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Abstract. The classical bag-of-word models fail to capture contextual
associations between words. We propose to investigate the “high-order
pure dependence” among a number of words forming a semantic entity,
i.e., the high-order dependence that cannot be reduced to the random
coincidence of lower-order dependence. We believe that identifying these
high-order pure dependence patterns will lead to a better representation
of documents. We first present two formal definitions of pure dependence:
Unconditional Pure Dependence (UPD) and Conditional Pure Depen-
dence (CPD). The decision on UPD or CPD, however, is a NP-hard
problem. We hence prove a series of sufficient criteria that entail UPD
and CPD, within the well-principled Information Geometry (IG) frame-
work, leading to a more feasible UPD/CPD identification procedure. We
further develop novel methods to extract word patterns with high-order
pure dependence, which can then be used to extend the original unigram
document models. Our methods are evaluated in the context of query ex-
pansion. Compared with the original unigram model and its extensions
with term associations derived from constant n-grams and Apriori asso-
ciation rule mining, our IG-based methods have proved mathematically
more rigorous and empirically more effective.

Keywords: Language Model, Word Association, High-order Pure De-
pendence, Information Geometry, Query Expansion, Log likelihood Ratio
Test.

1 Introduction

The classical bag of words models, such as the Vector Space Model (VSM) [18]
and unigram language model (LM) [16], represent a document as a weighted vec-
tor or probabilistic distribution of words. Although it has been proved useful in
practice, there is a major limitation: the contextual information between words,
which is the key to form meaningful semantic entities, is missing. In many cases,
the semantic entities are not necessarily limited to syntactically valid phrases or
named entities. More generally they can be high-order association (also referred
as high-order dependence) patterns, which are often beyond pair-wise relations,
e.g. {“climate”, “conference”, “Copenhagen”}.

G. Amati and F. Crestani (Eds.): ICTIR 2011, LNCS 6931, pp. 64–76, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Recently, there have been attempts to extract term relationships, e.g., through
the Apriori method in [20], co-occurrence analysis [19], and Word-net relations
[13]. In this paper, we propose to consider high-order pure dependence, i.e., the
high-order dependence that cannot be reduced to the random coincidence of
lower-order dependence. Usually these dependence patterns cannot be simply
judged by co-occurrence frequencies. For example, the words a, the and of al-
most co-occur in every English article. However, we cannot say that they form a
pattern representing a semantic entity. The high frequency of their co-occurrence
can be explained as some kind of “coincidence”, because each of them or pair-
wise combinations has a high frequency independently. On the other hand, the
co-occurrence of the words “climate”, “conference” and “Copenhagen” implies
a un-separable high-level semantic entity, which can not be fully explained as
the random coincidence of, e.g., the co-occurrence of “Copenhagen” and “confer-
ence” (which can be any other conferences in Copenhagen) and the occurrence
of “climate”. We consider a high-order dependence among words “pure”, if and
only if the joint probability distribution of these words is significantly different
from the product w.r.t any possible decomposition into lower-order joint distri-
butions or marginal distributions. In the language of graphical model, it requires
that the joint distribution can not be factorized.

Formally, given a set of binary random variables X = {X1, . . . , Xn}, where
Xi denotes the occurrence (Xi = 1) or absence (Xi = 0) of the i-th word. Let
xi ∈ {0, 1} denote the value of Xi. Let p(x), x = [x1, x2, . . . , xn]T , be the joint
probability distribution over X. Then the n-order pure dependence over X can
be defined as follows.

Definition 1. (UPD): X = {X1, . . . , Xn} is of n-order Unconditional Pure
Dependence (UPD), iff it can NOT be unconditionally factorized, i.e., there
does NOT exist a k-partition {C1, C2, . . . , Ck} of X, k > 1, such that p(x) =
p(c1) · p(c2) · · · p(ck), where p(ci), i = 1, . . . , k, is the joint distribution over Ci.

In practice, it is also useful to strengthen our definition of pure dependence in
order to eliminate conditional random coincidences. This leads to the following
definition of conditional pure dependence.

