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ABSTRACT

The results of a deep radio survey at 20 cm wavelength are reported for a region con-
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taining the AKARI Deep Field South (ADF-S) near the South Ecliptic Pole (SEP),

using the Australia Telescope Compact Array telescope, ATCA. The survey (here-

after referred to as the ATCA-ADFS survey) has 1� detection limits ranging from

18.7–50 µJy beam�1 over an area of ⇠ 1.1 degree2, and ⇠ 2.5 degree2 to lower sen-

sitivity. The observations, data reduction and source count analysis are presented,

along with a description of the overall scientific objectives, and a catalogue con-

taining 530 radio sources detected with a resolution of 6.200 ⇥ 4.900. The derived

differential source counts show a pronounced excess of sources fainter than ⇠ 1 mJy,

consistent with an emerging population of star forming galaxies. Cross-correlating

the radio with AKARI sources and archival data we find 95 cross matches, with most

galaxies having optical R-magnitudes in the range 18-24 magnitudes, similar to that

found in other optical deep field identifications, and 52 components lying within

100 of a radio position in at least one further catalogue (either IR or optical). We have

reported redshifts for a sub-sample of our catalogue finding that they vary between

galaxies in the local universe to those having redshifts of up to 0.825. Associating the

radio sources with the Spitzer catalogue at 24 µm, we find 173 matches within one

Spitzer pixel, of which a small sample of the identifications are clearly radio loud

compared to the bulk of the galaxies. The radio luminosity plot and a colour-colour

analysis suggest that the majority of the radio sources are in fact luminous star form-

ing galaxies, rather than radio-loud AGN. There are additionally five cross matches

between ASTE or BLAST submillimetre galaxies and radio sources from this survey,

two of which are also detected at 90 µm, and 41 cross-matches with submillimetre

sources detected in the Herschel HerMES survey Public Data release.

radio continuum: galaxies; surveys

1 INTRODUCTION

A fundamental challenge in contemporary astrophysics is to understand how the galaxies have

evolved to their current form. To address this issue, wide area surveys are required to accumulate

large statistical samples of galaxies. To study this question, the Japanese AKARI infrared satel-

lite (Murakami et al. 2007) carried out two deep infrared legacy surveys close to the North and

South Ecliptic Poles (Matsuhara et al. 2006, Matsuura et al. 2011), which are notable because

their sight-lines to the distant Universe have the advantages of low extinction and correspondingly

small Hydrogen column densities. To support the two AKARI Deep Fields, sensitive radio surveys

have been made of both ecliptic pole regions to study and compare the global properties of the ex-

tragalactic source populations (White et al. 2009, White et al. 2010a [hereafter ’Paper 1’]). In the

c� 0000 RAS, MNRAS 000, 000–000
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present paper the results are reported of a sensitive radio survey at 1.4 GHz using the Australia

Telescope Compact Array (ATCA) of a region that includes both the ADF-S field (Matsuhara et

al. 2006, Wada et al. 2008, Shirahata et al. 2009, White et al. 2009, Matsuura et al. 2009, 2011),

as well as a more extended region around it. The ADF-S is the focus of a major multi-wavelength

observing campaign conducted across the entire spectral region. The combination of these far-

infrared data and the depth of the radio observations will allow unique studies of a wide range of

topics including the redshift evolution of the luminosity function of radio sources, the clustering

environment of radio galaxies, the nature of obscured radio-loud Active Galactic Nuclei (AGN),

and the radio/far-infrared correlation for distant galaxies.

2 MULTI-WAVELENGTH OBSERVATIONS

The AKARI ADF-S field is a region located close to the South Ecliptic Pole (Matsuura et al. 2009,

2011) with a very low cirrus level  0.5 MJy sr�1 (Schlegel et al. 1998, Bracco et al. 2011),

and correspondingly low Hydrogen column density ⇠ 5⇥1019 cm�2. This field is similar to the

well known Lockman Hole and Chandra Deep-Field South regions, and has half of the cirrus

emission of the well studied COSMOS field at 24µm. The ADF-S field is therefore one of the best

’cosmological windows’ through which to study the distant Universe (Malek et al. 2009, Matsuura

et al. 2011, Hajian et al. 2012), and is now of high priority for astronomers to build ancillary data

sets that can be compared with the AKARI data, and to prepare lead on to the next set of deep

cosmological surveys, such as those that will be provided by Herschel (Pilbratt et al. 2010) and

SPICA (Eales et al. 2009, Swinyard et al. 2009).

The AKARI ADF-S survey was primarily made in the far-infrared at wavelengths of 65, 90,

140, 160 µm over a 12 deg2 area with the AKARI Far-Infrared Surveyor (FIS) instrument (Kawada

et al. 2007), with shallower mid-infrared coverage at 9, 18µm using the AKARI Infrared Camera

(IRC) instrument (Onaka et al. 2007). In addition to the wide survey, deeper mid-infrared pointed

observations, using the IRC, covering ⇠ 0.8 deg2 and reaching 5� sensitivities of 16, 16, 74, 132,

280 and 580 µJy at 3.2, 4.6, 7, 11, 15, 24 µm were also carried out. At other wavelengths, the

region has recently been mapped by Spitzer’s Multi-band imaging photometer (MIPS) at 24 and

70 µm (Scott et al. 2010, Clements et al. 2011); by the Balloon-borne Large Aperture Submil-

limeter Telescope (BLAST) at 250, 350 and 500 µm (Valiante et al. 2010), the latter revealing

⇠200 sub-millimetre galaxies over an 8.5 deg2 field; and in the ground-based submillimetre band

by Hatsukade et al. (2011) revealing 198 potential sub-millimetre galaxies in an ⇠0.25 square de-
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Table 1. Summary of ancillary observations available for the ATCA-ADFS deep field

Wavelength Telescope Area Beam size Depth
(1) (2) (3) (4) (5)

FUV, NUV GALEX Central 1 degree2 600 25.5-26.5 mag (AB)
R CTIO MOSAIC-II 7.2 degree2 100 R 25 mag
U, B, V, I CTIO / MOSAIC Central 1 degree2 100 U 25, B 26, V 26, I 25 mag
3-24 µm (6 bands) AKARI / IRC Central 0.8 degree2 4.2 - 5.500 10 µJy @3.5µm

300uJy @15m
24 µm & 70 µm Spitzer-MIPS 11 degree2 600 -1800 200 µJy @24µm

20 mJy @70µm
65 µm, 90 µm, 140 µm, 160 µm AKARI / FIS 12 degree2 3700 – 5000 30mJy (3�) @90µm
110-500 µm Herschel (HerMES GT) 7 degree2 800 – 3600 30 mJy (5�)
250 µm, 350 µm, 500 µm BLAST 9 degree2 3600 – 6000 45mJy (3�) all bands
870 µm APEX / LABOCA Central 200⇥200 1900 6 mJy (3�)
1.1 mm ASTE / AzTEC Central 0.25 degree2 3000 1.2-2.4 mJy (3�)
20 cm ATCA Central 1 degree2 1000 17 µJy
Spectroscopy AAT AAOmega Central 3.14 degree2 - R⇠21 mag
Spectroscopy IMACS Magellan Central 0.2 degree2 - I⇠22 mag

gree area. The ancillary data sets summarised in Table 1 will be used in calibration of the radio

positional reference frame, and for cross-identifications later in this paper. The AKARI sensitiv-

ity limits correspond approximately to being able to detect starburst galaxies and AGN with a

luminosity of 1012 L� at z = 0.5, or ultraluminous infrared galaxies (ULIRGS) with luminosities

1012�13 L� at z = 1–2 respectively. Note that the ADF-S has also been observed by the Herschel

Space Observatory (HSO) (Pilbratt et al. 2010) as part of the Herschel Multi-tiered Extragalactic

Survey (HerMES) guaranteed time key program (Oliver et al. 2010).

Optical, radio, X-ray and infrared surveys provide essential support to the interpretation of

deep extragalactic radio surveys. The ADF-S has been the focus of recent multi-wavelength survey

coverage by our team, with optical imaging with the CTIO 4m telescope (MOSIAC-II detector) to

an R-band sensitivity of 25 magnitudes, and at near-IR wavelengths to K ⇠18.5 magnitudes with

the IRSF/SIRIUS instrument already completed. To support the ADF-S and ATCA surveys, we

have separately obtained wide field imaging in the optical and near-IR at ESO (using WFI and

SOFI), at the AAT (using WFI and IRIS2), for fields of 0.5 - 1 square degree, and spectroscopic

observations using AAOmega on the AAT (Sedgwick et al. 2009, 2011).

3 RADIO OBSERVATIONS

3.1 ATCA observations

The radio observations were collected over a 13 day period in July 2007 using the ATCA operated

at 1.344 and 1.432 GHz. The total integration time for the 2007 observations was 120 h, spread

between 26 overlapping pointing positions to maximise the uv coverage and to mitigate the effects

c� 0000 RAS, MNRAS 000, 000–000
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of sidelobes from nearby radio-bright sources. Two of the pointing positions were observed on

each night, by taking one five minute integration at each of the two target fields, followed by

a two minute integration on the nearby secondary calibrator 0407-658. This cycle was repeated

for the different pointing positions, which were observed over ⇠10 hour tracks each night, giving

similar uv-coverage for each target field. The amplitude scaling was bootstrapped from the primary

calibrator PKS 1934-638, which was observed for 10 min at the start of each observing night, and

which was assumed to have a flux density of 15.012 Jy at 1.344 GHz and 14.838 Jy at 1.432 GHz

respectively. The 2007 data were augmented with a further deep observation made in December

2008 over 5 nights toward a single pointing position at the ADF-S, which lay just off centre of

the larger ATCA-ADFS field reported here. This added a further 50 hours of integration time. The

data were processed in exactly the same way as that from the 2007 observing sessions.

3.2 Calibration

In the following sub-sections the calibration and data reduction methodology are presented. Since

much of this is in common with our recent North Ecliptic Pole (NEP) radio survey with the West-

erbork Synthesis Radio Telescope (WSRT) telescope discussed in Paper 1, we will not repeat the

detailed discussion of this earlier paper, but instead just focus on those parts of the calibration

methodology that differed from Paper 1.

The data were calibrated using the ATNF data reduction package MIRIAD (Sault et al. 1995)

using standard procedures. The raw data come in RPFITS format, and were converted into the

native MIRIAD format using ATLOD. ATLOD discards every other frequency channel (since they

are not independent from one another, hence no information is lost), and additionally flagged out

one channel in the higher frequency sideband which contained a multiple of 128 MHz, and thus

was affected by self-interference at the ATCA. Channels at either end of the sidebands where

the sensitivity dropped significantly were also not used. The resulting data set contained two side-

bands, with 13 and 12 channels respectively, each 8 MHz wide, which resulted in a total bandwidth

of 200 MHz. The lower frequency sideband was mostly free of RFI and required little editing apart

from flagging of bad data. However, the higher frequency sideband suffered from occasional local

RF interference, and the affected data were flagged out using the ATNF automated noise flag-

ger PIEFLAG (Middelberg 2006), which eliminated virtually all of the RFI-affected data which

would have been flagged in a visual inspection. A visual inspection of the visibilities after using

PIEFLAG, led to the removal of a few other small sections of RFI-affected data. In total, approxi-
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mately 3% and 15% of the data were flagged out in the lower and higher bands respectively. Phase

and amplitude fluctuations throughout the observing run were then corrected using the interleaved

secondary calibrator data, and the amplitudes were scaled by bootstrapping to the primary calibra-

tor. The data were then split by pointing position and each field was individually imaged, before

mosaicing to form a master image, sensitivity and noise maps.

3.3 Imaging

The data for each of the target pointings were imaged separately using uniform weighting and

gridded to a pixel size of 2.000 to a common reference frame (to minimise geometrical issues

in the mosaicing process). The twenty-five 8 MHz wide frequency channels across the ATCA

passband were reduced using MIRIAD’s implementation of multi-frequency clean, MFCLEAN,

which accounts for variation in the spectral index of the calibration sources across the observed

bandwidth. After a first iteration of MFCLEAN, model components with flux densities � 1 mJy

beam�1 were used to phase self-calibrate, and to correct residual phase errors. The data were

then re-imaged and CLEANED for 5000 iterations, at which point the sidelobes of strong sources

were generally found to be comparable with the thermal noise, except for a few cases adjacent

to bright sources. The individual pointings were then mosaiced together using the MIRIAD task

LINMOS, which additionally divides each image by a model of the primary beam attenuation,

and uses a weighted average of positions contained in more than one pointing. As a result, pixels

at the mosaic edges have a higher noise level. Regions beyond the point where the primary beam

response drops below 50% (this occurs at a radius of 35.060 from the centre of a pointing) were

blanked, which resulted in a total survey area of 1.04 deg.2 (to the limit of the half power beam

width at the edges of the master image). The synthesised beam size in the final mosaiced image

was 6.200 ⇥ 4.900 at a position angle of 0 degrees. The sensitivity varies across the image due to

primary beam attenuation and the mosaicing strategy as shown in Figure 1, although the noise

level achieved across the map is ⇠35% higher than expected for a thermal noise limited survey,

which is due to difficulties in removing the sidelobes of strong sources at the edge of the survey

field. This is a well known situation that has previously been seen both for ATCA and WSRT

radio surveys, and probably results from both the non-circularity of the telescope beam, and small

movements of the primary beam on the sky caused by random single dish pointing errors (i.e. due

to wind/thermal loading) that cause the intensity of bright sources near the edge of the primary

c� 0000 RAS, MNRAS 000, 000–000
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Figure 1. The central area of the ATCA 20 cm map, corrected for the primary beam of the antenna. The contours show the rms noise levels in µJy
beam�1 estimated locally from the noise map by binning the data into 40⇥40 pixel regions.

beam to vary significantly during an integration, making it difficult to efficiently CLEAN those

areas.

4 SOURCE COMPONENT CATALOGUE

The mosaiced region achieves wide-field coverage and good sensitivity at the price of having

an unavoidably non-uniform noise distribution. Statistical characterisation of the completeness of

detection at various flux levels is therefore a complex procedure that requires accounting for the

observing time, mosaic overlap, and primary beam attenuation. Our source detection was made

using locally determined noise levels derived from the noise map (Figure 2) - an approach that has

already been used in other studies to improve the efficacy of their source detection catalogues (e.g.

c� 0000 RAS, MNRAS 000, 000–000
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Figure 2. The horizontal axis shows the SFIND detection threshold as a function of areal coverage. The area used for the differential source count
estimation in Section 5 is shown as a solid line, and has a maximum value of 1.04 degree2, whereas that of the full image (whose radio components
are listed in Table 2) is indicated by the dot-dash line and has a maximum value of 2.55 degree2.

Hopkins et al. 1998, Morganti et al. 2004, Paper 1, and the associated NEP component catalogue

presented in White et al. 2010b).

The component catalogue in this paper was built using the MIRIAD task SFIND in a sim-

ilar way to that described in Paper 1. However, briefly SFIND uses a statistical technique, the

false discovery rate (FDR), which assigns a threshold based on an acceptable rate of false detec-

tions (Hopkins et al. 2002). For the ATCA-ADFS data the approach of Hopkins et al. (2002) was

followed by adopting an FDR value of 2%. The components identified by SFIND were visually

inspected to remove any obvious mis-identifications (e.g. a few residual sidelobe structures imme-

c� 0000 RAS, MNRAS 000, 000–000
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Table 2. The component catalogue (the full version is available as Supplementary Material in the on-line version of this article). The component
parameters listed in the catalog are: (1) a short form running number (components that are believed to be parts of multi-component sources are
listed with a † sign next to the running number (for example 47†), with more details about these multi-component sources being presented in Table
3, (2) the component name, referred to in this paper as ATCA-ADFS followed by the RA/Dec encoding (e.g. ATCA-ADFS J045243-533127), (3,4)
the component Right Ascension and Declination (J2000) referenced from the self-calibrated reference frame, (5,6) the RA and Dec errors in arc
seconds, (7,8) the peak flux density, Speak, and its associated rms error, (9,10) the integrated flux densities, Stotal and their associated errors, (11, 12,
13) the size along the major and minor axes of the fitted Gaussian component profile and its orientation (the major and minor axes refer to the full
width at half maximum component size deconvolved from the synthesised beam, and position angle was measured east of north. Component sizes
are shown in columns 11 or 12 only for the cases where Stotal/Speak � 1.3, as an indicator of a resolved component. Components where Stotal/Speak <
1.3 were considered to be unresolved, and therefore component sizes are not individually reported for these here. All components were additionally
checked visually to mitigate against artefacts that might have slipped through the various checks.

No Component name RA DEC �RA �DEC Speak �Speak Stotal �Stotal ✓ma j ✓min PA
h:m:s.s d:m:s.s 00 00 mJy mJy mJy mJy 00 00 �

beam�1 beam�1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

1 ATCA-ADFS J044041-534043 4:40:41.5 -53:40:43.5 0.14 0.03 2.951 0.286 7.392 0.368 12.1 2.7 -84.0
2 ATCA-ADFS J044116-532554 4:41:16.4 -53:25:54.0 0.00 0.00 1.498 0.153 4.427 0.206 8.7 6.6 -48.1
3 ATCA-ADFS J044116-531845 4:41:16.9 -53:18:45.8 0.07 0.31 1.568 0.260 5.310 0.317 13.5 3.5 -9.3
4 ATCA-ADFS J044117-531853 4:41:17.9 -53:18:53.5 0.03 0.02 1.866 0.260 2.632 0.274 6.7 -40.6
5 ATCA-ADFS J044120-533214 4:41:20.1 -53:32:14.9 0.03 0.02 1.603 0.116 5.893 0.137 14.1 4.9 -53.8
6 ATCA-ADFS J044120-531626 4:41:20.7 -53:16:26.3 0.79 0.16 1.626 0.260 6.553 0.359 14.8 5.8 -87.5
7 ATCA-ADFS J044121-531637 4:41:21.9 -53:16:37.9 0.17 0.05 1.966 0.260 7.431 0.361 12.6 6.6 -88.1
8 ATCA-ADFS J044122-534349 4:41:22.0 -53:43:49.1 0.01 0.01 0.686 0.096 1.051 0.100
9 ATCA-ADFS J044123-534402 4:41:23.8 -53:44:02.8 0.07 0.01 0.932 0.096 2.413 0.121 10.3 4.4 -86.0
10 ATCA-ADFS J044124-531600 4:41:24.1 -53:16:00.1 0.32 0.13 1.677 0.260 4.353 0.340 8.6 5.5 86.1
11 ATCA-ADFS J044141-533707 4:41:41.9 -53:37:07.6 0.00 0.00 6.011 0.116 11.775 0.178 7.5 3.6 -80.4
12 ATCA-ADFS J044145-535304 4:41:45.5 -53:53:04.4 0.00 0.00 11.728 0.187 23.327 0.210 8.7 2.0 59.2
13 ATCA-ADFS J044156-531452 4:41:56.5 -53:14:52.4 0.00 0.01 4.390 0.507 10.187 0.521 9.8 2.5 -38.7
14 ATCA-ADFS J044203-534302 4:42:03.9 -53:43:02.1 0.00 0.00 0.639 0.050 0.726 0.050
15 ATCA-ADFS J044205-533253 4:42:05.0 -53:32:53.3 0.25 0.02 0.356 0.071 1.363 0.074 20.9 -79.4
16 ATCA-ADFS J044208-535941 4:42:08.4 -53:59:41.2 0.41 0.04 0.584 0.080 0.923 0.095 12.2 -73.9
17 ATCA-ADFS J044212-531047 4:42:12.6 -53:10:47.9 0.01 0.03 1.184 0.190 1.974 0.197 6.6 -18.2
18 ATCA-ADFS J044212-535551 4:42:12.6 -53:55:51.6 0.01 0.01 1.374 0.080 2.291 0.087 7.8 47.6
19 ATCA-ADFS J044212-530209 4:42:13.0 -53:02:09.8 0.04 0.11 2.977 0.399 3.947 0.484 6.6 3.7
20 ATCA-ADFS J044213-530802 4:42:13.6 -53:08:02.5 0.06 0.11 1.166 0.190 2.322 0.216 9.4 -23.0

diately adjacent to the brightest components in the mapped region). Comparison with independent

catalogues derived using the MIRIAD task IMSAD (with a 7 � clip), and with one derived using

SExtractor (Bertin & Arnouts 1996) with a locally defined background rms were almost identical

with the SFIND catalogue. Hopkins et al. (1998) show that using SFIND in this way provides a

very robust estimate of the noise level above which there are almost no spurious positive candi-

dates, with the completeness being robustly set by the choice of FDR, and the locally determined

background noise level. An understanding of source confusion, spurious components, sensitivity

and completeness are important in any survey that is analysed to its limit, but as this becomes dif-

ficult to rigorously establish for mosaiced images with non-uniform noise properties of our mosaic

and the fact that some but not all of the components are resolved, it was decided for the source

counts analysis in Section 5 to stop the calculation at the very conservative level of 200 µJy, which

corresponds to in excess of 10� signal to noise in the most sensitive parts of the mapped region.

