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Density functional theory calculations are used to investigate the formation and diffusion of tin-

vacancy pairs (SnV) in germanium (Ge). Depending upon the Fermi energy, SnV pairs can form in

neutral, singly negative, or doubly negative charged states. The activation energies of diffusion,

also as function of the Fermi energy, are calculated to lie between 2.48-3.65 eV, in agreement with

and providing an interpretation of available experimental work. VC 2011 American Institute of
Physics. [doi:10.1063/1.3653472]

Replacing native oxides with high-k dielectrics, com-

bined with the requirement for higher mobility of holes and

electrons, have renewed the interest of the microelectronics

community in germanium (Ge).1,2 Previous investigations

demonstrated that the mobilities of holes and electrons can

be increased by the introduction of strain.3 Recent studies

propose the fabrication of strained-Ge (sGe) complementary

metal-oxide-semiconductor (CMOS) with germanium-tin

(Ge1�xSnx) alloys as stressors.4

Studies on Ge1�xSnx alloys are also motivated by their

advantageous optical properties; however, there are still

issues that need to be addressed.5 Furthermore, vacancies

generated in Ge1�xSnx alloys grown at low temperatures can

result in SnV pairs that reduce the local strain around the Sn

atom. Sn-V interactions and their diffusion properties have

been previously investigated using density functional theory

(DFT) but only for neutral defects and defect clusters.5,6 As

it is possible for Sn atoms to diffuse from the Ge1�xSnx alloy

into doped-Ge layers, an understanding of Sn-diffusion in

both n-type and p-type Ge is important.

Here, we use a generalized gradient approximation and

Hubbard U (GGAþU) approach to efficiently correct the

band gap of Ge. The aim is to study the formation energies

and activation energies for diffusion of SnV pairs in Ge over

a range of Fermi energies.

Defect energy calculations were performed using DFT

as implemented in the Vienna ab-initio simulation package

(VASP).7 Electron exchange and correlation were described

using the Perdew-Burke-Ernzherof (PBE) functional.8 For

Ge and Sn, the electrons occupying the [Ar]3d10 and

[Kr]4d10 states, respectively, were treated as core electrons

and were approximated by a pseudopotential generated

according to the projector augmented wave (PAW) method,

whereas the 4s24p2 and 5s25p2 states were treated as valence

electrons.9 4� 4� 4 k-points grids were generated according

to the Monkhorst-Pack scheme in a 64 atom supercell.10 The

kinetic energy cut-off was set to 400 eV. Self-consistency in

the energy was achieved by restricting the change in total

energy to no more than 1� 10�5 eV and the forces on the

atoms were relaxed to below 0.001 eV/Å. The underestima-

tion of the band gap was corrected by employing a GGAþU
approach.11 For an on-site Coulomb parameter, U¼ 0 eV

and an on-site exchange parameter, J¼ 3.33 eV, we obtained

a band gap of 0.74 eV (i.e., equal to the experimental band

gap at 0 K).

Diffusion barriers were calculated using the climbing

image nudged elastic band method.12 The migration energy

corresponds to the barrier with the highest energy along the

minimum energy path. Calculating migration energies

involves the subtraction of the images’ energies from each

other and for charged systems, this leads to the cancellation

of spurious charge-interactions.

The formation energies of the neutral and charged SnV
pairs in Ge were calculated using13

DHD;qðle; laÞ ¼ ED;q � EH þ
X

a

nala þ qle; (1)

where ED,q is the total energy of the defective cell with a

charge q and EH is the total energy of the perfect Ge cell. na

represents the number of atoms added or removed to the de-

fective cell and la corresponds to their chemical potentials.

le is the Fermi energy and is measured from the top of the

valence band maximum (EVBM) and usually has values lying

in the band gap: EVBM�le�EVBMþEg.

The defect-defect and defect-background interactions

were corrected using the Makov and Payne14 scheme

DE ¼ q2am

2eL
þ 2pqQ

3eL3
; (2)

where am is the diamond structure Madelung constant, e is

the dielectric constant of Ge, and L is the defect-defect sepa-

ration. The second term in Eq. (2) leads to a small contribu-

tion (�10�5–10�6 eV). The shift in the electrostatic

potentials between the perfect cell and the defective Ge cell

is corrected by the potential alignment correction method13

by adding DEpa¼ q DVpa, where DVpa is the average electro-

static potential difference between the defective and perfect

Ge supercells.

V are the dominant intrinsic defect species in Ge, with

previous work establishing their interaction with impurity

atoms (D) to form DV pairs and larger clusters.15,16 The dif-

fusion of Sn in Ge is mainly mediated by V. The structure of

a)Author to whom correspondence should be addressed. Electronic mail:
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near neighbor SnV pairs can be reasonably described by two

geometries: (a) the formal vacancy-substitutional Sn atom

configuration and (b) the split-V configuration.17 In the latter,

the Sn atom is positioned in between two semi-vacancies.17

For all SnV pairs, it was calculated that the split-V configura-

tion is energetically favourable. Configurations beyond near

neighbor are higher in energy.