Definition 2. (CPD): X = {X1, . . . , Xn} has n-order Conditional Pure Depen-
dence (CPD), iff it can NOT be conditionally factorized, i.e., there does NOT
exist C0 ⊂ X and a k-partition {C1, C2, . . . , Ck} of V = X−C0, k > 1, such that
p(v|c0) = p(c1|c0) · p(c2|c0) · · · p(ck|c0), where p(v|c0) is the conditional joint
distribution over V given C0, and p(ci|c0), i = 1, 2, . . . , k, is the conditional joint
distribution over Ci given C0.

Remark 1. Definition 2 permits an empty C0. Hence CPD entails UPD.

To our best knowledge, there has not been any efficient method to characterize
the above high-order pure dependence in both sufficient and necessary senses. For
a given partition {C1, C2, . . . , Ck} of X, the method in [21] and [3] can efficiently
decide whether p(x) = p(c1) · p(c2) · · · p(ck). However, it is an exponential task
if we directly test all possible partitions of X and identify the n-order UPD. In
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a configuration of graphical model, it can be shown that the decision problem
of UPD or CPD is NP-hard [4].

Regarding the issue of efficiency, one may develop heuristics based on pair-wise
dependence measures, e.g., covariance and correlation coefficient. Nonetheless,
they usually suffer from the ad-hoc nature in tuning the threshold to decide
significant pure dependence. Chi-square statistic can avoid the ad-hoc threshold,
but it is indirect in the high-order case. Association rule mining can also be used
to find highly frequent word associations. However, it does not guarantee the
resulting associations are pure dependence. On the other hand, the complete n-
gram method is straightforward, but it often leads to a large amount of redundant
and noisy information.

In this paper, we propose to use Information Geometry (IG) [2], which pro-
vides relevant theoretical insights and useful tools, to tackle these difficulties in a
consistent framework. IG studies joint distribution by way of differential geome-
try. A space of probability distributions is considered as a differentiable manifold,
each distribution as a point on the manifold with the parameters of the model as
coordinates. There are different kinds of coordinate systems to fit the manifold
(detailed in Section 3), and it turns out that the so called mixed coordinate
systems with orthogonality are especially useful for our purpose. Based on the
coordinate orthogonality, we can derive a set of statistics and methods for an-
alyzing word dependence patterns by decomposing the dependence into various
orders. As a result, the 2nd-order, 3rd-order and higher-order pure dependence
can be singled out and identified by the log likelihood ratio test.

The main theoretical contributions of this paper are that we propose a series
of theoretically proven sufficient criteria for identifying UPD or CPD, respec-
tively, and the corresponding efficient implementations that use the log likeli-
hood test to the θ-coordinate of IG. The proposed IG-based methods can control
confidence level theoretically. Then we apply the extracted high-order pure de-
pendence (UPD or CPD) patterns in query expansion by incorporating then into
the unigram document representation in the Relevance Model [9].

2 Related Work

This paper focuses on effective extraction and utilization of high-order pure
word dependence patterns in the context of information retrieval (IR). There
have been studies on incorporating dependence in language models. For example,
Niesler et al. [15] presented a variable-length category-based n-gram language
model, and Zhang et al. [23] proposed a framework for combining n-grams in
different orders. Gao et al. presented a dependence language model to incorpo-
rate grammatical linkages [5]. The Markov Random Field (MRF) model captures
short and long range term dependencies [11][12]. Song et al. [20] presented meth-
ods generating word associations based on association rule mining. Many en-
hancements to the classical bag-of-word representation of documents have been
introduced, e.g., via the use of second-order co-occurrence information to build
context vectors for word sense discrimination [19] and the combination of text
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data with external knowledge (Wordnet) [13]. However, none of them explicitly
considered high-order pure dependence.

The IG is systematically introduced by Amari [2] and has been successfully
applied in the fields such as the study of neural spikes [14]. Based on IG, Hofmann
[6] defined a Fisher kernel for learning document similarities by Support Vector
Machines (SVM). However, the issue of high-order pure dependence was not
considered in his work. In general, the application of IG in text processing tasks
is not yet widely studied.

