Then using our description of the voltage assignments β and γ and
the fact that Ce = (CT )e−1C, we successively obtain the following:

γ(x) = β(x)β(xCeT ) · · ·β(x(CeT )f−1

)

= αe(x)αe(x
CeT ) · · ·αe(x(CeT )f−1

)

= αe(x)αe(x
(CT )e) · · ·αe(x((CT )e)f−1

)
= αe(y0)αe(y1) · · ·αe(yf−1)

=
∏
i α(y0

(CT )i)
∏
i α(y1

(CT )i) · · ·
∏
i α(yf−1

(CT )i)

=
∏
i α(x(CT )i)

∏
i α(x(CT )e+i

) · · ·
∏
i α(x(CT )e(f−1)+i

),

where the products
∏
i are taken over the range 0 ≤ i ≤ e − 1. The resulting

expression has ef = ods+ 1 constituents, with os+ 1 terms of the form α(x(CT )d`)
for 0 ≤ ` ≤ os, and for 1 ≤ m ≤ d−1 it contains os terms of the form α(x(CT )d`+m)
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for 0 ≤ ` ≤ os − 1. Note that the very last term α(x(CT )e(f−1)+(e−1)

) is simply

equal to α(x). Also using x(CT )d = x we see that for any fixed m, the os values

α(x(CT )d`+m

) for 0 ≤ ` ≤ os− 1 are equal to each other. Accordingly, we find that

γ(x) = [α(x)α(xCT ) . . . α(x(CT )d−1

)]os · α(x) = [α(v;x)]osα(x) .

But o is the order of the element α(v;x), therefore γ(x) = α(x), and then since x
was an arbitrary flag of M , we deduce that (αe)f = γ = α, as claimed. �

This enables us to prove the following basic result on exponents and lifts. In
both its statement and proof we use the notation introduced earlier.

Proposition 4.3. The maps (Mα)e and (Me)αe are isomorphic.

Proof. We have M = (F ;C,L, T ) and Me = (F ;Ce, L, T ), where Ce = (CT )e−1C.
Both lifts via α have the same flag set F ′ = F × H, and Mα = (F ′;C ′, L′, T ′)
where

(x, g)C
′

= (xC , gα(x)), (x, g)L
′

= (xL, g) and (x, g)T
′

= (xT , g)

for each flag (x, g) ∈ F ′. It follows that (Mα)e = (F ′; (C ′)e, L
′, T ′) where (C ′)e =

(C ′T ′)e−1C ′. On the other hand, we have (Me)αe = (F ′; (Ce)
′, L′, T ′), with

the same L′ and T ′ as for Mα and with (Ce)
′ taking a flag (x, g) to the flag

(xCe, gαe(x)).
We show that the identity mapping on F ′ provides an isomorphism (Mα)e →

(Me)αe . Since L′ and T ′ are common to both maps, all we need to do is show that
(C ′)e = (Ce)

′. But this happens simply because for any flag (x, g) ∈ F ′ we have

(x, g)(C′)e = (x, g)(C′T ′)e−1C′ = (x(CT )e−1C , gα(x)α(xCT ) . . . α(x(CT )e−1

)),

which gives (x, g)(C′)e = (x(CT )e−1C , gαe(x)) = (xCe , gαe(x)) = (x, g)(Ce)′ for all
(x, g). �

Thus, applying a power to a lift of a map is equivalent to applying the lifting
construction to the same power of the map, although under a different corner
voltage assignment (the explicit form of which will be helpful in proving our main
results).

5. Proof of Theorem 2.1

Theorem 2.1 asserts that if there is an oriented, regular, kaleidoscopic map of
degree d with trinity symmetry, then for any integer n ≥ 2 there exists an oriented,
regular, kaleidoscopic map of degree dn with trinity symmetry. We now prove this
fact.

Let M be a kaleidoscopic regular map with trinity symmetry on an orientable
surface. This means that the regular map has all the possible additional external
symmetries: it is self-dual and self-Petrie, and admits every e relatively prime to the
degree d of the map as an exponent. We will work with the algebraic representation
M = (F ;C,L, T ).

Let n be any integer greater than 1, and let H = Zn × . . . × Zn be the direct
product of |F|/2 copies of Zn, under componentwise addition.