A sample from the final component catalogue is presented in Table 2, and the entire catalogue

is included in the electronic on-line version of this paper.

c� 0000 RAS, MNRAS 000, 000–000
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Figure 3. Regions showing complex or extended structure. The vertical scale is Declination. The contours are at 0.0001, 0.0003, 0.0005, 0.001,
0.003, 0.006, 0.012, 0.024, 0.048 and 0.096 Jy beam�1 respectively. The Right Ascension/Declination scales can de derived using the component
locations in Table 2.

The positional accuracy listed in the Table 2 is relative to the self-calibrated and bootstrapped

reference frame described in Section 3. Other effects that bias the positions or sizes of sources in

radio surveys have already been presented in Paper 1, to which the reader is referred. An estimate

of component dimensions calculated by deconvolving the measured sizes from the synthesised

beam is also presented, with Table 2 reporting only those more than double the synthesised beam

size.

4.1 Component extraction

In the terminology of this paper, a radio component is described as a region of radio emission

represented by a Gaussian shaped object in the map. Close radio doubles are represented by two

Gaussians and are deemed to consist of two components, which make up a single source. A selec-

tion of radio sources with multiple components is shown in Figure 3.

c� 0000 RAS, MNRAS 000, 000–000
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4.2 Complex sources

Radio sources are often made up of multiple components, as seen in Figure 3. The source counts

need to be corrected for the multi-component sorces, so that the fluxes of physically related

components are summed together, rather than being treated as separate sources. Magliocchetti

et al. (1998) have proposed criteria to identify the double and compact source populations, by

plotting the separation of the nearest neighbour of a component against the summed flux of the

two components, and selecting components where the ratio of their fluxes, f1 and f2 is in the range

0.25  f1/ f2  4. In Figure 4 the sum of the fluxes of nearest neighbours are plotted against their

separation.

The dashed line marks the boundary satisfying the separation criterion defined by Maglioc-

chetti et al. (1998):

✓ = 100
"
S total(mJy)

10

#0.5

(1)

where ✓ is in arc seconds. Therefore 53 radio sources in the present survey (i.e. 10% of the

530 catalogued entries) should be considered to be a part of double or multiple sources according

to the Magliocchetti et al. (1998) criterion, and this will be taken account of in the source counts

discussed later. These components, and their suggested associations are listed in Table 3.

4.3 Flux density and positional accuracy

The flux density and positional accuracy are presented in Table 2, and the method for calculating

the positional accuracy are described in Hopkins et al. (2002), and the intensity scales are derived

and fully described in Equations 1–5 of Hopkins et al. (2003). Since the methods for measuring the

positional and intensity scale accuracy form part of the methodology of the SFIND technique, the

reader is referred to the papers presenting this technique, rather than repeating them here. However,

to check the positional accuracy, the ATCA data were cross correlated against the SUMSS survey

(Mauch et al. 2003), where 8 of the bright ATCA sources were found to be within 1000 of a SUMSS

source (the SUMSS half-power beam width is 4500 ⇥ 5700 ). After eliminating three components

which are resolved and appear as double radio sources in the ATCA data, the average offset be-

tween the positions in the two catalogues (ATCA-SUMSS) was (�RA,�Dec) = (+0.4300 ± 2.3100 ,

-2.5700 ±2.5600 ), which are consistent with the absolute and systematic errors reported in the

SUMSS Catalogue. The ATCA component catalogue was also cross-correlated with the positions

of bright compact optical galaxies from our CTIO MOSAIC-II survey (see Table 1), which was

astrometrically referenced against HST guide stars, and sources from the DENIS database. The
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Figure 4. This Figure shows the sum of the flux densities of the nearest neighbours between components in the detection catalogue. Following
Magliocchetti et al. (1998) points to the left of the dashed line are possible double sources. The likelihood that two sources in a pair are related is
further constrained (Magliocchetti et al. 1998) by requiring that the fluxes of the two components f1 and f2 should be in the range 0.25  f1/ f2 
4. Sources in the Figure whose components satisfying this additional criterion are shown as bold circles.

mean of the offsets to the 166 bright galaxies shown in Figure 5 was � RA = -0.1600 ± 0.3700 and

� Dec = -0.0500 ± 0.4600 , which is also consistent with the SUMSS result.

4.4 Summary of flux density corrections for systematic effects

There are two main systematic effects which have been taken into account to estimate the ATCA

flux densities, specifically clean bias and bandwidth smearing effects. Bandwidth smearing is the

radio analog of optical chromatic aberration, resulting from the finite width of the receiver chan-
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Table 3. The multi-component source catalogue for components satisfying the Magliocchetti et al. (1998) criterion. The proposed multi-component
sources listed in this Table are: (1) the components identified according to their Running Numbers in the main catalogue, (2,3) mean Right Ascension
and Declination (J2000) taken and the average of the positions of the individual components, (4) the distance between the components (rounded up
to the nearest arc second), (5) the sum of the total flux density of the individual components, (6) the error on this, estimated by adding the total flux
errors in quadrature.

Components RA Dec Dist Sc �Sc
h:m:s.s d:m:s.s 00 mJy mJy

(1) (2) (3) (4) (5) (6)

47+49 4:43:09.2 -53:39:30.0 9 1.651 0.029
65+67 4:43:38.8 -53:47:24.1 17 0.521 0.026
69+70 4:43:43.3 -53:22:18.1 11 1.050 0.034

99+102 4:44:18.9 -53:24:38.8 20 18.617 0.241
122+123 4:44:35.9 -53:36:01.4 8 1.515 0.031
140+141 4:44:53.1 -53:41:00.4 8 6.949 0.058
166+169 4:45:19.3 -53:12:26.2 16 1.075 0.028

171+172+175 4:45:22.6 -53:09:09.4 20 1.450 0.021
179+180 4:45:25.8 -53:06:08.2 16 0.593 0.042
212+213 4:46:03.1 -53:44:41.6 17 0.469 0.026
223+224 4:46:16.6 -53:39:21.9 15 67.264 0.431
227+228 4:46:20.4 -52:56:23.8 13 65.058 0.445

238+240+241 4:46:32.6 -53:47:00.4 18 71.759 0.172
250+251 4:46:43.7 -53:17:59.8 20 6.669 0.062
248+253 4:46:46.0 -53:01:00.5 110 20.188 0.141
265+268 4:47:03.2 -53:35:39.4 15 37.415 0.181
284+286 4:47:16.2 -52:59:27.8 17 0.935 0.399
305+306 4:47:32.2 -53:20:22.8 10 1.102 0.020
318+320 4:47:44.0 -53:10:37.4 20 3.771 0.052
336+337 4:48:02.5 -53:26:14.4 7 0.635 0.031
371+373 4:48:40.6 -52:59:31.5 33 1.073 0.399

378+379+380 4:48:44.9 -53:00:04.8 30 3.712 0.043
410+411 4:49:28.5 -53:26:05.0 11 0.572 0.026
425+428 4:49:53.7 -53:12:02.8 28 0.854 0.036
434+436 4:50:14.7 -53:25:08.6 23 6.499 0.049

nels compared to the observing frequency. It reduces the peak flux density of a source while cor-

respondingly increasing, or blurring, the source size in the radial direction such that the total

integrated flux density is conserved, but the peak flux is reduced.

From Condon et al. (1998) the reduction in the peak flux from a compact radio source as a

result of bandwidth smearing is given by:
S peak

S 0
peak

�
1

q
1 +

h
2 ln 2

3

i h⇣
�⌫
⌫

⌘ ⇣
d
✓b

⌘i2
(2)

where S peak and S 0
peak refer to the off-axis peak flux and the peak flux at the centre of axis of the

primary beam,�⌫ and ⌫ are the bandwidth and observing frequency respectively, d is the off-axis

distance, and ✓b is the synthesised beamwidth. Prandoni et al. (2000a) have made a detailed study

of this for the ATCA telescope, finding similar behaviour.

Fortunately, the closely spaced mosaicing strategy used for the ATCA SEP observations allows

the smearing effect to be measured directly, by monitoring peak and integrated flux densities of

four bright compact sources that were present in virtually every one of the observed fields, but at

different distances from the centre of the beam. Figure 6 shows the measured smearing factor k,
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Figure 5. Positional offsets between bright (R-magnitude  22 mag) galaxies from the CTIO MOSAIC-II images and the DENIS database, and a
sample of ATCA radio components detected at � 10� levels in Table 2.

which we define as the ratio of the peak flux of a compact source normalised to that which it has

when at the centre of a beam, as a function of distance from the beam centre.

This Figure shows that the experimental data points are reasonably well fit by the theoretical

relationship of Condon et al. (1998), which is overlaid as a solid line on Figure 6. This correction

was taken into account when estimating the peak fluxes listed in Table 2.

It is well known that as well as needing to consider this effect for single pointings, large

mosaiced fields and chromatic aberration, it can also act to reduce point source fluxes in a complex

way (e.g. Bondi et al. 2008, White et al. 2010). We have empirically examined the effect of

bandwidth smearing on our mosaiced data by following the approach adopted by Bondi

et al. (2008) to compare the fluxes of bright sources observed close to the centres of individual

pointings, with their fluxes determined after mosaicing together to form a merged image. Although
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Figure 6. Variation of the smearing factor with distance from the centre of an individual field for a sample of components in common to many of
the individual fields. The solid curve is the expected theoretical curve from Condon et al. (1998). which matches closely to that shown by Huynh et
al. (2005) in their ATCA observation of the Hubble Deep Field South, and the squares show the .

the bandwidth smearing can be accounted for using the above equation from Condon et al. (1998),

as Bondi et al. (2008) discuss, the contribution of this to measurements of the peak fluxes in

radio surveys is more difficult to rigorously quantify for mosaiced data, where the smearing would

need to be modelled with a more complicated function that represents the spacing pattern of the

individual pointings. Due to the difficulty in rigorously calculating this, we have therefore followed

the Bondi et al. (2008) approach to estimate the most probable reduction to the peak flux densities,

as this correction will slightly modify estimates of the estimated source sizes.

Therefore, we ran the same procedure that was used to produce the final radio catalogue, on

each of the individual pointings. For the strongest unresolved sources (>⇠ 1 mJy) the peak and total

flux densities measured from the final mosaiced image, were compared with the corresponding

peak and total flux densities from the individual pointings, using sources that were no further than

50 away from an individual pointing (this is consistent with the Bondi et al. 2008 approach for the

VLA, which is supported for ATCA from our own results shown in Fig. 7). The total flux densities

of each source in the mosaic were in good agreement (the median value was measured to be 1.01
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Figure 7. Ratio between the peak flux densities in the final mosaic and in the individual pointing where the source is within 50 from the centre vs.
the radial distance from the centre of the final mosaic. Only compact sources with flux densities greater than 1 mJy beam�1 are plotted. The fitted
curve corresponds to a second order polynomial fit to the data represented by the relationship S(mosaic)/S(single field) = 0.82+5.64 10�5 dcentre +
1.93 10�7 dcentre

2, whereS(mosaic)/S(single field) and dcentre, the distance in arc seconds from the centre of the mosaiced field, correspond to the
vertical and horizontal axes.

with an rms dispersion of 0.02), as would be expected for complete recovery of the flux. However,

for components whose peak fluxes are affected by bandwidth smearing, the peak fluxes could be

underestimated in the final mosaic on average by up to 20%. The peak fluxes listed in Table 2

have all been corrected for this, according to the centre of the mosaiced image of Right Ascension

(J2000) = 4h 46m 46s.5, Declination (J2000) -53� 240 5900.0.

The other main effect that can influence fluxes is clean bias. Radio surveys, and in particular

those consisting of short snapshot observations, have a tendency to be affected by the clean bias

effect where the deconvolution process leads to a systematic underestimation of both the peak and

total source fluxes. This is a consequence of the constraints on the cleaning algorithm due to sparse

uv coverage (see Becker et al. 1995, White et al. 1997, Condon et al. 1998), and has the effect of

redistributing flux from point sources to noise peaks in the image, reducing the flux density of

the real sources. As the amount of flux which is taken away from real sources is independent of
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the source flux densities, the fractional error this causes is most pronounced for weak sources.

Prandoni et al. (2000a, b) have shown that it is possible to mitigate clean bias if the CLEANing

process is stopped well before the maximum residual flux has reached the theoretical noise level.

Consequently the cleaning limit was set at 5 times the theoretical noise, to ensure that the clean

bias does not significantly affect the source fluxes in the present survey (Garrett et al. 2000).

Gruppioni et al. (1999) adopted a similar strategy in an ATCA survey of the ELAIS N1 field, and

found the effect to be insignificant (less than 2.5%) for the faintest sources (5� detections) but had

no effect on sources brighter than 10� for similar numbers of CLEAN cycles as those performed

on the present ATCA data. We therefore conclude that clean bias will have a negligible affect on

the present data.

5 DIFFERENTIAL COUNTS

In Figure 8 the differential radio source counts are shown from the ATCA-ADFS field, normalised

to a static Euclidean universe (dN/dS S 2.5 (sr�1mJy1.5)). These source counts are broadly con-

sistent with previous results at 1.4 GHz (e.g. the compilation of Windhorst et al. (1993), the

PHOENIX Deep Survey (Hopkins et al. 2003), and the shallow NEP survey of Kollgaard et

al. (1994)).

The data from Figure 8 are given in Table 4, where the integrated flux bins and mean fluxes for

each of the bin centres are listed in columns (1 and 2), the number of sources corrected for clean

and resolution bias are shown in column (3), and the number of sources corrected for the area

coverage and multi-component sources in Column 4, and in the final column (5) the differential

source counts and their associated errors as defined by Kollgaard et al. (1994) are listed.

To model the observed source counts a two component model was used consisting of a clas-

sical bright radio loud population and a fainter star-forming population. It is well established that

classical bright radio galaxies require strong evolution in order to fit the observed source counts at

radio wavelengths (Longair 1966, Rowan-Robinson 1970). The source counts above 10 mJy are

dominated by giant radio galaxies and QSOs (powered by accretion onto black holes, commonly

joined together in the literature under the generic term AGN). Radio loud sources dominate the

source counts down to levels of ⇠1 mJy, however, at the sub-mJy level the normalised source

counts flatten as a new population of faint radio sources emerge (Windhorst et al. 1985). The

dominance of starburst galaxies in the sub-mJy population is already well established (Gruppioni

et al. 2008), where the number of blue galaxies with star-forming spectral signatures is seen to
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Figure 8. Differential counts determined from the AKARI ATCA-ADFS 20 cm deep field. The relationship for calculating the numbers in this plot
and in Table 4 is the same as that used by Kollgaard et al. (1994).

increase strongly. Rowan-Robinson et al. (1980, 1993), Hopkins et al. (1998), and others have

concluded that the source counts at these faintest levels require two populations, AGNs and star-

burst galaxies. This latter population can best be modelled as a dusty star-forming population,

under the assumption that it is the higher redshift analogue of the IRAS star-forming population

(Rowan-Robinson et al. 1993, Pearson & Rowan-Robinson 1996). In this scenario, the radio emis-

sion originates from the non-thermal synchrotron emission from relativistic electrons accelerated

by supernovae remnants in the host galaxies.

To represent the radio loud population the luminosity function of Dunlop & Peacock (1990)
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Table 4. 20 cm differential source counts for the ATCA-ADFS survey

flux bin mean flux N0 Nc dN/dS
mJy mJy sr�1 Jy1.5

(1) (2) (3) (4) (5)

0.21–0.23 0.22 16 25.45 2.35±0.47
0.23–0.25 0.24 14 19.50 2.24±0.51
0.25–0.28 0.265 23 30.30 2.96±0.54
0.28–0.315 0.298 20 24.24 2.72±0.55

0.315–0.413 0.364 51 48.01 3.11±0.45
0.413–0.566 0.490 49 50.72 4.37±0.61
0.566–0.813 0.690 49 50.72 6.30±0.88
0.813–1.21 1.011 32 37.77 7.54±1.23
1.21–1.70 1.455 11 18.36 7.47±1.75
1.70–3.151 2.425 17 22.66 10.18±2.14

3.151–5.416 4.283 10 12.95 15.93±4.43
5.416–9.742 7.579 9 10.79 28.41±8.65
9.742–18.33 14.036 4 8.63 52.41±17.84
18.33–36.08 27.205 7 7.55 113.7±41.35
36.08–74.32 55.200 2 3.24 129.7±72.07

was used (parameters in Table C3 in their paper) to model the local space density with an assump-

tion that the population evolves in luminosity with increasing redshift. The luminosity evolution

follows a power law with redshift of (1 + z)3.0, broadly consistent with both optically and X-ray

selected quasars (Boyle et al. 1987). The spectrum of the radio loud population was obtained from

Elvis, Lockman & Fassnacht (1994), assuming a steep radio spectrum source of (S ⌫ / ⌫�↵, ↵=1).