3 Preliminaries of Information Geometry

To illustrate our theoretical results and the corresponding algorithmic frame-
work, it is necessary to explain the relevant background of IG [1][2][17][8].

3.1 Coordinates of Probability Distributions

In IG, a family of probability distributions is considered as a differentiable man-
ifold with certain coordinate system. In the case of binary random variables,
we use three basic coordinate systems, namely p-coordinates, η-coordinates, and
θ-coordinates [14]. To be specific, if we define an assignment over X, denoted
by aX =< a1, a2, . . . , an > (or aX = a1a2 . . . an in short), which determines a
certain value of x by assigning ai ∈ {0, 1} to Xi, 1 ≤ i ≤ n, then the coordinate
systems of IG can be defined as follows:

1. p-coordinates:

paX
= pa1a2...an = Pr{X1 = a1, . . . , Xn = an} > 0 (1)

where paX
is the joint probability and ai ∈ {0, 1}, 1 ≤ i ≤ n. Note that it

is sufficient to determine a n-variable joint distribution using 2n − 1 proba-
bilities, due to the constraint

∑
a1,a2,...,an

pa1a2...an = 1. Also note that IG
requires that any probability term is not zero. This requirement can be met
by using any common smoothing method.

2. η-coordinates:
ηi = E[xi], 1 ≤ i ≤ n

ηij = E[xixj ], 1 ≤ i < j ≤ n

...
η12...n = E[x1x2 . . . xn] (2)

Note we define the order of a η-coordinate by the number of its subscripts.
For example, η1 is 1-order, and η23 is 2-order. In the information retrieval
context, a η-coordinate is effectively equivalent to the document frequency
of a single term or a term combination, up to a normalization factor.

3. θ-coordinates: The coordinate system specially relevant to our goal is the
θ-coordinates, which can be derived from the log-linear expansion of p(x):
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log p(x) =
∑

i

θixi +
∑

i<j

θijxixj + · · · + θ12...nx1x2 . . . xn − Ψ (3)

where Ψ is the normalization term corresponding to Ψ = − log p(0). It is
easy to check that Formula (3) is an exact expansion since all xi’s are binary
[14]. Note that we can also define the order of a θ-coordinate the same as in
the η-coordinates.

As an example, we consider the case of n = 3. For the p-coordinate system, tuple-
word joint distribution can be determined by arbitrary 7 out of 8 probabilities,
e.g. {p000, p001, p010, p011, p100, p101, p110}. The transform between p-coordinates
and η-coordinates is trivial, say, p111 = η123, p011 = η23 − η123, p100 = η1 − η12 −
η13 + η123. Based on formula (3), θ-coordinates can be given by the following
equation if we have known p-coordinates:

θ12...n = log
n∏

k=0

∏

aX∈A
(k)
X

p(−1)n−k

aX
(4)

where A
(k)
X

denotes the set of all assignments, which assign 1 to k out of n

variables, exactly. And based on formula (4), X = {X1, X2, X3}, A
(0)
X

= {000},
A

(1)
X

= {100, 010, 001}, A
(2)
X

= {101, 011, 110}, A
(3)
X

= {111}. Then we have

θ123 = log
p111p100p010p001

p110p101p011p000
.

Using the coordinate systems defined by the above, the set of all n-order joint
probability distributions forms a d-dimensional manifold Sn, where d = 2n − 1.

3.2 Coordinate Orthogonality

The Fisher information of two coordinate parameters ξi and ξj is defined as

gij(ξ) = E

[
∂ log p(x, ξ)

∂ξi

∂ log p(x, ξ)
∂ξj

]

Here E[·] means the expectation with respect to p(x, ξ). In IG, the coordinate
parameters ξi and ξj are called orthogonal when gij(ξ) = 0 at any ξ [14].

From the definition of Fisher information, a direct observation is that, if ξi is
orthogonal to ξj , the log-likelihood increment induced by Δξi is uncorrelated to
the log-likelihood increment induced by Δξj . Based on this observation, it can
show that the maximum likelihood estimations of orthogonal parameters are
independent to each other, and hence it entails a simple procedure of hypothesis
test [14]. Note that such a simplification does not hold for other non-orthogonal
parameterizations, e.g., correlation coefficients.

