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1 INTRODUCTION

Mathematical diffraction of aperiodic structures’

Michael Baake* and Uwe GrimmP

Kinematic diffraction is well suited for a mathematical apach via measures, which has substantially been devekiped
the discovery of quasicrystals. The need for further inségherged from the question of which distributions of matesyond
perfect crystals, lead to pure point diffraction, hencehtarp Bragg peaks only. More recently, it has become app#rahone
also has to study continuous diffraction in more detailhvaittareful analysis of the different types of diffuse scattginvolved.
In this review, we summarise some key results, with paricamphasis on non-periodic structures. We choose an ¢xposn
the basis of characteristic examples, while we refer to xitiag literature for proofs and further details.

1 Introduction

Diffraction techniques have dominated the structure aigly
of solids for the last century, ever since von Laue and Bragg
employed X-ray diffraction to determine the atomic struc-
ture of crystalline materials. Despite the availability dif
rect imaging techniques such as electron and atomic foree mi z
croscopy, diffraction by X-rays, electrons and neutrons-co e e N
tinues to be the method of choice to detect order in the atomic o e
arrangements of a substance; see Cowley’s Boakd refer- g
ences therein for background.

In its full generality, the diffraction of a beam of X-rays,

electrons or neutrons from a macroscopic piece of solid is a e

complicated physical process. It is the presence of inelas- e : e o s
tic and multiple scattering, prevalent particularly inaten ' . ikl oo i e
diffraction, which makes it essentially impossible to aerat o Ui R

a complete mathematical description of the process. Here, w
restrict to kinematic diffraction in the far-field or Frawfer
limit. In this case, powerful tools of harmonic analysis are
available to attack the direct problem of calculating theék
matic) diffraction pattern of a given structure.

In contrast, theinverse problemof determining a struc-
ture from its diffraction intensities is extremely invobtie A
diffraction pattern rarely determines a structure uniguab
there can benomometricstructures sharing the same auto- the case of ordinary (periodic) crystals, and later alsdrfer
correlation (and hence the same diffractiS#f.>7-1%3We are  commensurate phases. Following the discovery of quasicrys
far away from a complete understanding of the homometrytals’®7%92.118ith their beautiful diffraction patterns, such as
classes of structures, in particular if the diffractioncpem  the one shown in Figure 1, a new mathematical approach was
contains continuous components. At present, a picture isequired. The associated paradigm shift also re-opened the
emerging, based on the analysis of explicit examples, whicltliscussion of what possible manifestations of order and dis
highlight how large the homometry classes may be. order in solids there are, and how these can be detected and

Originally, much of the effort concentrated on the pure quantified. While diffraction is one measure of order, theexi
point part of diffraction, also called the Bragg diffractidor ~ tence of homometric structures of varying entrépif shows

its limitations, as there are completely deterministicteys

 Part of a themed issue on Quasicrystals in honour of the 20bEINRrize which cannot be distinguished from a randomly disordered
in Chemistry winner, Professor Dan Shechtman. system on the basis of pair correlations alone. Increagingl
a'Fakuliat fur Mathematik,_ Universit Bielefeld,_ Ppstfach 100131, 33501 the continuous or diffuse part of the diffraction is attiagt
E'etl)efe'd’ Germany. E-mail: mbaake@math.uni-bieleed. . attention?0-133.1350t the least because improved experimen-

epartment of Mathematics and Statistics, The Open Urityers . . . .
Walton Hall, Milton Keynes MK7 6AA, United Kingdom. Email: t@ltechniques make the diffuse part accessible. Impraving
u.g.grimm@open.ac.uk understanding of diffuse diffraction is desirable, in parar

Fig. 1: Experimental diffraction pattern of a quasicrystalline
AlIPdMn alloy. Figure courtesy of Conradin Beeli.




1 INTRODUCTION
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Fig. 3: The three allowed (pairwise) overlaps of the decagonal clus-
ter. Overlapping markings are highlighted by colour.

there exist a number of equivalent versions (in the stHs&
of mutual local derivability), such as the Penrose pentagon
tiling or the kite and dart tiling. One can even go beyond
tilings and consider coverings of spat&ln the case of the
Penrose tiling, Gummelt's decagon coveriAgvith a single
cluster (and overlap rules encoded by the shading) hasgrove
very popular, because it allows the description of a planar g
sicrystal structure in terms of a single fundamental bogdi
block. The three allowed (pairwise) overlaps of the marked
decagons, shown in Figure 3, are characterised by matching
decorations. Figure 4 shows a patch of a corresponding-cover
Fig. 2: A patch of the rhombic Penrose tiling. The arrow decorations"9’ W_h'Ch IS ”,‘“t“a”y;‘gga”Y derlvaple (MLD) with the Pen-
of the edges encode the local rules. rose tiling of Figure 2859 This covering also has an interpre-
tation in terms of ‘maxing rules*?:6."2where maximisation
of one type of specified cluster leads to the Penrose rhom-

in view of the implications on disorder. bus tiling (up to zero density deviation&).Covering rules

The most successful approach to describe the structure @f either type have become quite fashionable in materials sc
incommensurate crystals and quasicrystals employs adelti ~ ence’%%'2For more examples on tilings, in particular on sub-
dimensions. By embedding the ideal structure into a higherstitution tilings, we refer to the online Tilings Encyclape.®
dimensional ‘superspace’, it is possible to recover pétid ~ For the early development of the field, the reprint volume by
in the higher-dimensional space, and this picture can be exSteinhardt and Ostlurid?® s still a valuable source.
tended to cover certain aspects of random tilings as wekk. Th  This review attempts to present an overview of the develop-
standard tilings used to model the structure of quasidsy/sta ment of mathematical diffraction theory in the 30 years sinc
are obtained in this way; for instance, the Penrose tfifg the discovery of quasicrystals by Shechtman et‘&MWhile
shown in Figure 2 can be described as a projeéflafia slice ~ we aim to provide the reader with a flavour of the mathemati-
through the four-dimensional root lattidg. Such structures, cal methods and assumptions, we will not dive deeply into the
or their equivalent point sets, are calledt and project sets technical details. In particular, we will not present any-fo
or model setsand we shall discuss further examples below.mal proofs, though we do state several non-trivial results e
Note that the Penrose tiling also possesses aperiodieqgerf plicitly. We refer to our recent revie¥ and our forthcoming
local rules(or matching rule$?7>123 as well as an inflation  book,'® and the references contained therein, for more details
symmetry. The local rules can be implemented as arrow dem®n the rigorous mathematical treatment. Three complemen-
orations on the edges of the two rhombic prototiles, which tary review volume$22°7with mathematical articles are also
within any admissible patch, have to agree on all edges.erheshighly recommended. Here, we select examples that are both
local rules are aperiodic in the sense that they are incompatharacteristic and somewhat supplementary to previous pre
ible with any periodic tiling. They are perfect because theysentations.
specify precisely the class of the rhombic Penrose tilings, In Section 2, we start with a concise summary of the sys-
the sense that all space-filling tilings obeying these rates tematic approach usingeasuregin the mathematical sense,
locally indistinguishable (LI) from the rhombic Penrodant, such as Lebesgue measurewhich is used to measure vol-
the latter defined as a fixed point tiling of an inflation rule.  ume in Euclidean space), which was pioneered in this context

It is worth noting that, while the lattice of periods of a peri by Hof.67=6° We first apply this approach to the diffraction
odic crystal is unique (though the choice of unit cell is not) of perfect crystals in Section 3, and then discuss the case of
there is considerable freedom in the choice of the buildingnathematical quasicrystals based on a cut and project &chem
blocks of aperiodic tilings. In the case of the Penrosedilin in Section 4. Like perfect (or idealised) crystals, thesg sy




2 METHODS AND GENERAL RESULTS 2.1 Measures, convolutiond &ourier transforms

tions in spaces, this approach is in fact very natural, aritl we
suited to describe both the distribution of matter in thet-sca
tering medium and the distribution of (scattered) intgnait
space. We therefore start by briefly introducing the corxcept
and main properties that will be needed in our context.

2.1 Measures, convolutions and Fourier transforms

Due to the Riesz-Markov representation theoréft is pos-
sible to think of a measure as a linear functional, i.e., as a
linear map that associates a number to each function from an
appropriate space. A (complex) measurenRY is then a lin-

ear functional (with values in the complex numbé&ijson the
spaceC.(RY) of complex-valued, continuous (test) functions
of compact support, subject to the condition that, for every
compact seK C RY, there is a constar, such that

4 s A 1(9)] < ak [|9lle

"‘"'.:‘ for all test functionsg with support inK. Here, ||d|l, =

'\ SUPek |9(X)| is the supremum norm af.
We write L(g) or fra g(X)du(x) for the measure of a func-
tion g, and u(A) = p(1,) for the measure of a sét C RY,

where
1, ifxeA
1a(X) = {

Fig. 4: A patch of Gummelt's decagon covering.

tems are pure point diffractive, which means that the diffra 0, otherwise,

tion pattern consists of sharp (Bragg) peaks only. Aftedsar denotes theharacteristic functiorof the setA.

in Section .5, we proceed to syst.ems with co_ntmuous diffrac- If 11 is a complex measure, thenjugateof  is the measure
tion, covering both the case of singular continuous and-abso-

: : : . U which is defined by — p(g). A measure is calledkal (or
lutely continuous diffraction by means of representatiene- . — o o N
ples, including a probabilistic model for thermal fluctoais. signed), wheru = u, and itis callecpositivewhen(g) > 0

. ; . . for all g > 0. For every measurg, there is a smallest positive
In particular, we consider random tilings, which are refgva 9= y " b

. . . . measure, denoted by |, such thatu(g)| < |u|(g) for all non-
pecguse most quasicrystalline matena_ls show entrprmls_ta negativeg. This is called theotal variation(or absolute value)
isation and therefore are expected to include configuration