We will represent elements of H as follows. First, partition the set of flags F into
|F|/2 two-element subsets of the form {x, xC} (the pair associated with a corner
of M) for x ∈ F , and let F2 denote the set of all such two-element subsets. Note
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that F2 corresponds precisely to the edge set of the medial map of M . We will
now consider elements of H as |F|/2-tuples with entries in Zn, indexed by the set
F2. Any element of H can then be written in the form (gz)z∈F2 . Also for any
particular z′ ∈ F2 we define the unit vector [z′] to be the element (gz)z∈F2

of H
given by gz = 1 if z = z′ and gz = 0 for z 6= z′.

Let us now define a corner voltage assignment α on M with values in H, by
setting α(x) = [z] and α(xC) = −[z] whenever z = {x, xC} ∈ F2. Note that
α is injective on F ; and moreover, α(x) and α(x′) are independent unit vectors
whenever x and x′ are flags associated with different corners.

Next, consider the lift Mα of M determined by α. By equivalence of corner
voltage assignments on the map M with ordinary voltage assignments on the medial
map med(M), our voltage assignment α on M is equivalent to an ordinary voltage
assignment on the edges of med(M) having zero voltages on a spanning tree. Since
med(M) has |F|/2 edges and |F|/4 vertices, the equivalent voltage assignment on
edges of med(M) generates a subgroup of index n|F|/4−1 in H. Thus Mα has

n|F|/4−1 (pairwise isomorphic) connected components. From now on, let M̃ be

a fixed connected component of Mα. Then the number of flags of M̃ is |F| ·
|H|/n|F|/4−1 = |F| · n|F|/2−|F|/4+1.

Observe that M̃ is an orientable map — which can be seen (without considering
orbits) by noting that all coverings of an orientable map have orientable supporting

surfaces. The degree of M̃ can be determined as in Section 4. Since every vertex
of M has degree d, the degree of every vertex of M̃ is od where o the order of the

element α(x)α(xCT ) . . . α(x(CT )d−1

) in the group H. Since the values of α(x(CT )i)
for 0 ≤ i ≤ d− 1 are linearly independent unit vectors, we find that o = n, so the
degree of M̃ is dn.

In the remaining part of the proof, we show that M̃ is a kaleidoscopic regular
map with trinity symmetry. To do this, we use Theorems 3.1 and 3.2 from Section
3 to prove that all the relevant map automorphisms and isomorphisms lift.

What we need to check are cases where walks with zero voltage are taken by the
map automorphisms and isomorphisms to walks of zero voltage. In what follows, we
let W be an arbitrary closed flag-walk of M , of the form W = (x0, x1, . . . , xk−1, xk)
where xi ∈ F and xk = x0. Then the voltage of this given walk is α(W ) =
a1 + a2 + . . . + ak−1 + ak ∈ H, where ai = 0H if xi = xi−1

L or xi−1
T , while

ai = α(xi−1) if xi = xi−1
C .

We begin by considering regularity. Let f be any automorphism of M . Then
we have f(W ) = (f(x0), f(x1), . . . , f(xk−1), f(xk)), and α(f(W )) = a′1 +a′2 + . . .+
a′k−1 + a′k where a′i = 1 if f(xi) = (f(xi−1))L or (f(xi−1))T , and a′i = α(f(xi−1))

if f(xi) = (f(xi−1))C . Let a = ai for some i (with 1 ≤ i ≤ k), and let x be the
(unique) flag of M for which α(x) = a. Also let a′ = a′i be the corresponding value
in the voltage sum for α(f(W )), and let x′ = f(x) be the flag of M for which
α(x′) = α(f(x)) = a′. Next let m1 and m2 be the number of occurrences of a
and −a, respectively, in the sum α(W ) = a1 + a2 + . . . + ak−1 + ak. Now assume
that α(W ) = 0. Then by the definition of α on individual flags (and in particular,
the linear independence of α-images of flags from different corners), we find that
m1−m2 ≡ 0 mod n. But m1 and m2 are also the number of times that a′ and −a′
occur in the sum α(f(W )) = a′1 + a′2 + . . .+ a′k−1 + a′k, and the occurrences of ±a′
in α(f(W )) sum to 0. Since this argument can also be reversed (using the fact that
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f is an automorphism), it shows that α(W ) = 0 if and only if α(f(W )) = 0. But

f was an arbitrary automorphism of M , so we conclude from Theorem 3.2 that M̃
is a regular map.

