
Open Research Online
The Open University’s repository of research publications
and other research outputs

A novel palaeoaltimetry proxy based on spore and
pollen wall chemistry
Journal Item
How to cite:

Lomax, Barry H.; Fraser, Wesley T.; Harrington, Guy; Blackmore, Stephen; Sephton, Mark A. and Harris,
Nigel B. W. (2012). A novel palaeoaltimetry proxy based on spore and pollen wall chemistry. Earth and Planetary
Science Letters, 353 pp. 22–28.

For guidance on citations see FAQs.

c© 2012 Elsevier B.V.

Version: Proof

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.epsl.2012.07.039

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/82974552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1016/j.epsl.2012.07.039
http://oro.open.ac.uk/policies.html


XML-IS

Our reference: EPSL 11582 P-authorquery-vx

AUTHOR QUERY FORM

Journal: EPSL

Please e-mail or fax your responses and any corrections to:

Article Number: 11582

E-mail: corrections.esch@elsevier.macipd.com

Fax: +44 1392 285878

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen
annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than
Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please
return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the

proof. Click on the Q link to go to the location in the proof.

Location in
article

Query / Remark: click on the Q link to go

Please insert your reply or correction at the corresponding line in the proof

Q1 Please confirm that given names and surnames have been identified correctly and are presented in the
desired order.

Q2 The reference given here is cited in the text but is missing from the reference list – please make the list
complete or remove the reference from the text: Fraser et al. (2012) and Bunting and Hjelle (2011).

Q3 The country name has been inserted for the affiliations. Please check, and correct if necessary.

Thank you for your assistance.

Please check this box if you have no
corrections to make to the PDF file ZQBX

sbzbhl
Sticky Note
Correct to Fraser et al.  2012

sbzbhl
Sticky Note
Correct to Bunting and Hjelle, 2010

sbzbhl
Sticky Note
Confirmed identified correctly 

sbzbhl
Sticky Note
Confirmed identified correctly 



1

3

5

7

9

11

13

15

17

19

21
Highlights

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/epsl

Earth and Planetary Science Letters

Earth and Planetary Science Letters ] (]]]]) ]]]–]]]A novel palaeoaltimetry proxy based on spore and pollen wall chemistry

Barry H. Lomax a, Wesley T. Fraser b, Guy Harrington c, Stephen Blackmore d, Mark A. Sephton e, Nigel B.W. Harris bQ1

a Agricultural and Environmental Sciences, The University of Nottingham, The Gateway Building, Sutton Bonington Campus, Sutton Bonington LE12 5RD, United KingdomQ3
b Department of Environment, Earth and Ecosystems, The Open University, Milton Keynes MK7 6AA, United Kingdom
c School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham B15 2TT, United Kingdom
d Royal Botanic Garden Edinburgh, 20a, Inverleith Row, Edinburgh EH3 5LR, United Kingdom
e Impacts and Astromaterials Research Centre, Department of Earth Sciences and Engineering, Imperial College, London SW7 2AZ, United Kingdom

c Existing palaeoaltimetry proxies have poor resolution and are climate dependent. c There is a highly significant positive relationship between

altitude and UV-B. c Pollen and spore wall chemistry tracks changes in UV-B radiation. c We propose that these advances offer a novel

palaeoaltimetry proxy.

0012-821X/$ - see front matter & 2012 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.epsl.2012.07.039

Please cite this article as: Lomax, B.H., et al., A novel palaeoaltimetry proxy based on spore and pollen wall chemistry. Earth and
Planetary Science Letters (2012), http://dx.doi.org/10.1016/j.epsl.2012.07.039

Earth and Planetary Science Letters ] (]]]]) ]]]–]]]

www.elsevier.com/locate/epsl
www.elsevier.com/locate/epsl
dx.doi.org/10.1016/j.epsl.2012.07.039
dx.doi.org/10.1016/j.epsl.2012.07.039
dx.doi.org/10.1016/j.epsl.2012.07.039
dx.doi.org/10.1016/j.epsl.2012.07.039
dx.doi.org/10.1016/j.epsl.2012.07.039
dx.doi.org/10.1016/j.epsl.2012.07.039
dx.doi.org/10.1016/j.epsl.2012.07.039


A novel palaeoaltimetry proxy based on spore and pollen wall chemistry

Barry H. Lomax a,n, Wesley T. Fraser b, Guy Harrington c, Stephen Blackmore d,
Mark A. Sephton e, Nigel B.W. Harris b