: of u. A measureu is called finite orbounded if |u|(1) =
disorder. |u|(RY) is finite, otherwise it is called unbounded. As we want
to describe infinite point sets in space, we usually deal thigh
2 Methods and general results latter case, but we will assume that measuredrareslation

bounded This means that, for any compact $et- RY, the

For a satisfying mathematical approach, we should exclugéftal variation satisfies
any boundary effects, and hence consider infinite systeats th
represent the scattering medium. Traditionally, theretace
seemingly contradictory ways to describe a system, either i
terms of functionswhich represent the density of the scat- SO wherever you move your compact Egtits total variation
tering medium, or by lattices or, more generalijings of ~ measure is always finite.

space, whose decorations mimic the atomic positions. This

dichotomy has sparked some rather fierce disputes between2 Autocorrelation and diffraction measures

the tiling school and the density function school, in paac d: , . .
in the years following the discovery of quasicrystals. How- T A C R is a point set that is a Delone set (a set where points

ever, the two viewpoints can be reconciled by embedding therf€ither get arbitrarily close nor so sparse that it acconatﬁllxj
into a more general frame. One way of doing that is to intro-arPitrarily large empty balls), the correspondibigac comp’

duce measureswhich comprise (almost) periodic functions .
- : e op = O
and tilings as special cases. As measures quantify distribu

sup|p|(t+K) < oo,
teRrd

XeN




3 DIFFRACTION OF PERFECT CRYSTALS

is a translation bounded measure, whérés the normalised
(Dirac) point measure at (so &(g) = g(x), or, in the for-
mal notation used in physic$ga g(y) o(y — x)dy = g(x)). In

what follows, we use such Dirac combs to represent the scat-  3/4{ —
tering medium, possibly with (in general complex) scattgri
weightsw(x) at positionx € RY. The corresponding weighted
Dirac comb is denoted as /27

w=WwWdo = ;w(x)@. - _ -

1/41 — I -

A (=)

If w is a translation bounded measure, the corresponding
diffraction measure is the Fourier transform of the autosor
lation measure, where we shall assume that the latter exists
In any given example, this has to be verified, of course. Th(:f:ig. 5: lllustration of the distribution functioR (x) of the classic

autocorrelation measuref w is defined as the limit middle-thirds Cantor set. The iterative construction for the latter is
sketched in the inset.

0 1/3 2/3 1 w

~ . Wg*w
y:V‘*’:w®w::F|e£noovoRl(BR|)R’ 1)
diffuse background scattering, which has a locally intbgra
whereBg denotes the open ball of radiBsaround 0= RY. By density relative to\) and its singular continuous part (which
w|r We denote the restriction @b to the ballBg. For a mea-  simply means anything that remains, which is nothing in many
surey, its ‘flipped-over’ versiort is defined vigi(g) = u(@), standard cases considered in crystallography). Each of the
whereg(x) = g(—x). The operatiorx is the ordinaryconvo-  three terms is again a positive measure. Singular continu-

lution of measures, which is a generalisation of the standar@us measures are weird objects: they give no weight to single

convolution of integrable functions, points, but are still concentrated to an (uncountable!) ofet
_ i zero Lebesgue measure. A well-known example is the proba-
(f+g)(x) = / f(x—y)g(y)dy = / f(y)g(x—y)dy. bility measure for the classic middle-thirds Cantor ¥¥&twith
JRA Rd the "Devil’s stair case’ as its distribution function, whids

constant almost everywhere; see Figure 5. Singular continu
ous diffraction does occur in realistic models thof§rand
should not be disregarded.

For finite measureg andv onRY, it is defined by
(V)@ = [, ax+y)du(xdvly)
RY xR

for any functiong € C¢(RY), which is then again a finite mea- 3 Diffraction of perfect crystals
sure. The volume-averaged convolutien(also called the ) o ) ) .
Eberlein convolutionin analogy to a similar approaghin In our setting, a perfect (infinite) crystal thspace is a lattice-
the theory of almost periodic measures) is needed in Eq. mqeriodic (discrete) structure. It is defined by its lattidge-
becausew itself is generally an unbounded measure and thdiods”™ C R and the decoration of a fundamental domain of
direct convolution is not defined. For exampleAifdenotes | » Which together completely specify the distribution oftsca
the standard Lebesgue measure (for volume)) is not de- terers in space. It is therefore described by a crystalfgea
fined, whileA ® A = A. measure

If the autocorrelation measune of w exists, its Fourier W= U*or, (2)
transformy does as well, angl is a translation bounded, pos-

itive measure, called thdiffraction measuref w. It corre- restriction ofew to a fundamental domain 6F. Depending on

sponds to the kinematic scattering intensity observed in a6 nature o, the resulting measum can be pure point or

_expt_arlmer_lt in the sense _that it quantifies how much Scatterc':ontinuous (for instance, {fi is the constant measure on the
ing intensity reaches a given volumedrspace. Relative to

Lebesgue measufe the diffraction measure has a unique de_fundamental domaing would be proportional to Lebesgue
compogstijtiorJrOS u ' : u uniqu measure), or a mixture of both types. One can think of the

e Dirac combd, as implementing the lattice periodicity, while
V= Yopt Ysct Vac u describes the distribution of scatterers in a fundamemtal d
into its pure point part (the Bragg peaks, of which there aremain ofI".

at most countably many), its absolutely continuous pag (th The autocorrelation of the crystallographic measwref

wherep is a finite measure. The latter can be chosen as the




3 DIFFRACTION OF PERFECT CRYSTALS

3.2 Diffraction of cryBtgraphic structures

Eq. (2) is given by

y=densl") (ux )= r, @)
which follows by using the reIatiorﬂS: = O together with
Or ® 0 =dengl") o-. Here, dend ) denotes the density (per
unit volume) of the latticd™, which is the reciprocal of the
volume of its fundamental domain. Consequenylys also

a I -periodic measure. In order to obtain the correspondin%u&lI latticel*
diffraction measure, we need to know how to calculate theb "
ounded functi

Fourier transform of lattice-periodic measures.

3.1 Poisson’s summation formula

A powerful tool for the Fourier analysis of lattice-periodi
measures is thBoisson summation formul@SF). For a lat-

tice ” < RY (which means thaf is a discrete subgroup of
RY such that the factor group®/I" is compact), the Fourier
transform of the corresponding Dirac codp is

5; = dengl") o, (4)
where ™™ denotes thelual or reciprocal latticeof I'. The
latter is defined by

r“={xeR%|(xy)eZforallyer}.

Here and below(x|y) denotes the scalar productxafy € RY,
Note that sometimes a factori2s included in the definition
of the reciprocal lattice, which we prefer to incorporat®ur
definition of the Fourier transform. For a suitable functign
our convention for Fourier transform is

ok = [ e gx)ax

wherek,x € RY and again(k|x) denotes their scalar prod-
uct. The Fourier transforny of a positive definite measure
y (which means thay(g @) > 0 holds for allg € C.(RY))
is defined as the unique extenst8i® of the Fourier trans-
form of functions. It is conveniently defined in the settirfg o
tempered distributiond%® which provide concrete means to
calculate the transforms.

By the Bochner-Schwartz theoretff the diffraction mea-

sure is then a translation bounded positive measure. In add&

tion, we will make use of theonvolution theorenfor mea-
sures. This states thatif is a finite measure and a transla-
tion bounded measure @&f', the convolutionu * v exists and
is a translation bounded meas#fdf V is not only a tempered
distribution, but itself also a measure, one has the cotieolu

identity i+ v = [iV. The latter is then again a measure, which

is absolutely continuous relative o becausgi is a bounded,
uniformly continuous function ot in this case.

3.2 Diffraction of crystallographic structures

Using the PSF together with the convolution theorem, the
Fourier transform of the crystallographic autocorrelatioea-
surey of Eqg. (3) can be calculated as

y= (densr))?|f|? & . (5)

Clearly, this is a pure point measure, concentrated on the
Note that|ﬁ|2 is a uniformly continuous and

on that is evaluated only at points of the dual
lattice " *. While different admissible choices for the measure
U (describing the same system) lead to different such func-
tions, they agree on all points 6%, so that the result does
not depend on this choice. ¥ {k}) = 0 for somek € ' *, one
calls this arextinction Extinctions are characteristic features
of further symmetries, also of generalised type.

3.3 Planaro-phases

Let us consider an interesting example in some detail.iBgart
from a checker board, viewed as a decoration of the square
lattice, we assume that the grey squares are stiff (or solid)
while the white squares are empty. One can now twist the
structure by rotating the grey squares alternately in opgos
directions by anangl¢ € (—%,7%),

This way, a new periodic structure emerges where the white
squares are deformed into congruent rhombuses. This struc-
ture is the lattice-periodic repetition of the motif aboemd
resembles a planar-phase and related quasicrystal approx-
imants’% A couple of examples are shown in Figure 6. The
second is related to structures found in 12-fold symmetra g
sicrystals’®

We consider the associated Dirac comb

(A)¢ = 6R¢S* 60¢Z2'

btained by placing a normalised point (or Dirac) measure
at each vertex point. Here, we haeg = 2cog¢) and

Ry = (Z?rf((gf ;2:;(@)) while S= {0,e;,e,,e; + &} denotes
the vertex set of the unit squaf@ 1]2. The corresponding

diffraction measure is obtained via Eq. (5) as

_ 1+cog2m(Rye[k)) 1+cos(2m(Rye,/k))
%= T 2c0d9)? 2cog$)?

72/2cog9)’
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Fig. 6: Planaro-phases with angleg = 17/8 (top) and¢ = 11/12 Fig. 7: Diffraction patterns for the two-phases of Figure 6. All
(bottom), shown with the correct relative length scale. In the latterdistances and intensities are shown in the correct relative scale.
case, the rhombus dissects into two equilateral triangles.

tion and that has an area proportional to the intensity. This
with (xly) denoting the scalar product &?. choice resembles the experimental situation in a reasenabl

When¢ = 0 (which means we are back to the square lat-Vay- Both patterns are non-periodic, due to the incommensu-

tice), this expression reduces = d,,, as it must, while
insertingg = +717/4 leads toyﬂ/4 = 45R71/4ZZ' which reflects

rate positions of the points in the fundamental cell. While al
Bragg peaks are located at positions of the correspondialg du
lattices, there is an apparent approximate 8- or 12-fold-sym
the double weight of the point measures at each vertex in thimetry in the patterns (sometimes called pseudo-symmetry),
limit. For anglesp with tan(¢) irrational, one has extinctions which is why we chose these examples.

precisely for all wave vectolls= (%7 %) with m;m, =0 and

m; +m, € 2Z+ 1. When tafi¢) is rational, there are further 4 Diffraction of mathematical quasicrystals
extinctions, which can be calculated from the explicit faten

for the diffraction measurg;. We now leave the realm of lattice periodic systems to discuss
The diffraction patterns for the two exampldgs-£ m/8 and  aperiodically ordered structures, in particular quastals.