We now consider duality and Petrie duality. This time, let f : M → M∗ be a
map isomorphism, where M∗ = (F ;C∗, L∗, T ∗) is the geometric dual of M , with
C∗ = C, L∗ = T , and T ∗ = L. By the definition of the lift of a map, it is
immediately obvious that the lift of the dual (M∗)α can be identified with the dual
of the lift (Mα)∗. Since flag-walks in M and M∗ are the same, and voltage on
them depends only on adjacent pairs of the form x and xC = xC

∗
, we find that

α(W ) = 0 if and only of α(f(W )) = 0, by the same arguments as those developed in
the previous paragraph. In an entirely similar manner, any isomorphism of M onto
its Petrie dual MP = (F ;CP , LP , TP ) = (F ;C,LT, T ) lifts onto an isomorphism
of Mα onto its Petrie dual (Mα)P , which can be identified with the lift (MP )α of

MP . Hence if M is self-dual (respectively self-Petrie), then so is M̃ .

It remains for us to show that M̃ has all arithmetically feasible exponents, when-
ever M does.

Let e be a positive integer relatively prime to dn, the degree of M̃ . Then e is also
relatively prime to d. We will assume that there exists an isomorphism f : M →Me

from M to its e th power Me = (F ; (CT )e−1C,L, T ). Let us define a corner voltage
assignment β = αe on Me exactly as in Section 4, but in additive notation, so that

β(x) = α(x) + α(xCT ) + · · · + α(x(CT )e−1

) for every x ∈ F . We show that f lifts
onto an isomorphism from Mα to (Me)β .

So suppose α(W ) = 0 where W is a closed flag-walk as above. Again, consider a
particular entry a in the sum α(W ) = a1 +a2 + . . .+ak−1 +ak, and let x be the flag
in W for which a = α(x). If there are m1 occurrences of the flags x and xC (in that
order) in consecutive positions in the flag-walk W , and m2 such occurrences of the
same two flags in reverse order, then in the sum α(W ) = a1 +a2 + . . .+ak−1 +ak we
have m1 of the ai equal to a and m2 of the ai equal to −a. Then since α(W ) = 0,
and since α-images of flags from different corners are independent, this implies that
m1 ≡ m2 mod n.

We now look at the effect that this has on f(W ) under the isomorphism f : M →
Me. Let f(W ) = (y0, y1, . . . , yk−1, yk). Then β(f(W )) = b1 + b2 + . . .+ bk−1 + bk,

where bi = 0 if yi = yi−1
L or yi−1

T while bi = β(yi−1) if yi = yi−1
(CT )e−1C . Also

let y = f(x), where x is the flag considered in the previous paragraph, and let

b = β(y). By the definition of β, we have β(y) = α(y)+α(yCT )+ · · ·+α(y(CT )e−1

).
Then since in α(W ) we had m1 summands equal to α(x) and m2 summands equal

to −α(x), it follows that in α(f(W )) we have m1 occurrences of α(y(CT )j ) and m2

occurrences of −α(y(CT )j ), for 0 ≤ j ≤ i − 1, and since m1 ≡ m2 mod n, these
occurrences sum to zero. Once again, because the values of α on flags from different
corners are linearly independent, the above arguments show that if α(x) contributes
net value zero to α(W ), then β(f(x)) also contributes net value zero to β(f(W )),
for all x. Hence if α(W ) = 0, then also β(f(W )) = 0.

Finally, note that we have defined β to be equal to αe in the notation of Section
4. By Lemma 4.2, the above arguments can be carried out with the roles of M and
Me interchanged, and with f replaced by its inverse. It follows that α(W ) = 0 if
and only if αe(f(W )) = 0. This means that the isomorphism f : M →Me lifts onto

an isomorphism f̃ : Mα → (Me)αe , by Theorem 3.1. We can now apply Theorem
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4.3, which tells us that the maps (Me)αe and (Mα)e are isomorphic. Thus we
obtain an isomorphism between Mα and (Mα)e, and therefore e is an exponent of
Mα. Since e was an arbitrary integer relatively prime to the degree of Mα, this
implies that the map Mα is kaleidoscopic.