To model the faint sub-mJy population we use the IRAS 60 µm luminosity function of Saunders

et al. (2000), with the parameters for the star-forming population, defined by warmer 100 µm / 60 µm

IRAS colours, given in Pearson (2001, 2005), and Sedgwick et al. (2012).

To convert the infrared luminosity function to radio wavelengths, we derive below the ratio

of the 60 µm luminosity to the radio luminosity, from the well established correlation between

the far-IR and radio flux (e.g. Helou, Soifer & Rowan-Robinson (1985), Yun, Reddy & Condon

(2001), Appleton et al. (2004)).

Helou et al. (1985) defined this relation between the far-infrared flux, FIR/Wm�2 and the 1.4

GHz radio emission, S 1.4GHz/Wm�2Hz�1 in terms of the q factor given by,

q = log
✓ FIR
3.75 ⇥ 1012Hz

◆
� log

✓ S 1.4 GHz

Wm�2 Hz�1

◆
(3)

The far-infrared flux defined by Condon (1991) in terms of the 60 µm and 100 µm emission

can be written as,
✓ FIR
Wm�2

◆
= 1.26 ⇥ 1012

 
2.58 S 60 + S 100

Wm�2 Hz�1

!
(4)

where the spectrum between 60 µm and 100 µm is defined by a spectral index ↵,

S 100

S 60
=

 
⌫100

⌫60

!�↵
) S 100 = 1.67↵ S 60 (5)
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such that,

✓ FIR
Wm�2

◆
= 1.26 ⇥ 1012

 
2.58 + 1.67↵

Wm�2 Hz�1

!
S 60 (6)

substituting the above relation into Equation 3, assuming a value of q=2.3 (Condon 1991,1992)

and a value of ↵=2.7 (Hacking et al. 1987), it is then easy to show that:

S 60 ⇡ 90 S 1.4 GHz (7)

To convert the infrared luminosity function to radio wavelengths we adopt the above S 60 µm/S 1.4 GHz

ratio. We utilise the spectral template of the archetypical starburst galaxy of M82 from the models

of Efstathiou, Rowan-Robinson & Siebenmorgen (2000) for the spectral energy distribution of the

star-forming population. The radio and far-infrared fluxes are correlated due to the presence of hot

OB stars in giant molecular clouds that heat the surrounding dust producing the infrared emission.

These stars subsequently end their lives as supernovae with the radio emission powered by the

synchrotron emission from their remnants. The radio spectrum is characterised by a power law of

(S ⌫ / ⌫�↵, ↵=0.8).

Pure luminosity evolution for the star-forming population is assumed with a best fit power law

/ (1 + z)3.2. This infrared representation of the star-forming population was preferred over using

the radio luminosity function directly, since it creates a phenomenological link between the radio

emission and the infrared which is responsible for the bulk of the emission in the star-forming

population. The observed number counts at fainter fluxes (<1mJy) vary widely from survey to

survey resulting in a distribution of the best fitting evolution parameterisation. Huynh et al. (2005)

used the radio luminosity function of Condon et al. (2002) and derived a best fitting evolution

parameterisation / (1 + z)2.7, slightly lower than the work presented here. Hopkins (2004) and

Hopkins et al. (1998) used radio and infrared luminosity functions respectively obtaining evolution

in the sub-mJy population / (1+z)2.7 and / (1+z)3.3 respectively. Comparing our observations and

assumed evolution with the results of our survey in the AKARI deep field at the North Ecliptic Pole

(Paper 1) we find that our derived evolution for the AGN and star forming components ((1 + z)3.0,

(1 + z)3.2 respectively) are consistent with the values arrived at for the survey at the North Ecliptic

Pole ((1 + z)3.0 for both components). Both of our surveys at both ecliptic poles (each covering

areas of >⇠ 1 deg2, similar to the VLA-COSMOS survey of Bondi et al. (2008) and larger than

the other surveys depicted in Figure 9) result in number counts at the lower end of the emerging

picture on excess sub-mJy radio counts, as shown in Figure 9.
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Figure 9. A compilation of the differential source counts of a number of deep 20 cm radio surveys taken from: SWIRE (Owen & Morrison 2008);
COSMOS (Bondi et al. 2008); SSA13 (Fomalont et al. 2006); SXDF (Simpson et al. 2006); HDF-N, LOCKMAN and ELAIS N2 (Biggs & Ivison
2006), and the HDF-S (Huynh et al. 2005). The solid curve is the best fit to the present data taken as described in Figure 8. There are however
differences in the instrumental and systematic corrections that have been made for the different survey results shown here (see detailed discussion
by Prandoni et al. 2000 a,b), that make quantitative comparison at the faintest flux levels somewhat uncertain.

6 CROSS-MATCHES WITH DEEP FIELD CATALOGUES AT OTHER

WAVELENGTHS

To compare the ATCA radio catalogue with the AKARI FIS 90 µm ADF-S catalogue (Shirahata

et al. in preparation), we have cross-matched AKARI sources and radio components to search for

positional coincidences 600 based on the AKARI positional uncertainty as defined in Verdugo

et al. (2007) and the radio components reported in this paper. In the case of the possible double
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or complex radio sources (see Figures 4 and 3) we have also searched for candidate identifica-

tion along a line joining the presumed associated radio components. The AKARI FIS catalogue

covers the entire 12 deg2 of the ADF-S and contains 391, 2282, 315 and 216 sources at 65 µm,

90 µm, 140 µm, 160 µm above 5� detection sensitivities of 28.47 mJy, 12.81 mJy, 121.03 mJy and

372.68 mJy respectively. From this cross matching we recovered 35 sources in common to both

catalogues, twenty-five of which are also reported in the Spitzer 70 µm catalogue (Clements et

al. 2011). We list the ATCA-AKARI cross-matched sources in Table 5, along with R-band detec-

tions from our CTIO MOSAIC-II survey (or in a few cases that are marked with a dagger symbol

from DENIS R-band fluxes), and redshifts from the AAT/AAOmega redshift survey. The Herschel

data are described in the Figure caption of Table 5. The 41 cross matched sources, all of which

lay within a 500 error circle, the mean positional agreement was 1.93±1.2500, showing very good

agreement of the coordinate systems.

6.1 Infrared cross matches (AKARI, Spitzer)

Figure 10 shows the comparison between the fluxes of matched ATCA radio – 90 µm sources de-

tected in our survey as well as a larger sample of radio and 90 µm fluxes taken by cross-correlating

with the AKARI All-Sky Survey FIS catalogue (Yamamura et al. 2010, Oyabu et al. 2009, 2010)

with the compilation of radio sources given by Dixon (1970). Although this Figure does not apply

a K-correction to the measured fluxes, it does show us that although many of the ATCA-ADFS

sources fall on an extrapolation of sources from Dixon’s list to lower fluxes, several of them may

be radio loud compared to the majority (in other words lie significantly to the right of the trend

line), and which therefore may have active nuclei. Of these, the two most extreme are the fol-

lowing. Firstly, ATCA component 18 (J04421266-5355520) at redshift 0.044 appears on the NED

extragalactic database as a bright edge-on spiral galaxy with DENIS Blue and Red magnitudes of

14.6 and 14.1 respectively, and in the GALEX FUV and NUV bands with 22.39 and 21.03 mag

respectively. Secondly, ATCA component 187 is a bright radio source previously detected in the

SUMSS survey (SUMSS J044532-540211) with a radio flux of 1.22 mJy at 834 MHz, suggest-

ing that it may have brightened considerably (assuming a normal spectral index), and associated

with an object having DENIS Blue and Red magnitudes of 18.4 and 17.7 mag respectively and a

magnitude of 21.68 in the GALEX NUV band.

The radio identifications in Table 2 were cross-correlated with the Spitzer 24 µm and 70 µm

catalogues (Scott et al. 2010), finding 173 and 31 matches at 24 µm and 70 µm respectively, using
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Table 5. AKARI, Spitzer and Herschel associations with radio sources in the ATCA-ADFS survey. The Herschel (referenced as HSO
in this Table) HerMES fluxes were extracted from the Herschel HerMES Public data release available from the LEDAM server at
http://hedam.oamp.fr/HerMES/release.php, where we have used the band-merged StarFinder catalogues with the xID multi-band (250, 350 and
500 micron) fluxes measured at the positions of the StarFinder 250 micron sources.

No S20cm CTIO J H K Spitzer Spitzer AKARI AKARI AKARI HSO HSO HSO Redshift
mJy R mag mag mag mag 24 µm 70 µm 65 µm 90 µm 140 µm 250 µm 350 µm 500 µm z

mJy mJy mJy mJy mJy mJy mJy mJy

18 2.291 14.1† 13.7 13.2 12.0 12.8 118.1 84.0 126.8 - - - - 0.044
55 0.317 15.9† 14.9 14.0 13.9 5.4 43.3 41.6 58.2 - 91.9 39.6 8.4 0.092
63 0.335 17.9† - - - 0.7 35.8 - 53.4 - 115.9 63.7 29.5 -
72 0.257 - - - - - - - - - - - - 0.423
77 0.419 20.6 - - - 1.1 - - 15.5 - 84.8 52.3 28.8 -
83 0.321 18.9 - - - - - - - - 64.6 42.1 23.6 -
84 0.234 18.9 - - - - - - - - - - - 0.329
100 0.476 22.0 - - - 0.8 44.1 - 51.2 - 77.9 39.4 8.6 -
112 0.890 - - - - 1.1 49.3 - 90.1 - 69.1 38.3 23.4 -
120 0.203 21.4 - - - - - - - - 58.4 40.4 32.4 0.825
125 0.415 16.9 16.4 15.8 14.9 5.2 91.5 - 91.2 - 115.9 63.6 29.5 0.164
132 0.257 23.6 - - - 3.0 - - 37.4 - 104.5 74.7 37.6 -
138 0.464 18.6 - - - - - - - - - - - 0.472
143 0.381 21.5 - - - - - - 19.1 - - - - 0.732
146 0.401 - - - - 2.1 38.8 - 45.6 - 85.7 42.2 11.0 0.393
159 0.210 20.5 - - - - - - - - - - - 0.577
164 0.258 17.6 16.6 15.8 15.2 1.5 - - 22.8 - - - - -
168 0.273 - - - - - - - - - 58.9 37.4 8.3 -
170 0.312 21.3 - - - 3.1 69.2 - 77.8 - 86.3 48.2 20.9 -
184 0.457 19.2 - - - - - - - - - - - 0.327
187 8.675 17.9† 16.4 - - 22.0 35.4 - 19.3 - - - - 0.121
194 0.510 19.2 - - - 5.4 88.8 44.8 96.9 - 64.1 22.2 1.8 0.290
195 0.492 17.9 16.5 - - 6.0 49.2 - 48.1 - - - - 0.237
203 0.361 - - - - - - - - - 64.8 47.3 26.4 -
206 0.952 17.5 - - - - - - - - 75.1 45.2 18.6 0.361
214 0.276 14.3 13.4 - 12.2 3.7 105.5 - 115.9 - 145.9 58.4 13.7 -
225 0.177 - - - - - - - - - - - - 0.181
235 0.942 23.1 - - - 2.5 - - 24.7 - 86.2 59.2 31.5 -
252 0.350 22.3 - - - 6.7 36.7 - 36.4 - - - - 0.154
255 0.295 22.3 - - - - - - - - 62.9 39.7 22.4 -
266 0.929 - - - - - - - - - 55.5 45.1 31.9 -
277 0.798 15.3 14.5 - 13.3 2.6 80.0 - 103.2 245.0 158.7 68.6 20.4 -
283 0.300 - - - - 0.2 - - 15.3 - - - - -
284 0.594 - - - - 3.8 67.2 - 65.9 - 75.3 39.8 24.6 -
290 1.182 - - - - - - - - - 59.2 45.3 22.1 -
297 0.270 17.8 16.6 15.8 15.5 3.3 45.8 49.4 63.0 - - - - 0.069
301 0.154 18.8 - - - - - - 40.5 - - - - 0.223
302 0.273 21.2 - - - - - - 13.6 - - - - 0.760
309 0.215 - - - - 1.3 - - 25.7 - - - - -
330 0.263 - - - - 7.7 53.3 - 40.2 - - - - 0.181
333 0.184 - - - - - - - 27.2 - 64.3 32.7 11.1 0.108
336 0.301 - - - - - - - - - 191.2 83.9 10.1 -
337 0.334 17.1 13.6 12.8 12.3 - 112.1 91.9 161.5 439.0 186.4 82.8 52.8 0.0463
341 0.166 - 14.7 13.8 13.6 5.0 69.6 - 101.3 - 87.8 39.0 16.2 -
346 0.269 - - - - 0.6 - - 29.2 - - - - -
350 0.282 - - - - 1.5 37.9 - 48.9 - - - - -
358 0.798 - - - - - - - 143.0 - 110.7 48.9 12.6 0.1140
359 0.397 - - - - - - - - - 59.6 46.7 28.0 -

the Spitzer single pixel size (2.4500 and 4.000 at 24 µm and 70 µm respectively) as the search radius.

The results of the 24 µm cross-matches are shown in Figure 11, and the large scatter of the plots

highlights the difficulties of using the 24 µm fluxes as indicators of the radio flux.

This plot resembles that of Norris et al. (2006) showing a wide dispersion. To check for chance
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Table 6. Table continues from above: AKARI, Spitzer and Herschel associations with radio sources in the ATCA-ADFS survey. The Herschel fluxes
were extracted from the Herschel HerMES Public data release available from the LEDAM server at http://hedam.oamp.fr/HerMES/release.php,
where we have used the band-merged StarFinder catalogues with xID multi-band (250 µm, 350 µm and 500 µm) fluxes measured at the positions
of the StarFinder 250 µm sources.

No S20cm CTIO J H K Spitzer Spitzer AKARI AKARI AKARI HSO HSO HSO Redshift
mJy R mag mag mag mag 24 µm 70 µm 65 µm 90 µm 140 µm 250 µm 350 µm 500 µm z

mJy mJy mJy mJy mJy mJy mJy mJy

410 0.301 16.3† 16.5 16.0 15.3 2.2 45.2 - 46.8 - 88.7 35.4 25.1 0.413
419 0.409 17.7† - - - 3.6 66.7 48.9 71.7 - 72.7 34.1 - 0.346
421 0.617 16.5† 15.9 15.3 14.5 5.0 79.3 62.1 92.1 - 64.5 32.3 12.3 0.145
426 0.370 - - - - - - - 30.1 - 65.3 33.2 16.9 0.159
452 0.578 10.3† 12.4 11.6 11.4 - - 20.8 355.9 618.9 101.9 78.8 - 0.0393
482 3.386 - - - - 0.7 - - 39.1 - 55.9 62.5 54.5 -
487 5.249 17.2† 16.8 15.9 15.1 8.1 70.5 - 81.9 - 62.4 33.8 16.7 0.064
491 14.68 - - - - 0.7 - - 39.3 - 71.4 31.2 - -

associations, the radio coordinates were incremented by 6000 in both RA and Dec, and this new

list of positions was cross-correlated with the Spitzer data to simulate what should be blank fields,

resulting in 5 matches. Assuming that these are chance associations, the majority of the matched

components (� 97%) are likely to be real associations. The brightest Spitzer source shown in

Figure 11 is ATCA component 187, which is associated with an R = 17.7 magnitude galaxy, and

has a redshift of 0.121 (see Table 5). The ATCA components with Spitzer detections which have

flux densities � 10 mJy are 11, 12, 155, 160, 236, 446, 448, 458, 530.

6.2 Radio luminosity

The radio luminosity of the sources listed in Table 5 was calculated, assuming a cosmology of H0

= 70 km s�1 Mpc�1, with matter and cosmological constant density parameters of ⌦M = 0.3, ⌦⇤ =

0.7. The redshifts were measured using AAOmega, the fibre-fed optical spectrograph at the Anglo

Australian Observatory as described by Sedgwick et al. (2011), and the resultant plot of the radio

luminosity against redshift is shown in Figure 12, where we assume a mean radio spectral index of

↵ = -0.7 (where S/ ⌫↵) and apply the usual form of the k-correction (z) = (1+z)�(1+↵) at redshift z.

From studies of the local 1.4 GHz luminosity function, Sadler et al. (2002) and Mauch & Sadler

(2007) have shown that the low luminosity population with radio luminosity ⇠ 1023 W Hz�1 will

mostly be luminous star-forming galaxies rather than radio-loud AGN (Eales et al. 2009, Jarvis

et al. 2010, Hardcastle et al. 2010). Although most of the cross-matched ATCA/AKARI sources

shown in Fig. 10 fall on the trend shown from the wider sample of cross matches between AKARI

and Dixon’s catalogue, ATCA components 18 and 187 appear to be radio-loud, although at the

lower end of the luminosities reported from the local luminosity function for this class. However,
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Figure 10. Radio flux against AKARI 90 µm flux (shown as triangles), compared to 20,000 matches between the AKARI All-Sky Bright Source
Catalogue (Yamamura et al. 2010), and Dixon’s Master list of radio sources (shown as dots). The reason for the break between the All-Sky Survey
and ADF-S FIS survey points is because of the lower sensitivity of the All-Sky survey(⇠ 0.4 Jy) by comparison to the deeper observations discussed
here.The correlation between both FIS catalogues and Dixon’s Master list of radio sources at 20 cm was made be searching for components that lay
within ±300 of each other. This conservative limit was chosen to enable secure detections, although the official AKARI FIS Bright source catalogue
is 600 as described in Yamamura et al. (2010). Radio components 18 and 187 discussed in the text are marked in the Figure.

since most of the other cross-matches fit the trend-line, we conclude that the ATCA/AKARI cross

identifications primarily trace the star-forming galaxy population.

6.3 Infrared Colours

To further investigate the nature of the ATCA/AKARI population we compare the infrared colours

of our components from our ATCA survey with cross matches in both the AKARI 90 µm and

Spitzer 24 µm & 70 µm bands. In Figure 13 we plot the 24 µm /90 µm – 90 µm /70 µm colour
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Figure 11. Radio components (shown as triangles) with matching Spitzer 24 µm sources within one Spitzer pixel. The Spitzer fluxes are the point
response function fitted fluxes from Scott et al. (2010). The dots are matches between AKARI FIS 65 µm survey detections of bright radio sources
taken from Dixon’s Master radio catalogue (1970), for confirmed (i.e. quality flag 3) AKARI sources lying more than 10 degrees from the Galactic
Plane as described in the caption of Figure 10.

