
Open Research Online
The Open University’s repository of research publications
and other research outputs

Developing a domain-specific plug-in for a modelling
platform: the good, the bad, the ugly
Conference or Workshop Item

How to cite:

Montrieux, Lionel; Yu, Yijun and Wermelinger, Michel (2013). Developing a domain-specific plug-in for a
modelling platform: the good, the bad, the ugly. In: 3rd Workshop on Developing Tools as Plug-ins, 21 May 2013,
San Francisco.

For guidance on citations see FAQs.

c© 2013 IEEE

Version: Accepted Manuscript

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82976192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html


Developing a Domain-Specific Plug-In for a
Modelling Platform: The Good, the Bad, the Ugly

Lionel Montrieux Yijun Yu
Centre for Research in Computing

The Open University, Milton Keynes, UK
{Lionel.Montrieux, Yijun.Yu, Michel.Wermelinger}@open.ac.uk

Michel Wermelinger

Abstract—Domain-Specific Modelling Languages (DSML) al-
low software engineers to use the techniques and tools of Model-
Driven Engineering (MDE) to express, represent and analyse
a particular domain. By defining DSMLs as UML profiles, i.e.
domain-specific extensions of the UML metamodel, development
time for DSMLs can be greatly reduced by extending existing
UML tools. In this paper, we reflect on our own experience
in building rbacUML, a DSML for Role-Based Access Control
modelling and analysis, as a plugin for a UML modelling
platform. We describe what motivated our choice, and discuss
the advantages and drawbacks of using an existing platform to
develop a DSML on top of UML and additional analysis tooling.

Index Terms—MDE, RBAC, OCL, Eclipse, Modelling, Plugin

I. INTRODUCTION

The last decade or two have seen tremendous amounts of
research conducted on Model-Driven Engineering (MDE), a
software engineering paradigm that advocates the incremental
transformation of models of a software to be built into more
detailed models, until code is eventually produced. Arguably
the most well-known MDE framework is Model-Driven Archi-
tecture (MDA), which includes UML as a modelling language.

If modelling languages such as UML can be seen as the
modelling equivalent of general-purpose programming lan-
guages, then Domain-Specific Modelling Languages (DSML)
are the modelling equivalent of Domain-Specific Languages
(DSL). There has however been less research into DSMLs
and how they can be used as first class citizens in a MDE
approach. Our work tries to fill that gap in the security context,
in particular for Role-Based Access Control (RBAC).

To illustrate our research and conduct experiments, we
are developing rbacUML, a plugin that not only defines a
DSML for RBAC-based authorisation using UML’s extension
mechanism, but also allows designers to model access control
requirements and to verify models against those requirements.

In this paper we reflect on our experience in building
rbacUML as a plugin. We discuss how non-functional require-
ments such as access control can be tightly integrated into an
MDE approach, and point out the benefits and challenges of
using the platform’s capabilities to provide advanced MDE
features.

The rest of this paper is organised as follows: Section II
gives essential background on MDE and RBAC. Then, Sec-
tion III describes the rbacUML approach and the philosophy

that guided the choices made during its development. Sec-
tion IV discusses our choice to develop a plugin, while Sec-
tion V focuses on the implementation of the rbacUML plugin.
Sections VI and VII discuss plugin development’s advantages
and shortcomings compared to developing a standalone tool.
Finally, Section VIII concludes the paper.

II. BACKGROUND

A. Model-Driven Engineering

Model-Driven Engineering (MDE) is the software engi-
neering approach that creates increasingly detailed models
through transformations, until code is produced. Models are
defined according to a metamodel, but the growing number
of metamodels led to a higher abstraction level to describe
metamodels: meta-metamodels [1]. Arguably the most widely
used MDE framework is the OMG’s Model-Driven Architec-
ture approach [2], which includes UML (Unified Modeling
Language) models [3], OCL (Object Constraint Language)
constraints [4] and MOF (Meta-Object Facility) metamodels
and meta-metamodels [5].

In the security world, Fernandez-Medina et al. [6] point out
that “current approaches which take security into considera-
tion from the early stages of software development do not take
advantage of Model-Driven Development”, but it is a direction
that is currently being developed, including by Basin et al. [7],
who define Model-Driven Security (MDS) as a specialisation
of MDE, where “a designer builds a system model along with
security requirements, and automatically generates from this
a complete, configured security infrastructure”.