In Section 4, we will explicitly prove the theoretical connection between the
n-order θ-coordinate and CPD (or UPD), which justifies that the θ-coordinate is
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a relevant metric of high-order pure dependence. We thus aim to find a mixed co-
ordinate system, denoted by ζ-coordinates, in which the high-order θ-coordinate
parameter is orthogonal to all lower-order η-coordinates. This mixed coordi-
nate system does exist: Generally, it can be shown that θ12...n is orthogonal to
any η-coordinate less than n-order [14], and hence the (2n − 1)-dimensional ζ-
coordinates can be given by [η1, . . . , ηn−1, θ12...n]T , where η1 = [η1, . . . , ηn]T ,
η2 = [η12, η13, . . . , η(n−1)n]T and etc.

3.3 Coordinate Parameter Estimation

The θ-coordinates plays a central role in the identification of high-order pure
dependence. However, a direct computation for high-order θ-coordinates can be
numerically unstable. In addition, we desire a quantitative statistical significance
level of the investigated θ-coordinate. Owing to the orthogonality between η-
coordinates and θ-coordinates, Nakahara and Amari [14] develop a very efficient
framework of Log Likelihood Ratio Test (LLRT) for θ-coordinates. However,
Nakahara and Amari left the computation of high-order gdd (the bottom-right
element of the Fisher information matrix of ζ-coordinates) as an open problem,
which is a necessary step for implementing the LLRT framework. To facilitate
the LLRT framework, in the following Proposition 1, we develop a closed-form
formula for computing gdd in general1.

Proposition 1

gdd =
1

∑
x 1/p(x)

(5)

The proof of Proposition 1 can be found in [7].
In the mixed ζ-coordinates, because of the orthogonality, the maximum likeli-

hood estimation of the η’s and the θ12...n can be performed independently [14].
Usually we can first estimate the η’s from the corpus, and then calculate the
θ̂12...n. In general, a larger absolute value of θ̂12...n indicates a greater possibility
that the word pattern is of pure dependence.

To guarantee a theoretic confidence level of the estimation for θ, the hypothesis
test is needed. Here the null hypothesis H0 : θ = θ0, against H1 : θ �= θ0. And
we consider their log likelihood:

l0 = log p(x; η̂, θ0), l1 = log p(x; η̂, θ̂).

We adopt the statistic of likelihood ratio test used in [14]

λ = 2 log
l1
l0

= 2
N∑

i=1

log
p(xi; η̂, θ̂)
p(xi; η̂, θ0)

≈ 2N · E[
log

p(x; η̂, θ̂)
p(x; η̂, θ0)

]
= 2N · D[

p(x; η̂, θ̂) : p(x; η̂, θ0)
]

≈ Ngdd(θ̂ − θ0)2 (6)
1 Recently, Nakahara independently gets a theoretical result similar to Proposition 1

(according to our personal communication with Nakahara).
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Here N is the number of documents, D
[· : ·] denotes the Kullback-Leibler

divergence, θ̂ can be estimated by (4), gdd is the Fisher information of the mixed
coordinates ζ in the θ-direction at point (η̂; θ̂) and can be given by Proposition
1. Also note that the last approximation equation is entailed by the well-known
approximate relation between Kullback-Leibler divergence and Riemannian dis-
tance [14]. In this paper, we are interested in identifying significant pure de-
pendence w.r.t the θ-parameter (the relation between pure dependence and the
θ-parameter is discussed in Section 4). Hence we let θ0 = 2 and only apply the
LLRT to those |θ̂|’s that are greater than θ0. On the other hand, if |θ̂| ≤ θ0, we
simply consider that the pure dependence is absent.

Asymptotically, according to Wilks’ theorem, we have ±
√

Ngdd(θ̂ − θ0)2 ∼
N(0, 1). Here N(0,1) denotes the standard normal distribution. Hence λ ∼ χ2(1),
that is, the χ2 distribution with degree of freedom 1. Then we can control the
probability of error theoretically.

