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Abstract: The hot deformation behaviour of austenite in steels is a complicated process which 
depends on chemical composition, microstructure, temperature and strain rate. While many models 
have been developed to represent the flow stress as a function of these variables, it is not yet 
possible to predict the behaviour for a new alloy. Linear regression techniques are not capable of 
representing the data, however, neural networks are capable of modelling highly non-linear data. A 
neural network model was developed in this work using a large database of various steels. The 
model allows the calculation of error bars that depend upon the position of a prediction in the input 
space and the level of perceived noise in the data. The validity of the model was evaluated by 
comparing its outputs against those of the six carbon-manganese steels with different compositions. 
 
1. Hot deformation of metals 
 
Hot-working often refers to deformation carried out under certain conditions of temperatures and 
strain rates so that the recovery and recrystallisation processes occur substantially in order to 
achieve large strains with essentially no strain hardening. Hot-working processes such as rolling are 
typically the first step in converting a cast ingot into a wrought product such as steel strips. Hot-
working is usually carried out at a homologous temperature of 0.6 of the melting temperature and at 
strain rates between 0.5 and 500 s-1 [1]. Laboratory tests for studying the metallurgical changes 
during hot-working are either hot-torsion or compression tests. 
 
The general behaviour of a wide range of materials in 
response to increasing strain at high temperatures is rising 
the stress to a maximum value, followed by decrease to a 
steady-state flow stress, as shown in Figure 1. 
 
There are two mechanisms responsible for softening in hot-
working, depending on the metal [2]. In aluminium and 
alpha iron dynamic recovery is the softening mechanism. 
This occurs by the formation of a well-developed sub-grain 
structure by cross slip and climb, as occurs in creep 
deformation, and the activation energy for hot-working is 
that for creep and self-diffusion. In metals with a lower 
stacking fault-energy, the softening in hot-working is higher 
than for creep, and the softening occurs by the mechanism 
of dynamic recrystallisation. The difference in the 
stress/strain curves for the two types of materials are shown 
in Figure 1. 
 
Dynamic recovery is the basic mechanism that leads to the annihilation of dislocations. This results 

Fig. 1: Stress-strain curve for a metal 
exhibiting (a) dynamic recovery only; 
(b) dynamic recrystallisation after an 
initial period of dynamic recovery [1]. 



in a flow curve about one order of magnitude lower than in cold-working. The flow stress/plastic 
strain curve is essentially exponential, the stress rising to a steady state value when the work 
hardening and softening mechanisms are in equilibrium at higher strains. Low dislocation densities 
associated with the deformation are due to the ease of cross slip, climb, and dislocation unpinning. 
In metals that exhibit dynamic recrystallisation, dislocation annihilation only occurs when the 
dislocation density reaches high enough levels for recrystallisation to occur. As a result the flow 
stress rises to a peak value before dropping down to a steady state value where recovery and work 
hardening are in equilibrium. 
 
2. Modelling of hot-working of steel 
 
The vast majority of low alloy steels are shaped by hot-rolling and normally within the austenitic 
phase field where the upper limit of rolling temperature is governed by practical limitations 
associated with reheating and/or tooling. Common empirical models of hot-working of steel rely on 
mathematical representations of the flow stress versus the plastic strain behaviour of austenite, 
including the effect of strain rate and temperature, these are known as constitutive equations. 
 
Whereas theoretical predictions can sometimes be made of simple properties such as the yield 
strength of a microstructure using dislocation theory and others, it is not yet possible to predict the 
strain-hardening coefficient [3]. The lack of progress in predicting the mechanical properties is 
because of their dependence on a large number of variables. Neural networks are extremely useful 
in these circumstances, allowing a quantitative expression of mechanical properties for complex 
problems where simplification leads to large errors. 
 
There are many examples of neural networks applied to modelling the processes of hot-rolling, 
demonstrating the applicability of this approach. Singh et al. estimated the yield strength and tensile 
strength of steel as a function of 108 variables, including the chemical composition and an array of 
rolling parameters [4]. Korczak et al. used microstructural parameters as inputs to calculate ferrite 
grain size and property distributions [5]. There are also many examples of modelling the 
mechanical properties of steels. Dumortier et al. have modelled the properties of micro-alloyed 
steels [6], Millytoski has published many papers about modelling various properties of steels 
including the hot torsion of austenite and a comparison of the models with physical models [7, 8]. 
 