B. Role-Based Access Control

Traditional access control models [8] allow administrators
to assign permission directly to users. This makes the mainte-
nance of large access control directories difficult. By contrast,
Role-Based Access Control (RBAC) [9] forbids the direct
assignment of permissions to users, and introduces the concept
of roles between users and permissions. Roles in RBAC are
meant to match actual roles in an organisation. Permissions
are assigned to roles, which are assigned to users.

The RBAC standard also defines other constructs: role
hierarchies, where a role inherits its ancestors’ permissions,
and static (resp. dynamic) separation of duty, where two roles

978-1-4673-6288-7/13 c© 2013 IEEE TOPI 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1



Fig. 1: RBAC model

cannot be assigned to (resp. simultaneously activated by) the
same user. Fig. 1 illustrates the RBAC standard.

III. RBACUML
Our rbacUML approach integrates RBAC into exist-

ing MDE processes. Similar approaches also exist. Se-
cureUML [10], [11] is an application of Basin’s MDS allowing
designers to model RBAC constraints on UML class diagrams.
Another approach, UMLsec [12], allows designers to annotate
UML models with any kind of security-related annotations.
rbacUML is centered around, but not limited to, two UML

profiles for RBAC: one of them allows designers to annotate
existing software models with RBAC constructs and require-
ments: it is the domain-specific modelling annotation language
(DSMAL) [13], whilst the other one defines a domain-specific
modelling language (DSML) for RBAC only (i.e. it does not
allow for the modelling of non-RBAC concepts, as opposed
to the DSMAL). Figs. 2a and 2b show a part of a rbacUML
model. Both profiles are completed by a set of OCL con-
straints that ensure the well-formedness of models, e.g. that
permissions are not directly assigned to users, or that a class
is not annotated as both a user and a role. Requirements
can be modelled using both profiles, and allow designers to
specify properties that the model must enforce. We call them
scenarios. They can be of two forms: either a requirement that
a specific user, given a particular set of roles, must be able to
perform a set of actions, or a requirement that a specific user,
given a particular set of roles, must not be able to perform
a set of actions. The evaluation of the conformance of the
model to the requirements is done using two OCL constraints.
Other constraints complete the profile by providing analysis
features such as completeness, model coverage by scenarios,
satisfiability, or redundant elements detection.

When a model created using the rbacUML DSML is found
to violate one or several of the OCL constraints, the plugin
is able to suggest solutions that would bring the model to a
state where no OCL constraints are violated. This is a very
useful feature to users since, often, changing the model to fix a
problem in one place is likely to cause other problems, making
the search for the best solution difficult and time-consuming.

On large models, evaluating all the OCL constraints on
all the model elements can be time consuming. Therefore,
we have integrated in rbacUML measures to dramatically
reduce the evaluation time of models. Other features include a
mapping between the rbacUML DSML and the LDIF [14]
format, an export format used by widely-used LDAP [15]
user directories. rbacUML is still under development, and will
continue to be expanded in order to provide a tight integration
of RBAC into existing MDE practices.

IV. CHOOSING THE RIGHT PLATFORM

The choice of developing a plugin for an existing MDE tool,
and the choice of the specific modelling tool we used, were
not random, nor were they decisions made “on the back of an
envelope”. In this section we elaborate on the reasons behind
those choices and on the alternatives that we have considered.
We then elaborate on the architecture of the platform we
selected.

A. Plugin rather than Standalone

At the core of rbacUML, as argued in the previous section,
is the desire to integrate rbacUML as much as possible into
designers’ existing activities, processes and tools. Since the
DSML part of rbacUML is defined as a UML profile, it is no
surprise that we greatly valued tightly integrating rbacUML
with existing UML modelling tools. A plugin seemed to be
the right choice, and it was confirmed by a few other consid-
erations. Developing a plugin would allow us to use existing
diagramming capabilities, instead of having to implement it
ourselves. Since we wanted to use OCL constraints, reusing
an existing OCL evaluation engine was also a great argument
in favour of a plugin over a standalone tool.