4 The Spectrum of High-Order Pure Dependence

In this Section, we first introduce two extra definitions on high-order pure depen-
dence, namely Pair-wise Pure Dependence (PPD) and Theta Pure Dependence
(TPD), which are the sufficient criteria of UPD and CPD, respectively. Note
that, from an algorithmic perspective, PPD or TPD are far more feasible than
directly deciding UPD or CPD. Finally, we clarify the spectrum of all kinds of
high-order pure dependence defined by this paper.

Definition 3. (PPD): X = {X1, . . . , Xn} has n-order Pair-wise Pure Depen-
dence (PPD), iff every 2-order θ-coordinate θij , 1 ≤ i < j ≤ n, is significantly
different from zero.

Definition 4. (TPD): X = {X1, . . . , Xn} has n-order Theta Pure Dependence
(TPD), iff the n-order θ coordinate θ12...n is significantly different from zero.

In Definitions 3 and 4, the significance level can be decided w.r.t an appropriate
confidence interval of the LLRT described in Section 3.3. The following two
propositions show the spectrum relation between PPD, TPD, UPD, and CPD.

Proposition 2. PPD ⇒ UPD.

Proof. We will prove ¬UPD ⇒ ¬PPD. Assume X = {X1, . . . , Xn} does NOT
have the n-order UPD, i.e., there exists a nontrivial partition {C1, C2, . . . , Ck} of
X, such that p(x) = p(c1) · p(c2) · · · p(ck). Without loss of generality, we assume
that X1 and X2 belong to C1 and C2, respectively. Summarize all variables of
p(x), except for X1 and X2. We have

∑
x3...xn

p(x) = p(x1)p(x2). Hence, X1 is
independent to X2, and θ12 vanishes by the definition of θ-coordinates (Formula
4). The proposition follows. �



Pure High-Order Word Dependence Mining via Information Geometry 71

Table 1. 2-order and 3-order pure dependence patterns (TREC AP8889)

Orders 2-order PD 3-order PD

1 soviet union bush jackson vote

2 bush democrat bush democrat dole

3 bush dole republican elect presidenti

4 israel palestinian israel palestinian peac

5 attornei judg attornei judg trial

6 govern rebel militari troop rebel

7 militari soldier militari troop soldier

Index by Lemur toolkits v4.1 with Porter Stemmer

Proposition 3. TPD ⇒ UPD; TPD ⇒ CPD

Proof. We will first prove ¬UPD ⇒ ¬TPD. First, we give several definitions and
notations. Let C ⊂ X, aC is a sub-assignment of aX iff aC assigns the same value
to C as aX. We call an assignment (or sub-assignment) odd iff it assigns odd
number of 1’s to variables. Otherwise, it is an even assignment.

Let us consider the term inside the logarithmic function of θ12...n, i.e.,
∏n

k=0
∏

aX∈A
(k)
X

p
(−1)n−k

aX
. According to Formula 4, if n is odd, the numerator and de-

nominator of this term can be rewritten as
∏

aX is odd paX
and

∏
aX is even paX

,
respectively. On the other hand, if n is even, the numerator and denominator
will be interchanged.

If the joint distribution p(x) can be factorized, without loss of generality,
assume that there exists a partition {C1, C2} of X, such that p(x) = p(c1) ·
p(c2). Then, for an arbitrary given assignment aX, we have paX

= paC1
paC2

.
Let’s count the occurring number of paC1

in the numerator and denominator,
respectively. We can see that the occurring number of paC1

in the numerator is
the same as the occurring number of paC1

in the denominator, since the number
of odd assignments is exactly the same as the number of even assignments.
It turns out that every occurrence of paC1

or paC2
in the numerator can be

eliminated by the corresponding occurrence in the denominator. Hence, we have
∏n

k=0

∏
aX∈A

(k)
n

p
(−1)n−k

aX
= 1, which entails a vanishing θ12...n. Up to now, we

indeed prove that TPD ⇒ UPD.
If p(x) can be conditionally factorized, we could show that θ12...n also vanishes