.

distribution of our sources. The models were derived from the SEDs smoothed by the filter bands,

and are overlaid onto the spectral tracks of an ensemble of star-forming galaxies from the models

of Efstathiou et al. (2000) with increasing far-infrared luminosity from LIR > 1010L�, 1011L�,

1012L�, together with the spectral track of an AGN torus from the models of Efstathiou & Rowan-

Robinson (1995). From Figure 13 the infrared colours of the ATCA/AKARI population are con-

sistent with those of star-forming galaxies, although there are selection effects (the requirement

c� 0000 RAS, MNRAS 000, 000–000



A deep ATCA 20cm radio survey of the AKARI Deep Field South near the South Ecliptic Pole 27

Figure 12. Radio luminosity as a function of the radio sources with measured spectroscopic redshifts listed in Table 5.

to have a 90 µm cross-match) which may bias this, and which would need to be tested with more

sensitive infrared observations.

As a further check, the line ratios of [OIII]/H-� (lines at wavelengths of 486.1, 495.8, 500.7nm)

and [OIII]/[OII] (OII doublet at 372.7 nm) were checked from the AAOmega spectra for the

sources with redshifts >0.1, with the result that only one component (ATCA 302) shows ratios

that are close to typical AGN values (Sedgwick et al. in preparation). Therefore the radio lumi-

nosities (Figure 12), infrared colour-colour plots (Figure 13) and AAOmega spectra all show a

consistent picture, suggesting that the ATCA/AKARI cross-identifications predominantly trace a

star-bursting population.
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Figure 13. Infrared colours of the sources from our ATCA survey with cross matches in both the AKARI 90 µm and Spitzer 24 & 70 µm bands
from Table 5. The black squares represent the catalogue sources, with the spectral tracks of an ensemble of star-forming galaxies with increasing
far-infrared luminosity from LIR > 1010L�, 1011L�, 1012L�, and a spectral track from an AGN also plotted. The large crosses show the zero
redshift points with the further smaller crosses corresponding to steps in redshift of 0.1.

6.4 Optical identifications

The positions of the components listed in Table 5 were compared with those in the CTIO MOSAIC-

II survey (see Table 1), taking a maximum search radius of 100 (based on the offsets to bright radio

sources described in Section 4.3. The number of galaxies as a function of R-magnitude was calcu-

lated from the CTIO MOSAIC-II survey, which covers an area of size 1.84 ⇥ 0.64 degrees centred

at RA (J2000) = 4h 43m 32.8s, Declination (J2000) = -53� 3405100 . Based on our choice of a radio

error box of 100 search radius, the chance possibility that a 23rd magnitude galaxy (the most

numerous in the above plot) should randomly coincide with a radio component is 0.6%. Making

an additional correction for the fact that some of the galaxies are extended or saturated, the chance

association of a galaxy with a radio component is still  1%.
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Postage stamp cutouts for 1800⇥1800 regions around the sources with CTIO MOSAIC-II matches

in Table 5 are shown in Figure 14, where the radio component is located at the centre of each box.

The full radio catalogue (Table 2) was then cross-correlated against the CTIO MOSAIC-II sur-

vey, resulting in 95 matches within a search radius of 100 . To test the false identification rate, arbi-

trary 6000 offsets were again added to both the RA and Dec coordinates of the radio components,

and the cross-match was repeated, resulting in only two galaxies as probably false identifications,

which is roughly consistent with out estimate of the likely false detection rate discussed previ-

ously. We can therefore be confident to a high degree of the efficacy of our cross identifications.

These are shown, along with the (probably false) detections arbitrarily shifting the radio pointing

positions, in Figure 15.

The distribution of associated galaxies with magnitude is similar to that found in the CDFS

field by Simpson et al. (2006) and Mainieri et al. (2008), with the majority of the number of

detections rising from an R-magnitude ⇠ 17.

6.5 Sub-millimetre cross matches

The ATCA radio catalogue was searched for matches with the ASTE/AzTEC 1.1 mm deep survey

(Hatsukade et al. 2011) which contains the locations of 198 potential sub-millimetre galaxies over

a ⇠0.25 degree2 area. We find one credible match that is consistent with the positional errors, lying

5.500 from ATCA component 120 with AzTEC J044435.35-534346.6. This has a de-boosted 1.1

mm flux of 2.8±0.5 mJy; a 20 cm radio flux 0.203 mJy; an R-magnitude of 21.4 from our CTIO

imaging survey; and is at the highest redshift of 0.825 amongst the ATCA/AKARI detections

detected in the AAT AAOmega redshift survey (Sedgwick et al. 2011).

We have also cross-correlated the ATCA catalogue with the BLAST South Ecliptic Pole cata-

logue (Valiante et al. 2010) finding five cross matched associations within 1000 of a radio position

(i.e. searching to one third of the BLAST beam width). These sources, and their 250 µm fluxes

are ATCA component numbers 112, 125, 168, 316 and 409 with 250 µm fluxes of 205 mJy, 119

mJy, 177 mJy, 467 mJy and 130 mJy respectively. The first two of these are also listed in Ta-

ble 5 as having AKARI cross-matches. We have also cross-correlated the ATCA radio sources

with the Herschel-HerMES Public Data release catalogue, finding 41 cross-matches, the majority

confirming our AKARI detections.
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Figure 14. Optically identified radio components from the CTIO MOSAIC-II images. The number on top of each image is the running number of
the radio component listed in Table 5. The scaling of each optical image has been adjusted to show the optical galaxy.
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Figure 15. Cross correlation between the ATCA radio components and CTIO MOSAIC-II R-band galaxies within a 100 search radius. The
equivalent counts after arbitrarily shifting the radio coordinates by +6000 in both RA and Dec are shown as the solid filled bars at the bottom
right of the Figure, as an indication of the likely false identification rate, which is clearly in line with that expected from the observed density of
galaxies in the CTIO MOSAIC-II images.

7 CONCLUSIONS

(i) A deep radio survey has been made of a ⇠ 1.1 degree2 area around the ATCA-ADF-S field

using the ATCA telescope at 20 cm wavelength, and ⇠ 2.5 degree2 to lower sensitivity. The best

sensitivity of the survey was 21 µJy beam�1, achieved with a synthesised beam of 6.200 ⇥ 4.900.

The analysis methodology was carefully chosen to mitigate the various effects that can affect the

efficacy of radio synthesis array observations, resulting in a final catalogue of 530 radio com-

ponents, with the faintest integrated fluxes at about the 100 µJy level. The present catalogue of

radio components will form the basis of a further paper reporting cross correlation against extant
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AKARI and deep optical imaging. Our derived sub-mJy number counts are consistent with, but lie

at the lower end of the emerging picture for the excess in the radio counts below 1 mJy. Fitting an

evolving galaxy model to our derived counts, we find a consistent picture of radio-loud dominated

sources at bright fluxes and an emerging population of star-forming galaxies at radio flux levels

<1 mJy.

(ii) Cross-correlating these with far-infrared sources from AKARI, archival optical photometry,

Spitzer and BLAST data, we find 51 components lying within 100 of a radio position in at least one

further catalogue. From optical identifications of a small segment of the radio image, we find 95

cross matches, with most galaxies having R-magnitudes in the range 18-24 magnitudes, similar to

that found in other optical deep field identifications. The redshifts of these vary between the local

universe and redshifts of up to 0.825. Associating with the Spitzer catalogue, we find 173 matches

at 24 µm, within one Spitzer pixel, of which a small sample are clearly radio loud compared to the

bulk of the galaxies.

(iii) The radio luminosity plot suggests that the majority of the radio sources with 90 µm coun-

terparts are luminous star forming galaxies. This conclusion is supported by a comparison of the

infrared colours of our matched sources which are well described by the colours expected from

star-forming galaxies.

(iv) There is one cross match with an ASTE source, and five cross matches with BLAST sub-

millimetre galaxies from the radio sources detected in the present this survey, two of which are

also detected also detected at by AKARI at 90 µm, and 41 detections with Herschel, of which 12

had not previously been identified by AKARI.
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Table 7. The complete source catalogue (the full version is available as Supplementary Material in the on line version of this article). The source
parameters listed in the catalog are: (1) a short form running number (components that are believed to be parts of multi-component sources are
listed with a † sign next to the running number (for example 47†), (2) the source name, referred to in this paper as ATCA-ADFS followed by
the RA/Dec encoding (e.g. ATCA-ADFS J045243-533127), (3,4) the source Right Ascension and Declination (J2000) referenced from the self-
calibrated reference frame, (5,6) the RA and Dec errors in arc seconds, (7,8) the peak flux density, Speak, and its associated rms error, (9,10) the
integrated flux densities, Stotal and their associated errors, (11, 12, 13) the major and minor axes of the fitted Gaussian source profile and orientation
(major and minor axes full width at half maximum, and position angle measured east of north.

No Source name RA DEC �RA �DEC Speak �Speak Stotal �Stotal ✓ma j ✓min PA
h:m:s.s d:m:s.s 00 00 mJy mJy mJy mJy 00 00 �

beam�1 beam�1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

1 ATCA-ADFS J044041-534043 4:40:41.5 -53:40:43.5 0.14 0.03 2.951 0.286 7.392 0.368 12.1 2.7 -84.0
2 ATCA-ADFS J044116-532554 4:41:16.4 -53:25:54.0 0.00 0.00 1.498 0.153 4.427 0.206 8.7 6.6 -48.1
3 ATCA-ADFS J044116-531845 4:41:16.9 -53:18:45.8 0.07 0.31 1.568 0.260 5.310 0.317 13.5 3.5 -9.3
4 ATCA-ADFS J044117-531853 4:41:17.9 -53:18:53.5 0.03 0.02 1.866 0.260 2.632 0.274 6.7 -40.6
5 ATCA-ADFS J044120-533214 4:41:20.1 -53:32:14.9 0.03 0.02 1.603 0.116 5.893 0.137 14.1 4.9 -53.8
6 ATCA-ADFS J044120-531626 4:41:20.7 -53:16:26.3 0.79 0.16 1.626 0.260 6.553 0.359 14.8 5.8 -87.5
7 ATCA-ADFS J044121-531637 4:41:21.9 -53:16:37.9 0.17 0.05 1.966 0.260 7.431 0.361 12.6 6.6 -88.1
8 ATCA-ADFS J044122-534349 4:41:22.0 -53:43:49.1 0.01 0.01 0.686 0.096 1.051 0.100
9 ATCA-ADFS J044123-534402 4:41:23.8 -53:44:02.8 0.07 0.01 0.932 0.096 2.413 0.121 10.3 4.4 -86.0
10 ATCA-ADFS J044124-531600 4:41:24.1 -53:16:00.1 0.32 0.13 1.677 0.260 4.353 0.340 8.6 5.5 86.1
11 ATCA-ADFS J044141-533707 4:41:41.9 -53:37:07.6 0.00 0.00 6.011 0.116 11.775 0.178 7.5 3.6 -80.4
12 ATCA-ADFS J044145-535304 4:41:45.5 -53:53:04.4 0.00 0.00 11.728 0.187 23.327 0.210 8.7 2.0 59.2
13 ATCA-ADFS J044156-531452 4:41:56.5 -53:14:52.4 0.00 0.01 4.390 0.507 10.187 0.521 9.8 2.5 -38.7
14 ATCA-ADFS J044203-534302 4:42:03.9 -53:43:02.1 0.00 0.00 0.639 0.050 0.726 0.050
15 ATCA-ADFS J044205-533253 4:42:05.0 -53:32:53.3 0.25 0.02 0.356 0.071 1.363 0.074 20.9 -79.4
16 ATCA-ADFS J044208-535941 4:42:08.4 -53:59:41.2 0.41 0.04 0.584 0.080 0.923 0.095 12.2 -73.9
17 ATCA-ADFS J044212-531047 4:42:12.6 -53:10:47.9 0.01 0.03 1.184 0.190 1.974 0.197 6.6 -18.2
18 ATCA-ADFS J044212-535551 4:42:12.6 -53:55:51.6 0.01 0.01 1.374 0.080 2.291 0.087 7.8 47.6
19 ATCA-ADFS J044212-530209 4:42:13.0 -53:02:09.8 0.04 0.11 2.977 0.399 3.947 0.484 6.6 3.7
20 ATCA-ADFS J044213-530802 4:42:13.6 -53:08:02.5 0.06 0.11 1.166 0.190 2.322 0.216 9.4 -23.0
21 ATCA-ADFS J044214-531632 4:42:14.5 -53:16:32.3 0.05 0.06 0.629 0.105 1.949 0.115 11.0 5.0 36.3
22 ATCA-ADFS J044215-530257 4:42:16.0 -53:02:57.8 2.04 0.12 2.132 0.399 10.925 0.505 16.0 7.7 -84.6
23 ATCA-ADFS J044217-530136 4:42:17.5 -53:01:36.7 0.22 0.46 2.491 0.399 8.066 0.500 13.9 3.0 -32.2
24 ATCA-ADFS J044221-533338 4:42:21.4 -53:33:38.5 0.00 0.00 2.091 0.071 3.137 0.081
25 ATCA-ADFS J044221-535247 4:42:21.6 -53:52:47.8 0.14 0.09 0.381 0.064 0.815 0.074 8.9 2.8 55.9
26 ATCA-ADFS J044222-533800 4:42:22.0 -53:38:00.6 0.01 0.01 0.405 0.062 0.490 0.063
27 ATCA-ADFS J044226-530145 4:42:26.8 -53:01:45.8 0.00 0.01 2.224 0.399 5.916 0.494 10.8 3.3 -36.8
28 ATCA-ADFS J044231-535716 4:42:31.2 -53:57:16.0 0.07 0.06 0.898 0.080 1.540 0.101 7.5 49.3
29 ATCA-ADFS J044231-533800 4:42:31.2 -53:38:00.8 0.00 0.00 0.276 0.053 0.433 0.054 2.8 -82.2
30 ATCA-ADFS J044232-535228 4:42:32.0 -53:52:28.0 0.08 0.05 0.244 0.058 0.661 0.061 7.7 6.7 69.5
31 ATCA-ADFS J044232-534604 4:42:32.5 -53:46:04.9 0.01 0.01 0.807 0.053 1.278 0.057 2.2 56.2
32 ATCA-ADFS J044241-535307 4:42:41.1 -53:53:07.5 0.00 0.00 0.887 0.080 1.556 0.081 8.4 41.1
33 ATCA-ADFS J044245-533035 4:42:45.7 -53:30:35.6 0.01 0.00 0.485 0.058 0.699 0.059 7.2 -52.6
34 ATCA-ADFS J044245-532957 4:42:45.9 -53:29:57.8 0.07 0.03 0.280 0.056 0.497 0.058 4.1 -87.7
35 ATCA-ADFS J044247-535316 4:42:47.7 -53:53:16.8 0.00 0.01 0.762 0.080 1.052 0.081
36 ATCA-ADFS J044250-534242 4:42:50.3 -53:42:42.5 0.08 0.04 0.202 0.042 0.383 0.045 7.2 3.3 64.5
37 ATCA-ADFS J044252-533800 4:42:52.6 -53:38:00.9 0.01 0.01 0.253 0.048 0.315 0.049
38 ATCA-ADFS J044255-540036 4:42:55.8 -54:00:36.9 0.01 0.02 0.990 0.123 1.817 0.124 9.2 28.0
39 ATCA-ADFS J044259-525327 4:42:59.2 -52:53:27.7 0.03 0.03 3.976 0.383 4.167 0.388
40 ATCA-ADFS J044303-525330 4:43:03.3 -52:53:30.1 0.14 0.20 3.094 0.383 3.274 0.416
41 ATCA-ADFS J044304-535158 4:43:04.1 -53:51:59.0 0.00 0.01 1.179 0.039 1.466 0.051
42 ATCA-ADFS J044304-525446 4:43:04.6 -52:54:46.2 0.05 0.43 2.277 0.383 4.691 0.469 12.5 1.4
43 ATCA-ADFS J044305-533538 4:43:05.3 -53:35:38.6 0.00 0.00 2.286 0.060 3.074 0.067
44 ATCA-ADFS J044305-534634 4:43:05.3 -53:46:34.8 0.00 0.00 1.643 0.039 2.072 0.042
45 ATCA-ADFS J044305-525549 4:43:05.3 -52:55:49.2 3.32 0.73 4.034 0.383 2.782 0.383
46 ATCA-ADFS J044308-534105 4:43:08.7 -53:41:05.4 0.00 0.01 0.239 0.033 0.271 0.033
47† ATCA-ADFS J044308-533928 4:43:08.8 -53:39:28.1 0.03 0.01 0.532 0.038 0.906 0.043 3.1 -62.1
48 ATCA-ADFS J044308-540537 4:43:08.9 -54:05:37.1 0.01 0.02 1.099 0.123 3.357 0.128 11.9 4.0 31.8
49† ATCA-ADFS J044309-533931 4:43:09.7 -53:39:31.8 0.07 0.03 0.351 0.038 0.742 0.041 7.6 4.0 -53.9
50 ATCA-ADFS J044313-533458 4:43:13.3 -53:34:58.8 0.00 0.00 63.317 0.060 79.299 0.465
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Table 8. Continuation of the source catalogue