The work presented here uses a neural network with a Bayesian framework. This approach was 
used to predict flow stress from the inputs of composition, temperature, strain rate and strain. The 
Bayesian approach to neural networks makes predictions with error bars, with the magnitude 
depending upon the position in the input space and perceived level of noise in the model. This 
should be extremely useful from an industrial point of view. Often, when data are needed to 
optimise processing schedules of a new steel, the processing conditions are not readily available, 
and it is unclear to what extent the conditions used for other steels can be exploited. As a result 
constitutive data often need to be generated by a large number of tests for each steel with a new 
composition. 
 
3. Basis of neural network modeling 
 
Neural networks are statistical models of real world systems, built by tuning a set of parameters 
known as weights. The weights make up a model, which represents a mapping from the input values 
to the output values. The weights are calculated by passing examples of input-output pairs through 
the model, and adjusting the weights to minimise the error or prediction, with appropriate measures 
to avoid overfitting. 
 
There are two major tasks that neural networks can be applied to: classification and continuous 



numeric functions. Classification refers to variables which take in only 0 or 1 values. It is the 
continuous numeric functions that are of the most relevance to modelling of constitutive behaviour. 
Neural networks represent a general method of regression that can overcome some of the 
difficulties associated with ordinary linear regression, such as the need to choose the form of any 
relationship between the parameters before analysis. The artificial neural network arrives at a 
mathematical model without prior assumptions about the form of the relationships. Relationships in 
the neural network are not limited to the sum of linear or pseudo-linear terms.  
 
Bayesian probability theory provides a unifying framework for data modelling which offers several 
benefits. Overfitting can be avoided by using methods to control model complexity, while 
probabilistic modelling handles uncertainty in a natural manner [9]. 
 
Using neural networks within a Bayesian framework allows uncertainties of fitting to be estimated 
in a manner which depends upon the region of the input space where the prediction is calculated. 
Instead of calculating a unique set of weights, a probability distribution of sets of weights is used to 
define the fitting uncertainty. This methodology is 
extremely useful when applied to problems in 
materials science where properties need to be 
estimated as a function of a large number of inputs, 
which are not uniformly distributed in the input 
space [3]. 
 
Neural networks can create functions with much 
more flexibility than ordinary linear regression. 
Figure 2 shows a typical function produced using a 
neural network with two inputs and one output; in 
contrast the function produced by a linear 
regression would be a flat plane [9]. 
 
The final output, y, is defined as: 
 

y = ∑wi
(2)hi +θ (2)    Eq. 1 

where 
hi = tanh {∑wij

(2) xj +θi
(1)}  Eq. 1b 

 
and xj are the j variables on which the output y depends, wi are the weights,  θ and θi are the biases. 
 
The form of the relationship described by equation 1 is interesting. A hyperbolic tangent function 
(Eq. 1b) is used to operate the weights inputs because such a function is non-linear and flexible in 
the sense that its shape is dependent on the weights. Combining several hyperbolic tangents 
together gives even greater flexibility so that the complexity of the model is also related to the 
number of hyperbolic tangent operators used. It is important that complexity be penalized, so that 
the appropriate trends can be automatically extracted from the training data. More details on the 
mathematical aspects of neural networks modeling are given elsewhere [10,11,12]. 
 
Review of previous neural network models used to predict constitutive behaviour:  Previous work 
has demonstrated the ability of neural networks in modelling constitutive behaviour. Narayan et al. 
[13] has demonstrated that hot-torsion stress/strain curves can be represented using a neural 
network technique, even taking into account the deformation history of the material. Hwu, et al. 
[14] developed a neural network for prediction of flow stress using data from six steels, they 
reported that their neural network model could interpolate flow stresses very well but the capability 
for extrapolation was not impressive. An attempt was made to build results from linear regression 

Fig. 2: Typical function produced by 
neural network. [9]	
  



for carbon equivalence into the model and they found that this lowered the quality of the training. 
Kong and Hodgson and co-workers have integrated constitutive and neural network models 
reporting significantly improved accuracy of predictions with changes in chemical composition 
[15]. The integrated model they developed predicted the parameters of the Estrin−Mecking model 
from the input parameters of carbon content, temperature, strain rate, Zener−Hollomon parameter 
and activation energy. Liu et al. [16] compared using neural networks with the use of the 
Zener−Hollomon parameter and hyperbolic sine stress function to model the behaviour of high-
speed steel. Dimitriu and Bhadeshia have modelled the hot strength of creep-resistant ferritic steels 
[17]. The applicability of neural networks to materials science problems in general has been made 
clear in reviews by Bhadeshia and Bhadeshia et al. [18,19]. 
 