B. Comparing Available Modelling Environments

Once it was clear that we were going to develop a plugin
instead of a dedicated tool, we had to choose which platform
to build it on. We selected three platforms to evaluate, and
prepared a list of requirements to compare those platforms:

• UML modelling capabilities: the tool must support the
UML 2.x standard;

• OCL queries evaluation engine: since rbacUML’s anal-
ysis capabilities are based on OCL, an efficient and
expressive engine, i.e. a full OCL implementation, is a
must;

• support for custom UML profiles: the rbacUML DSML
is represented as a UML profile, so we had to be able to
define our own profile and use it within the platform;

• UML diagrams creation support: models in rbacUML
are represented using several types of diagrams: class
diagrams, sequence diagrams and activity diagrams. It
was therefore essential that the platform allows one to
easily create at least those three types of diagrams;

• File format: ideally, the perfect tool should use, or at
least allow import from and export to, a standardised file
format such as the OMG’s XML Metadata Interchange
(XMI) format, which is an XML extension;

• UML profile tooling generation: an optional, but highly
appreciated feature, is the ability to create tooling palettes
in order to make the creation of rbacUML models easier;

• Licence: an open source tool would be preferable as it
would allow for a broader distribution of our plugin.

The three tools we considered, around 2009 - 2010, were Pa-
pyrus, an open-source Eclipse plugin for UML modelling [16],
ArgoUML, an open-source UML modelling software, and
IBM Rational Software Architect (RSA), a proprietary UML
modelling solution built on top of Eclipse [17]. Table I

2



(a) Access Control diagram

(b) Activity diagram

Fig. 2: rbacUML model (notes show associations between different diagrams)

TABLE I: Comparison of MDE environments

Name UML OCL UML profile UML diagrams Profile tooling generation file format open source

Papyrus (Eclipse)
√ √

partial buggy Ø XMI
√

ArgoUML 1.4 only partial no partial Ø zargo & XMI
√

Rational Software Architect
√ √ √ √ √

EMX & XMI Ø

provides a comparison of the three platforms for each of the
requirements that we identified. It is clear from the table that
RSA was the only platform that seemed to satisfy most of
our requirements. The only issue was that it is proprietary
software. It was thus selected.

Papyrus was, at the time, still in its early days. Although
it was built on solid Eclipse foundations, such as EMF and
its associated OCL evaluation engine, the diagramming part
provided by Papyrus was quite slow and buggy. In particular,
activity diagrams were very unstable and caused frequent
crashes. We had to rule it out, but it has since made a lot
of progress.

ArgoUML is the only of the three platforms not to be based
on Eclipse. It is a stable product, but only supports UML 1.4,
does not support profiles and has a limited OCL support. We
had to rule it out as well.

RSA was the last platform we tried. Like Papyrus, it is built
on Eclipse and uses EMF and the associated OCL evaluation
engine. RSA comes as a layer on top of Eclipse, providing
different features, the most notable one being a very mature
UML modelling and diagram editing environment. Further-
more, RSA was the only tool allowing us to very easily create
tooling palettes for our profile. It uses EMX to store models,
an XML format that looks very similar to XMI, and allows
for export to and import from XMI. Whilst it isn’t an open
source project, IBM has an “academic initiative” programme
giving academics free access to its products, including RSA.

The RSA platform is built on top of Eclipse, and makes
extensive usage of the Eclipse Model Development Tools
(MDT) project. It provides many features, but in this section
we focus on those directly relevant to our work.

RSA provides a diagram edition layer on top of Eclipse
UML, as well as the ability to define UML profiles and
automatically generate code for editors that include said pro-
files. RSA’s extensive use of Eclipse MDT technologies makes
UML-related projects developed for RSA relatively easy to
port to other Eclipse-based tools that also make use of MDT.

V. THE RBACUML PLUGIN

In this section, we brush over the implementation of the
rbacUML plugin [18], [19], and discuss which Eclipse and/or
RSA technologies the plugin uses.

A. The Rational Software Architect Modelling Stack

At the bottom the the UML modelling stack is the Eclipse
Modeling Framework (EMF), which uses the Ecore meta-
model. On top of EMF is UML2, an EMF implementation of
the UML 2.x standard using UML. In other words, the UML
metamodel is defined using EMF, and Ecore is therefore used
as UML’s meta-metamodel.