Q1

a Agricultural and Environmental Sciences, The University of Nottingham, The Gateway Building, Sutton Bonington Campus, Sutton Bonington LE12 5RD, United KingdomQ3
b Department of Environment, Earth and Ecosystems, The Open University, Milton Keynes MK7 6AA, United Kingdom
c School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham B15 2TT, United Kingdom
d Royal Botanic Garden Edinburgh, 20a, Inverleith Row, Edinburgh EH3 5LR, United Kingdom
e Impacts and Astromaterials Research Centre, Department of Earth Sciences and Engineering, Imperial College, London SW7 2AZ, United Kingdom

a r t i c l e i n f o

Article history:

Received 6 May 2012

Received in revised form

27 July 2012

Accepted 27 July 2012

Editor: T.M. Harrison

Keywords:

palaeoaltimetry

sporopollenin

palaeoclimates

Tibet

plateaux

tectonics

a b s t r a c t

Understanding the uplift history and the evolution of high altitude plateaux is of major interest to a wide

range of geoscientists and has implications for many disparate fields. Currently the majority of

palaeoaltimetry proxies are based on detecting a physical change in climate in response to uplift, making

the relationship between uplift and climate difficult to decipher. Furthermore, current palaeoaltimetry

proxies have a low degree of precision with errors typically greater than 1 km. This makes the calculation

of uplift histories and the identification of the mechanisms responsible for uplift difficult to determine.

Here we report on advances in both instrumentation and our understanding of the biogeochemical

structure of sporopollenin that are leading to the establishment of a new proxy to track changes in the

flux of UV-B radiation over geological time. The UV-B proxy is based on quantifying changes in the

concentration of UV-B absorbing compounds (UACs) found in the spores and pollen grains of land plants,

with the relative abundances of UACs increasing on exposure to elevated UV-B radiation. Given the

physical relationship between altitude and UV-B radiation, we suggest that the analysis of sporopollenin

chemistry, specifically changes in the concentration of UACs, may offer the basis for the first climate

independent palaeoaltimetry proxy. Owing to the ubiquity of spores and pollen in the fossil record, our

proposed proxy has the potential to enable the reconstruction of the uplift history of high altitude

plateaux at unprecedented levels of fidelity, both spatially and temporally.

& 2012 Published by Elsevier B.V.

1. Introduction

Knowledge of the uplift history of high altitude plateaux
underpins our understanding of (i) the interactions between
climate and tectonics, (ii) the first-order controls on the evolution
of the monsoon systems and (iii) the mechanical behaviour of
the lithosphere during, and following thickening. For example,
Tibetan Plateau uplift impacted on global atmospheric circulation
patterns and resulted in a shift in monsoonal seasons compared
with the period prior to Tibetan uplift (Molnar et al., 1993). On a
global scale, plateau uplift may have enhanced siliciclastic rock
weathering (Raymo et al., 1988, DeConto et al., 2003) and a
drawdown of atmospheric CO2 that may be linked to cooling
across the Eocene/Oligocene and the onset of glacial conditions
(Raymo and Ruddiman, 1992), although the linkage between
global erosion rates and Cenozoic cooling has been challenged
more recently (Willenbring and Blanckenburg, 2010).

From a continental geophysics perspective, deformation lead-
ing to uplift and plateaux formation can be variously described by
a number of models. The first of these is the ‘‘thin viscous sheet’’
model, whereby deformation occurs in a vertically coherent
manner, and vertical planes deform by pure shear (England and
Houseman, 1986, England and Molnar, 1997). Alternatively, the
‘‘channel flow model’’ predicts deformation focused in a thin
lower-mid crustal channel, so that the brittle upper crust is
decoupled from the upper mantle (Royden, 1996; Clark and
Royden, 2000). Finally, the ‘‘block model’’ describes elevation of
the plateau as determined by time-dependent localised shear
between coherent lithospheric blocks (Tapponnier et al., 2001).
These competing models make differing predictions regarding
surface uplift patterns that could be rigorously assessed if uplift
histories of plateaux were tightly constrained. Consequently,
there is an urgent need to develop quantitative palaeoproxies to
determine the palaeoaltimetry of high altitude plateaux such as
the Tibetan Plateau is of interest to a wide spectrum of scientists
working within the geoscience community.

Here we set out to briefly summarise existing quantitative
palaeoaltimetry proxies. We then follow this with a discussion on
UV-B change with altitude and the newly identified UV-B proxy
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based on detecting changes in pollen and spore wall chemistry.
This analysis is presented with the overall aim of suggesting that
changes in pollen and spore wall chemistry may form the basis
for developing a new climate independent palaeoaltimetry proxy.