The lifting procedure used above is a reformulation of the ‘homological lifting’
method introduced in [4], and adopted in different terms elsewhere; for example,
see [19, 1]. Further analysis in [16] and [12] shows that the automorphism group
of the lift of a map M under such a voltage assignment is always a split extension
of the direct product of β copies of Zn by the group Aut(M), where β is the
Betti number of the medial graph of M . By our previous calculations, we have
β = 1+|Aut(M)|/4 = 1+ε where ε is the number of edges of M . Hence Aut(Mα) ∼=
(Zn)1+ε o Aut(M), and this completes the proof. 2

6. Proof of Theorem 2.2

The first part of Theorem 2.2 is a special case of Theorem 2.1, applied to a
particularly simple map and its covers. Here we are able to completely determine
the automorphism groups of the resulting kaleidoscopic maps with trinity symmetry,
as described in the second part of Theorem 2.2. In this section we give a proof of
both parts.

Let M be a map on the sphere whose underlying graph has two vertices u and v
joined by a pair of parallel edges that appear dashed in Fig. 1. The vertices of the
medial map med(M) are depicted as two squares in the middle of the two edges
of M , and the four parallel edges of med(M) are depicted as solid lines. Using
med(M), it is easy to see that M is isomorphic to its geometric dual as well as
to its Petrie dual. Then since M is clearly both orientable and regular, and each
vertex has degree 2, it follows that M is a kaleidoscopic regular map with trinity
symmetry.

ε ε ε ε1 2 3 4
u v

Figure 1. The two-vertex map M .

Now by Theorem 2.1, for every n ≥ 2 there is a kaleidoscopic regular map of
degree 2n with trinity symmetry on an orientable surface. This proves the first part
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of Theorem 2.2. A proof of the second part requires going into details of the lifting
construction given in the proof of Theorem 2.1.

Constructing a voltage assignment on the corners of our two-vertex map M
is equivalent to describing an ordinary voltage assignment on directed edges of
med(M). As voltage group, take H = Zn × Zn × Zn × Zn (where n ≥ 2), then
direct the four medial edges as in Fig. 1, and label them with the (column) vectors
ε1, ε2, ε3, ε4 from the standard basis of H (such that the j th entry of εi is δij). Now
define a voltage assignment α on the flags of M by α(εi) = εi, that is, by letting the
voltage of any directed edge εi be its label, and letting the reverse edge have voltage
−εi (using additive notation). In this way, the set of directed edges of med(M),
and hence the set of all flags of M , can be taken as F = {±ε1,±ε2,±ε3,±ε4}.

Next, define the two matrices

A =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 and B =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


with entries in Zn, and let I4 be the identity matrix in GL(4,Zn). Also define
bijections fC , fL and fT on F by

fC(ε) = −I4ε, fL(ε) = Aε and fT (ε) = Bε for all ε ∈ F .
These are automorphisms of M that take the flag ε1 to −ε1 = ε1

C , ε4 = ε1
L and

ε2 = ε1
T , respectively. In particular, these three automorphisms have the same

effect on ε1 as the three permutations C, L and T . By the general theory of maps
on surfaces [6], it follows that the three automorphisms fC , fL and fT generate
the entire group Aut(M), which is isomorphic to 〈−I4, A,B〉 ∼= Z2 × Z2 × Z2.

To determine the automorphism group of the lifted map, we need to see how
automorphisms lift. By [3] we can do this by considering voltages of flag-walks
and their images. We begin with a general observation of these for our map M =
(F ;C,L, T ). Let W = (x0, x1, . . . xk) be an arbitrary flag-walk in M . We know
that α(W ) = a1 + . . .+ ak where aj = 0 (the identity element of H) if xj = xj−1

L

or xj−1
T , and aj = α(xj−1) if xj = xj−1

C . But in our notation, voltages on
flags are simply their labels and therefore we have aj = α(xj−1) = xj−1 when
xj = xj−1

C . Now let f be any automorphism of M . Then f(W ) = (y0, y1, . . . , yk)
where yj = f(xj), and α(f(W )) = b1 + . . .+ bk where bj = 0 if yj = yj−1

L or yj−1
T

and bj = α(yj−1) = yj−1 if yj = yj−1
C . Since f is an automorphism, we have

yj = yj−1
C if and only if xj = xj−1

C , and similarly for L and T in place of C. But
the action of f is given by multiplication of a matrix F from 〈−I4, A,B〉 ∼= Aut(M),
and so yj−1 = Fxj−1 for all j for which xj = xj−1

C . By additivity, we may therefore
conclude that α(f(W )) = F (α(W )).