¢ = mr/12) from Figure 6 are illustrated in Figure 7. A Bragg Before we move on to structures with non-crystallographic

peak is represented by a dot that is centred at the peak posymmetries, let us briefly consider the inclusion of incomme

6



4 DIFFRACTION OF MATHEMATICAL QUASICRYSTALS 4.1 Incommensate phases

o o o [} o o [} (]
surability in a lattice periodic system, which can be seea as AR A U
first step towards the structure of mathematical quasialyst e o o o o o o o o o o o o
(] [e] [e] (] [e] [e] (] o
L] L[] [ ] L] L] [ ] L] L] [ ] [ ] L] L[] [ ]
4.1 Incommensurate phases © © © © © © © ©
L] L] [ ] L] L] L] L] L] L] L] L] L] L ]
L. . 3 ) o o o o o o o o
The systematic investigation of incommensurate systenss wa e o o o o o o o o o o o o
H 7 [¢) o o [e) o o [e) o
pioneered by de Wolff and by Janner and JansséniVe re- e e e e S e e e T
fer to a recent monograph by van Smaaférand references © o o o o o o o
contained therein for details and background, and conaentr A
on a couple of elementary examples here. ® e o o o o o e o s e o
. . . (] [e] [e] o [e] [e] o [e]
The simplest incommensurate structure arises from com- e o o o o o o o ® o o o e
bining two periodic Dirac combs with incommensurate peri- o o o ° o o ° o
L] L[] [ ] L] L] [ ] L] L] L[] [ ] L] L] [ ]
ods, such as o o o o o o o o
J— L] L] [ ] L] L] L] L] L] L] L] L] L] L]
- 6Z + 502 o o o o o o o o
. . . . . . . . L] L[] L[] L] [ ] [ ] L] [ ] [ ] ° [ ] [ ) [ ]
with a > 0 irrational. While this is unphysical in the sense o o o o o o o o
L] L[] [ ] L] L] [ ] L] L] [ ] [ ] L] L[] [ ]

that positions of scatterers become arbitrarily closes ini
structive to look at the diffraction for this toy model. Obse
the Eberlein convolutions, ® 3, = ;)\ Which is a conse- Fig. 8: Composite structure comprising atoms on the square lattice

quence ofa being irrational, and,., @ &, 15 which (black dots) and on the shifted latticer I” ((:|rcles) with shiftu =
' aZ

. . aZ — o “aZ’ and lattice” =aZ xZfora =1 = 5(1
follows from a simple density calculation. Then, the auteco (3.2) ' X 1=3(1+V5).

relation turns out to be

interested in the non-periodic case, so let us assumetigat
Ya = 02+ a Ouz + a A, irrational. An example is displayed in Figure 8.
The autocorrelation for the Dirac consbbevaluates as
which leads to the diffraction measure

_ 1 2 y=20,+— 6r+ (5 +0 u)x(A®5y),

Yo = 6Z+?62/a+550

~ whereu ® v stands for the (tensor) product of two measures.
by an application of the PSF together with= §,. This  The Fourier transform of can be obtained by applying the
pure point diffraction measure reflects the two periodic-con Poisson summation formula and the convolution theorem. It
stituents. There are Bragg peaks on the integer latticén (wit has the form

intensity 1) and on the reciprocal latti&/ o of the lattice

aZ, with intensitya —2. Note that the intensity of the central Y= 0,2 + 5r* cos(2nk2u2) (6p®9;)

peakis 1+ a2 +2a~1 = (1+a~1)?, in line with the density

of the underlying point set. One might expect that the nedati with the dual (reciprocal) latticé * = ( Z) x Z. Note that
position of the two constituent lattices does not matteictvh the final term only involves the second componentk ahd
indeed is the case. Introducing a relative shifietween the u, due to the presence of the tedigin the measure (so only
two periodic combs does not affect the result, in the serede th k, = O contributes). In the diffraction measure, the composite
the diffraction of the Dirac comiy y = 0, + 0.4z IS Still gy cture is visible via additional intensities of the pealong

given byyg, independently of the value of i _ the vertical axis. The total intensity of a Bragg peak at fiasi
While this system is of limited practical relevance in one di- (0,n) with n € Z is

mension, one can build higher-dimensional systems usiag th
same idea. This results in incommensurate systems which are_ 1 2 1.2
calledcompositestructures. Let us discuss a simple example. y({om}) =1+ o? cos(2nnu2) (1- E) > 0.

Fix somea > 0 and consider the Dirac comb
The corresponding diffraction pattern for the example gfFi

W=0,+0,r =0,+8x*0r, ure 8 is shown in Figure 9.

Of course, this is merely a sketch of any real system. For a
wherel” = aZ x Z C R? is a planar lattice, and € R? an  more realistic system, one should take into account the mod-
arbitrary shift. Fora € Q, the underlying point set is crystal- ulation in the positions induced by the different local meig
lographic, withZ2N T as its lattice of periods. Here, we are bourhoods!19-128.131,132
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Eq. (6), fore = 0.35 anda ~ 0.2941. The lines (or ‘targets’) inter-
Fig. 9: Diffraction pattern of the composite structure of Figure 8. secting the horizontal axis are shown in black.
Each Bragg peak is again represented by a dot which is centred at the
position of the peak and whose area is proportional to the intensity.
One can clearly recognise the peaks on the two latlicassdl™*, and  from the origin to the pointe, 1) (with the end point not in-
the alternating.intensity of the peaks along the vertical axis, which arg|yded). Then/\, is the set of intersections of the horizontal
due to the choice, = 3. axis with these line segments; see Figure 10 for an illistrat
Using the fact that, for irrationak, the sequence of num-
Here, we consider a simpler case, based on the modulatid?ers({an}),., is uniformly distributed in the unit interva®;
of a periodic structure. Anodulated structurarises by locally ~ ©ne can calculate the autocorrelatigrof the Dirac comb on
displacing positions of a crystalline point set, ensurimgin- 7\, €xplicitly. The resultis
imal distance between the new positions. For example, start
with the integer latticeZ and deform it by moving the points ¥ = > ((1—{am}) &y cramy +{aM} Oy g1 (amy))-

according to a real-valued displacement functionThe de- meZ
formed point set is then given b R
P g Y The corresponding diffraction measutereads
N, ={n+h(n) |neZ}, (6)
oo 2
and 9, denotes the corresponding Dirac comb. To be = ke%a”A(k)‘ % 0

concrete, consider the displacement functin) = e{an},
wherea ande are real numbers and whefg} = x—[X de-  wjth (complex) amplitudes
notes the fractional part of Since|h(n)| < ¢, the deformed
point set respects a minimum distance between points, gs lon A(K) = e ™" sing( k"), ©)
ase is sufficiently small. Clearly, ifo is a rational number,
the resulting point set is once again periodic, while it i8N0\ here sinéx) = sin(x) /x. The magk+— k* acts on elements of
periodic for irrational values ofr, which is the case we are Zla) = {r +sa |r,s€ Z} as(r +sa) — (re +s(1+£q)) for
interested in here. _ » anyr,s€ Z. In this exampley, is a pure point measure which
To understand the corresponding Agt it is advantageous s sypported on a dense set. Despite the denseness of thg Brag
to use an embedding in the glane_, known as the ‘superspagsaks; the total intensity scattered into any compact satfse
approach’ in crystallogr_aph’f. Define a planar lattice as the i finite, because the intensities are locally summable. The
integer span of two basis vectors proof for the diffraction formula is non-trivial. Howevethis
1 0 can be interpreted as a special case of the diffraction olnod
= <( > ) (1>> ) sets (cut and project sets), because the modulated s&yéjur
z is in fact a model set. We now turn our attention to this genera
where we use the notatidn, v),, = {mu+-nv|mneZ}. Con-  notion, and discuss a number of relevant examples and their
sider now the line pattern obtained as theorbit of the line  diffraction.

—-a




4 DIFFRACTION OF MATHEMATICAL QUASICRYSTALS 4.3 One-dimesional examples

4.2 Model sets model atomic structures of quasicrystals. However, as long
as there exists kcal rule to switch from the point set to the
tiling pictureand vice versa, we can consider both structures
as equivalent (as any atomic structure will be a local decora
tion of either), or shortly as MLD (which stands for mutual
local derivability)# For instance, in one dimension, a tiling of
R by two intervals of different lengths is clearly MLD with the
rget of left endpoints of all intervals.

In what follows, we only consideregular model setsso
we require that the boundagwV of the windowW has zero
Lebesgue measure. The Euclidean setting (9) generalises to

of the notion of a quasiperiodic functic. In the simplest ‘%He case where the internal space is a locally compact Abelia

96,98,115 in-
setting, the idea is much like what we saw for the modulate(frOUp' .We shall meet an gxample later, where the in
ernal space is based on 2-adic integers.

phase in Figure 10 above: The aperiodic structure emerges o 2267115
by taking a cut across a higher-dimensional periodic stiregt Re_gular model sets are pure p_omt_ d|ffractﬁ?e§_ and .
in this sense are natural generalisations of lattices. iBhis

using a direction that is incommensurate with the lattidee T iral it of the th f model sets which has b
general setting for the case of Euclidean model sets is @acod a central resutt of the theory of modet sets whic 11?.5 een
proved by methods of dynamical systems thedr§11%in

in thecut and project schemE€PS L .
! . pro) MEPS) terms of almost periodic measufés®-126and, following a

There are a number of ways to construct aperiodically ottere
systems>® From the viewpoint of diffraction, the best under-
stood is a natural generalisation of lattice-periodic ctices
obtained by a projection from a higher-dimensional lattice
Such systems are calledit and project seter model set$®
and can be produced in a number of essentially equivale
ways > including de Bruijn’s grid methotf and Kramer's
‘Klotz construction’? as well as a number of other ap-
proaches$6:99

The model set approach can be viewed as a generalisati

Rd U Ry gm RM suggestion by Lagarias, by using the Poisson summation for-
mula for the embedding lattice and Weyl's lemma on uniform
U U U dense distribution1® The diffraction measurg of the Dirac comb
ny) &L % — (2 (9) &, is explicitly given by
| I -
L * L* y= z AK)|? & (11)

kelL®

whereR¢ is the physical (sometimes also called direct or par-
allel) space, an®™ is referred to as the internal (or perpendic-
ular) space. HereZ c R%™Mis a lattice ind + m dimensions,

and T and rz,,, denote the natural projections onto the phys-

Here, L® = n(.#*) is the corresponding Fourier module,
which is the projection of the higher-dimensional duali¢att
The amplitudes are given be

ical and internal spaces. It is assumed that 71(.#) c RY dengA) —
is a bijective image ofZ in direct space, and that the set Ak) = VoIW) (=K, 12)
L* = m,(Z) C R™is dense in internal space. As a conse-

quence, the-map®® x — x* is well-defined orl_.