Eclipse also includes an implementation of an OCL en-
gine, also built on top of EMF, allowing one to parse OCL
constraints and use them to evaluate EMF models. In the
last few years, the Eclipse project underwent an important
change in the implementation of the OCL engine, and two
separate implementations co-exist for the duration of the

3



transition [20]. The mature OCL metamodel provides a parser
and an evaluation engine for both Ecore and UML2 model.
It is however tightly coupled to Ecore, causing some perfor-
mance issues and making it difficult to stick to the OCL 2.2
standard. In particular, it makes it very difficult to create and
evaluate OCL constraints that work on annotations provided by
UML profiles. The new OCL metamodel, called pivot OCL,
addresses the shortcomings of the mature OCL metamodel,
and complies to the OCL 2.2 standard.

On top of Eclipse MDT comes RSA, which uses the UML
modelling and mature OCL metamodel features to provide
additional features. The most obvious one is a very effi-
cient UML diagramming capability, allowing one to represent
UML2 models as diagram (class, sequence, activity, etc.)
instead of “simply” the trees provided by the Eclipse UML2
project. Another feature is the profile tooling generator, that
allowed us to easily create UML profiles and automatically
generate a RSA plugin to use the profile in UML models.

B. The UML Profile

Building the UML profile was the first step in the tool’s
implementation. We were able to make use or RSA’s profile
tooling project capabilities, which allowed us to (1) create the
stereotypes, specify the types of elements on which they can be
attached, and define the associations between the stereotypes,
graphically; (2) for each stereotype, specify the appropriate
OCL constraints; (3) generate the tooling model and customise
it; and (4) generate the tooling code, producing a useable RSA
plugin with a tooling palette allowing designers to directly
create stereotyped elements.

C. The LDIF import filter

The LDIF import filter, written in Java, is quite simple: it
takes an LDIF file as an input, and outputs a UML model.
Optionally it can detect and merge duplicate users, i.e. users
that have the exact same set of roles. The LDIF format doesn’t
have a role concept, but uses groups instead. Both users and
groups can be members of groups, so groups work very much
like roles, and are therefore translated as roles in the output
UML model.

For the LDIF filter we decided to create the models in the
XMI or EMX formats by directly modifying their XML repre-
sentation instead of using the EMF helpers. This removes any
dependency to Eclipse and RSA. This is especially important
as XMI is a file format that is widely used, including by tools
such as ArgoUML. Therefore, this part of the plugin can also
be used as a standalone tool.

D. OCL Constraints Lazy and Selective Evaluation

Evaluating all OCL constraints on a particular UML model
is easy: there’s a button for that in the RSA interface. In
order to select which constraints to evaluate, however, we
had to dig a bit deeper into RSA’s API. We used Eclipse’s
model validation service1, and its ability to accept filters
that select which OCL constraints to evaluate. The filters

1org.eclipse.emf.validation.service.IBatchValidator

were defined depending on the name of each OCL constraint
in the rbacUML profile, which always starts with a prefix
representing the category in which the constraint falls, e.g. WF
for well-formedness constraints. The evaluation service is an
easy way to select OCL constraints to evaluate, as it uses by
default the constraints that are part of the loaded profiles.

E. The Model Generator

The last feature of the rbacUML plugin is the model gen-
erator. It has been developed as part of a performance study of
the tool. Its purpose is to generate random rbacUML models,
either correct or incorrect depending on the user’s choice, of
a specified size. We used it to calculate the evaluation time
of increasingly large models, as well as to compare the “full”
evaluation of a model with the lazy evaluation.

Unlike the LDIF import filter, the model generator hasn’t
been implemented by directly generating XML documents.
Instead, we made use of Eclipse UML’s features, that allow
one to very easily create UML model elements - including
stereotypes from an existing UML profile.

VI. THE GOOD

There were many advantages in using the Eclipse platform
in general, and RSA in particular, to build the rbacUML tool.

A. The Profile Builder

Using the UML profile builder to create rbacUML proved
to be a huge time saver. Indeed, the ability to define the
stereotypes and their associations graphically, but also to use
the built-in editor to define the OCL constraints, all without
writing a single line of non-OCL code, was a much faster way
to develop and test our profile than having to manually write
the profile as an XMI document. It also made it very easy to
come back to the profile to fix a bug, add a new feature or
test several alternatives for a particular construct.