For the next step, we focus on a connected component Mα of the lift containing
the flag (ε1, 0) ∈ F × H. By [3], the flag-set F ′ of this connected component
contains precisely those flags (ε, g) for which g is the voltage of a closed walk in M
based at ε1. In the terminology of Section 3, (ε, g) ∈ F ′ if and only if ε ∈ F and g
is an element of the local group Hloc = Hε1 . In order to determine this local group,
observe that if a flag-walk W contains a flag εi followed by εi

C , then this pair adds
εi to the sum α(W ) = a1 + . . . + ak; this also corresponds to passing from one of
the top four shaded flags in Fig. 1 to an opposite flag along the corresponding edge
of the medial map. On the other hand, if W contains a flag εj

C followed by εj ,
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then this pair adds −εi to the sum α(W ), which corresponds to passing from one
of the bottom four flags to an opposite top flag along the corresponding edge of the
medial map. It follows that of W is any closed flag-walk in M then the sum of the
entries of the vector α(W ) ∈ H is zero. The converse is easily seen to be true as
well. Hence the local group Hloc consists of all h ∈ H = (Zn)4 orthogonal to the
all 1s vector.

We have seen in the Proof of Theorem 2.1 that every automorphism of M lifts.
In order to be more specific, we invoke a detailed version of Theorem 9 of [3]. This
states that given any h ∈ H, every automorphism f ∈ Aut(M) lifts to an auto-
morphism fh of Mα described as follows. Let W be any flag-walk in M beginning
at the flag ε1 and terminating at an arbitrary flag ε ∈ F . Then for any h ∈ Hloc,
the automorphism f lifts to the automorphism fh of Mα given (here in additive
notation) by

(6.1) fh(ε, α(W )) = (f(ε), h+ α(f(W ))) .

It is a consequence of Theorem 3.1 that this formula is independent of the choice
of the walk W , in the sense that if W ′ is another walk starting at ε1 and ending at
ε such that α(W ) = α(W ′), then α(f(W )) = α(f(W ′)).

To determine all the lifts of the automorphisms of M we will use the identification
Aut(M) = 〈fA, fB , fC〉 ∼= 〈−I4, A,B〉; the lifts will then be denoted by pairs (F, h)
with F ∈ 〈−I4, A,B〉 and h ∈ H. We will also use the fact established earlier that
for any F ∈ 〈−I4, A,B〉 we have α(FW ) = Fα(W ); that is, if α(W ) = g ∈ H then
α(FW ) = Fg. Accordingly, the formula (6.1) yields

(6.2) (F, h)(ε, g) = (Fε, h+ Fg)

for any flag ε ∈ F , any F ∈ 〈−I4, A,B〉, any g ∈ H and any h ∈ Hloc. For a
composition of two lifts, we obtain

(6.3) (F ′, h′)(F, h)(ε, g) = (F ′, h′)(Fε, h+ Fg) = (F ′Fε, h′ + F ′h+ F ′Fg)

which shows that (F ′, h′)(F, h) = (F ′F, h′ + F ′h). This shows that the group
Aut(Mα) is isomorphic to a semidirect product Hloc n 〈−I4, A,B〉 ∼= Hloc n (Z2 ×
Z2 × Z2), with 〈−I4, A,B〉 acting naturally on Hloc by left matrix multiplication.

We now proceed to determining the three generators of Aut(Mα) that correspond

to the action of C ′, L′, T ′ on the flag (ε1, 0). Observe that (ε1, 0)C
′

= (ε1
C , 0 +

α(ε1)) = (−ε1, ε1), (ε1, 0)L
′

= (ε4, 0), and (ε1, 0)T = (ε2, 0). Applying (6.2) to
our generators X ∈ {−I4, A,B} and to the flag-walks (ε1, ε1

X) for X ∈ {C,L, T}
yields the lifts z = (−I4, ε1), a = (A, 0) and b = (B, 0), for which z(ε1, 0) =
(−ε1, ε1), a(ε1, 0) = (ε4, 0), and b(ε1, 0) = (ε2, 0), respectively. Since these have
the same effect as C ′, L′, T ′ on the flag (ε1, 0), it follows that a, b, z generate the
group Aut(Mα). Direct calculations in Aut(Mα) ∼= Hloc n 〈−I4, A,B〉, that is,
using the formula (6.3), then give

a2 = b2 = z2 = (ab)2 = (bz)2n = (az)2n = (abz)2n = (azbzabz)2 = 1 .

So now define the abstract group G with presentation

(6.4) G = 〈 a, b, z | a2, b2, z2, (ab)2, (bz)2n, (az)2n, (abz)2n, (azbzabz)2 〉 .