) ) where J,, is the characteristic function of the winda. Var-
A model sefor a given CPS is then a set of the form

ious generalisations, in particular to certain weightedabi
combs, have been discussed in the literat§ré&:11111n al-
ternative (and somewhat complementary) approach based on

whereW ¢ R™ (called thewindow or acceptance domajn an average periodic structure can be employed to unravel var
is a relatively compact subset &™ with non-empty inte- ious modulation features in the diffraction patterns of-qua
rior. More generally, also translates of such sets are ¢alleSICTyStals. This is systematically explained in a recent re

model sets. The elements of the model Adfe in the pro- view!36 by Wolny and coworkers; see references cited there

jected latticeL in direct space, and the window in internal fOr further details.
space determines which elementd adre selected. The con-
ditions on the window ensure that the modelAds a Delone
set. In fact, a model set is always a Meyer set®9 which
means that\ — A := {x—y| X,y € A} is uniformly discrete, We start by re-expressing the modulated point Agtof
while A is relatively dense. Note that uniform discretenessEq. (10) as a cut and project set. To this end, we need to write
of A — A implies that ofA, and is actually anuchstronger A via an orthogonal projection, rather than via the (implicit

A = {xeL|x" eW}, (10)

4.3 One-dimensional examples

condition 86.87,96,98 skew projection of Figure 10. This can be done by introducing
Clearly, the projection approach produces point sets irthe matrixA = (é *15) and considering the lattic&” = AI".

space rather than the tilings that are conventionally ueed tThis lattice and its dual lattice are given in terms df-dasis




4.3 One-dimensional examples
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Fig. 11: Model set description of the modulated point Agtof
Figure 10.

by

2= () G w0 (),

The two generating vectors and the lattice points®fare
shown in Figure 11.

The setAy is now a model set for the CPS with lattice
£ CR?=R xR (sod =m=1 and both direct and inter-
nal space ar®). The window is the intervalV = [0,—1), and
the conditionx* € W selects all lattice points that are located

l+ea
—a

a
1+ea

—£
1

within the shaded strip of Figure 11 (which is the reason why

this approach is sometimes also referred to as the strip@roj
tion method). Foe = 0, we get a (non-minimal) embedding
of Z in R?, and for rationabr = g with coprime integerg and

g we obtain a periodic point set with lattice of periayis.

The formulas (7) for the diffraction and (8) for the ampli-
tudes now follow from the general result of Egs. (11) and (12)
The Fourier module it® = n(.#*) = Z[a], and the action of
the x-map can be read off from the explicit bases©fand
£ given above.

The most frequently invoked example of a one-dimensiona

(mathematical) quasicrystal is tfé#bonacci chain Its geo-
metric version is built from two intervals (prototilet) and

S (for long and short) of lengths = (14 1/5)/2 and 1. It
can be generated by iterating the square of the inflation rul
L+— LS S~ L, starting from a legal seed (suchlgk, where
the vertical line indicates the reference point). This et
the two-sided interval sequence

~LSLLSLSLLSLLSLSLLSUBBLLSLSLLSLLSLSLLSLSL

The bi-infinite sequence is aperiodic, with relative fremgies
-1 andt 2 for the two prototiles.

Fig. 12: Model set description of the Fibonacci chain.

Define two point setg\| andAs as the left endpoints of the
corresponding intervals in the chain, taking the refergraiet
as 0. They are model sets for the CPS (9) wita m= 1 and

L=Z[t] = {m+nt|mneZ}.
The corresponding planar lattice is

2= (@),

which has density 4/5 and the dual lattice
B 2T—1<<T—1> ( 1 )>
5 T J'\-1)/,
One has\| s = {x € L | x* € W_s} with the windows
W =(-171-2] and W= (T—2,T1—1]

and thex-map defined by/5 — —+/5, so that(m+nt)* =
m+n—nt. The construction is illustrated in Figure 12. The
Fibonacci model set id = AL U Ag, with window

T
—T

g*

W =W UWs = (—1,1—1].

This way,A is a point set of density/v/5 = (T +2)/5. Note

that it is possible to modify the embedding latti¢e by scal-

ing the internal space relative to physical space. In padic

multiplying the scale of internal space iy the embedding
|attice is a rotated copy of/T + 2 Z2.

The Dirac combw = Jd, is pure point diffractive, by an
application of the model set diffraction theoréh$”-115men-
tioned before. The diffraction measurés explicitly given by
Ea. (11) with the amplitudes

A(K) = €K (T-2) 152 sino(rrk*) (13)
via Eqg. (12), where sin&) = sin(x)/x. The phase factor re-
flects the position of the window, which is centredat-2) /2.

The sum in Eqg. (11) runs over the Fourier module
1

LY = (L") = —=7Z[1].

&

10



4 DIFFRACTION OF MATHEMATICAL QUASICRYSTALS 4.4 Cyclotond model sets

" Fig. 14: Absolute values of the diffraction amplitudes for the period
‘ i L U L 1 doubling chain. The diffraction pattern is 1-periodic.

0 5 10 15 20

Fig. 13: Diffraction pattern for the Fibonacci chain The Bragg ith k— m o Thi s ifibsuni |
peak at 0 has heiglitlengA ))2 = (1+1) /5~ 0.5206, and the entire with k= 7 € L®. This parametrisation specifiésuniquely.
pattern is reflection symmetric. Figure 14 shows the absolute valyask)| for k e L¥ N[0, 1].

This pattern repeatg-periodically.

_ _ _ o Further one-dimensional examples will be discussed in Sec-
A sketch of the diffraction pattern is shown in Figure 13. &lot tjon 5 in the context of continuous diffraction measurest Le

that the intensity function(k) = |A(k)|? vanishes if and only  us now turn our attention to higher-dimensional model sets.
if Tk* € Z\ {0}. This meank = ¢1 with 0# ¢ € Z. Since alll

such points lie in the Fourier modulé®, we have identified
all extinctions. These are a fingerprint of the intrinsicatitin

4.4 Cyclotomic model sets
symmetry.

As an example of a limit-periodic structure, consider the0r the description of two-dimensional tilings, it is adt@n
period doubling sequencVritten as an elememt € {0,112, ~ 9€0US to work with cgmplex numbexsty in C rather than
it is given byw(2n) = 1, w(4n+ 1) = 0 andw(4n + 3) = w(n) with points(x,y) in R . In C a r_otat|on by an anglé just
for n € Z. This rule specifies every position except —1,  corresponds to multiplication with the complex numlas@r.“ ,
where we can choose either possibility. Both possibilitias This poTt of view is a.natural generalisation of de Bruijn’s
also be obtained as a fixed point sequence of the square of theethod" and the Fourier space approathA natural way

substitution 31— 10, 0— 11. The two sequences have cores to implement am-fold rotational symmetry is to choose a
primitive nth root of unity&,, € C (so & = 1 and&" # 1 for

...1011101010111¢41011101010111011. 1< m< n), and to consider th&-moduleZ[&,] of cyclotomic
integers comprising all integer linear combinations of powers

and are locally indistinguishable. They thus define the sam&f én (the solutions of the equatiotf = 1). One can think of

system. The underlying Toeplitz structure of a hierarchyCyclotomic integers as the set of all points in the planedhat
of scaled and shifted copies @ is apparent from the for- be reached by taking steps of unit length along the direstion

mulal6 2324 of aregulam-star. Clearly, the resulting point set is symmetric
under rotations of multiples of72/n; in fact, under rotations
A={neZ|wh) =1} = U ((2.4424_ (4" — 1)) by multiples ofrt/nif nis odd. Therefore, one usually restricts
(>0 to integersn # 2 mod 4 to avoid duplications.

) ) ) The cases € {1,2} are trivial in the sense that the resulting
for w(—1) =0 (with —1 added to\ in the other case). This set point sets lie on the real axis. The choites {3,4} lead to
can be described as a model set, but with the internal space b@rystallographic point sets, the triangular lattice witkfald
ing the 2-adic integers. Consequently, the diffractionsnea  symmetry and the square lattice with fourfold symmetry. Any

of the Dirac comh, is again pure point. other choicen > 5, n# 2 mod 4, produces a dense point set
The Corresponding diffl’action formula can be giVen eXpIiC-in the p|ane' withn-fold Symmetry for evem, and a-fold
itly as follows.*>16 The Fourier module is symmetry for odch.

The dense point s&[&,] can be embedded into a lattice by
lifting it to a suitable higher-dimensional space, essgiytby
making all directions in tha-star that are linearly indepen-
dent over the integers (there apén) such directions, wherg

2 (1) is Euler’s totient function) also linearly independent otle
Ak) = 35— ™, real numbers. A natural way to do this is the Minkowski (or

L® =Z[3] = {Z | (r=0meZ)or(r>1modd},

so that we can again use Eq. (11). Here, the amplitudes are

11
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Fig. 15: Ammann-Beenker tiling as a cyclotomic model set. o @ s - @ e -0 -0
. [ J [ ] : LN J [} .
Galois) embedding . , .