No Source name RA DEC �RA �DEC Speak �Speak Stotal �Stotal ✓ma j ✓min PA
h:m:s.s d:m:s.s 00 00 mJy mJy mJy mJy 00 00 �

beam�1 beam�1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

51 ATCA-ADFS J044316-534148 4:43:16.6 -53:41:48.4 0.00 0.00 2.265 0.038 3.040 0.059
52 ATCA-ADFS J044317-524701 4:43:17.1 -52:47:01.5 0.01 0.01 8.447 1.066 8.516 1.113
53 ATCA-ADFS J044317-533807 4:43:17.9 -53:38:07.7 0.00 0.00 0.641 0.038 0.851 0.040
54 ATCA-ADFS J044319-533910 4:43:19.7 -53:39:10.7 0.00 0.00 0.285 0.045 0.352 0.045
55 ATCA-ADFS J044321-533932 4:43:21.5 -53:39:32.3 0.00 0.00 0.281 0.042 0.317 0.042
56 ATCA-ADFS J044321-532404 4:43:21.7 -53:24:04.3 0.02 0.02 2.578 0.045 5.960 0.187 7.6 4.7 -23.7
57 ATCA-ADFS J044323-532401 4:43:23.5 -53:24:01.5 0.25 0.04 0.263 0.045 1.325 0.050 14.0 8.6 -72.3
58 ATCA-ADFS J044326-535437 4:43:26.5 -53:54:37.5 0.00 0.00 1.937 0.055 3.137 0.062 6.4 28.2
59 ATCA-ADFS J044327-532350 4:43:27.3 -53:23:50.2 0.04 0.02 1.663 0.045 6.763 0.134 10.7 8.6 -85.0
60 ATCA-ADFS J044330-535405 4:43:30.3 -53:54:05.7 0.01 0.01 0.496 0.055 0.551 0.058
61 ATCA-ADFS J044331-531822 4:43:31.2 -53:18:22.6 0.04 0.09 0.215 0.060 0.714 0.064 10.7 6.0 9.3
62 ATCA-ADFS J044332-532000 4:43:32.5 -53:20:00.9 0.00 0.01 0.735 0.059 0.962 0.061
63 ATCA-ADFS J044334-535743 4:43:34.6 -53:57:44.0 0.00 0.00 0.477 0.054 0.335 0.054
64 ATCA-ADFS J044334-533414 4:43:34.9 -53:34:14.1 0.00 0.00 0.443 0.062 0.459 0.062
65† ATCA-ADFS J044338-534715 4:43:38.6 -53:47:15.6 0.00 0.00 0.296 0.040 0.344 0.040
66 ATCA-ADFS J044338-525935 4:43:38.7 -52:59:35.8 0.00 0.00 1.794 0.228 2.174 0.232
67† ATCA-ADFS J044338-534732 4:43:39.0 -53:47:32.5 0.00 0.00 0.203 0.035 0.177 0.035
68 ATCA-ADFS J044340-535000 4:43:40.9 -53:50:00.9 0.03 0.06 1.834 0.039 4.059 0.155 9.1 2.3 -29.0
69† ATCA-ADFS J044343-532222 4:43:43.0 -53:22:22.7 0.01 0.03 0.295 0.047 0.511 0.050 8.1 -7.0
70† ATCA-ADFS J044343-532213 4:43:43.7 -53:22:13.6 0.00 0.00 0.398 0.047 0.540 0.047 6.8 -5.3
71 ATCA-ADFS J044344-535722 4:43:44.7 -53:57:22.6 0.02 0.07 0.278 0.041 0.578 0.044 10.0 7.2
72 ATCA-ADFS J044345-533535 4:43:45.4 -53:35:35.3 0.01 0.01 0.201 0.030 0.257 0.031
73 ATCA-ADFS J044352-524820 4:43:52.2 -52:48:21.0 0.00 0.00 3.735 0.401 2.878 0.402
74 ATCA-ADFS J044352-525142 4:43:53.0 -52:51:42.5 0.02 0.02 2.607 0.401 4.701 0.416 6.8 2.6 -43.8
75 ATCA-ADFS J044353-530240 4:43:53.6 -53:02:40.2 0.02 0.04 2.697 0.093 9.588 0.176 15.1 3.1 -27.9
76 ATCA-ADFS J044354-533829 4:43:54.2 -53:38:29.4 0.00 0.00 0.259 0.030 0.332 0.030
77 ATCA-ADFS J044354-532112 4:43:54.9 -53:21:12.8 0.02 0.03 0.277 0.040 0.419 0.043
78 ATCA-ADFS J044355-534527 4:43:55.2 -53:45:27.8 0.00 0.00 0.195 0.029 0.229 0.029
79 ATCA-ADFS J044355-531626 4:43:55.3 -53:16:26.1 0.00 0.01 0.433 0.040 0.636 0.041
80 ATCA-ADFS J044355-535634 4:43:55.7 -53:56:34.1 0.00 0.00 1.577 0.041 2.031 0.049
81 ATCA-ADFS J044356-524739 4:43:56.0 -52:47:39.5 0.05 0.06 2.453 0.401 4.143 0.434 6.9 -24.4
82 ATCA-ADFS J044356-532307 4:43:56.6 -53:23:07.7 0.00 0.00 0.412 0.040 0.469 0.040
83 ATCA-ADFS J044357-533739 4:43:57.8 -53:37:39.3 0.01 0.02 0.207 0.030 0.321 0.032
84 ATCA-ADFS J044359-533034 4:43:59.7 -53:30:34.6 0.02 0.04 0.228 0.031 0.234 0.032
85 ATCA-ADFS J040440-525110 4:044:0.5 -52:51:10.4 0.00 0.00 44.456 0.401 86.987 0.606 8.5 -36.7
86 ATCA-ADFS J044405-533315 4:44:05.8 -53:33:15.7 0.00 0.00 0.392 0.030 0.396 0.030
87 ATCA-ADFS J044406-533927 4:44:06.3 -53:39:27.1 0.00 0.00 0.350 0.030 0.394 0.030
88 ATCA-ADFS J044406-533400 4:44:06.4 -53:34:00.1 0.00 0.01 0.255 0.029 0.144 0.029
89 ATCA-ADFS J044407-534637 4:44:07.2 -53:46:37.8 0.01 0.02 0.170 0.027 0.208 0.027
90 ATCA-ADFS J044408-530643 4:44:08.4 -53:06:43.2 0.01 0.01 1.327 0.093 2.691 0.103 9.2 -18.4
91 ATCA-ADFS J044408-534044 4:44:08.7 -53:40:44.1 0.00 0.00 0.448 0.030 0.421 0.030
92 ATCA-ADFS J044409-532858 4:44:09.5 -53:28:58.2 0.00 0.00 0.260 0.031 0.334 0.031
93 ATCA-ADFS J044410-533325 4:44:10.3 -53:33:25.5 0.00 0.00 0.293 0.029 0.129 0.029
94 ATCA-ADFS J044412-533708 4:44:12.8 -53:37:08.9 0.00 0.00 2.848 0.030 3.378 0.041
95 ATCA-ADFS J044413-525347 4:44:13.0 -52:53:47.8 6.18 2.08 1.617 0.168 1.250 0.169
96 ATCA-ADFS J044413-534507 4:44:13.9 -53:45:07.8 0.00 0.00 0.319 0.030 0.360 0.030
97 ATCA-ADFS J044415-530531 4:44:15.5 -53:05:31.0 0.01 0.04 0.884 0.093 1.521 0.109 8.9 -20.0
98 ATCA-ADFS J044417-533833 4:44:17.3 -53:38:33.4 0.00 0.01 0.219 0.030 0.215 0.030
99† ATCA-ADFS J044417-532435 4:44:17.8 -53:24:35.1 0.02 0.01 2.996 0.031 9.352 0.185 10.5 5.8 -65.8
100 ATCA-ADFS J044418-534632 4:44:18.4 -53:46:32.6 0.00 0.00 0.421 0.030 0.476 0.030
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Table 9. Continuation of the source catalogue

No Source name RA DEC �RA �DEC Speak �Speak Stotal �Stotal ✓ma j ✓min PA
h:m:s.s d:m:s.s 00 00 mJy mJy mJy mJy 00 00 �

beam�1 beam�1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

101 ATCA-ADFS J044419-535132 4:44:19.3 -53:51:32.7 0.00 0.01 0.224 0.032 0.239 0.032
102† ATCA-ADFS J044419-532442 4:44:19.9 -53:24:42.7 0.07 0.04 2.513 0.031 9.265 0.241 12.9 5.9 -55.1
103 ATCA-ADFS J044420-534032 4:44:20.8 -53:40:32.8 0.01 0.01 0.178 0.030 0.197 0.030
104 ATCA-ADFS J044421-534006 4:44:21.2 -53:40:06.6 0.09 0.05 0.129 0.030 0.312 0.032 8.8 4.8 -79.0
105 ATCA-ADFS J044421-534135 4:44:21.4 -53:41:35.4 0.02 0.06 0.420 0.030 0.674 0.040 7.7 13.2
106 ATCA-ADFS J044422-531407 4:44:22.1 -53:14:07.1 0.00 0.01 0.553 0.056 0.789 0.057
107 ATCA-ADFS J044422-534251 4:44:22.2 -53:42:51.6 0.05 0.06 0.144 0.030 0.148 0.032
108 ATCA-ADFS J044425-533732 4:44:25.9 -53:37:32.2 0.00 0.00 0.193 0.034 0.235 0.034
109 ATCA-ADFS J044428-534728 4:44:28.4 -53:47:28.5 0.00 0.00 0.208 0.031 0.248 0.031
110 ATCA-ADFS J044430-540457 4:44:30.9 -54:04:57.5 0.00 0.00 1.971 0.080 3.529 0.090 9.3 -7.0
111 ATCA-ADFS J044431-535420 4:44:32.0 -53:54:20.2 0.00 0.00 0.261 0.034 0.319 0.034
112 ATCA-ADFS J044432-540544 4:44:32.0 -54:05:44.8 0.02 0.04 0.681 0.083 0.890 0.094
113 ATCA-ADFS J044432-530604 4:44:32.1 -53:06:04.9 0.00 0.00 0.847 0.093 1.332 0.093 6.2 -19.3
114 ATCA-ADFS J044432-532237 4:44:32.5 -53:22:37.5 0.01 0.02 0.178 0.035 0.197 0.035
115 ATCA-ADFS J044433-535234 4:44:33.0 -53:52:34.1 0.00 0.00 1.431 0.030 1.600 0.034
116 ATCA-ADFS J044433-524317 4:44:33.7 -52:43:17.1 0.02 0.04 6.883 1.151 16.162 1.196 10.3 -35.7
117 ATCA-ADFS J044433-535036 4:44:33.7 -53:50:36.8 0.00 0.00 7.727 0.030 9.242 0.095
118 ATCA-ADFS J044434-535516 4:44:34.5 -53:55:16.2 0.00 0.00 2.096 0.044 2.565 0.049
119 ATCA-ADFS J044434-534949 4:44:34.6 -53:49:49.5 0.01 0.01 0.160 0.030 0.181 0.030
120 ATCA-ADFS J044434-534346 4:44:34.7 -53:43:46.3 0.01 0.01 0.213 0.033 0.203 0.033
121 ATCA-ADFS J044435-530533 4:44:35.2 -53:05:33.5 0.00 0.00 1.169 0.093 2.333 0.098 9.9 -13.1
122† ATCA-ADFS J044435-533604 4:44:35.6 -53:36:04.3 0.05 0.11 0.449 0.027 0.834 0.043 8.2 10.0
123† ATCA-ADFS J044436-533558 4:44:36.2 -53:35:58.4 0.05 0.04 0.303 0.027 0.681 0.030 7.5 4.4 21.6
124 ATCA-ADFS J044436-534522 4:44:36.7 -53:45:22.2 0.00 0.00 1.734 0.027 1.638 0.033
125 ATCA-ADFS J044436-534632 4:44:36.7 -53:46:32.2 0.00 0.00 0.302 0.030 0.415 0.030
126 ATCA-ADFS J044437-524346 4:44:37.3 -52:43:47.0 0.00 0.00 12.943 1.151 34.043 1.242 11.1 2.6 -29.2
127 ATCA-ADFS J044437-533655 4:44:37.7 -53:36:55.3 0.00 0.00 0.244 0.033 0.230 0.033
128 ATCA-ADFS J044437-533325 4:44:37.7 -53:33:25.9 0.00 0.00 0.343 0.027 0.365 0.027
129 ATCA-ADFS J044439-540524 4:44:39.1 -54:05:24.3 0.00 0.01 1.356 0.083 2.549 0.093 10.2 -5.7
130 ATCA-ADFS J044439-530617 4:44:39.7 -53:06:17.3 0.00 0.01 0.510 0.023 0.510 0.023
131 ATCA-ADFS J044441-530441 4:44:41.3 -53:04:41.3 0.02 0.06 0.459 0.027 0.459 0.027
132 ATCA-ADFS J044441-532112 4:44:41.9 -53:21:12.7 0.06 0.08 0.289 0.033 0.257 0.033
133 ATCA-ADFS J044443-533859 4:44:43.3 -53:38:59.3 0.00 0.00 0.126 0.031 0.154 0.031
134 ATCA-ADFS J044445-533858 4:44:45.8 -53:38:58.0 3.21 0.00 0.130 0.030 0.114 0.030
135 ATCA-ADFS J044446-532244 4:44:46.0 -53:22:44.4 0.00 0.01 0.160 0.034 0.234 0.034
136 ATCA-ADFS J044446-524619 4:44:46.3 -52:46:19.9 0.02 0.02 1.612 0.204 2.271 0.207 6.5 -30.5
137 ATCA-ADFS J044450-533856 4:44:50.4 -53:38:56.3 0.00 0.00 2.972 0.027 3.047 0.035
138 ATCA-ADFS J044451-532713 4:44:51.4 -53:27:13.9 0.00 0.00 0.285 0.028 0.464 0.028 7.3 8.6
139 ATCA-ADFS J044451-535751 4:44:51.6 -53:57:51.3 0.01 0.01 0.329 0.049 0.383 0.050
140† ATCA-ADFS J044453-534057 4:44:53.1 -53:40:57.6 0.01 0.00 1.467 0.027 2.338 0.033 3.3 -60.8
141† ATCA-ADFS J044453-534103 4:44:53.7 -53:41:03.2 0.01 0.02 2.376 0.027 4.611 0.113 8.7 -20.2
142 ATCA-ADFS J044455-531423 4:44:55.2 -53:14:23.4 0.00 0.02 0.183 0.027 0.183 0.027
143 ATCA-ADFS J044455-533405 4:44:55.4 -53:34:05.7 0.00 0.00 0.285 0.027 0.381 0.027
144 ATCA-ADFS J044456-532346 4:44:56.1 -53:23:46.9 0.02 0.02 0.139 0.028 0.164 0.029
145 ATCA-ADFS J044456-532608 4:44:56.3 -53:26:08.1 0.00 0.00 0.255 0.028 0.283 0.028
146 ATCA-ADFS J044456-531530 4:44:56.8 -53:15:30.7 0.02 0.02 0.199 0.037 0.401 0.038 6.3 4.4 16.2
147 ATCA-ADFS J044457-535549 4:44:57.7 -53:55:49.9 0.00 0.00 0.520 0.044 0.630 0.046
148 ATCA-ADFS J044459-535457 4:44:59.0 -53:54:57.2 0.00 0.00 0.246 0.036 0.273 0.036
149 ATCA-ADFS J040450-533449 4:045:0.8 -53:34:49.4 0.00 0.00 1.079 0.027 1.237 0.029
150 ATCA-ADFS J044503-525332 4:45:03.9 -52:53:32.1 0.01 0.01 1.804 0.204 3.678 0.209 8.6 -20.6
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Table 10. Continuation of the source catalogue

No Source name RA DEC �RA �DEC Speak �Speak Stotal �Stotal ✓ma j ✓min PA
h:m:s.s d:m:s.s 00 00 mJy mJy mJy mJy 00 00 �

beam�1 beam�1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

151 ATCA-ADFS J044504-531756 4:45:04.6 -53:17:56.5 1.11 0.08 0.211 0.032 0.133 0.032
152 ATCA-ADFS J044504-525431 4:45:04.9 -52:54:31.9 0.01 0.02 0.629 0.100 1.304 0.103 7.8 2.8 0.3
153 ATCA-ADFS J044506-531726 4:45:06.9 -53:17:26.8 0.00 0.01 0.191 0.032 0.265 0.032 7.5 -4.6
154 ATCA-ADFS J044507-525423 4:45:07.6 -52:54:23.8 0.00 0.00 6.554 0.100 10.806 0.126 6.8 -24.2
155 ATCA-ADFS J044508-541153 4:45:08.1 -54:11:53.3 0.00 0.01 11.230 0.274 25.146 0.396 11.7 -13.0
156 ATCA-ADFS J044508-533835 4:45:08.6 -53:38:35.7 0.00 0.02 0.205 0.027 0.205 0.027
157 ATCA-ADFS J044508-525818 4:45:08.7 -52:58:18.6 0.01 0.01 1.106 0.100 2.262 0.105 9.2 -25.3
158 ATCA-ADFS J044508-535021 4:45:08.9 -53:50:21.9 0.01 0.04 0.147 0.031 0.271 0.031 9.4 -10.3
159 ATCA-ADFS J044509-533751 4:45:09.7 -53:37:51.4 0.00 0.00 0.156 0.023 0.210 0.023
160 ATCA-ADFS J044512-540511 4:45:12.6 -54:05:11.4 0.00 0.00 6.211 0.083 10.826 0.161 9.1 -16.7
161 ATCA-ADFS J044513-530633 4:45:13.7 -53:06:33.9 0.00 0.00 0.600 0.063 0.825 0.063
162 ATCA-ADFS J044516-540332 4:45:16.9 -54:03:32.4 0.05 0.13 0.342 0.080 0.727 0.085 9.2 -3.8
163 ATCA-ADFS J044518-531643 4:45:18.1 -53:16:43.4 0.00 0.00 0.912 0.033 1.099 0.037
164 ATCA-ADFS J044518-535119 4:45:18.3 -53:51:19.8 0.01 0.01 0.155 0.033 0.258 0.034 7.6 -31.6
165 ATCA-ADFS J044518-540631 4:45:18.5 -54:06:31.1 0.02 0.07 1.650 0.083 2.999 0.137 10.1 -18.4
166† ATCA-ADFS J044518-531231 4:45:18.5 -53:12:31.0 0.00 0.00 0.492 0.042 0.705 0.042 6.3 -1.4
167 ATCA-ADFS J044518-523853 4:45:18.7 -52:38:53.4 0.01 0.01 4.669 0.581 7.379 0.598 8.8 -34.6
168 ATCA-ADFS J044519-531045 4:45:19.5 -53:10:45.6 0.00 0.00 0.215 0.038 0.273 0.038
169† ATCA-ADFS J044520-531221 4:45:20.0 -53:12:21.4 0.01 0.06 0.178 0.035 0.370 0.036 9.9 -13.2
170 ATCA-ADFS J044520-532010 4:45:20.1 -53:20:10.3 0.01 0.02 0.262 0.033 0.312 0.033
171† ATCA-ADFS J044521-530918 4:45:21.1 -53:09:18.6 0.01 0.01 0.155 0.041 0.246 0.041 7.0 -14.6
172† ATCA-ADFS J044522-530853 4:45:22.2 -53:08:53.4 0.00 0.00 0.379 0.042 0.588 0.042 6.7 -18.4
173 ATCA-ADFS J044522-532644 4:45:22.8 -53:26:44.5 0.00 0.00 0.164 0.025 0.180 0.025
174 ATCA-ADFS J044523-530910 4:45:23.1 -53:09:10.4 0.31 0.15 0.160 0.041 0.335 0.046 7.6 4.0 63.2
175† ATCA-ADFS J044523-530430 4:45:23.5 -53:04:30.8 0.00 0.00 0.280 0.053 0.386 0.053
176 ATCA-ADFS J044523-530914 4:45:23.9 -53:09:14.9 0.00 0.01 0.258 0.041 0.284 0.041
177 ATCA-ADFS J044524-531844 4:45:24.2 -53:18:44.2 0.00 0.00 0.752 0.033 0.943 0.034
178 ATCA-ADFS J044524-530609 4:45:24.9 -53:06:09.4 0.00 0.02 0.171 0.026 0.171 0.026
179† ATCA-ADFS J044525-530509 4:45:25.8 -53:05:10.0 0.00 0.00 0.616 0.063 0.742 0.063
180† ATCA-ADFS J044526-530607 4:45:26.6 -53:06:07.1 0.00 0.00 0.261 0.056 0.422 0.057 6.3 35.7
181 ATCA-ADFS J044527-535318 4:45:27.3 -53:53:18.5 0.03 0.03 0.253 0.041 0.318 0.044
182 ATCA-ADFS J044527-531153 4:45:27.6 -53:11:53.7 0.00 0.00 0.388 0.036 0.581 0.036
183 ATCA-ADFS J044527-533930 4:45:28.0 -53:39:30.3 0.00 0.00 10.459 0.035 15.530 0.194
184 ATCA-ADFS J044530-532131 4:45:30.4 -53:21:31.5 0.00 0.00 0.307 0.034 0.457 0.034 6.4 -1.2
185 ATCA-ADFS J044531-524044 4:45:31.4 -52:40:45.0 0.10 0.21 2.332 0.392 4.700 0.468 10.1 -23.5
186 ATCA-ADFS J044532-540422 4:45:32.1 -54:04:22.6 0.01 0.03 0.866 0.123 1.551 0.132 8.3 -20.2
187 ATCA-ADFS J044532-540210 4:45:32.6 -54:02:10.1 0.00 0.00 5.219 0.123 8.675 0.159 8.7 -24.9
188 ATCA-ADFS J044533-540429 4:45:33.6 -54:04:29.3 0.01 0.02 1.946 0.123 3.921 0.149 9.5 -27.3
189 ATCA-ADFS J044534-532414 4:45:34.3 -53:24:14.9 0.01 0.01 0.145 0.031 0.247 0.031 6.4 2.9 11.4
190 ATCA-ADFS J044535-533850 4:45:35.7 -53:38:50.3 0.00 0.00 0.176 0.033 0.362 0.033 6.5 4.6 52.4
191 ATCA-ADFS J044536-535557 4:45:36.6 -53:55:57.0 0.01 0.02 0.341 0.058 0.491 0.059 7.3 -32.9
192 ATCA-ADFS J044537-534939 4:45:37.2 -53:49:39.5 0.00 0.00 0.418 0.038 0.552 0.038
193 ATCA-ADFS J044537-533829 4:45:37.5 -53:38:29.8 0.00 0.00 0.219 0.033 0.296 0.033
194 ATCA-ADFS J044538-534726 4:45:38.6 -53:47:26.8 0.00 0.00 0.380 0.038 0.510 0.038
195 ATCA-ADFS J044541-535246 4:45:41.1 -53:52:46.1 0.01 0.02 0.364 0.038 0.492 0.039
196 ATCA-ADFS J044541-531132 4:45:41.8 -53:11:32.8 0.00 0.01 0.231 0.027 0.304 0.027
197 ATCA-ADFS J044544-534430 4:45:44.6 -53:44:30.7 0.00 0.00 1.167 0.035 1.428 0.036
198 ATCA-ADFS J044547-530108 4:45:47.7 -53:01:08.1 0.00 0.00 0.667 0.077 1.158 0.077 6.5 2.0 -23.5
199 ATCA-ADFS J044549-533916 4:45:49.8 -53:39:16.2 0.00 0.00 0.320 0.035 0.402 0.035
200 ATCA-ADFS J044553-531231 4:45:53.7 -53:12:32.0 0.19 0.48 0.107 0.037 0.609 0.039 18.9 6.4 23.7
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Table 11. Continuation of the source catalogue