Then Aut(Mα) is a quotient of G, and in particular, |G| ≥ |Aut(Mα)| = 8|Hloc| =
8n3. To finish the proof of Theorem 2.2, we need to establish the reverse inequality.
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All arguments that follow can be verified by easy calculations. Let r = bz,
s = za, and t = z; this choice of notation has been chosen to agree with the one
used in the accompanying tables of [8]. The presentation (6.4) is equivalent to

(6.5) G = 〈 r, s, t | r2n, s2n, t2, (rs)2, (rt)2, (ts)2, [r2, s2] 〉 .

Now let u = r2, v = s2, and w = r−1s2r. With the help of the definitions of
r, s, t, u, v and w and the relations from (6.4) or (6.5), we find that conjugation by
r fixes u and interchanges v with w, while conjugation by s takes u onto (uwv)−1

and fixes both v and w. (For example, uwv = r2r−1s2rs2 = (rs2)2 = (baza)2 =
bazabaza = abzbza = az(zb)2za = s−1u−1s.) Then conjugation of the commutator
relation [u, v] = 1 by r and s gives [u,w] = 1 and [(uwv)−1, w] = 1, from which it
follows that [v, w] = 1 as well. Hence the subgroup K = 〈u, v, w〉 of G is abelian.
Taking into account the realtions un = vn = wn = 1 gives |K| ≤ n3. Next,
the relations (rt)2 = (ts)2 = 1 imply that conjugation by t inverts both r and
s and hence also both u and v, and furthermore, since [s2, r2] = 1 we find that
(r−1s2r)t = rs−2r−1 = r−1r2s−2r−2r = r−1s−2r, so conjugation by t inverts w as
well. Hence K = 〈u, v, w〉 is normal in G. The relations from (6.5) show that the
factor group G/K is generated by three commuting involutions rK, sK, tK, and
therefore |G/K| ≤ 8. Thus |G| ≤ 8n3, which was the inequality we needed to prove
that |G| = 8n3.

Finally, we let c = ab and rewrite (6.4) in the form

G = 〈 a, b, c, z | a2, b2, c2, z2, abc, (az)2n, (bz)2n, (cz)2n, (azbzcz)2 〉

which is exactly the presentation from the last part of Theorem 2.2. 2

7. Remarks

We have seen one building block for our construction of Theorem 2.1, namely
the embedding of a cycle of length two in the sphere, which led to the family given
in Theorem 2.2. Observe, however, that one can apply Theorem 2.1 to any of the
new maps provided by Theorem 2.2. Indeed, for any n ≥ 2, take the map Mn of
degree 2n with |Aut(Mn)| = 8n3 from Theorem 2.2. The underlying graph of Mn

has εn = 2n3 edges, so by Theorem 2.1 we have a trinity symmetry kaleidoscopic

regular map of degree 2nm with automorphism group of order 8n3m1+2n3

, for any
m,n ≥ 2.

Are there any other ‘small’ ingredients to feed into Theorem 2.1? The answer is
“Yes”. An inspection of the census [8] of orientable regular maps of genus between 2
and 101 shows that there are 14 such maps; their labels (from the list accompanying
the paper [8]), degrees, automorphism group orders, numbers of vertices, numbers
of edges and genera are given in the table below.
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Map Degree Group order Vertices Edges Genus

R10.13 6 216 18 54 10
R21.14 6 480 40 120 21
R9.21 8 128 8 32 9
R9.23 8 128 8 32 9
R17.25 8 256 16 64 17
R33.39 8 512 32 128 33
R33.40 8 512 32 128 33
R33.41 8 512 32 128 33
R65.64 8 1024 64 256 65
R85.44 8 1344 84 336 85
R76.20 10 1000 50 250 76
R73.86 12 864 36 216 73
R81.127 12 960 40 240 81
R97.125 16 1024 32 256 97

Note that R10.13, R33.39 and R76.20 are the maps covered by Theorem 2.2 for
n = 3, 4, 5. In combination with Theorem 2.1, the data for the remaining maps in
the table yield the following extension of the first part of Theorem 2.2.