by a similar approach. Hence, TPD ⇒ CPD follows. �

5 Implementation and Complexity Analysis

PPD requires that every pair of variables is significantly dependent. In order to
decide whether n variables form a PPD pattern, we need perform C2

n times of
LLRT on the involved 2-order θ parameters. In each 2-order LLRT procedure, we
need sum all samplings to obtain the corresponding 4 p-coordinates and compute
the corresponding g33. These steps takes O(N) time, where N is the number of
samplings. Hence the identifying procedure of n-order PPD takes O(n2N) time
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in total. In practice, we are often interested in finding all maximal PPD patterns
up to a given order n0 < n. Here the maximal PPD pattern refers to the PPD
pattern that cannot be enlarged. This problem is the maximal clique problem of
the graph generated by the following rule: 1 A variable is denoted by a vertex; 2
An edge connects two vertices iff the corresponding two variables form a 2-order
PPD pattern. As Tsukiyama et al. showed [22], it is possible to list all maximal
cliques in a graph in an amount of time that is polynomial per generated clique.
Hence our problem can be efficiently solved if the number of all maximal PPD
patterns, up to n0-order, is a polynomial function of n0. The number of PPD
patterns can be controlled by an appropriate significance level of LLRT.

In order to decide whether n variables form a TPD pattern, we need only to
perform a single LLRT on the involved n-order θ parameter. The estimate of a
n-order θ takes O(N) time. Hence, the identifying procedure of a n-order TPD
only takes O(N) time in total.

Mining all TPD patterns, up to n0-order, are much time-consuming since
high-order TPD patterns can not be directly derived from the lower-order TPD
patterns. Hence we adopt two pre-selection sets as the candidates of TPD pat-
terns: 1 all PPD patterns up to n0-order; 2 all frequent co-occurrence patterns,
up to n0-order, w.r.t certain frequency threshold. We then test whether the
corresponding θ-coordinates of the candidate patterns are significantly different
from zero. The TPD generated from the above two pre-selection sets are called
TPD1 and TPD2, respectively.

As an illustration, here we show some interesting dependence patterns ex-
tracted from TREC AP8889 by PPD methods in Table 1.

6 Application

6.1 An Extended Relevance Model

In the framework of Relevance Model (RM), we estimate the probability distri-
bution P (w|R), where w is an arbitrary word and R is the unknown underlying
relevance model, which is usually approximated by the topmost documents (e.g.
n=50) of the initial retrieval. Then we pick up the words w with high probability
P (w|R), forming an expanded query.

The mining of P (w|R) can be extended to incorporate the word patterns with
high-order pure dependence. In this section, we provide an extended relevance
model, which employs the high-order pure dependence as a complement of the
classic relevance model. We pick the top n returned documents of the initial
retrieval, and extract the high-order dependence patterns using various different
methods. For each dependence pattern c in the dependence set C, we calculate

P (c|R) =
Number of chunks containing c

Total number of chunks
.

Intuitively, we belief that a word in some high-order pure dependence patterns
should carry more semantic importance. Hence we interpolate the weight due
to high-order pure dependence with the weight estimated using the interpolated
relevance model RM3 [9][10].
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Dcombine(w|R) = λD(w|R) + (1 − λ)P (w|R). (7)

where D(w|R) =
∑

c:w∈c P (c|R).
We consider Dcombine(w|R) as the new weight for word w in our extended

relevance model. The following experimental results shows that this extended
model outperforms the classical model significantly in most cases.

6.2 Experimental Setup

We evaluate our model using four TREC collections: AP8889 with topic 101-150
(the title field), AP8889 with topic 151-200 (the title field), AP8889 with topic
201-250 (the desc field), and WSJ9092 with topic 201-250 (the desc field). Lemur
4.12 is used for indexing and retrieval.The first-round retrieval is carried out by a
baseline language modeling (LM) approach with μ = 1000. The Relevance Model
(RM) is selected as the second baseline method with 50 feedback documents.