No Source name RA DEC �RA �DEC Speak �Speak Stotal �Stotal ✓ma j ✓min PA
h:m:s.s d:m:s.s 00 00 mJy mJy mJy mJy 00 00 �

beam�1 beam�1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

200 ATCA-ADFS J044553-531231 4:45:53.7 -53:12:32.0 0.19 0.48 0.107 0.037 0.609 0.039 18.9 6.4 23.7
201 ATCA-ADFS J044554-533522 4:45:54.1 -53:35:22.4 0.00 0.00 2.729 0.031 3.294 0.038
202 ATCA-ADFS J044554-534203 4:45:54.4 -53:42:03.6 0.01 0.01 0.150 0.036 0.293 0.036 7.6 2.7 -45.5
203 ATCA-ADFS J044554-533817 4:45:54.7 -53:38:17.9 0.00 0.00 0.359 0.031 0.361 0.031
204 ATCA-ADFS J044555-535951 4:45:55.4 -53:59:51.2 0.00 0.00 0.813 0.058 1.091 0.059
205 ATCA-ADFS J044555-534001 4:45:55.4 -53:40:01.7 0.00 0.03 0.201 0.031 0.201 0.031
206 ATCA-ADFS J044556-531633 4:45:56.0 -53:16:33.8 0.00 0.00 0.773 0.034 0.952 0.035
207 ATCA-ADFS J044557-531304 4:45:57.9 -53:13:04.6 0.02 0.05 0.145 0.037 0.395 0.038 10.0 4.1 -14.3
208 ATCA-ADFS J044558-532101 4:45:58.5 -53:21:01.3 0.00 0.00 0.390 0.034 0.505 0.035
209 ATCA-ADFS J040460-533624 4:046:0.4 -53:36:24.5 0.00 0.00 0.707 0.031 0.841 0.033
210 ATCA-ADFS J044601-531837 4:46:01.1 -53:18:37.1 0.00 0.02 0.189 0.028 0.172 0.028
211 ATCA-ADFS J044601-525350 4:46:01.3 -52:53:50.4 0.00 0.00 1.032 0.103 0.541 0.104
212† ATCA-ADFS J044602-534438 4:46:02.3 -53:44:38.3 0.02 0.03 0.150 0.036 0.258 0.037 3.4 43.4
213† ATCA-ADFS J044604-534444 4:46:04.0 -53:44:44.9 0.01 0.01 0.152 0.036 0.211 0.036
214 ATCA-ADFS J044605-534955 4:46:05.3 -53:49:55.9 0.00 0.00 0.546 0.043 0.276 0.043
215 ATCA-ADFS J044606-525438 4:46:06.1 -52:54:38.9 0.00 0.00 0.976 0.077 1.373 0.078
216 ATCA-ADFS J044606-535634 4:46:06.4 -53:56:34.7 0.00 0.01 0.354 0.062 0.506 0.063 6.7 -17.4
217 ATCA-ADFS J044607-530442 4:46:07.9 -53:04:42.0 0.00 0.00 0.443 0.048 0.594 0.048
218 ATCA-ADFS J044608-535811 4:46:08.8 -53:58:11.8 0.00 0.00 0.588 0.058 0.731 0.058
219 ATCA-ADFS J044610-533716 4:46:10.0 -53:37:16.9 0.00 0.00 0.400 0.031 0.505 0.031
220 ATCA-ADFS J044614-530741 4:46:14.2 -53:07:42.0 0.00 0.00 0.195 0.036 0.216 0.036
221 ATCA-ADFS J044614-532319 4:46:14.3 -53:23:19.1 0.00 0.00 0.905 0.034 0.839 0.036
222 ATCA-ADFS J044614-535407 4:46:14.8 -53:54:07.3 0.00 0.00 2.780 0.096 5.077 0.102 7.6 -40.5
223† ATCA-ADFS J044615-533919 4:46:15.8 -53:39:19.6 0.00 0.00 22.492 0.051 45.194 0.652 6.7 4.1 9.6
224† ATCA-ADFS J044617-533924 4:46:17.3 -53:39:24.2 0.01 0.01 11.846 0.051 22.070 0.562 4.0 -49.5
225 ATCA-ADFS J044617-531156 4:46:17.5 -53:11:56.5 0.00 0.01 0.154 0.029 0.177 0.029
226 ATCA-ADFS J044617-531919 4:46:18.0 -53:19:19.6 0.00 0.00 0.297 0.041 0.305 0.041
227† ATCA-ADFS J044620-525617 4:46:20.0 -52:56:17.5 0.00 0.00 20.759 0.064 40.815 0.559 8.5 -8.1
228† ATCA-ADFS J044620-525630 4:46:20.5 -52:56:30.1 0.01 0.04 11.333 0.064 24.243 0.693 9.1 -15.6
229 ATCA-ADFS J044621-531244 4:46:21.3 -53:12:44.5 0.01 0.01 0.270 0.032 0.279 0.033
230 ATCA-ADFS J044621-535001 4:46:21.9 -53:50:01.6 0.01 0.01 0.292 0.049 0.322 0.050
231 ATCA-ADFS J044622-524104 4:46:22.1 -52:41:04.3 8.27 1.67 2.601 0.324 3.619 0.329 13.9 0.8
232 ATCA-ADFS J044622-532725 4:46:22.7 -53:27:25.7 0.00 0.00 0.571 0.034 0.586 0.035
233 ATCA-ADFS J044623-532549 4:46:23.2 -53:25:49.5 0.00 0.00 5.402 0.034 7.158 0.081
234 ATCA-ADFS J044623-535123 4:46:23.4 -53:51:23.3 0.00 0.01 0.450 0.061 0.670 0.062
235 ATCA-ADFS J044626-534942 4:46:26.6 -53:49:42.9 0.00 0.01 0.572 0.061 0.942 0.062 6.6 -20.9
236 ATCA-ADFS J044629-532004 4:46:29.5 -53:20:04.2 0.00 0.00 27.077 0.042 28.928 0.241
237 ATCA-ADFS J044630-532854 4:46:30.3 -53:28:54.0 0.00 0.00 0.908 0.034 0.958 0.035
238† ATCA-ADFS J044631-534655 4:46:31.6 -53:46:55.4 0.00 0.00 10.910 0.061 20.590 0.249 6.7 3.4 -41.9
239 ATCA-ADFS J044632-530332 4:46:32.5 -53:03:32.6 0.00 0.02 0.197 0.031 0.197 0.031
240† ATCA-ADFS J044632-534702 4:46:33.0 -53:47:02.2 0.00 0.00 7.419 0.061 28.037 0.421 14.7 5.1 -68.3
241† ATCA-ADFS J044633-534704 4:46:33.5 -53:47:05.0 0.02 0.01 10.250 0.061 23.175 0.500 8.0 4.4 -55.2
242 ATCA-ADFS J044634-531115 4:46:34.1 -53:11:15.7 0.00 0.00 0.306 0.033 0.366 0.033
243 ATCA-ADFS J044637-531026 4:46:37.3 -53:10:26.7 0.00 0.00 3.340 0.033 4.117 0.042
244 ATCA-ADFS J044638-533251 4:46:38.8 -53:32:51.0 0.00 0.00 0.349 0.040 0.450 0.040
245 ATCA-ADFS J044639-525544 4:46:39.5 -52:55:44.8 0.00 0.00 0.557 0.064 0.702 0.064
246 ATCA-ADFS J044641-540925 4:46:41.1 -54:09:25.9 0.01 0.02 12.401 0.564 32.397 0.690 13.7 -33.2
247 ATCA-ADFS J044641-534716 4:46:41.4 -53:47:16.2 0.00 0.00 0.732 0.061 1.002 0.061
248† ATCA-ADFS J044642-530146 4:46:42.6 -53:01:46.4 0.00 0.00 4.213 0.037 5.786 0.054
249 ATCA-ADFS J044642-532614 4:46:42.7 -53:26:14.8 0.00 0.00 0.476 0.034 0.441 0.034
250† ATCA-ADFS J044642-531806 4:46:42.9 -53:18:06.9 0.01 0.01 2.176 0.042 3.662 0.106 7.6 2.2 33.8

c� 0000 RAS, MNRAS 000, 000–000



42 Glenn J. White et al.

Table 12. Continuation of the source catalogue

No Source name RA DEC �RA �DEC Speak �Speak Stotal �Stotal ✓ma j ✓min PA
h:m:s.s d:m:s.s 00 00 mJy mJy mJy mJy 00 00 �

beam�1 beam�1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

251† ATCA-ADFS J044644-531752 4:46:44.5 -53:17:53.0 0.00 0.01 1.574 0.042 3.007 0.067 8.9 0.9
252 ATCA-ADFS J044646-531642 4:46:46.3 -53:16:42.7 0.00 0.00 0.334 0.041 0.350 0.041
253† ATCA-ADFS J044649-530014 4:46:49.4 -53:00:14.7 0.00 0.00 7.702 0.064 14.402 0.115 3.7 -1.7
254 ATCA-ADFS J044650-540754 4:46:50.6 -54:07:54.5 0.03 0.04 1.724 0.244 2.488 0.273
255 ATCA-ADFS J044650-530916 4:46:50.7 -53:09:16.6 0.01 0.01 0.206 0.033 0.295 0.033
256 ATCA-ADFS J044652-531923 4:46:52.5 -53:19:23.7 0.00 0.00 0.611 0.042 0.573 0.043
257 ATCA-ADFS J044653-534837 4:46:53.2 -53:48:37.5 0.02 0.02 0.562 0.061 0.940 0.063 3.3 -41.7
258 ATCA-ADFS J044653-533211 4:46:53.8 -53:32:11.0 0.00 0.00 1.721 0.040 1.897 0.045
259 ATCA-ADFS J044654-524023 4:46:54.2 -52:40:23.1 0.00 0.00 4.845 0.324 2.529 0.326
260 ATCA-ADFS J044655-535805 4:46:55.0 -53:58:05.4 0.02 0.02 6.558 0.096 46.427 0.438 14.9 12.3 -48.9
261 ATCA-ADFS J044657-535740 4:46:57.3 -53:57:40.3 0.00 0.00 20.375 0.096 85.243 0.622 10.5 9.1 -45.5
262 ATCA-ADFS J044658-532329 4:46:58.7 -53:23:29.9 0.00 0.00 0.255 0.038 0.304 0.038
263 ATCA-ADFS J044701-531113 4:47:01.5 -53:11:14.0 0.00 0.00 0.578 0.033 0.658 0.033
264 ATCA-ADFS J044701-534159 4:47:01.6 -53:41:59.2 0.00 0.00 0.463 0.051 0.769 0.051 2.2 -18.5
265† ATCA-ADFS J044702-533537 4:47:02.4 -53:35:37.7 0.00 0.00 10.258 0.040 19.883 0.139 5.5 -85.8
266 ATCA-ADFS J044703-530411 4:47:03.4 -53:04:11.2 0.00 0.00 0.772 0.037 0.929 0.039
267 ATCA-ADFS J044703-531503 4:47:03.7 -53:15:03.3 0.00 0.00 0.759 0.033 0.790 0.035
268† ATCA-ADFS J044704-533541 4:47:04.0 -53:35:41.1 0.00 0.01 9.918 0.040 17.532 0.332 6.9 2.5 -3.3
269 ATCA-ADFS J044706-535434 4:47:06.2 -53:54:34.4 0.00 0.00 1.758 0.197 4.192 0.199 9.3 3.1 7.5
270 ATCA-ADFS J044706-532346 4:47:06.4 -53:23:46.0 0.00 0.01 0.203 0.032 0.275 0.032
271 ATCA-ADFS J044706-532621 4:47:06.5 -53:26:21.5 0.00 0.00 0.624 0.034 0.686 0.034
272 ATCA-ADFS J044706-534229 4:47:06.6 -53:42:29.4 0.03 0.02 0.378 0.051 0.649 0.056 3.4 51.7
273 ATCA-ADFS J044706-525312 4:47:06.8 -52:53:12.7 0.00 0.00 10.851 0.125 17.523 0.202 7.3 -8.8
274 ATCA-ADFS J044707-525320 4:47:07.8 -52:53:20.5 0.01 0.01 1.128 0.121 2.849 0.123 9.0 4.4 -37.8
275 ATCA-ADFS J044708-530245 4:47:08.4 -53:02:45.2 0.01 0.02 0.161 0.044 0.328 0.045 6.7 4.1 -12.5
276 ATCA-ADFS J044710-533410 4:47:10.1 -53:34:10.2 0.06 1.27 0.400 0.039 0.230 0.039
277 ATCA-ADFS J044710-534604 4:47:10.5 -53:46:04.8 0.01 0.01 0.685 0.087 0.798 0.090
278 ATCA-ADFS J044710-532036 4:47:10.8 -53:20:36.6 0.00 0.00 0.275 0.028 0.294 0.028
279 ATCA-ADFS J044711-524023 4:47:12.0 -52:40:23.1 0.03 0.03 1.955 0.314 3.973 0.334 8.9 -38.6
280 ATCA-ADFS J044712-530247 4:47:12.0 -53:02:47.7 0.00 0.00 1.288 0.037 1.592 0.038
281 ATCA-ADFS J044712-530352 4:47:12.8 -53:03:52.9 0.00 0.00 0.459 0.037 0.648 0.037
282 ATCA-ADFS J044715-525406 4:47:15.2 -52:54:06.4 0.32 0.69 0.261 0.059 2.223 0.070 21.2 10.1 -8.2
283 ATCA-ADFS J044715-531130 4:47:15.9 -53:11:30.4 0.00 0.00 0.251 0.030 0.300 0.030
284† ATCA-ADFS J044716-525919 4:47:16.0 -52:59:19.8 0.01 0.01 0.295 0.049 0.594 0.050 6.5 4.1 16.5
285 ATCA-ADFS J044716-532643 4:47:16.1 -53:26:43.9 0.00 0.00 0.779 0.032 0.941 0.034
286† ATCA-ADFS J044716-525935 4:47:16.5 -52:59:35.9 0.01 0.01 0.216 0.049 0.341 0.049 3.2 -75.2
287 ATCA-ADFS J044716-525730 4:47:16.5 -52:57:30.5 0.00 0.00 0.535 0.059 0.665 0.059
288 ATCA-ADFS J044717-525635 4:47:17.1 -52:56:35.7 0.01 0.02 0.461 0.059 0.757 0.063 7.8 -2.0
289 ATCA-ADFS J044718-531543 4:47:18.8 -53:15:43.1 0.00 0.01 0.194 0.025 0.242 0.025
290 ATCA-ADFS J044719-533423 4:47:20.0 -53:34:23.0 0.00 0.00 1.080 0.039 1.182 0.041
291 ATCA-ADFS J044719-525035 4:47:20.0 -52:50:35.8 0.00 0.00 2.818 0.121 4.792 0.135 7.8 -11.2
292 ATCA-ADFS J044720-530829 4:47:20.7 -53:08:29.9 0.00 0.00 1.536 0.037 2.246 0.047
293 ATCA-ADFS J044723-532141 4:47:23.2 -53:21:41.2 0.00 0.00 0.309 0.028 0.332 0.028
294 ATCA-ADFS J044723-534824 4:47:23.3 -53:48:24.6 0.11 0.09 0.496 0.069 0.361 0.069
295 ATCA-ADFS J044724-531411 4:47:24.4 -53:14:11.8 0.00 0.00 0.581 0.028 0.627 0.029
296 ATCA-ADFS J044725-532855 4:47:25.3 -53:28:55.4 0.01 0.01 0.266 0.032 0.323 0.033
297 ATCA-ADFS J044725-533406 4:47:25.3 -53:34:06.2 0.00 0.00 0.466 0.039 0.270 0.039
298 ATCA-ADFS J044726-532554 4:47:26.1 -53:25:54.3 0.01 0.01 0.173 0.032 0.205 0.032
299 ATCA-ADFS J044726-530030 4:47:26.9 -53:00:30.1 0.04 0.25 0.176 0.040 0.496 0.041 12.7 -13.3
300 ATCA-ADFS J044727-523923 4:47:27.0 -52:39:23.7 0.16 0.12 1.822 0.314 8.875 0.364 13.1 8.9 85.3
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Table 13. Continuation of the source catalogue