Zh = {(%0x(x),..., 0y, (X)) |xeZ[&]}  (14) _ o -
2 Fig. 16: Diffraction pattern of the Ammann-Beenker tiling.

which defines a latticeZ, c C29M ~ ROM Here,o,, with

1< £< ¢(n), are the Galois automorphisms of the corre-can pe chosen as the Galois automorphgm- &3, and the

sponding cyclotomic number field, mapping a primitive root Ammann-Beenker model set is then obtained as

&, &n " to a primitive rooté, , where{m, | 1</ < @(n)} =

{1 <k < n|kandncoprime, together with a suitable order- Npg = {X€L|X eWp}.

ing. Note thaig; is the identity map. Using the latticg, in a

cut and project scheme, with physical sp&®e~ C and inter-  Figure 15 shows the picture in physical and internal space.

nal spaceR?W -2, we produceyclotomic model setsvhich, ~ Selecting pointx € L whosex-image falls inside the octag-

for suitably chosen windows, havefold (2n-fold) rotational ~ onal window (shown on the right of Figure 15) produces the

symmetry. point set in physical space shown on the left. Connecting all
As an explicit example, we consider the classic Ammann-points of unit distance (which clearly is a local rule) reews

Beenker (or octagonal) tiling?® as a cyclotomic model set the Ammann-Beenker tiling, which is MLD with the cyclo-

with n = 8. Other standard examples of this type includetomic model set. The decorations needed for the approach via

the Penrose tiling* of Figure 2 and the @ibingen trian-  local rules add some non-local information, and cannot be

gle tiling®® (both with tenfold symmetry) andler’s shield  recovered from the undecorated tiling alatfe:2

tiling 4748 (with twelvefold symmetry). The latter is locally The diffraction of the Dirac comb on the Ammann-Beenker

equivalent (MLD) with a tiling introduced by Socol&f®  model set can be calculated via Egs. (11) and (12). Itis a pure

Sinceq(5) = ¢(8) = ¢(12) = 4, all these tilings are obtained point measure supported on the dual moduite= 3L (with

from cut and project schemes (9) with internal spgée the factor% due to the aforementioned scaling of the hypercu-
Of course, the resulting tilings are only rotationally sym- bic lattice in the Minkowski embedding). The amplitudes (or

metric if the window is chosen to have an appropriate ro-Fourier-Bohr coefficients) are

tational symmetry. To obtain the (undecorated) Ammann-

Beenker tiling, the windowV,; has to be chosen as a regular AKK) = 1 1;\,\ (—k")

octagon, of unit edge length. The module 4 e

_ _ 2 3 4 because the lattic&’, has density:. A central patch of the
L= Zl&s) = {No-+Ms+ Modg + Nodg'| (No: Ny, N, Ng) € 273 diffraction image, obtained via an exact calculation of the
is dense in the plane, and naturally lifts to a hypercubie lat Fourier transform of the octagonal window, is shown in Fig-
tice in four dimensions (the corresponding Minkowski embed ure 16. In principle, the diffraction of any model set can be
ding % is a scaled and rotated version #f). Thex-map calculated (at least approximately) in this way, althoughay

12



4 DIFFRACTION OF MATHEMATICAL QUASICRYSTALS 4.5 Icosahedl model sets

be complicated if the window is not a simple polygon or cir-
cle, such as for the square-triangle tilings where the wirglo
have fractal boundarie$:63

4.5 Icosahedral model sets

The model set approach works in any dimension. In particu-
lar, it can be used to construct icosahedrally symmetiimtl

in three-dimensional space, which are particularly relefer
applications in crystallography. The minimum embedding di
mension for this purpose is six, because one needs a faithful
action of the icosahedral group and an invariant subspace of
dimension 3. In this setting, there exist three differeatsks

of icosahedral model sets, which correspond to the three dif
ferent hypercubic lattices (primitive, face-centred amndiys
centred) in six dimension’2116 As body-centred icosahe-
dral structures have not yet been identified in quasicrystat
concentrate on the other two classes, and discuss one axampl

of either type. 5 _ V56— —/5, hencer’ = 1—1). In this formulation, the em-

For theprimitive icosahedral tilingwe start from a lattice  pedding lattice? = {(x,x*) | x e L} is similar toZ®, and ex-
< that is similar to the integer lattic&®, and use a cut and plicitly generated by theéZ-basis{(v;,v*) | 1 < i < 6} with
project scheme (9) where both physical and internal space akne vectors from Eq. (15). Consequently, the fundamental
R3. The corresponding window is shown in Figure 17; itis acell of % has volume 40T + 3), so that the density of”
semi-regular polyhedron known as Kepler’s triacontahedro g (7—4T)/200.

; 3

The triacontahedron has edge leng®-+ 7, volume 20 and A sketch of the two prototiles is shown in Figure 18. The
surface area 6Q wheret = (1++/5)/2 is again the golden 1 ohedra have solid angles’s, 3r1/5 and 71/5 as in-

ratio. This approach was pioneered by Kramer and Reri, dicated. The solid angles in both cases add upmo Fhe

and the tiling is also called the Kramer-Neri or the Ammann'prototiles have volumest2 (for T,) and Zr (for T,). Note

Kramer-Neri tiling (Ammann described the tiling earlier by - ton thombohedra of each type can be asserfiblédo
different means, without publishing his findings; compée t fill Kepler's triacontahedron of Figure 17

corresponding comments in Mackay's early par Some Figure 19 shows the only vertex star out of the 24 possible

authors also call it the three-dimensional Penrose tiling, S . .
. S vertex stars of the Kramer-Neri tiling which has full icogah
analogy to the fivefold rhombus tiling in the plane. y ) .
dral symmetry. In any tiling obtained from a generic model

The primitive icosahedral tiling is built from two rhombo- 4 . . :
hedral prototiles, a thick (or prolate, call@) and a thin (or set, this vertex type occupies a subset that itself is a namtel
' ' with the 1~3-scaled triacontahedron as its window. This prop-

oblatg, callgdro) one. They can be defined as the convex huIIserty corresponds to the invariance of the modu# under
of their vertices

multiplication by T3 and reflects the inflation symmetry of the
= conV{0,Vy,Vy,V3,Vy +Vy,V; + V3,V +V3,Vy +V, +V3}, primitive icosahedral tiling. The corresponding (locaijla-
tion rule, however, turns out to be rather complicated ared ha
never been presented in complete detail.

Fig. 17: Kepler's triacontahedron as window of the primitive icosa-
hedral tiling due to Kramer and Nef?

To

To = cONY{0, V1, Vi, Vs, Vg + Vo, Vg + V5, Vo + Vs, Vg + Vo + Vs }

where the basis vectors dfé

V1=(T70,1), V2:(T70>_1)> V3:(17T70);
v,=(-11,0), v5=(0,1,1), Vg=(0,—-1,7).

These six vectors generate the primitive icosahedral neodul
3r/5
Mp = (V1,V2,V3,V4, Vs, V),

(15)

which plays the role of = r1(.¥) in the corresponding cut and /5 /5
project scheme (9). Themap acts aga,b,c) — 1(a,b',c)
on .#p, where’ denotes algebraic conjugation (which maps Fig. 18: Sketch of the two rhombohedral prototiles.
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Fig. 19: Icosahedrally symmetric vertex star of the Kramer-Neri '... ‘ '..' . ...' '... . '..' ‘ ...'
tiling, comprising 20 acute rhombohedra. T T
e o @ -0 @
e o
The diffraction of the Dirac comb on the primitive icosahe-
dral model set can be calculated again by Egs. (11) and (12). . e o o«
The Fourier module in this case is e e e
‘o @ ., Lo e
L® — ® __ 1 M, : .. .. ‘e
—P T oy o 2. e 0.
o AT I o
The diffraction spectrum consists of a dense set of Bragg ] ' e ? e - ' L
peaks located ob®, of which only a discrete subset has inten- .oe % %, e
sity above any chosen (positive) threshold. A full caldokat L. . e, ® . . o
of the Fourier transform of the triacontahedron was given by e e, e -
Elser?® so the intensities can be obtained explicit| e 0 e 0 e
; plicitly. ey el g

For simplicity, however, we employ a spherical approxima- o .t @t . T e
tion to the amplitudes, by replacing the triacontahedroma by . .. e .. °
sphere of equal volume 28. The radius of the sphere turns ¢ e PY e
out to be St el et

15\1/3 e
R= (7) T~ 2.7246.
m
Because the triacontahedral window is well approximated by e e ate.
this sphere, the difference between the approximate and the - @ oo @ -0
. Co L : ‘9.0 @ 0 @ -
exact diffraction intensities is tiny, and irrelevant farrgur- o ® ° v ® . e
pose. Note that the approximation only affects the values of et et el ietit et lteliet.
the amplitudes, not the location of the peaks (except for ex- ‘. ':; ' ‘.‘ . ... . '.' ;"' .
tinctions, which might show up in the approximation as tiny . . .® o .o - @ o .® o .
intensities). The Fourier transform of the spherical windo S st Te st
@ 00 @ e @ @ -0 . '@
evaluates as ‘e @ @ @+ @ +0 @ @
. @ -0 .0 @ 00 @ - 0. .0 N J
1 ik 3(sin(z) — zcogz)) e o eliie oo e
| /e2 ydy: Z D ) o e - @ LY ) o e
vol(BRr) /B e @ @ o6 @ -® @

) ] ) @ e e+ @ 0 0 O -
with z= 2mk*|R. Figure 20 shows sections through the cor- EER TR PEET HERERIRT DI T
responding three-dimensional diffraction patterns, agtinal .- ;?‘ ..9‘ . f‘f : ‘9.. ‘?; R
to the fivefold, threefold and twofold symmetry axes. o @ oo - @ -. @

el e e

An example of an F-type (face-centred) icosahedral model
set isDanzer’s tiling3® which was first constructed from an
inflation rule, and is also known as tA8CK tiling, after the  Fig. 20: Fivefold (top), threefold (middle) and twofold (bottom)
labels Danzer used for the four tetrahedral prototiles.hin t sections of the diffraction pattern of the primitive icosahedral tiling.
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absolute maximum, the hole is called deep, otherwise shallo
in the coset? + (1,1,1,7,1,1), those of type Il from deep
rations shown in Figure 21, so one can alternatively workwit The corresponding three windows have icosahedral symme-
The ABCK tiling is mutually locally derivab@3from  tagonal edge length 2 and volume(0- 1), the window for
the fact that it possesses particularly simple perfectledes, (3 Kepler-Poinsot polyhedron), with pentagonal edge lengt
icosahedrally symmetric vertex stars, each comprisirigjues The diffraction pattern of the Danzer tiling has spots on the