It is important to identify the charge states of the SnV
pairs for different doping conditions. Fig. 1 presents the for-

mation energies of the SnV pairs, with respect to the Fermi

energy, for various charge states. From Fig. 1, it is deduced

that the SnV pairs are charge neutral up to a Fermi energy of

0.223 eV, above which the singly negatively charged state

becomes dominant. Finally, at a Fermi energy of 0.587 eV,

the doubly negatively charged pairs are most stable. Positive

charge states of this cluster are always significantly less

stable.

Having established the dominant charge states of the

SnV pairs, their diffusion behavior merits investigation. SnV
pairs will diffuse via the ring mechanism. Beginning with

the formal V-substitutional configuration, the first step is for

the Sn atom to move across to occupy the initially vacant lat-

tice site, thereby progressing in the lattice by one site. The V
then moves around the Sn atom in a ring and thus approaches

the Sn atom from the other side, ready to exchange positions

again and progresses the Sn atom by another site. This pro-

cess is illustrated at the top of Fig. 2 for the SnV pair pro-

jected onto the (111) surface of Ge. Fig. 2 presents the

relative energies along the ring for neutral and singly and

doubly negatively charged SnV pairs. From this figure, the

migration energy barrier, Hm
SnV , is defined as the largest rela-

tive energy barrier during the ring cycle. The activation en-

thalpy for diffusion, Qa, is calculated by using the following

definition:6

Qa ¼ Hf
V þ DE1

SnV þ Hm
SnV ; (3)

where Hf
V is the formation enthalpy of an isolated V and

DE1
SnV is the binding enthalpy of the SnV cluster.

n-type doping will increase the concentration of elec-

trons in the system, causing the Fermi level to shift to higher

energies and p-type doping, to shift to lower energies. The

formation energies of charged V depends upon the position

of the Fermi level (i.e., different charged states dominate at

different values of the Fermi level). This influences Qa that

depends upon the formation energies of the V. It is, therefore,

necessary to study Qa as a function of the Fermi energy.

Recent studies on simultaneous self- and dopant diffu-

sion reveal the doubly negative charge state of V in Ge.1,15

To investigate the dependence of Qa on the doping levels,

we studied three regions within the band gap. Region I lies

between 0 and 0.223 eV, here the binding and migration

energies of a neutral SnV pairs are used in Eq. (4), the V for-

mation energy as a function of the Fermi energy is taken

from our previous study (Fig. 3).11 Region II which extends

from 0.223 to 0.587 eV, where the singly negatively charged

SnV pair prevails, the binding and migration energies of a

singly negatively SnV pair were used along with the vacan-

cies formation energies in that region of the Fermi energy

(Fig. 3). Finally, region III extends from 0.587 eV to the

edge of the conduction band minimum, where we used the

values of the binding and migration energies of a doubly

negatively charged SnV pair (Fig. 3).

This significant variation in Qa with respect to the Fermi

energy can explain the many differing experimental results

FIG. 1. (Color online) The formation energies of the SnV pairs, with respect

to the Fermi Energy, using the GGAþU approach.

FIG. 2. (Color online) Diffusion path of the SnV using the NEB technique

and the GGAþU approach. On the top of the figure is the ring mechanism of

diffusion for the SnV pair projected onto the (111) surface of Ge.

FIG. 3. (Color online) The activation energy’s dependence on the Fermi

energy.
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previously obtained. Overall the range of the calculated Qa is

consistent with the experimentally determined values.18–20

The SIMS studies of Kringøj and Elliman18 and Friesel

et al.19 provide diffusion activation enthalpies of 3.05 eV

and 3.26 eV, respectively, for Sn diffusion in Ge. The radio-

tracer study of Riihimäki et al.20 yields 2.90 eV. From Fig. 3,

we can see that for the intrinsic case, when the Fermi energy

is close to the middle of the band gap (i.e., EF� 0.37 eV), we

obtain a value of about 3.21 eV for the activation energy,

which is in a good agreement with the SIMS results. Shifting

the Fermi level below the middle of the band gap (i.e., p-

type doping the material) results in an increase in Qa. This

trend is consistent with the results of Riihimäki et al.20 who

measured the activation energy of Sn diffusion in intrinsic

Ge to be 2.90 eV and in p-type doped Ge to be 3.33 eV.

In summary, SnV pairs are most stable as neutral for

Fermi energy up to 0.223 eV, singly negatively charged

defects for Fermi energy in-between 0.223 eV and 0.587 eV

and doubly negatively charged defects for Fermi energy

exceeding 0.587 eV. Positive charged states are not as stable.

Depending upon the Fermi energy, we calculated that the

activation energies for diffusion are in the range 2.48-

3.65 eV, in agreement with available experimental data.

This publication was based on research supported by

King Abdullah University for Science and Technology

(KAUST). Computing resources were provided by the HPC
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