Corollary 7.1. For any n ≥ 1, there exist orientable kaleidoscopic regular maps
with trinity symmetry having the following parameters :

Degree Group order Vertices Edges Genus

2n 8n3 2n2 2n3 n3 − 2n2 + 1
6n 480n121 40n120 120n121 60n121 − 40n120 + 1
8n 128n33 8n32 32n33 16n33 − 8n32 + 1
8n 512n129 32n128 128n129 64n129 − 32n128 + 1
8n 1024n257 64n256 256n257 128n257 − 64n256 + 1
8n 1344n337 84n336 336n337 168n337 − 84n336 + 1
12n 864n217 36n216 216n217 108n217 − 36n216 + 1
12n 960n241 40n240 240n241 120n241 − 40n240 + 1

Of course one may re-apply the procedure described at the beginning of this
section to any of the maps represented in this table, to produce further new infinite
families of kaleidoscopic regular maps with trinity symmetry.

Also Theorem 2.1 extends automatically to non-orientable regular maps for any
odd n; oddness of n is needed to ensure non-orientability of the lifts. The list of
all non-orientable regular maps of genus up to 202 (associated with [8]) reveals
examples of a kaleidoscopic maps with trinity symmetry of degree 6, 10 and 12, the
smallest one being the map N12.3 of degree 6 with automorphism group of order
120. Thus for any odd n we have infinite families of non-orientable kaleidoscopic
regular maps with trinity symmetry, for the following degrees and automorphism
group orders:

Degree (n odd) Group order

6n 120n31

10n 7200n1801

12n 5040n1261
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Before making two final remarks, we consider the automorphism group Aut(M)
of a regular map M = (F ;C,L, T ). Since this acts regularly on the flags of M ,
we may identify the flag set F with the group Aut(M). Details have been worked
out in the literature; see [6] for example. This enables us to establish a one-to-one
correspondence between regular maps of type (d, `) — that is, those with vertex
degree d and face length ` — and groups with partial presentation of the form

(7.1) 〈ω, λ, τ | ω2 = λ2 = τ2 = (λτ)2 = (τω)d = (ωλ)` = . . . = 1 〉

where 2, d and ` are true orders of the corresponding elements. One direction of
this correspondence may be explained as follows. Let M = (F ;C,L, T ) be a regular
map, let x be a flag of M , and let ω, λ and τ be the unique automorphisms of M
taking x to xC , xL and xT , respectively. Then these involutory automorphisms
generate G = Aut(M), and satisfy a presentation of the form (7.1).

In group-theoretic terms, the map M is self-dual if and only if there exists an
automorphism of the groupG that fixes ω and interchanges λ with τ , and self-Petrie-
dual if and only if there is an automorphism of G that fixes ω and interchanges λ
with λτ . Trinity symmetry is then equivalent to extendability of any automorphism
of the subgroup 〈λ, τ〉 ∼= Z2 × Z2 to the entire group. Finally, for the purpose of
discussing our ‘absolutely most symmetric maps’, e ∈ Z∗d will be considered to be
an exponent of a regular map determined by the group presentation (7.1) if the
group admits an automorphism fixing λ and τ and sending ω onto (ωτ)e−1ω.

Now observe that the examples and families of kaleidoscopic regular maps with
trinity symmetry described in the above tables all have even degree. In general, the
degree of an orientable kaleidoscopic regular map with trinity symmetry is always
even, since the length of a Petrie polygon in an orientable map cannot be odd.
But there do exist such ‘super-symmetric’ maps of odd degree in the non-orientable
case.

For example, take the direct product G = A5 × A5 × A5 of three copies of the
alternating group A5, and consider this as a permutation group on 15 points with
three orbits of length 5. Define three involutions ω, λ, τ in G as follows:

ω = (1, 2)(3, 4)(6, 7)(8, 9)(11, 12)(13, 14),
λ = (2, 3)(4, 5)(7, 10)(8, 9)(12, 14)(13, 15),
τ = (2, 4)(3, 5)(7, 8)(9, 10)(12, 15)(13, 14).

It is not difficult to prove that ω, λ, τ together generate G. Also λτ has order 2,
while each of ωλ, ωτ and ωλτ has order 15. Hence G is the automorphism group of a
non-orientable regular map of degree 15, with faces and Petrie polygons of length 15.
Moreover, conjugation by the permutation (3, 4)(6, 11)(7, 12)(8, 14)(9, 13)(10, 15) in
S15 fixes ω and interchanges λ with τ , while conjugation by (1, 11)(2, 12)(3, 14)(4, 13)
(5, 15)(8, 9) fixes ω and interchanges λ with λτ . Hence this map has trinity sym-
metry. Similarly, there exist permutations in S15 that centralize both λ and τ and
conjugate ω to (ωτ)e−1ω for each e in the group Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14} of
units mod 15, so the map is kaleidoscopic.