6.3 Results and Analysis

Figure 1 shows the 11-point interpolated average precision on TREC AP8889 and
WSJ9092 datasets. We can see that all the query expansion method outperform
the baseline language model, while the combined extended model is the best.

To further examine the merit of our IG-based high-order pure dependence
model, we furthermore compare it with several other high-order dependence
models, as shown in Table 2 (To keep it clean, we do not draw the curves of all
methods on Figure 1). In Table 2, “Apr” indicates the Apriori method, which
has many successful applications for finding the interesting item patterns. “CO”
(“ConstOrder”) indicates considering all the possible k-order word patterns. Due
to the time and space limitations, we only examined the k ≤ 3 case. “PPD”,
“TPD1” and “TPD2” indicate the methods described in Section 5. The combined
methods are described in Section 6.1.

We can see that all high-order models outperform the baseline uni-gram RM.
This verifies our intuition that the uni-gram RM and the high-order model are
complementary to each other. Note that the best result can be achieved when
the coefficient λ in (7) is set to about 0.1.

Table 2. MAP Performance comparison

QE Methods AP8889 101-150 AP8889 151-200 AP8889 201-250 WSJ9092 201-250

LM 0.2331 0.3138 0.0862 0.1948

RM 0.3086 0.4042 0.0879 0.2060

PPD 0.2963 (-4.99%) 0.3859 (-4.53%) 0.0865 (-1.59%) 0.2402 (+16.60%)∗

RM+CO 0.3109 (+0.75%)∗ 0.4101 (+1.46%) 0.0949 (+7.96%) 0.2121 (+2.96%)

RM+Apr 0.3093 (+0.23%)∗ 0.4168 (+3.12%)∗ 0.0900 (+2.39%) 0.2176 (+5.63%)∗

RM+PPD 0.3173 (+2.82%)∗ 0.4218 (+4.35%)∗ 0.0999 (+13.65%)∗ 0.2488 (+20.78%)∗

RM+TPD1 0.3153 (+2.17%)∗ 0.4232 (+4.70%)∗ 0.1003 (+14.11%)∗ 0.2441 (+18.50%)∗

RM+TPD2 0.3166 (+2.58%)∗ 0.4191 (+3.69%)∗ 0.0972 (+10.58%)∗ 0.2211 (+7.33%)∗
∗Significant improvements (at level 0.05) over RM are marked with “*”.
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Fig. 1. P-R curve on TREC AP and WSJ

We can also note the PPD/TPD method outperform ConstOrder method and
Apriori method significantly, especially on the WSJ9092 dataset. We believe one
of the reasons is that the query we selected for WSJ9092 dataset (the desc field of
topic 201-250) are long and complicated, in which case our IG-based high-order
pure model have more advantages.

To show the different performance between TPD and PPD, we compare the
results from different parameter λ’s. It is shown that the averaged performance is
almost the same, but the TPD method is more stable on sub-optimal parameter
setting, suggesting that, if we cannot afford the time to train the parameters of
the model, TPD method is “safer”. In addition, the set of TPD patterns is often
much reduced, which can offer a more economic high-order model.

7 Conclusions and Future Work

We analytically clarified a spectrum of high-order pure dependence, and pro-
posed a novel framework based on Information Geometry to extract high-order
pure word dependence patterns from documents. In this IG-based framework,
we developed a set of rigorously-established justifications and feasible algorithms
to single out high-order pure dependence by a well-founded statistical procedure
(i.e. the log likelihood ratio test). We also integrate the automatically derived
high-order pure dependence patterns into the Relevance Model. Evaluation re-
sults demonstrated the usefulness of the high-order pure dependence, and the
effectiveness and robustness of our IG-based approach.



Pure High-Order Word Dependence Mining via Information Geometry 75

Our future work will be focused on addressing the following issues. First, we
will perform a systematic analysis to clarify the semantic distinctions between
PPD and TPD. Second, we will compare our approach with stronger baselines
that utilize term dependence in IR, e.g., the dependence language model [5] and
the MRF model [11]. Finally, we exploit the integration of a suitable level of
syntactical dependence information into our framework.
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