2. Existing palaeoaltimetry proxies

Reconstructing palaeoaltimetries requires the exploitation of a
physical variable that is directly dependent on the elevation of the
surface on which it is measured. One such property is the change
in oxygen isotope composition (d18O) of precipitation. This
approach has been calibrated by assuming that equilibrium
isotope fractionation during Rayleigh distillation is linked to the
thermodynamics of atmospheric ascent and water vapour con-
densation (Rowley et al., 2001). The technique has been criticised
because Rayleigh distillation provides an idealised model that
assumes the immediate removal of precipitation (Shuguia et al.,
2003) and it oversimplifies the treatment of isotopic ratios in
stratified atmospheric flows (Galewsky, 2009). Convective condi-
tions are more appropriate for monsoon systems; these yield
weaker isotope fractionation responses to elevation gradients that
would lower the predicted altitude. More recently, the measure-
ment of D/H ratios of n-alkanes from plant material in Tibetan
lake sediments has been invoked as a potential isotopic proxy
(Polissar et al., 2009). The results of this study proved incon-
clusive because of the uncertainties in moisture palaeosources
and in the isotopic gradient across the northern plateau.

A different approach to palaeoaltimetry reconstruction rests
on palaeobotanical data. The Climate Leaf Analysis Multivariate
Program (CLAMP) has been applied to the Namling locality from
South Tibet (Spicer et al., 2003) to reconstruct elevations at
�15 MyBP, with data suggesting that present-day elevations
(ca. 5 km) were achieved by the Miocene. This technique is
dependent on global climate models and assumptions regarding
atmospheric lapse rates. The propagated uncertainties on the
estimated altitudes are calculated as 7900 m. A series of model
experiments have demonstrated that changes in climate asso-
ciated with uplift have a greater control on the oxygen isotopic
composition of the precipitation than the attitudinally induced
changes in the atmospheric lapse rates which are used to under-
pin the proxy (Ehlers and Poulsen, 2009). Furthermore, in a recent
publication Peppe et al. (2010) indicate that palaeoaltimetry
proxies based on CLAMP, e.g. Spicer et al. (2003), may have
significantly underestimated errors associated with leaf-sized
bias in the fossil record leading to uncertainties in palaeoaltitude
estimates that might exceed 72 km. A subsequent rebuttal
(Spicer and Yang, 2010) of this assertion demonstrated that
removal of all size information from the dataset increased
uncertainties by only 750 m. However, although the CLAMP
technique provides a potential palaeoaltimeter with overall
uncertainties less than 71 km, its applicability is strictly limited
by stringent field requirements; fossil leaves need to be abundant,
exceptionally well preserved and diverse (the Namling section
included 35 well-preserved morphotypes). In addition the section
needs to be precisely dated by radiometric techniques (which
generally require the leaf beds to be interlayered with volcanic
horizons). Despite several expeditions across the Tibetan Plateau
to identify suitable locations for further study no second locality
has yet been identified making the Namling dataset unique.

Another approach, also based on fossil leaves, rests on the
correlation between stomatal density and the decrease in CO2

partial pressure with altitude (McElwain, 2004). This is based on
the well characterised negative relationship between stomata
(either measured as the number of stomata per unit area (stomatal
density, SD) or the ratio of the number of stomata to the number of

stomata and epidermal cells expressed as a percentage (stomatal
index, SI, Salisbury, 1928)) and CO2 (Woodward, 1987). Correlation
between CO2 and SD/SI is strongly species-specific and so can only
be applied to fossil floras that include extant species (making it of
limited use for pre-Quaternary assemblages) and is further limited
by the requirement for validation by comparisons with coexisting
floras that grew at or near to sea-level. The requirement for co-
occurring floras is needed to isolate the altitudinal effects of CO2

decline from the background atmospheric CO2 concentration.
Moreover uplift and mountain building are predicted to result in
the drawdown of atmospheric CO2 potentially diminishing the
predictive power of the relationship.

Recent work using pollen distribution and abundance linked to
modern day temperature-dependent altitude ranges (Dupont-
Nivet, 2008) suggests that the presence of high-altitude floras in
northern Tibet preceded the Eocene/Oligocene boundary. The
dataset is also used to predict elevation but the range in predicted
palaeoelevation is large (1.5–2.8 km) and there are confounding
effects imposed by plant ecophysiology. Indeed the use of modern
temperature-dependent altitude ranges as an indicator of past
altitudes may be over simplistic because elevated atmospheric
CO2 increases ice nucleation temperatures within leaves resulting
in plants becoming more susceptible to frosts (Beerling et al.,
2001) potentially altering their altitudinal range.