B. The Profile Tooling Generator

The profile tooling generator was probably one of RSA’s
features that saved us the most time. The ability to generate in
one click a tooling palette to help designers create rbacUML
models, and generate a RSA-based environment dedicated to
rbacUML were incredibly valuable, as the alternative would
have been to write all that code manually. The generator also
allows for many parameters to be configured before the code
is generated, allowing us to tailor the generated tool to our
exact needs and requirements.

C. The OCL Engine

To evaluate OCL constraints, we used Eclipse’s OCL val-
idation engine, a much better solution than writing our own
engine. Eclipse’s OCL engine is very powerful and highly
configurable. RSA even provides a button to evaluate all the
OCL constraints associated to a model in a single click, and
when we had to dive deeper into the code to write our own
evaluation procedure for selective and lazy evaluations, the
OCL engine could be bent to do what we wanted it to do.

4



D. Creating UML Elements

Programmatically creating UML elements, but also navi-
gating elements through associations, was greatly facilitated
by the Eclipse UML component, which does a great job at
hiding the underlying complexity of the model. This provided
numerous advantages compared to directly editing the EMX
files (like we did for the LDIF import filter), or even the EMF
or Ecore representations.

E. The Use of Standard Tools and Formats

The fact that both Eclipse and RSA use (mostly) standard
technologies and formats was very useful to keep the tool
generic enough that it could be ported to other platforms.
In fact, the LDIF import filter is even platform-independent:
thanks to RSA’s usage of the standard XMI format, any tool
that also uses XMI can read models created from the filter.

The standard-compliant OCL engine is also worth noting:
since it supports the OCL standard, the OCL constraints we
wrote can be copied verbatim to another tool with a standard
compliant OCL evaluation engine. Furthermore, since RSA
uses Eclipse’s engine, rbacUML should be relatively easy to
port to other Eclipse-based tools such as Papyrus.

F. All These Features Come “for Free”

The last advantage of using a plugin, and RSA in particular,
are the features that came “for free” and that we didn’t have
to implement: the diagramming capability; the error reporting,
in the tree-like model explorer, on the diagrams themselves,
and in a textual form in a dedicated view; etc.

It would be almost impossible to list all the features of the
platform that saved us time. In this section, we have pointed
out the most salient positive points.

VII. THE BAD, AND THE UGLY

Now we focus on the less positive parts of the development
of rbacUML - things that didn’t go very well, blocking bugs
or difficulties that we encountered. This section is not meant
to be understood as criticism towards the tools we used or the
team behind them, but instead, it points plugin developers to
areas they need to pay particular attention to, where they are
likely to encounter difficulties, and it provides the platform
developers with pointers on how to improve the platform to
make third-party developers’ work easier.

A. The Profile Tooling Generator

Whilst the profile tooling generator saved us huge amounts
of time, it isn’t perfect, and there were situations where we
had to dive into the generated code to fix some issues.

The first issue was a bug in the code generation of stereo-
types attached to Action elements. One of the subtypes of
the Action type in UML was causing the generated code
to produce a very unstable tool. Fortunately the stereotypes
applied on Action elements didn’t really need to be applied
on that particular subtype, and we could simply remove it from
the list of elements on which the stereotypes could be applied
- and regenerate the tooling code.

The second issue was not a bug, but had to do with the
way the code generator works, and with the incremental way
we developed the UML profile. Usually we were adding new
elements at each iteration, but occasionally we had to delete
elements as well, as we realised that a particular RBAC
construct could be better or more succinctly expressed with
another construct. The tooling code generator works in a
quite conservative way, to make sure that user-defined code
isn’t overwritten unless necessary. Therefore, re-running the
generator after it has already run at least once will not result
in the generator wiping out the existing code and replacing it
by its own (thankfully!), but instead, it will only overwrite files
that it generates, and leave the others alone. This means that,
if an element is removed, the implementation of the related
features will be left in the code (since they are not generated
anymore), and cause compilation problems. It is then the users’
responsibility to go through all the compilation errors and
remove the now useless classes and references to elements
that do not exist anymore. This is a problem we are trying to
solve using bidirectional transformations to synchronise user
changes with the generated models [21].