4 DIFFRACTION OF MATHEMATICAL QUASICRYSTALS 4.5 Icosahedt model sets
Fig. 21: The tiles of the Danzer tiling appear in groups of four
(A,B,C) or eight (K), forming (topological) octahedra.
Fig. 23: Windows for the vertices of type I, Il and 1l of the Danzer
‘ y tiling. They are shown in the correct relative size and orientation.
NS
$~/( </
§ In fact, the usual description as a three-component model
\,&V' set uses the projections of so-called ‘holes’ in the latii€e
\%”§‘:{,‘ Holes are vertices of the Voronoi cells whose distance from
'\’(/'\ points of the lattice is a local maximuri.If the distance is an
Fig. 22: The three icosahedrally symmetric vertex stars of theThe'vertices of the Danzgr ti'ling then fall into three gr.aup.s
Danzer tiling, comprising exclusively tiles of type B, C or K. Vertices of type | are projections from deep holes which lie
N _ _ ~ holes in the coset? + (1,7,71,—1,—1,—1) and vertices of
ABCK tiling, the tetrahedral tiles always occur in the config type 111 from shallow holes in the cos&f’ + (7,0,1,—1,0,T).
assembled prototiles consisting of four tiles of type A, Bor  try and are shown in Figure 23. The window for vertex type
and eight tiles of type K. | is a dodecahedral extension of an icosahedron, with pen-
the Socolar-Steinhardt tiling?? so both describe equivalent yertex type Il is a dodecahedron of edge length and vol-
structures. An interesting property of Danzer's ABCK Wis  yme 41+ 2), and the third window is a great dodecahedron
which can be formulated as purely geometric packing rule$ and volume 20r — 1). The x-map is the same as for the
on the level of the octahedf®. The Danzer tiling has three primitive model set above.
type of tiles, which are shown in Figure 22. Under inflation, corresponding dual module
these act as seeds of globally icosahedrally symmetric &anz

tilings. ® 1
For the Danzer tiling comprising these larger prototiles of Me = m (///P Y (///PJFU)) (16)
Figure 21, all vertices are located on the face-centrecalues
dral module with u as above. Whereas the primitive tilings has diffraction
SPOts 0N/ = ;.4 oOnly, the Danzer tiling has addi-

Me = (V] + Vo, Vo + Vg, Vg +Vy, Vg + Vi, Vs + Vg, Vg — V. , .
F = (Vo Vo, Vo Ve, Va Vi Vg + Vs, Vs + Vg, Vo — V) tional spots on the shifted copy;'5; (.# +u). Note that the

which is a submodule 0¥ of index 2. Explicitly, one has union.#pU (.#p+U) = .4 corresponds to the body-centred
icosahedral module.

Due to the relation between the symmetry directions and the
shift u, not all high-symmetry sections through the origin will
choice of coordinatesiis notin .. The vertex point set can SNOW peaks from both modules in Eq. (16). In fact, only the
be described as a three-component model'ddé based on twofold sections through the origin contain peaks from both
a cut and project scheme (9) with physical and internal spacBarts in Eq. (16) and thus display the full Fourier module,
R3. The corresponding lattice is the embedding of while the three- and fivefold sections only contain peaksifro

1 . . .
in R®, which is similar to the root lattic®s. The vertices of  2ri2)-/p- Figure 24 shows the twofold section of the diffrac-
the four types of (topological) octahedra (thus disregaydie  tion for a Dirac comb of vertex type Il only, so the window
(K)-centres) separate into three different types, which steni simply a dodecahedron, which we approximate by a sphere

from different cosets of the embedding lattice. of radiusR= (?’(T—;z))l/3 ~ 1.5118. In Figure 24, the ‘black’

Mp = MU (Me+T?U),

whereu = 2(v; —V, +V; — Vv, + V5 — V) = (1,1,1). For this
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Fig. 24: Twofold section of the diffraction pattern of the ABCK Fig. 25: Fivefold section of the diffraction pattern of the ABCK
tiling, with scatterers on all vertices of type Il. tiling; see text for details.

diffraction spots belong t%/fp, while the ‘grey’ spots  that, for any Meyer seA C RRY, the corresponding Dirac comb
belong to the coset. w = &, always shows a non-trivial point diffraction, though in

To visualise the diffraction along the fivefold axis, we com- 9eneral the spectrum will be mixed and not pure point. How-
ever, the point part is substantial in the sense that for any

bine the section through the origin with two parallel seatio d1o N

containing the coset reflections. The result is shown in Fig€ > 0. the set of peak¢k € RY | y({k}) > (1-£)y({0})}

ure 25. The spots ig(ri—z)//lp are again shown in black, while (8!l peaks with intensity near the maximum intensity) isarel
the two different grey colours distinguish the spots in the t tively dense. While we do not have a complete answer to the

parallel planes containing (dark grey) or—u (light grey). question what structures are pure point diffractivet is clear

This pattern demonstrates that the overall rotational sgtnm that ‘f"brurf potlnt Ségecwm Imposes strong consraints on the
here is fivefold (not tenfold) and inversion symmetric. Taie | pOssIbIE Structures.

ter property accounts for the tenfold rotation symmetryhef t th Ftorhthe remﬁlnder o(;.tfius ?rtldi’ \;vhe are Icl)okm%at systems
section through the origin (black spots). Sections witledhr at show continuous diffraction, both singular and abistju

fold symmetry display the analogous phenomena continuous. The discussion of examples with and without ran

The distinction between the diffraction of a primitive and dom disorder will shed some light on the much more complex

of a face-centred icosahedral model set is thus immediatel)slltuatlon beyond the pure point diffractive regime.

recognisable from the spot locations in a twofold secticor. F
further (practical) details and examples we refer to themec 5 Systems with continuous diffraction
literature 125
It seems a relatively recent experimental observation that

Within the realm of regular model sets, diffraction is thus diffuse scattering (as an indication of structural disorde
pretty well understood. We know that regular model sets argnd not just of thermal f|uctuations) is a Widespread phe_
pure point diffractive?®®”1°and Eqs. (11) and (12) provide nomenont33135|t is thus natural to also investigate continu-
eXpIiCit eXpreSSionS for the intensities in terms of the rff@u ous diffraction Spectra from a more mathematical persmcti
transform of the window. Homometry of model sets (within aAgain, we briefly present illustrative examples, most of athi

the same cut and project scheme) can be traced back to equghve been analysed completely and rigorously by now.
ity of the covariogram of the window, and explicit examples

of homometric model sets have been construét@thermal
fluctuations can be taken into account in a fashion that ik ana
ogous to the crystallographic ca%€® see Section 5.3 below.  Let us begin by recalling the paradigm of singular contirsiou
The Bragg diffraction has some robustness property beyondiffraction, theThue-Morsgor Pruhet-Thue-Morse) systemn.
the class of regular model sets. Recently, Struntf&proved  Itis usually defined via the substitution re- ab, b— ba. A

5.1 Singular continuous diffraction
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5 SYSTEMS WITH CONTINUOUS DIFFRACTION 5.1 Singular contirusodiffraction
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Fig. 27: Patch of the squiral tiling, obtained by two inflation steps
from the central seed, which is legal.

I

7 ‘ e ‘ T and the functional iteration

2
Fig. 26: Distribution function of the Thue-Morse diffraction mea- Fugpa(X) = }/ (1f cos(ny)) dFy(y)
sure on the unit interval. 2Jo

for N > 0. Since this iteration maps distribution functions
bi-infinite fixed point sequencer emerges from iterating the for absolutely continuous measures to distribution fuoretiof
square of this rule with the legal seath. Define the Dirac  the same type, one can writg(x) = fy(x) dx with a Radon-
comb Nikodym densityfy,. One can now check explicitly that this

W= Ezf(w(n))én, leads to

N

fy(X) = J](l— cog2'mx)),

wheref(a) =1 andf(b) = —1. One can now show that the

autocorrelation measure exi§g394134and is of the form . .
where the empty product is to be evaluated as 1. Since the

y= Z n(m) &m, densitiesfy, become increasingly spiky (and do not converge
meZ as a sequence of functions), one uses the distributioniursct
Fy to illustrate the resulting measure. Note that the sequence
(Fn)nen COnverges uniformly but not absolutely. This is in
1 line with the fact thafu is singular continuous, and thus can-
n(m =n(m and n(2m+1)= -3 (n(m-+n(m+1)),  not be approximated by a norm-converging sequence of abso-
lutely continuous measure§® The resulting limit distribution
which is valid for allm € Z. This exact renormalisation-type functionF is illustrated in Figure 26. Despite its similarity
structure is the golden key to prove the spectral tgpd to with the Cantor measure of Figure,is a strictly increasing
calculate the measure explicitly. function. This means that there is no proper plateau here.
The diffraction measure is 1-periodi€ and hence of the o o
form y = u x 3, with a positive, singular continuous measure A non-trivial planar example emerges from toguiral in-
1. To describe the latter explicitly, one defines the distignu  flation rule from Figure 10.1.4 in Gnbaum and Shephafd.

functionF (x) = p([0,x]) on the unit interval. Itis consistently 't effectively leads to an aperiodic 2-colouring of the squa
extended to a function oR by settingF (x+n) = F(x)+n lattice, according to the chirality of the square disseticsee

for n € Z. This way,F (x) — x is 1-periodic and possesses the Figure 27 for an illustration. Positioning a point measufe o
uniformly converging Fourier series weight 1 or—1 in the centre of the two types of squares, one

obtains a weighted Dirac comb with average weight 0. Due to
o nN(m) . the inflation structure, one can derive a recursion formata f
F(x)—x = Zlm sin(2rmy). the corresponding autocorrelatién®
™ By constructive methods, in complete analogy to the case of
For computational purposes, however, it is advantageous tthe Thue-Morse sequence, one can show that this Dirac comb
use an approximation in terms of a uniformly converging sedeads to a purely singular continuous diffraction measar¥.
quence of distribution functions as follows. DefiRgx) =x  Asinthe one-dimensional case, it can explicitly be calmda

with n(0) = 1 and the recursion

17



5.2 Rudin-Shapiro chain and its Bernoullisation 5 SYSTEMSWICONTINUOUS DIFFRACTION

5.2 Rudin-Shapiro chain and its Bernoullisation

A simple, deterministic system with continuous diffractiis
thebinary Rudin-Shapiro chainwhile it is usually presented
via a four-letter substitution rule, the correspondinggired
Dirac combwgg = YnezW(N)4, can be defined by the se-
quence of weightéw(n)) ., with w(n) € {£1}, initial condi-
tionsw(—1) = —1, w(0) = 1, and the recursion

w(n), for £ € {0,1},

(=)™ w(n), for ¢ {2,3}. (18)

w(dn+/¢) = {

The arrangement of the two weights looks as follows

...O..O....OO0.0000.00.0...OO0.0#..O..O....OO0.0...O..0.000...O.

where the line denotes the origin, and filled (open) dotsezorr
spond to weights 11).