This summary of quantitative palaeoaltimetry illustrates that
existing palaeoaltimetry proxies are subject to substantial uncer-
tainty and are limited in their application owing to the require-
ments of highly specific depositional environments. Furthermore
the resolution provided by published studies does not allow the
testing of different uplift and deformation models. Therefore,
what is required is a novel technique for measuring palaeoalti-
metry that is (1) independent of climate; (2) widespread in
applicability; (3) has a precision better than 71 km, and (4) is
independent of global climate models (GCMs) and assumptions
relating to atmospheric lapse rates.

3. UV-B flux

Variation in globally incident UV-B radiation flux is controlled
by changes in the overhead thickness of the stratospheric ozone
(O3) layer. Stratospheric O3 is produced in the tropics by the
photolysis of O2; O3 is then transported to high latitudes via the
Brewer–Dobson cell resulting in a thickening of the stratospheric
ozone layer with increasing latitude, and a corresponding decrease
in the incident flux of UV-B at the Earth’s surface. On a regional
scale UV-B radiation flux increases with altitude (Fig. 1) due to the
physical properties of the atmosphere, coupled with the changes in
albedo with the rate of increase in the incident flux of UV-B per km
of altitude being dependent on the latitude of the mountain range/
plateau (Blumthaler et al., 1997, Pfeifer et al., 2006). It is this
physical relationship between altitude and UV-B radiation that
provides the basis for our proposed novel palaeoaltimetry proxy.
This relationship was recently highlighted by modelling changes in
the flux of UV-B radiation as a result of the uplift of the Tibetan
Plateau (Willis et al., 2009). This study suggests that uplift and
plateau formation would have resulted in a 100% increase in the
total UV-B radiation flux at 5000 m above sea level (m.a.s.l.) when
compared to pre-uplift sea level values (Willis et al., 2009).

A key aspect of the relationship between altitude and UV-B is
that it is independent of climate in contrast to existing palaeoalti-
metry proxies that are derived from detecting climate change
triggered by uplift. UV-B changes are however also associated with
changes in the solar cycle but the influence of sun spot cycles are
limited because these short-term oscillations only result in a small
(r1%) change in UV-B flux to the land surface which is of minor
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significance when compared to changes associated with increases
in elevation (�5�20% increase per 1 km, Blumthaler et al., 1992,
1994, 1997; Dubrovský, 2000; Gonzalez et al., 2007; Kudish et al.,
1997; McKenzie et al., 2001; Pachart et al., 1999; Piazena, 1996;
Rigel et al., 1999; Sullivan et al., 1992; Fig. 1).

Model simulations of changes in UV in response to orbital
cycles have suggested large scale changes in UV radiation (Shaffer
and Cerveny, 2004). However, these simulations report radiative
insolation values in non-systematic contiguous wavebands (225–
285, 300–325, 325–690 nm), and in a split (175–225/285–
300 nm) waveband. None of these wavebands adequately incor-
porates UV-B radiation alone (280–315 nm). The only waveband
that includes wavelengths within the UV-B spectral range is the
‘splitband’. However, this combines both UV-C and UV-B; UV-C
radiation is not experienced at the Earth’s surface due to absorp-
tion within the stratosphere. Thus �75% of the wavelengths of
the calculated influx of the ‘UV splitband’ cannot have reached
the Earth’s surface in an oxygenated atmosphere. Mass indepen-
dent fractionation of sulphur isotopes suggest this occurred after
the ‘‘Great Oxidation Event’’ ca. 2.45 Ga when O2 concentrations
increased to 41% of present atmospheric levels resulting in the
development of a effective stratospheric ozone layer (Farquhar
et al., 2000). Thus the percentage change in UV previously
reported (Shaffer and Cerveny, 2004) is an over-estimate, and is
referred to as ‘‘first approximations‘‘ by the authors (Shaffer and
Cerveny, 2004). Therefore, orbital cyclicity is unlikely to adversely
affect long-term fossil samples of pollen/spores due to the
difference of time-scales and the fairly minor change in biologi-
cally active radiation at relevant wavelengths. Indeed over the
last 550 million years long-term 2D modelling (Harfoot et al.,
2007) of the response of the stratospheric ozone layer to changes
in atmospheric O2 indicates that this gradient has remained more
or less stable, except for periods of intense and profound climate
change associated with the end-Permian mass extinction event
(Beerling et al., 2007).