B. Bugs

We encountered a few annoying bugs in the platform,
that forced us to develop workarounds and/or dive into the
lower layers of the platform. In particular, bugs in the OCL
evaluation engine made it more difficult to navigate associa-
tions between stereotypes. Furthermore, parts of the evaluation
engine couldn’t actually deal with OCL queries that returned
non-boolean values, even though the documentation indicates
otherwise. This prompted us to rewrite these queries so they
would return boolean values, or to use a lower level of
abstraction to get around the problem.

There were also bugs that made it impossible to navigate
stereotype associations in Java using the UML abstraction
level, and we had to use the underlying representation.

C. The Size of the Platform

The Eclipse platform is huge, and so is the RSA platform.
Combined, they form a gargantuan set of technologies, built
to work on top of or in combination with each other. While
this obviously provides immense benefits, it also comes with
its faults and weaknesses. It can be very difficult and intim-
idating for developers that are new to the platform to get
a working understanding of how all the pieces fit together.
RSA includes some documentation, which frequently refers to
the Eclipse documentation, but dead links are not uncommon.
Furthermore, the IBM academic initiative does not include any
support from IBM or rational, so we were left on our own
to figure out how the platform works and what its limitation
are, only with the help of the documentation, which is often
incomplete. We also used the community support, via the IBM
forums or websites such as Stackoverflow [22], but got very
few (if any) answers on some of the most advanced questions.
It seems that there isn’t a massive community of advanced
OCL users, or if it exists, we have yet to find it.

5



Learning how to use the platform requires a large time
investment, especially for developers that do not have an
Eclipse/RSA expert handy. We had to learn about the Eclipse
platform, about plugin development for Eclipse, about the
Eclipse MDT project and its limitations, and about RSA. We
then had to put all that information together and figure out
how these projects relate to each other. It took us months,
and we are still learning every day. We are documenting our
experience to make it easier for the community to develop
similar modelling plugins for the Eclipse or RSA platforms.

D. Limitations to Dissemination
Our choice of RSA as a platform did most probably limit

the potential for dissemination of rbacUML. Indeed, whilst
RSA is available for free to academics, few are willing to
make the effort to deploy it, most notably because of the
rather large amount of online paperwork to fill, the obligations
that come together with the IBM academic initiative, and
the lack of support for Mac OS X (although there is now
a preview version of RSA 8.5 for Mac). Non-academics were
understandably reluctant to invest in costly RSA licence fees,
which made it very difficult to reach out to industry.

In order to mitigate this issue, we aim to avoid using RSA-
specific APIs as much as possible, and instead try to rely on
Eclipse MDT alone whenever possible. We have been much
more successful at this with our most recent developments, and
one of the added benefits is that there is less documentation
to deal with. While currently RSA is still required to run our
plugin, we hope that, by further diminishing our reliance on
IBM’s proprietary APIs, and thanks to the progress of open-
source tools such as Papyrus, we will be able to migrate to
a fully open source platform in the near future, which will
doubtlessly make it easier for third parties to use, and perhaps
contribute to or build upon our plugin.

VIII. CONCLUSION

In this paper, we have discussed the implementation of our
approach to integrate RBAC concerns in an MDE process. The
choice of implementing our tool as a plugin of an existing
MDE platform was quite straightforward as it allowed for a
very tight integration of our approach with existing practice.
We have reported on our criteria to select a modelling plugin
platform, and on the good, as well as the less good, things
that we encountered. Although our experience is based on
modelling with UML in Eclipse and RSA, similar criteria and
issues may certainly apply to other modelling languages and
platforms. We derive the following suggestions to individuals
or organisations willing to take on a similar route.

• Plugins are definitely the way to go to achieve excellent
integration very quickly. The amount of time saved by
the ability to reuse existing components is perhaps the
best argument in favour of using a plugin;

• If interoperability is a concern, one will be very careful
about the platform’s support of standards;

• Sufficient time will have to be allocated to acquire in-
depth knowledge of the platform. Even the lower layers
may have to be used to get around bugs and problems;

• If the tool is meant to be used by a large public, the
platform must be carefully chosen to make it as easy as
possible to adopt.