No Source name RA DEC �RA �DEC Speak �Speak Stotal �Stotal ✓ma j ✓min PA
h:m:s.s d:m:s.s 00 00 mJy mJy mJy mJy 00 00 �

beam�1 beam�1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

301 ATCA-ADFS J044727-532626 4:47:27.3 -53:26:26.6 0.00 0.00 0.304 0.032 0.154 0.032
302 ATCA-ADFS J044728-532955 4:47:28.4 -53:29:55.9 0.01 0.01 0.281 0.034 0.273 0.035
303 ATCA-ADFS J044730-530654 4:47:30.7 -53:06:54.7 0.10 0.41 0.076 0.025 0.230 0.027 12.6 2.8 4.8
304 ATCA-ADFS J044731-531828 4:47:31.8 -53:18:28.3 0.00 0.00 0.208 0.025 0.224 0.025
305† ATCA-ADFS J044731-532018 4:47:31.9 -53:20:18.3 0.00 0.00 0.370 0.028 0.452 0.028
306† ATCA-ADFS J044732-532027 4:47:32.5 -53:20:27.3 0.00 0.00 0.454 0.028 0.550 0.029
307 ATCA-ADFS J044732-530121 4:47:33.0 -53:01:21.9 0.00 0.00 1.015 0.059 1.306 0.060
308 ATCA-ADFS J044733-531409 4:47:33.5 -53:14:09.4 0.00 0.00 0.223 0.028 0.327 0.028
309 ATCA-ADFS J044734-530621 4:47:34.0 -53:06:21.8 0.01 0.01 0.139 0.025 0.215 0.025 2.2 25.3
310 ATCA-ADFS J044734-530543 4:47:34.5 -53:05:43.9 0.03 0.03 0.101 0.025 0.133 0.025
311 ATCA-ADFS J044735-530416 4:47:35.5 -53:04:16.2 0.00 0.01 0.274 0.037 0.351 0.038
312 ATCA-ADFS J044736-534457 4:47:36.1 -53:44:57.3 0.01 0.01 0.314 0.057 0.457 0.057
313 ATCA-ADFS J044736-523953 4:47:36.3 -52:39:53.9 0.06 0.06 2.132 0.314 4.857 0.355 9.5 2.6 -40.5
314 ATCA-ADFS J044738-533904 4:47:38.3 -53:39:04.9 0.00 0.02 0.259 0.028 0.259 0.028
315 ATCA-ADFS J044741-533316 4:47:41.6 -53:33:16.7 0.00 0.00 0.402 0.039 0.473 0.039
316 ATCA-ADFS J044742-531923 4:47:42.2 -53:19:23.7 0.00 0.00 1.308 0.028 1.344 0.033
317 ATCA-ADFS J044742-524002 4:47:42.2 -52:40:02.2 0.06 0.12 1.598 0.314 4.906 0.338 11.4 4.5 26.7
318† ATCA-ADFS J044743-531028 4:47:43.5 -53:10:28.9 0.01 0.03 1.502 0.028 2.907 0.097 9.0 -10.7
319 ATCA-ADFS J044744-530526 4:47:44.1 -53:05:26.5 0.00 0.00 0.268 0.035 0.365 0.035
320† ATCA-ADFS J044744-531045 4:47:44.6 -53:10:45.9 0.09 0.06 0.286 0.028 0.864 0.036 10.0 5.8 -51.5
321 ATCA-ADFS J044745-533401 4:47:45.1 -53:34:01.5 0.00 0.00 0.285 0.037 0.322 0.037
322 ATCA-ADFS J044745-530343 4:47:46.0 -53:03:43.2 0.01 0.02 0.161 0.034 0.286 0.035 6.3 2.6 -12.3
323 ATCA-ADFS J044750-532343 4:47:50.7 -53:23:43.7 0.01 0.00 0.171 0.027 0.224 0.027
324 ATCA-ADFS J044750-540516 4:47:50.9 -54:05:16.1 0.17 0.09 4.030 0.590 4.886 0.728
325 ATCA-ADFS J044751-540037 4:47:51.6 -54:00:37.4 0.10 0.07 1.514 0.197 2.510 0.219 9.6 -52.1
326 ATCA-ADFS J044752-530706 4:47:52.1 -53:07:06.3 0.00 0.00 1.970 0.037 2.405 0.038
327 ATCA-ADFS J044752-533309 4:47:52.9 -53:33:09.8 0.00 0.00 0.762 0.039 0.967 0.039
328 ATCA-ADFS J044753-534808 4:47:53.3 -53:48:08.9 0.00 0.00 1.142 0.087 1.457 0.087
329 ATCA-ADFS J044756-532424 4:47:56.5 -53:24:24.4 0.00 0.00 0.279 0.032 0.341 0.032
330 ATCA-ADFS J044756-531334 4:47:56.8 -53:13:34.6 0.00 0.00 0.167 0.028 0.263 0.028 2.1 18.1
331 ATCA-ADFS J044757-533032 4:47:57.5 -53:30:32.9 0.00 0.00 1.034 0.031 1.243 0.032
332 ATCA-ADFS J044758-533605 4:47:58.8 -53:36:05.4 0.00 0.00 0.789 0.039 0.983 0.041
333 ATCA-ADFS J044759-533140 4:47:59.4 -53:31:40.2 0.00 0.00 0.175 0.030 0.184 0.030
334 ATCA-ADFS J044759-530504 4:47:59.4 -53:05:04.9 0.00 0.00 0.187 0.032 0.217 0.032
335 ATCA-ADFS J044759-530003 4:47:59.5 -53:00:03.4 0.00 0.00 0.643 0.055 0.328 0.055
336† ATCA-ADFS J044802-532611 4:48:02.4 -53:26:11.7 0.03 0.07 0.143 0.029 0.301 0.030 10.1 -6.4
337† ATCA-ADFS J044802-532617 4:48:02.7 -53:26:17.4 0.02 0.04 0.176 0.029 0.334 0.030 10.8 -39.1
338 ATCA-ADFS J044804-533855 4:48:04.3 -53:38:55.2 0.12 0.34 0.699 0.061 0.421 0.061
339 ATCA-ADFS J044805-532010 4:48:05.2 -53:20:10.8 0.00 0.00 0.949 0.029 1.082 0.030
340 ATCA-ADFS J044805-531658 4:48:05.4 -53:16:58.4 0.01 0.03 0.424 0.029 0.856 0.035 10.2 -18.2
341 ATCA-ADFS J044808-532540 4:48:08.3 -53:25:40.4 0.35 2.75 0.266 0.028 0.166 0.028
342 ATCA-ADFS J044808-531128 4:48:08.4 -53:11:28.9 0.00 0.00 0.820 0.030 0.974 0.032
343 ATCA-ADFS J044810-532450 4:48:10.9 -53:24:50.7 0.00 0.00 0.475 0.031 0.530 0.031
344 ATCA-ADFS J044812-531629 4:48:12.1 -53:16:29.1 0.00 0.00 0.705 0.029 0.809 0.031
345 ATCA-ADFS J044812-531745 4:48:12.2 -53:17:45.2 0.00 0.00 0.471 0.029 0.213 0.029
346 ATCA-ADFS J044813-531927 4:48:13.8 -53:19:27.2 0.00 0.00 0.191 0.029 0.269 0.029
347 ATCA-ADFS J044813-533804 4:48:13.9 -53:38:04.3 0.00 0.00 0.374 0.039 0.470 0.039
348 ATCA-ADFS J044817-530733 4:48:17.5 -53:07:33.1 0.00 0.01 0.316 0.037 0.687 0.037 6.7 5.1 56.0
349 ATCA-ADFS J044818-533753 4:48:18.7 -53:37:53.1 0.00 0.00 0.350 0.039 0.283 0.039
350 ATCA-ADFS J044820-531012 4:48:20.2 -53:10:12.5 0.00 0.00 0.200 0.028 0.282 0.028
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Table 14. Continuation of the source catalogue

No Source name RA DEC �RA �DEC Speak �Speak Stotal �Stotal ✓ma j ✓min PA
h:m:s.s d:m:s.s 00 00 mJy mJy mJy mJy 00 00 �

beam�1 beam�1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

351 ATCA-ADFS J044823-532144 4:48:23.7 -53:21:44.9 0.00 0.00 0.962 0.029 1.088 0.032
352 ATCA-ADFS J044823-534125 4:48:23.8 -53:41:25.6 0.04 0.04 0.414 0.061 0.670 0.069 2.8 38.4
353 ATCA-ADFS J044824-531440 4:48:24.0 -53:14:40.0 0.00 0.00 0.860 0.030 0.946 0.033
354 ATCA-ADFS J044826-530138 4:48:26.6 -53:01:38.1 0.00 0.00 0.676 0.037 0.857 0.037
355 ATCA-ADFS J044827-530547 4:48:27.8 -53:05:47.9 0.00 0.01 0.176 0.035 0.197 0.035
356 ATCA-ADFS J044828-534600 4:48:28.3 -53:46:00.8 0.01 0.01 0.592 0.061 0.827 0.065
357 ATCA-ADFS J044828-531924 4:48:28.4 -53:19:25.0 0.00 0.01 0.152 0.029 0.196 0.029
358 ATCA-ADFS J044830-530157 4:48:30.6 -53:01:57.8 0.00 0.00 0.635 0.037 0.798 0.039
359 ATCA-ADFS J044831-530730 4:48:31.0 -53:07:30.9 0.02 0.01 0.242 0.034 0.297 0.036
360 ATCA-ADFS J044831-530801 4:48:31.3 -53:08:02.0 0.01 0.02 0.334 0.037 0.466 0.040
361 ATCA-ADFS J044832-524111 4:48:32.6 -52:41:11.5 0.00 0.00 145.708 0.478 304.702 1.858 9.6 0.8
362 ATCA-ADFS J044833-524107 4:48:33.5 -52:41:07.7 0.00 0.02 305.631 0.478 625.248 14.080 9.4 6.7
363 ATCA-ADFS J044833-530610 4:48:33.5 -53:06:11.0 0.01 0.01 0.147 0.036 0.230 0.036
364 ATCA-ADFS J044833-530820 4:48:33.5 -53:08:20.9 0.00 0.00 0.168 0.034 0.237 0.034
365 ATCA-ADFS J044835-532718 4:48:35.0 -53:27:18.8 0.00 0.00 0.170 0.029 0.229 0.029
366 ATCA-ADFS J044836-532613 4:48:36.6 -53:26:13.8 0.02 0.04 0.203 0.031 0.317 0.034
367 ATCA-ADFS J044836-531927 4:48:36.7 -53:19:27.5 0.00 0.00 0.442 0.029 0.528 0.030
368 ATCA-ADFS J044837-530812 4:48:37.0 -53:08:12.8 0.13 0.33 0.101 0.034 0.370 0.036 14.1 4.2 -19.0
369 ATCA-ADFS J044837-533516 4:48:37.1 -53:35:16.9 0.01 0.02 0.254 0.039 0.461 0.041 7.1 -14.5
370 ATCA-ADFS J044837-533104 4:48:37.2 -53:31:04.2 0.00 0.00 0.212 0.033 0.267 0.033
371† ATCA-ADFS J044838-525935 4:48:38.9 -52:59:35.8 0.00 0.00 0.373 0.054 0.414 0.055
372 ATCA-ADFS J044842-533108 4:48:42.1 -53:31:08.7 0.00 0.00 0.446 0.031 0.530 0.031
373† ATCA-ADFS J044842-525927 4:48:42.4 -52:59:27.2 0.18 0.25 0.214 0.054 0.659 0.058 11.2 4.7 -41.8
374 ATCA-ADFS J044842-532346 4:48:42.9 -53:23:46.0 0.00 0.00 0.523 0.029 0.775 0.030 6.3 -2.6
375 ATCA-ADFS J044842-525142 4:48:42.9 -52:51:42.4 0.00 0.01 6.732 0.127 22.240 0.273 15.9 4.2
376 ATCA-ADFS J044842-530008 4:48:42.9 -53:00:08.2 0.01 0.01 1.262 0.059 2.103 0.070 3.1 17.3
377 ATCA-ADFS J044845-532532 4:48:45.1 -53:25:32.6 0.00 0.00 0.246 0.033 0.354 0.033
378† ATCA-ADFS J044845-530004 4:48:45.7 -53:00:04.9 0.07 0.07 0.292 0.052 0.831 0.055 9.6 5.5 51.4
379† ATCA-ADFS J044846-530001 4:48:46.1 -53:00:01.2 0.05 0.06 0.261 0.052 0.778 0.055 9.3 6.0 9.9
380† ATCA-ADFS J044848-532555 4:48:48.2 -53:25:55.5 0.00 0.00 0.213 0.033 0.278 0.033 6.3 5.2
381 ATCA-ADFS J044848-533317 4:48:48.6 -53:33:17.5 0.00 0.01 0.325 0.043 0.410 0.043
382 ATCA-ADFS J044848-533317 4:48:48.6 -53:31:09.6 0.00 0.00 0.143 0.048 0.168 0.038
383 ATCA-ADFS J044852-531641 4:48:52.9 -53:16:41.3 0.00 0.00 0.156 0.030 0.179 0.030
384 ATCA-ADFS J044853-534031 4:48:53.7 -53:40:31.9 0.01 0.01 0.553 0.078 0.720 0.080
385 ATCA-ADFS J044854-532141 4:48:54.7 -53:21:41.1 0.00 0.00 0.521 0.034 0.637 0.035
386 ATCA-ADFS J044855-530133 4:48:55.5 -53:01:33.5 0.01 0.01 0.224 0.051 0.360 0.051 8.6 34.9
387 ATCA-ADFS J044857-530649 4:48:57.8 -53:06:49.8 0.02 0.06 0.204 0.042 0.245 0.045
388 ATCA-ADFS J044858-531600 4:48:58.0 -53:16:01.0 0.05 0.03 0.124 0.031 0.222 0.032 3.7 -67.9
389 ATCA-ADFS J040490-532535 4:049:0.6 -53:25:35.5 0.00 0.00 5.268 0.038 7.699 0.072
390 ATCA-ADFS J044901-534111 4:49:01.4 -53:41:11.7 0.00 0.00 0.603 0.078 0.866 0.078
391 ATCA-ADFS J044903-532723 4:49:03.3 -53:27:23.0 0.03 0.10 0.187 0.035 0.636 0.038 13.5 3.8 17.1
392 ATCA-ADFS J044903-535225 4:49:03.6 -53:52:25.1 0.00 0.00 1.553 0.160 1.472 0.160
393 ATCA-ADFS J044905-531733 4:49:05.6 -53:17:33.0 0.00 0.00 0.427 0.034 0.477 0.034
394 ATCA-ADFS J044905-525234 4:49:06.0 -52:52:34.8 0.01 0.04 1.097 0.179 2.782 0.184 12.1 -18.5
395 ATCA-ADFS J044906-525247 4:49:06.0 -52:52:47.1 0.00 0.01 2.099 0.179 4.169 0.186 7.9 2.0
396 ATCA-ADFS J044906-531643 4:49:06.4 -53:16:43.8 0.00 0.00 0.219 0.034 0.285 0.034
397 ATCA-ADFS J044910-534052 4:49:10.9 -53:40:52.0 0.00 0.00 1.538 0.078 3.720 0.089 8.6 4.4 -37.9
398 ATCA-ADFS J044913-530936 4:49:13.2 -53:09:36.5 0.00 0.01 0.521 0.035 0.976 0.037 7.0 2.4 14.5
399 ATCA-ADFS J044913-524926 4:49:13.3 -52:49:26.6 0.00 0.02 1.400 0.179 3.291 0.188 11.4 12.2
400 ATCA-ADFS J044914-530221 4:49:14.3 -53:02:21.6 0.02 0.01 3.942 0.046 12.607 0.201 11.6 5.4 74.7
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Table 15. Continuation of the source catalogue