It would be interesting to know if there are any examples of odd prime degree.
This is an open question.

Our final remark concerns the group presented in the second part of Theorem
2.2. We can now outline an alternative, independent proof of the fact that the group
G with presentation (6.4), or, equivalently, (6.5), is the automorphism group of a
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regular kaleidoscopic map of degree 2n with trinity symmetry and with |G| = 8n3.
(Recall that this was suggested (without the ‘kaleidoscopic’ part) by Wilson some
time ago [20].) We can prove it using group theory, without referring to coverings
or voltages at all.

To allow translation between the presentation (6.4) and the above, let a = λ,
b = τ and z = ω, and let us use the notation of the proof of Theorem 2.2 in what
follows. Calculations in the last part of the proof show that G contains an abelian
normal subgroup K of index 8 generated by u = r2 = (bz)2, v = s2 = (za)2

and w = r−1s2r = zb(za)2bz. Using Reidemeister-Schreier theory, it is not hard to
show that K is isomorphic to Zn×Zn×Zn. (In fact, one can do this for the group
without the relations (bz)2n = (az)2n = (abz)2n = 1 and find that the pre-image of
K is free abelian of rank 3, for example using the Rewrite command in Magma [5],
and then factor out the normal subgroup generated by (bz)2n, (az)2n and (abz)2n.)
Then since G/K is isomorphic to Z2×Z2×Z2, it follows that G is a split extension
of Zn × Zn × Zn by Z2 × Z2 × Z2, and hence |G| = 8n3.

Moreover, it is easy to see that any permutation of the set {a, b, ab} extends to
an automorphism of G that fixes z, since all the defining relations in (6.4) for G
are preserved. This shows that the map has trinity symmetry. It remains for us to
deal with isomorphisms of the map and its powers.

Let e be any unit in Z2n, so that e is odd and relatively prime to n. Then we need
to check that the assignment (a, b, z) 7→ (a, b, (zb)e−1z) induces an automorphism of
G. This time we use the presentation of G in the form (6.5). The above assignment
takes r = bz to b(zb)e−1z = (bz)e = re (which has the same order as r), s =
za to (zb)e−1za = r1−es, and t = z to (zb)e−1z = z(bz)e−1 = tre−1, and fixes
rs = ba. In particular, it preserves the relations r2n = (rs)2 = 1. Next we
recall that s−1us = azbzba = (uwv)−1. This gives (r1−es)2 = (u(1−e)/2s)2 =
u(1−e)/2s2(uwv)(e−1)/2 = u(1−e)/2v(uwv)(e−1)/2 = v(e+1)/2w(e−1)/2, which lies in
K, so has order dividing n and commutes with ue = r2e. In particular, this shows
that the relators s2n = [r2, s2] = 1 are preserved. Finally, the relators t2 and (rt)2

are taken to (tre−1)2 and (ret)2, which are trivial since trt = r−1, while (st)2 is
taken to (r1−estre−1)2 = r1−e(st)2re−1, also trivial. Hence all the relations are
preserved by the assignment, and since the images re, r1−es and tre−1 of r, s and
t generate 〈r, s, t〉 = G, we have an automorphism of G, as required for e to be an
exponent. Thus G is the automorphism group of a kaleidoscopic regular map with
trinity symmetry.
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7. M. Conder and P. Dobcsányi, Determination of all regular maps of small genus, J. Combinat.

Theory Ser. B 81 (2001), 224–242.

8. M.D.E. Conder, Regular maps and hypermaps of Euler characteristic −1 to −200,
J. Combin. Theory Ser. B 99 (2009), 455–459, with data lists available at the website

http://www.math.auckland.ac.nz/∼conder/hypermaps.html.

9. J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley, 1987, and Dover, 2001.
10. G.A. Jones and D. Singerman, Theory of maps on orientable surfaces, Proc. London Math. Soc.

37 (1978), 273–307.

11. G.A. Jones and J.S. Thornton, Operations on maps, and outer automorphisms, J. Com-
bin. Theory Ser. B 35 (1983), 93–103.
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17. J. Širáň, Regular maps on a given surface – a survey, in: Topics in Discrete Mathematics,
Algorithms Combin. 26, Springer, 2006, 591-609.
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