Despite the deterministic structure, the autocorrelatiea-
sure of the balanced Dirac coralp,g (which has average scat-
tering strength 0) can be shod¥114117o be yrs = &,. A
simple proof of this is obtained by considering the induaed r
cursion relation for the autocorrelation coefficiefts:3 The
corresponding diffraction measure is thigg, = A, which is
purely absolutely continuous, and shows no trace whatsoeve
of the underlying deterministic order in the sequence. &, fa
the system is (almost surely, meaning for almost all realisa
tions of the random sequence) homometric with the random
Dirac comb oriZ with weights from{+1} chosen at random,
independently at each position and with equal probability.

! We can combine the deterministic sequence and indepen-
dently chosen random numbers by consideringgamoulli-
sationof the Dirac combxuss, which we define as

W= 3 Wn)X(n)&. (19)

nez

Fig. 28: Third step of the Riesz product structure of Eq. (17) for the
diffraction measure of the squiral tiling; see text for details.

and represented as a two-dimensional Riesz product. The re-
sult reads Here, (w(n)),., is the binary Rudin-Shapiro sequence of
N-1 ‘ weights from Eq. (18), wheredX(n)), ., is an i.i.d. family
fn(xy) = J_Lﬁ(3£><, 3y), (17)  of random numbers, each taking values 1 aridwith prob-
= abilities p and 1— p (so 0< p < 1), respectively. The limit
where the functio® is defined by case € {0,1} bring us back to the deterministic Dirac comb
+wrg While the cas@ = 3 corresponds to the Bernoulli comb
with weights 1 and-1 mentioned above. The Bernoullisation
thus interpolates between the deterministic Rudin-Shager
2 quence and the completely uncorrelated sequence of indepen
—2coq2m(x+y)) —Zcos(2n(x—y))) : dent random numbers. It can also be interpreted as a ‘model
of second thoughts’, where the sign of the weight at position
As in the one-dimensional case, the corresponding digimibu  p j5 changed with probability % p.
function possesses a uniformly convergent Fourier segigs r Using the strong law of large numbef$,it can be

resentation, which involves the autocorrelation coeffitse ShOWnll’l6 that the autocorre|atiovp of the Dirac Comm)p
The density functionf; (bottom) and the corresponding dis- js aimost surely given by

tribution functionF; (top, normalised such th#&;(0,0) = 0)
are shown in Figure 28. Vo = (2p—1)%yrs+4p(1—p) & = &,

9(xy) = é(l+2cos{2nx) +2cog2my)

18



5 SYSTEMS WITH CONTINUOUS DIFFRACTION 5.4 Random tilings

irrespectiveof the value of the parametgre [0,1]. So the  where(tx),., is a family of i.i.d. random translation vectors
diffraction of this Dirac comb, for any choice of the parasret with common probability distributiow. Then, with probabil-
p, is (almost surelyy, = A, and the entire family of Dirac ity one,d,, has the autocorrelation
combs is homometric.

This simple example highlights the fact that diffraction in y' = yx(vxV) + dengA) (& — v V). (20)
general cannot distinguish ‘order’ in the sense of a detagmi
tic structure from that in the presence of entropy. Note tihet The corresponding diffraction is obtained by Fourier trans
deterministic Rudin-Shapiro sequence has zero entrogije wh form and reads
the Bernoulli comb has entropy 162), which is the maximum
entropy for a binary sequence. For gengrathe entropy is
H(p) = —plog(p) — (1—p)log(1—p), so it varies continu-
ously between 0 and 1¢8). Regardless, the diffraction of all Shidd
these combs is the same. This result provides a glimpse & Infinity, and the formula holds aimost surely, as Eq. (20).
how degenerate, and hence difficult, the inverse problem cak the diffraction ofd,, is a pure point measure, the pure point
be in the presence of continuous spectra. Similar argumengart of y’ is given by |V|?y (hence by a modulation of the
can be used in higher dimensions (in particular by congigderi intensities, which is the Debye-Waller factor), while thane
product structures), and examples in two dimensions irvolvtinuous part s derig\)(1— [V|?). Note, however, that Eq. (21)

ing lower rank entropy have also been discus¥ed. is by no means restricted to pure point diffractive systems.
An explicit dependence on the temperature can be modelled

_ ] by the appropriate choice of the displacement distribution
5.3 Random displacements and thermal fluctuations Further details and generalisations are discussed intéra-i
ture 883

y' = V|27 + dengA) (1 V[?). (21)

Here,V is a uniformly continuous function did that vanishes

There are various important applications of Bernoullietyp
disorder in real systems. The most obvious one is known

as therandom occupation modeWhich covers lattice gases 5.4 Random tilings
and models of chemical disorder. Traditionally, this hasrbe
formulated for lattice-based systems oANA30 but the cor- :
responding results hold in much greater generality. This in€lass of structures, as was early pointed out by Etsahe

cludes model set&! but also structures with a substantial de- Structure of the various ensembles and their diffractiomos
gree of positional disordér8384 1t turns out that the lattice 8S well understood as in the deterministic case, thoughlg fai

assumption can be replaced by rather general principles fro COMplete picture was sketched by HenféyErom a physical

probability theory that revolve around the strong law oggar POINt of view, most results are ‘clear’, on the basis of caovi
numbers#6 ing (scaling) arguments from statistical mechanics. Théhma

This change of perspective is also of value for the treat-e'nn""t'(:é_1I counterpart, however, is still mcomplete, ar_mbm;
ment of the effects of thermal fluctuations to the diffrantioc ProPerties have escaped a proof so far, particularly in b a
of solids. In fact, rather than restricting to a lattice anth8 more dimensions. In fact, it is a characteristic featureaof r

vibrations in a harmonic potential, the famous Debye-Walle 40 tilings to show a strong dependence on the dimension, as
contributior?>130 can alternatively be derived from the as- We Will illustrate by some examples.

sumption that the scatterers are randomly displaced freinth | ot s first consider a random version of the Fibonacci
equilibrium positions, independently of each other, bugdah  chajn. Here, one starts with two prototiles as before (otez-n
on the same probability distribution. This opens the door to,5 of lengtht and one of length 1), and builds a tilingR&fby
another application of the strong law of large numbers, as Wachoosing them with probabilitigs and 1— p, wherep = 71
first observed by Hof Two further advantages are the valid- leads (almost surely) to realisations with the same reddtie
ity for considerably more general point sets than lattioes a frequencies as the deterministic chain of Figure 12. Dukdo t
the independence of the argument of the small displacemefhear arrangement, the ensemble is well under control by el
assumption. At least for sufficiently high temperaturess th ementary methods from probability theory. In particulareo
alternative approach is reasonable. can either invoke the ergodicity of the Bernoulli (coin toss
Consider a Delone set C RY that is sufficiently nice ing) chair'” or the renewal theorefnto show that the ran-

(where we refer to the literatu?é8for the precise conditions). gom Dirac comb obtained this way almost surely leads to the
In particular, we assume that the Dirac codjbpossesses the (jffraction measure

autocorrelatiory. The random displacement is described as

- 2\?
A= (et XA, 7= (757 &+ @2)

Random tilings form a particularly interesting and reldvan
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20

M

Fig. 29: Continuous part of the diffraction pattern of a Fibonacci
random tiling. The range for the wave numbeon the horizontal
axis is the same as in Figure 13.
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Fig. 30: Typical patch of a rhombus (or lozenge) random tiling,
with periodic boundary conditions. Here, the vertical rhombus is less
frequent than the other two types, hence breaking the statistical three-
fold symmetry.

ods, one can then show that the entropy has a unique maxi-
mum at the (unique) point of maximal symmef410 This

part discussed earlier. Apart from the trivial Bragg peak atshows an interesting entropic mechanism for the stafidisat
k = 0, the diffraction is thus absolutely continuous. Figure 290f tilings with statistical symmetry. The value of the emyo

shows the functiom, which is smooth but still shows a spiky
structure that resembles the pure point diffraction of the p

(calculated per tile) is known exactly from a mapping to the
two-dimensional antiferromagnetic Ising model on theriria

fectly ordered Fibonacci chain from Figure 13 to an amazinggular lattice, which was exactly solved by Wannté?.

degree.