No Source name RA DEC �RA �DEC Speak �Speak Stotal �Stotal ✓ma j ✓min PA
h:m:s.s d:m:s.s 00 00 mJy mJy mJy mJy 00 00 �

beam�1 beam�1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

401 ATCA-ADFS J044914-530716 4:49:14.7 -53:07:16.9 0.00 0.00 0.560 0.046 0.710 0.047
402 ATCA-ADFS J044917-532530 4:49:17.4 -53:25:30.5 0.00 0.00 0.215 0.034 0.247 0.034
403 ATCA-ADFS J044920-531748 4:49:20.2 -53:17:48.7 0.04 0.06 0.123 0.029 0.263 0.031 7.7 3.4 -18.5
404 ATCA-ADFS J044921-524710 4:49:21.0 -52:47:10.6 0.00 0.00 1.517 0.179 1.646 0.179
405 ATCA-ADFS J044921-531144 4:49:21.1 -53:11:44.6 0.01 0.01 0.178 0.039 0.257 0.039 6.7 -12.8
406 ATCA-ADFS J044922-532122 4:49:22.3 -53:21:22.4 0.01 0.01 0.545 0.034 0.234 0.034
407 ATCA-ADFS J044922-532500 4:49:22.7 -53:25:00.3 0.00 0.00 0.208 0.033 0.266 0.033
408 ATCA-ADFS J044923-532431 4:49:23.1 -53:24:31.0 0.04 0.06 0.116 0.033 0.224 0.034 9.1 -34.0
409 ATCA-ADFS J044924-531127 4:49:24.3 -53:11:27.4 0.00 0.00 0.412 0.035 0.578 0.036
410† ATCA-ADFS J044928-532600 4:49:28.3 -53:26:00.0 0.08 0.09 0.146 0.036 0.301 0.038 6.3 5.0 -67.9
411† ATCA-ADFS J044928-532610 4:49:28.7 -53:26:10.1 0.00 0.00 0.215 0.036 0.271 0.036
412 ATCA-ADFS J044928-532045 4:49:28.8 -53:20:45.6 0.00 0.00 0.349 0.034 0.433 0.034
413 ATCA-ADFS J044929-530814 4:49:29.7 -53:08:14.0 0.06 0.09 0.179 0.044 0.576 0.045 11.7 4.9 37.9
414 ATCA-ADFS J044930-531646 4:49:30.6 -53:16:46.8 0.00 0.00 0.546 0.034 0.705 0.034
415 ATCA-ADFS J044931-532335 4:49:31.5 -53:23:35.3 0.00 0.00 0.347 0.034 0.417 0.034
416 ATCA-ADFS J044932-533156 4:49:32.8 -53:31:56.9 0.06 0.02 0.229 0.046 0.461 0.049 8.4 3.2 81.3
417 ATCA-ADFS J044933-525830 4:49:33.5 -52:58:30.1 0.01 0.01 0.511 0.074 0.903 0.077 7.2 9.2
418 ATCA-ADFS J044935-524810 4:49:35.6 -52:48:10.2 0.00 0.00 2.011 0.179 2.896 0.181 6.4 13.0
419 ATCA-ADFS J044939-533420 4:49:39.3 -53:34:20.2 0.00 0.00 0.309 0.055 0.409 0.055
420 ATCA-ADFS J044944-532145 4:49:44.6 -53:21:45.7 1.26 1.86 0.500 0.046 0.320 0.046
421 ATCA-ADFS J044947-530555 4:49:47.9 -53:05:55.7 0.00 0.00 0.379 0.058 0.617 0.058 3.6 76.4
422 ATCA-ADFS J044950-532540 4:49:51.0 -53:25:40.2 0.01 0.01 0.234 0.045 0.347 0.046
423 ATCA-ADFS J044951-530621 4:49:51.3 -53:06:21.2 0.00 0.00 0.545 0.066 0.764 0.066
424 ATCA-ADFS J044952-534449 4:49:52.2 -53:44:49.8 0.00 0.01 1.030 0.112 1.697 0.114 7.8 -23.0
425† ATCA-ADFS J044952-531205 4:49:52.4 -53:12:05.6 0.00 0.00 0.831 0.054 0.369 0.054
426 ATCA-ADFS J044952-533619 4:49:52.7 -53:36:19.2 0.00 8.84 0.491 0.069 0.370 0.069
427 ATCA-ADFS J044953-525737 4:49:53.8 -52:57:38.0 0.00 0.00 3.114 0.106 4.553 0.112
428† ATCA-ADFS J044955-531159 4:49:55.0 -53:11:59.4 0.00 0.00 0.339 0.049 0.485 0.049
429 ATCA-ADFS J044956-532432 4:49:56.7 -53:24:32.4 0.12 0.12 0.525 0.050 3.381 0.070 13.1 12.6 62.9
430 ATCA-ADFS J044956-532430 4:49:56.7 -53:24:30.1 0.01 0.12 0.375 0.050 5.870 0.056 30.8 14.2 -49.7
431 ATCA-ADFS J044958-531509 4:49:58.4 -53:15:09.6 0.09 0.02 0.206 0.049 0.509 0.051 10.9 3.4 79.6
432 ATCA-ADFS J045005-533411 4:50:05.4 -53:34:11.0 0.00 0.00 2.742 0.067 4.189 0.075
433 ATCA-ADFS J045011-531753 4:50:11.4 -53:17:53.7 0.00 0.00 0.859 0.046 1.160 0.047
434† ATCA-ADFS J045013-532517 4:50:13.9 -53:25:17.1 0.03 0.09 0.659 0.050 3.225 0.073 15.0 7.1 4.1
435 ATCA-ADFS J045014-531207 4:50:14.3 -53:12:07.0 0.00 0.00 0.379 0.050 0.438 0.050
43†6 ATCA-ADFS J045015-532459 4:50:15.6 -53:24:59.9 0.01 0.03 0.860 0.050 3.274 0.067 13.0 5.6 15.8
437 ATCA-ADFS J045016-531549 4:50:16.1 -53:15:49.3 0.00 0.00 1.638 0.050 2.503 0.056
438 ATCA-ADFS J045016-532748 4:50:16.2 -53:27:48.3 0.00 0.00 0.972 0.050 2.177 0.055 9.0 3.6 -65.9
439 ATCA-ADFS J045024-525706 4:50:24.6 -52:57:06.6 0.09 0.30 0.559 0.106 3.073 0.125 16.0 7.8 13.8
440 ATCA-ADFS J045024-534620 4:50:24.7 -53:46:20.4 0.01 0.01 2.627 0.254 9.443 0.272 10.7 7.1 -33.8
441 ATCA-ADFS J045025-524653 4:50:25.1 -52:46:53.0 0.83 0.30 0.930 0.212 6.239 0.257 16.7 10.2 -47.4
442 ATCA-ADFS J045025-524630 4:50:25.7 -52:46:30.4 0.01 0.03 1.705 0.212 2.204 0.215
443 ATCA-ADFS J045026-534552 4:50:26.6 -53:45:52.4 0.02 0.01 0.702 0.112 1.105 0.117 6.5 -59.1
444 ATCA-ADFS J045027-535220 4:50:27.2 -53:52:20.5 0.01 0.02 2.002 0.254 2.206 0.265
445 ATCA-ADFS J045028-531005 4:50:28.1 -53:10:05.2 0.00 0.00 1.071 0.089 1.485 0.091
446 ATCA-ADFS J045029-534648 4:50:29.0 -53:46:48.1 0.00 0.00 23.575 0.519 45.099 0.628 8.4 -27.9
447 ATCA-ADFS J045032-531844 4:50:32.8 -53:18:45.0 0.00 0.00 8.557 0.079 13.048 0.108
448 ATCA-ADFS J045048-534600 4:50:48.9 -53:46:00.0 0.00 0.00 13.588 0.519 26.833 0.545 8.5 -35.9
449 ATCA-ADFS J045049-524627 4:50:49.8 -52:46:27.9 0.03 0.13 2.529 0.418 5.703 0.460 9.8 9.4
450 ATCA-ADFS J045051-531455 4:50:51.1 -53:14:55.4 0.00 0.00 0.519 0.086 0.867 0.087 3.9 -71.9
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Table 16. Continuation of the source catalogue

No Source name RA DEC �RA �DEC Speak �Speak Stotal �Stotal ✓ma j ✓min PA
h:m:s.s d:m:s.s 00 00 mJy mJy mJy mJy 00 00 �

beam�1 beam�1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

451 ATCA-ADFS J045052-531120 4:50:52.7 -53:11:20.5 0.01 0.01 0.566 0.086 0.820 0.086
452 ATCA-ADFS J045055-531247 4:50:55.6 -53:12:47.5 0.00 0.00 0.823 0.104 0.578 0.104
453 ATCA-ADFS J045102-524726 4:51:02.5 -52:47:26.6 0.00 0.00 3.847 0.418 2.931 0.420
454 ATCA-ADFS J045105-524135 4:51:05.6 -52:41:35.2 1.03 2.02 11.977 1.313 12.258 1.329
455 ATCA-ADFS J045105-524011 4:51:05.8 -52:40:11.7 0.00 0.00 12.550 1.313 10.169 1.327
456 ATCA-ADFS J045107-535122 4:51:07.5 -53:51:22.1 0.03 0.02 3.763 0.519 5.997 0.570 3.0 -66.1
457 ATCA-ADFS J045108-524056 4:51:08.2 -52:40:56.1 0.01 0.02 9.444 1.313 14.216 1.359 8.5 8.2
458 ATCA-ADFS J045111-531005 4:51:11.7 -53:10:05.0 0.00 0.00 27.098 0.089 51.014 0.301 4.3 68.1
459 ATCA-ADFS J045112-525420 4:51:12.5 -52:54:20.8 0.05 0.19 1.005 0.185 4.226 0.216 14.4 5.7 5.2
460 ATCA-ADFS J045112-530950 4:51:12.8 -53:09:50.4 0.01 0.02 0.580 0.089 0.906 0.093 6.5 -28.2
461 ATCA-ADFS J045113-524901 4:51:13.5 -52:49:01.6 0.09 0.22 2.282 0.418 8.169 0.505 13.1 4.7 -1.8
462 ATCA-ADFS J045114-535300 4:51:14.6 -53:53:00.2 0.00 0.00 8.905 0.519 4.259 0.531
463 ATCA-ADFS J045115-525405 4:51:15.1 -52:54:05.1 0.10 0.04 1.235 0.185 2.346 0.219 6.8 4.0 -87.7
464 ATCA-ADFS J045115-535313 4:51:15.7 -53:53:13.4 0.23 0.26 8.194 0.519 4.318 0.520
465 ATCA-ADFS J045116-535237 4:51:16.4 -53:52:37.1 2.77 0.15 3.641 0.519 7.347 0.673 9.1 2.7 -86.2
466 ATCA-ADFS J045117-534428 4:51:17.3 -53:44:28.2 0.02 0.01 1.370 0.205 1.558 0.213
467 ATCA-ADFS J045118-524727 4:51:18.2 -52:47:27.1 0.03 0.02 7.084 1.169 17.688 1.225 9.7 3.9 48.2
468 ATCA-ADFS J045118-535307 4:51:18.6 -53:53:07.8 0.01 0.01 8.692 0.519 9.380 0.536
469 ATCA-ADFS J045119-535211 4:51:19.5 -53:52:11.2 0.05 0.38 3.267 0.519 7.113 0.640 12.6 -7.6
470 ATCA-ADFS J045128-532220 4:51:28.7 -53:22:20.5 0.03 0.03 3.748 0.168 13.261 0.322 8.8 8.6 82.4
471 ATCA-ADFS J045136-524710 4:51:36.6 -52:47:10.4 0.00 0.00 6.921 1.169 23.498 1.434 12.0 5.8 89.0
472 ATCA-ADFS J045138-524650 4:51:39.0 -52:46:50.6 0.01 0.01 9.279 1.169 13.088 1.207
473 ATCA-ADFS J045149-524645 4:51:49.2 -52:46:45.4 0.25 2.63 6.273 1.169 26.447 1.436 17.0 3.8 13.4
474 ATCA-ADFS J045149-530138 4:51:49.8 -53:01:38.8 0.05 0.12 2.542 0.283 8.676 0.353 11.4 5.7 2.2
475 ATCA-ADFS J045149-524827 4:51:49.8 -52:48:27.4 0.17 0.26 5.931 1.169 17.767 1.439 10.6 4.8 26.3
476 ATCA-ADFS J045149-524617 4:51:49.9 -52:46:17.8 1.33 0.12 6.887 1.169 27.034 1.273 13.0 6.7 85.5
477 ATCA-ADFS J045150-524635 4:51:50.5 -52:46:35.7 0.00 0.00 17.132 1.169 8.993 1.181
478 ATCA-ADFS J045150-525038 4:51:50.5 -52:50:38.3 0.11 0.36 5.820 1.169 16.062 1.370 13.0 4.6
479 ATCA-ADFS J045151-524633 4:51:51.5 -52:46:33.1 0.04 0.01 8.867 1.169 10.264 1.179
480 ATCA-ADFS J045151-524724 4:51:51.6 -52:47:24.1 0.00 0.00 11.761 1.169 14.152 1.195
481 ATCA-ADFS J045151-524646 4:51:51.7 -52:46:46.7 0.03 0.26 8.903 1.169 15.664 1.458 10.2 -6.6
482 ATCA-ADFS J045151-532021 4:51:51.7 -53:20:21.4 0.01 0.01 1.850 0.168 3.386 0.177 6.6 3.4 -63.1
483 ATCA-ADFS J045151-524842 4:51:51.7 -52:48:42.4 0.04 0.10 7.938 1.169 25.015 1.386 11.9 4.1 5.2
484 ATCA-ADFS J045151-525438 4:51:51.9 -52:54:38.7 0.01 0.00 4.121 0.485 4.216 0.486
485 ATCA-ADFS J045152-525502 4:51:52.5 -52:55:02.5 0.29 0.19 2.875 0.485 12.804 0.601 12.2 8.3 14.2
486 ATCA-ADFS J045154-524724 4:51:54.9 -52:47:24.4 0.14 0.65 9.557 1.169 16.203 1.417 9.7 -24.5
487 ATCA-ADFS J045155-530311 4:51:55.2 -53:03:11.5 0.08 0.03 2.268 0.283 5.249 0.348 8.7 4.1 67.5
488 ATCA-ADFS J045156-534525 4:51:56.6 -53:45:25.5 0.05 0.03 3.238 0.512 6.335 0.557 5.0 -78.6
489 ATCA-ADFS J045156-525400 4:51:56.9 -52:54:00.7 0.08 0.28 3.240 0.485 8.096 0.629 11.2 -1.7
490 ATCA-ADFS J045158-534542 4:51:58.5 -53:45:42.8 1.98 1.28 2.648 0.512 9.577 0.777 13.8 5.1 62.5
491 ATCA-ADFS J045159-524900 4:51:59.1 -52:49:00.2 0.00 0.00 10.178 1.169 14.682 1.170
492 ATCA-ADFS J045159-525648 4:51:59.8 -52:56:48.3 0.04 0.40 2.870 0.485 10.141 0.596 17.8 -4.5
493 ATCA-ADFS J045159-525543 4:51:59.9 -52:55:43.6 0.01 0.01 3.313 0.485 4.881 0.506 2.2 58.6
494 ATCA-ADFS J040520-524812 4:052:0.1 -52:48:12.9 0.06 0.13 7.704 1.169 18.748 1.324 11.0 24.1
495 ATCA-ADFS J040520-531317 4:052:0.3 -53:13:17.5 0.12 0.03 1.227 0.199 2.815 0.219 11.1 2.3 74.3
496 ATCA-ADFS J040520-533002 4:052:0.6 -53:30:02.9 0.02 0.02 1.322 0.194 2.057 0.204
497 ATCA-ADFS J040520-530852 4:052:0.6 -53:08:52.2 0.00 0.00 2.270 0.199 1.585 0.199
498 ATCA-ADFS J040520-524942 4:052:0.7 -52:49:43.0 0.01 0.04 8.448 1.169 12.124 1.244 6.6 -2.9
499 ATCA-ADFS J040520-525530 4:052:0.9 -52:55:30.7 0.01 0.02 3.826 0.485 5.604 0.491
500 ATCA-ADFS J045201-524832 4:52:01.8 -52:48:32.6 0.19 0.24 6.804 1.169 13.808 1.309 8.8 35.2
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Table 17. Continuation of the source catalogue

No Source name RA DEC �RA �DEC Speak �Speak Stotal �Stotal ✓ma j ✓min PA
h:m:s.s d:m:s.s 00 00 mJy mJy mJy mJy 00 00 �

beam�1 beam�1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

501 ATCA-ADFS J045202-524914 4:52:02.2 -52:49:14.8 0.02 0.03 7.654 1.169 18.004 1.257 7.2 5.4 3.1
502 ATCA-ADFS J045203-525035 4:52:03.1 -52:50:35.2 0.00 0.00 15.911 1.169 9.492 1.184
503 ATCA-ADFS J045203-525347 4:52:03.2 -52:53:47.6 0.04 0.10 3.673 0.485 5.336 0.556 7.8 22.8
504 ATCA-ADFS J045203-525647 4:52:03.7 -52:56:47.0 0.01 0.02 3.972 0.485 4.655 0.504
505 ATCA-ADFS J045203-525429 4:52:03.9 -52:54:29.1 0.32 0.46 14.003 0.485 6.400 0.525
506 ATCA-ADFS J045203-524959 4:52:04.0 -52:49:59.9 0.00 0.00 14.626 1.169 19.753 1.254 18.4 -0.1
507 ATCA-ADFS J045204-534456 4:52:04.4 -53:44:56.3 0.00 0.00 6.034 0.512 4.865 0.523
508 ATCA-ADFS J045204-533750 4:52:04.7 -53:37:50.4 0.00 0.00 2.550 0.264 2.467 0.264
509 ATCA-ADFS J045205-525442 4:52:05.3 -52:54:42.0 0.05 0.04 3.959 0.485 5.402 0.572 6.8 48.9
510 ATCA-ADFS J045205-525422 4:52:05.4 -52:54:22.2 0.41 0.03 2.996 0.485 9.247 0.515 11.0 5.5 -77.8
511 ATCA-ADFS J045205-530208 4:52:05.8 -53:02:09.0 0.00 0.00 2.563 0.283 1.913 0.289
512 ATCA-ADFS J045205-534448 4:52:05.9 -53:44:48.4 0.01 0.04 3.722 0.512 6.822 0.535 11.3 9.2
513 ATCA-ADFS J045205-533724 4:52:05.9 -53:37:24.5 0.12 0.41 1.728 0.264 3.676 0.308 13.6 -21.9
514 ATCA-ADFS J045206-534418 4:52:06.7 -53:44:18.2 0.04 0.03 4.627 0.512 8.802 0.539 8.2 37.8
515 ATCA-ADFS J045206-534449 4:52:06.8 -53:44:49.5 0.01 0.16 3.419 0.512 5.640 0.549 11.6 3.9
516 ATCA-ADFS J045206-533804 4:52:07.0 -53:38:04.0 0.00 0.00 3.112 0.264 1.544 0.267
517 ATCA-ADFS J045207-532938 4:52:07.3 -53:29:38.5 0.39 0.03 1.101 0.194 2.354 0.223 12.0 -88.5
518 ATCA-ADFS J045207-531730 4:52:07.5 -53:17:30.1 0.00 0.00 5.073 0.168 18.320 0.209 10.7 7.2 -57.9
519 ATCA-ADFS J045208-534433 4:52:08.3 -53:44:33.3 0.09 0.51 3.130 0.512 9.209 0.654 13.8 -19.0
520 ATCA-ADFS J045208-531740 4:52:08.5 -53:17:41.0 0.02 0.01 3.071 0.579 10.839 0.593 10.4 7.3 -87.1
521 ATCA-ADFS J045208-533736 4:52:08.6 -53:37:36.8 0.03 0.02 1.982 0.264 3.515 0.274 7.8 38.9
522 ATCA-ADFS J045209-534512 4:52:09.4 -53:45:12.3 2.19 4.54 7.233 0.512 4.924 0.540
523 ATCA-ADFS J045209-534441 4:52:09.5 -53:44:41.9 0.66 1.02 3.376 0.512 9.260 0.705 15.2 35.0
524 ATCA-ADFS J045227-530208 4:52:27.4 -53:02:08.5 0.03 0.06 5.782 0.916 10.416 0.996 7.2 -17.6
525 ATCA-ADFS J045227-534005 4:52:27.8 -53:40:05.5 0.05 0.06 11.733 1.362 37.255 1.712 10.5 5.8 -38.8
526 ATCA-ADFS J045229-525651 4:52:29.8 -52:56:51.2 0.10 0.07 8.503 1.502 18.082 1.666 7.7 4.0 57.5
527 ATCA-ADFS J045232-530216 4:52:32.4 -53:02:16.4 0.02 0.01 7.840 0.916 9.879 0.941
528 ATCA-ADFS J045236-530120 4:52:36.7 -53:01:20.2 0.00 0.00 9.904 0.916 11.882 0.920
529 ATCA-ADFS J045239-530219 4:52:39.0 -53:02:19.5 0.20 0.07 6.015 0.916 8.138 1.123 6.3 75.7
530 ATCA-ADFS J045240-531548 4:52:40.6 -53:15:48.7 0.02 0.02 5.478 0.672 18.272 0.761 9.7 7.0 39.5
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