4. Data acquisition and results of modelling 
 
The experimental data were provided by Corus (Swindon Technical Centre-UK) including 
constitutive data describing the behaviours of low, medium, and high carbon steels, carbon-
manganese steels, high strength low alloy steels, and austenitic steels. 
 
The data were in the form of 
stress/strain data. Typically 
the tests had a maximum 
strain of 0.7, the hot-working 
temperatures of 700-1200°C, 
and with the strain rates 
varying from 0.01 to 100 s−1.  
 
The compositions of the 24 
steels used in training the 
neural network model are 
listed in Table 1. The 
amount of information about 
the compositions of each 
alloy varied, since the data 
were collected from various 
sources, rather than being 
generated by a systematic 
test program designed 
specifically for the purposes 
of neural network analysis. 
The data are from 
commercial grades of steel, rather than alloys designed to extract information about the physical 
behaviour of steels, with some variation in composition.  Data for a further 6 steels were collected 
from published work and compositions of these steels are shown in Table 2 [20]. These results were 
used to demonstrate the predictive abilities of the model. 
 
The first model produced used the data without 
trying to give the model any physical basis. One 
aim of this model is to look for trends in the data, 
another was to decide which data points should 
be included in later models. The phosphorus and 
sulphur data were left out to simplify the model 
since they are “tramp” elements usually present 
at similar levels. 

Table 1:  Chemical compositions of the alloys used to train the network.	
  

Table 2: Chemical compositions of the alloys 
used to show the predictive power of the model. 



Once the data were collected and stored they were then normalized.  A number of sub−models were 
selected and trained; these differ in the initial number of hidden units and starting weight values. 
The data was randomised and split into a 
training set and a testing set. Figure 3 
compares one predicted stress-strain curve 
against the experimental values. 
 
Figure 4 shows the performance of one of the 
models developed in this work in predicting 
the stress vs. strain in the six steels listed in 
Table 2. Steels 1-4 data are from 
compression tests at temperatures from 700 
to 1200°C and strain rates from 0.5 to 140 
s−1. Steels 5 & 6 data are from the same 
temperature range but at strain rates of 2 s−1 
and 20 s−1 only. The results are encouraging 
since some stresses are correctly predicted, 
especially those with the temperature and 
strain rate within the range of the training 
data. The predictions that differ widely from the experimental values are usually accompanied by 
large error bars. However some of the predictions have negative values of stress, and this has to be 
recognised as a “nonsense” prediction. These large variations from the experimental values were 
expected for steels 1 & 2 at low temperatures. This can be explained by the possibility of ferrite 
formation in steels 1 & 2, and hence represents predictions away from the experience of the model, 
which only contains data for the austenitic region. 
 
A more physically based neural network was developed by presenting the database with more  
meaningful inputs, simplifying the task of finding the appropriate trends in the data. Each element 
was incorporated as the (natural) logarithm of the corresponding at.%. The other inputs were the 
logarithm of the strain and strain rate and the output was the logarithm of the stress. This resulted in 
improved performance over the first model. 
 
5. Conclusion 
 
- A neural network model has been produced capable of reproducing and predicting the flow stress 
during hot deformation of austenite, and is available for download [21]. 
 
- Neural networks are a general form of regression, and the results demonstrate how they are more 
appropriate than traditional linear regression techniques, because in physical systems the effect of 
changing one variable depends also on the values of the other variables. For example in hot working 
the effect of changing carbon content depends upon the temperature and strain rate. 
 
- The quality of the neural network is highly dependent on the quality of the dataset. 
 
- The compositions available for training meant the neural network was limited in its applicability 
to the 8 elements of carbon, manganese, silicon, chromium, nickel, vanadium, copper, and 
molybdenum. It has been proved that the applicability of this kind of model to a larger database 
would further improve the results and extend the range of validity, especially since micro-alloying 
elements such as niobium have an effect on flow stress response during hot working. 
 
- Predictions can interpolate and extrapolate the stress-strain behaviour of austenite in hot rolling, 
the confidence in the prediction is indicated by the magnitude of the error bars. 

Fig. 3: Stress vs. strain in Grade 25C steel at 
temperature 800°C, and strain rate of 30 s−1. 
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