The underlying ensemble is special also in the sense that

The mechanism behind the absolutely continuous nature aine does not only know the free energy and the entropy, but
the diffraction in Eq. (22) can be understood as follows. Duealso the two-point correlation functions, at least asynipto

to the choice of the intervals, each realisation can bedlifte

cally. Since this is the autocorrelation of the system, when

within the cut and project scheme of the perfect Fibonaccplacing point scatterers of unit mass on each vertex pdist, t
chain of Figure 12. Almost surely, one then obtains a sequencdiffraction measure for almost all realisations of the lge
of lattice points that deviate from the perfect case via fluc-random tiling (with edge length 1, say) is of mixed type, and

tuations that diverge linearly with the system sP2€# This
destroys the coherence needed for Bragg peals£ad) or
singular continuous contributions fo

Random tilings in the plane show a different behaviour,

which also depends on the symmetry. In particular, itis impo
tant whether one deals with a crystallographic symmetrgt(su
as statistical three- or sixfold symmetry in the lozengadil

has the forny = (¥) oot (V) .« The pure point part i

2
(=" py + (—1)*2p2 +p3) "By k) »

(kq ko)er™
(23)
wherel * is the dual lattice of the triangular lattice, spanned

byv; = (1,~ ) andv, = (0, %), and(k;, k) is a shorthand

Wi b

(V)op

or not (such as statistical eightfold symmetry in the randonfor the wave vectok,v; +K,v, € ['*. The pure point part

octagonal tiling). An example of the former case, with broke
symmetry, is illustrated in Figure 30. The underlying ensem
ble is well studied in statistical physi¢s:54.74.76.77

The lozenge (or rhombus) with opening angtg3 occurs
in three possible orientations in all typical lozenge rando
tilings (which are subject to the condition that any resigti

reflects the underlying lattice structuteyhile the absolutely
continuous one is the fingerprint of the structural disarder
is effectively repulsive in nature, as expected, which rfests
itself1"28in the property that the diffuse intensity is ‘repelled’
by the Bragg peaks.

The diffraction of the example from Figure 30 is shown in

tiling is face to face and covers the plane without overlaps)Figure 31. The pattern is lattice periodic. The pure poimt pa

One can now use the relative frequencies of the three plegoti

(big spots) follows from the exact formula in (23), while the

to parametrise the ensemble. By purely group theoretic-methcontinuous part (small spots) was calculated numerically b
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Fig. 31: Diffraction pattern of the lozenge random tiling of Fig- Fig. 33: Patch of an octagonal random tiling, obtained by thermali-
ure 30. The pattern is lattice periodic, with the shaded rhombus as gation of a periodic approximant via simpleton flips.
fundamental domain.

A comparison with the diffraction of the perfect Ammann-
Hoffel”®4via FFT techniques. Beenker tiling in Figure 16 still reveals a lot of similaeii,
) o _ despite the approximative nature of the calculation. Itipar
The corresponding situation for the randomised Ammannmar, one can clearly map the strong peaks of the perfect case

Beenker or octagonal tiling looks similar at first sight, and 4 positions of the random tiling diffraction, and also vars
leads (via simpleton flip thermalisation, see Figure 32) t0jng.type structures are clearly common to both images. In
patches of the form shown in Figure 33. However, the posyjey of these similarities, it is not clear to what extentein

sible vertex positions are no longer restricted to a latlite  atic diffraction of afinite patch can distinguish the perfect
only to the moduléZ[&g] with &g a primitive 8th root of unity.  fom a random tiling.

This module is Fhe cor_responding set of cyc_lotomic iptegers The simpleton flip of Figure 32 provides a standard ap-
and a dense point set in the plane, as explained earlier. ASgqgach for the preparation of random tiling samples. It work
result, apart from the trivial Bragg peak at 0, the diffranti || also for other tilings with rhombic prototiles, wherae
measure will be continuous, with singular and absolutely-co mignht have different types of simpletons to consider (for in
tinuous components. The reason behind this is the logarithsiance, there are two such configurations in the rhombic Pen-
mically d|ve_rg|n_g fluctuation of the embedding surface from ,,5¢ tiling). One usually starts from a periodic approxitan
the deterministic surface of the model set relafigeDue to (to minimise boundary effects) to a perfect tiling, whichit
the larger positional freedom of the vertex points, thistiuc  gigticult to construct, and runs the simpleton flip thermadis
ation is strong enough to destroy the coherence that is deedgion yniijl correlations have decayed. In such ensembles, th
for non-trivial Bragg peaks, but not strong enough to avoidygcess can be shown to be topologically transitive, satiteat
singular continuous contributiorfs. entire ensemble compatible with these boundary condif®ns
Unfortunately, this is one of the claims that have not yetaccessiblé2:64 Note, however, that there are other important
been proved, though there can be hardly any doubt about itgnsembles, such as the random square triangle tilings.ewher
correctness. A numerical CalCUIati%Of the diffraction of no such local f||p exists. Here, one needs alternative method
the finite patCh shown in Figure 33 leads to the pattern Oguch as the well-studied ‘Zipper’ mo%that temporar"y in-
Figure 34, a similar result was obtained byff¢®* via FFT.  troduces some new (auxiliary) tiles that enable a randomisa
tion path, until the created tiles annihilate themselvesirag
and leave a modified square triangle tiling behind.

@ — @ Finally, the case of random tilings in 3-space is clearly
of great interest. A natural candidate from the very begin-

ning**®? has been the randomised version of the primitive
Fig. 32: A simpleton flip used in the thermalisation of the Ammann- icosahedral tiling, which is built from the two rhombohedfa
Beenker (or octagonal) tiling. Figure 18. While there are 24 complete vertex configurations

21



6 OUTLOOK

structures are pure point diffractive, much as conventiona
crystals, except that the Bragg peaks are supported on & poin
set that is dense in space. For many standard examples, the
corresponding diffraction amplitudes can be calculatgdiex

itly, for instance in terms of Fourier transforms of the earr
sponding window(s).

The situation changes quickly if one leaves the realm of
model sets. As discussed, Meyer sets still inherit some of
the structure, in the sense that their diffraction measare c
tains non-trivial pure point components. For substitutfon
inflation) based structures, examples with all spectrasyare
known. In this article, we met examples of all three types —
the Fibonacci chain (which is a pure point diffractive model
set), the Thue-Morse chain (which has singular continuous
diffraction) and the Rudin-Shapiro chain (with absoluteiyn-
tinuous spectrum). In fact, it is easy to come up with a substi
tution system that has a mixed spectrum comprising all three

Fig. 34: Numerical approximation to the diffraction image of the SPectral types.
random tiling of Figure 33. Quasicrystals are expected to contain some inherent (or
structural) disorder, and it is therefore desirable to wnde
stand the effect of disorder on diffraction, and, vice versa
in the Kramer-Neri projection tiling, counted up to icosdf@®  the conclusions on disorder that one can draw from examin-
isometries, there are 5450 possible ones in a typical randomp,g diffraction patterns, in particular with regard to cowious
tiling. 3° So, it is clear that this version locally shows a much diffraction. This is far from being well understood, but #e
higher degree of disorder. However, unlike the previousrexa amples discussed above provide a glimpse at the general situ
ples, the fluctuations away from the embedding hypersurfacgtion. As the Bernoullisation example shows, diffractiam<c
seem to be boundelf;*?which implies a diffraction of mixed o always detect the nature of ‘order’, for instance whethe
type, this time with a pure point and an absolutely continu-the [atter is of deterministic or entropic origin. Conveyse
ous component — despite the statistical icosahedral symmeyifyse diffraction does not always need to be a sign of rando
try, which is non-crystallographic; a numerical confirmati  gisorder. At present, we only have a very limited knowledge
was obtained by Monte-Carlo simulation techniqdés. of how large the homometry classes can be. In the pure point
If one employs a statistical variant of the projection metho gisfractive case, a recent approach by Lenz and M§8&9
the fluctuations mentioned above lead to a distribution in in provides one possibility for an abstract parametrisation:
ternal space that can be described by a density function. Thl%rtunately, this approach does not seem to be extendable to
latter will resemble a Gaussian profit¢.>> which makes the  cover continuous diffraction components. The investayati
pure point part of the diffraction explicitly accessibl@an  of fyrther examples with different types or degrees of order
appropriate extension of the model set theorem to this tdse. i, hopefully shed more light on this matter.
This gives diffraction formulas of PSF type where the sums on One does not have to go far to find examples of important,

both sides run over dense point sets. A further gene_redrsatl yet still not completely understood systems. A prominerg on
was recently formulated for measures by Lenz and Ricfrd. is the Conway-Radin pinwheel tilind® This tiling is based
on a single triangular prototile (of edge lengths 1, 2 &%),
6 Outlook with an inflation rule of linear inflation multipliet/5, so each
re-scaled triangle (which is planar) is dissected into five-c
The discovery of quasicrystai€® in 1982 had a profound im- gruent copies. Figure 35 shows a photograph of a patch of
pact on various disciplines, including mathematics angain  the tiling, which has been used as a theme for Melbourne’s
ticular, to harmonic analysis and mathematical diffractive- = Federation Square development. Because the inflation con-
ory. The approach described above emerged from the investiains a rotation that is incommensurate witha new direc-
gation of aperiodically ordered systems, and offers a ntethotion is introduced in each inflation step. Consequentlyheac
that can be applied to a wide range of structures. infinite pinwheel tiling contains triangles in infinitely mga
After 30 years of quasicrystal research, the diffractiondistinct orientations, and the corresponding tiling spaen
of mathematical quasicrystals that are described by cut andas complete circular symmetH)?:106.10The diffraction pat-
project sets (regular model sets) is well understood. Suckerns shows striking similarity to a powder diffraction rinca
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Fig. 35: Detail of a facade at Melbourne’s Federation Square featur 11
ing a pinwheel tiling. Photograph® U. Grimm.

12

square-lattice based structur&Vhile there is strong evidence
for sharp rings in the diffraction pattern (which are siragty
continuous in the plane), mimicking the case of the rotation 14
averaged square-lattice structure, the presence of fuitigs
or absolutely continuous components is still unclear.

13

15

More generally, one needs a unified setting for the diffrac- 16

tion of systems with mixed spectra. An interesting suggesti
was made by Garé® on the basis of the intensity measure
of the Palm measure of a point process. This provides an al-18
ternative way to define the autocorrelation of the system. It
is possible to include cases such as crystallographicregste 4
or model sets into this schen&8 and it was recently also
showrf how to use this approach in a systematic way for sys-
tems with various kinds of disorder. Since the theory of poin 20
processes is a highly developed bratfeH of modern proba-
bility theory, the use of these methods looks rather pramgisi
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