Overall, the rbacUML experience has been positive, and
further development is under way to integrate the rbacUML
approach even more with designers’ MDE workflow.

REFERENCES

[1] J. Bézivin, F. Jouault, and D. Touzet, “Principles, standards and tools
for model engineering,” in ICECCS: Procs. Intl. Conf. on Engineering
of Complex Computer Systems. IEEE, 2005, pp. 28–29.

[2] R. Soley and the OMG staff, “Model driven architecture,” white paper,
November 2000, last accessed 14 June 2010. [Online]. Available:
http://www.omg.org/cgi-bin/doc?omg/00-11-05

[3] Unified Modeling Language (UML) 2.3, OMG Std.
[4] Object Constraint Language 2.2, OMG Std.
[5] OMG, Meta Object Facility (MOF) 2.0, OMG Std.
[6] E. Fernández-Medina, J. Jurjens, J. Trujillo, and S. Jajodia, “Model-

driven development for secure information systems,” Information and
Software Technology, vol. 51, no. 5, pp. 809 – 814, 2009, sPECIAL
ISSUE: Model-Driven Development for Secure Information Systems.

[7] D. Basin, J. Doser, and T. Lodderstedt, “Model driven security for
process-oriented systems,” in SACMAT: Procs. Symposium on Access
Control Models and Technologies. ACM, 2003, pp. 100–109.

[8] M. H. Klein, Department of Defense Trusted Computer System Evalua-
tion Criteria, Department of Defense Std. CSC-STD-001-83, 1983.

[9] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed NIST standard for role-based access control,” ACM
Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224–274, 2001.

[10] D. Basin, J. Doser, and T. Lodderstedt, “Model driven security: From
UML models to access control infrastructures,” ACM Trans. Softw. Eng.
Methodol., vol. 15, no. 1, pp. 39–91, 2006.

[11] D. A. Basin, M. Clavel, and M. Egea, “A decade of model-driven
security,” in SACMAT: Procs. Symposium on Access Control Models
and Technologies, 2011, pp. 1–10.

[12] J. Jürjens, Secure Systems Development with UML. Springer-Verlag,
2005.

[13] L. Montrieux, Y. Yu, M. Wermelinger, and Z. Hu, “Issues in representing
domain-specific concerns in model-driven engineering,” in MiSE: Procs.
Workshop on Modeling in Software Engineering. IEEE, 2013.

[14] IETF Network Working Group, “RFC 2849 - The LDAP Data
Interchange Format (LDIF) - Technical Specification,” 2000. [Online].
Available: https://www.ietf.org/rfc/rfc2849.txt

[15] IETF, Lightweight Directory Access Protocol (LDAP): Technical Spec-
ification Road Map (RFC 4510), IETF Std.

[16] S. Gérard, C. Dumoulin, P. Tessier, and B. Selic, “19 Papyrus: A
UML2 tool for domain-specific language modeling,” in Model-Based
Engineering of Embedded Real-Time Systems, ser. Lecture Notes in
Computer Science, vol. 6100. Springer, 2011, pp. 361–368.

[17] IBM, “Rational Software Architect 8.0.4,” 2012.
[18] L. Montrieux, M. Wermelinger, and Y. Yu, “Tool support for UML-based

specification and verification of role-based access control properties,”
in ESEC/FSE: Procs. SIGSOFT Symposium and European Conf. on
Foundations of Software Engineering. ACM, 2011, pp. 456–459.

[19] “rbacUML tool,” 2009-2012. [Online]. Available: http://computing-
research.open.ac.uk/rbac/

[20] Eclipse Foundation, “OCL users guide,” last accessed February 2013.
[Online]. Available: http://goo.gl/zdIB9

[21] Y. Yu, Y. Lin, Z. Hu, S. Hidaka, H. Kato, and L. Montrieux, “Main-
taining invariant traceability through bidirectional transformations,” in
ICSE: Procs. Intl. Conf. on Software Engineering, 2012, pp. 540–550.

[22] Stack Exchange, inc., “Stackoverflow,” last accessed March 2013.
[Online]. Available: http://www.stackoverflow.com

6