4. Plant responses to UV-B radiation

The vast majority of terrestrial land plants require sunlight to
drive photosynthesis leading to exposure to high-energy short
wavelength UV-B radiation, resulting in damage to plant proteins,

membrane lipids and DNA. One mechanism by which plants can
mitigate these effects is via the up-regulation of UV-B absorbing
compounds (UACs). UACs are found in a wide variety of plant
tissue types including wood, leaf cuticle, seeds, pollen and spores
(Cockell, 1999). Leaf cuticle, seeds, pollen and spores all contain
ferulic acid (FA) and para-coumaric acid (pCA) that absorb UV-B
radiation due to the physical nature of their chemical structure
with an aromatic ring (common to both compounds) absorbing
and dissipating incident UV-B radiation (Rozema et al., 2009). FA
and pCA are products of the phenyl propanoid pathway (PPP)
which is stimulated by UV-B radiation (Meijkamp. et al., 1999).
Thus the stimulation of the PPP by UV radiation results in the
greater production of UACs. Meta-analysis on whole plant
responses to UV-B confirms that, in response to increased UV-B
radiation flux, the up-regulation of UACs is one of the most
consistent responses across a wide a variety of species (Searles
et al., 2001; Newsham et al., 2009), with a 10% increase in UACs in
response to growth at elevated UV-B (Searles et al., 2001). Meta-
analysis also shows that plants can rapidly acclimate to UV-B
exposure through the production of UACs (Newsham et al., 2009).
Additionally, recent work has identified the protein (UVR8)
responsible for the perception and subsequent upstream regula-
tion of plant responses to UV-B radiation (Rizzini et al., 2011). The
mechanism behind this response has been identified at the
genetic level in Arabidopsis thaliana with orthologous genes being
reported in algae and mosses suggesting evolutionary conserva-
tism in UV-B perception (Christie et al., 2012).

Sporopollenin, the biopolymer that makes up the exine (outer
wall) of spores and pollen, can be broadly grouped as fatty acids
(containing unbranched aliphatic chains) and phenolic compo-
nents, FA and pCA (containing aromatic rings) which provide
protection against UV-B (van Bergen, 2004; Watson et al., 2007;
Lomax et al., 2008; Fraser et al., 2011). Fourier transform infrared
(FTIR) microspectroscopy can be used to detect and identify the
type of bond/functional group present based on wavenumber of
the band, whilst variations in band height and area represent
changes in the relative abundance of such bonds/groups. To
determine the relative abundance of individual functional groups
of interest, FTIR spectra analyses are normalised to an internal
stable absorption band, thus enabling inter-comparison of spectra
by investigating relative changes in abundance of bonds/func-
tional groups (Watson et al., 2007; Lomax et al., 2008; Fraser
et al., 2011). The absorbance band due to the hydroxyl (OH)
groups is chosen for normalisation both because of its stability
and because the absolute IR-absorption is proportional to the
quantity of sample analysed for each spectrum.

Based on previous work (Watson et al., 2007; Lomax et al.,
2008; Fraser et al., 2012), any changes in absorption band peak
height due to aromatic rings (at 1520 cm�1) measured using FTIR
can be regarded as a change in abundance of UACs within
sporopollenin. Nitrogen-containing compounds are widely docu-
mented to have the potential to contribute towards the absorp-
tion band at �1520 cm�1 (Williams and Fleming, 1980; Coates,
2000); however, work using pyrolysis–GC-MS shows no evidence
of such compounds in spore walls (Watson et al., 2007; Lomax
et al., 2008).

Previous work has shown that the biochemical composition of
Lycopodiaceae (club mosses) sporopollenin can adapt to varia-
tions in the local UV-B radiation environment. For example, the
analysis of herbarium samples of Lycopodium magellanicum and
Lycopodium annotinum shows a strong correlation between UAC
concentration and overhead stratospheric O3 column depth
obtained from satellite data (Lomax et al., 2008). L. annotinum

UAC concentration can also be influenced by the flux of UV-B with
plants decreasing their UAC concentration in response to a drop in
UV-B (Fraser et al., 2011). Experimental evidence, in support of
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Fig. 1. Linear modelled regional percentage increase in erythemal UV-B radiation

flux with altitude. Calculations based on clear sky sea-level erythemal UV-B flux

estimates for each region (data from the WMO, 2007 report). Dotted line North
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these findings, confirms that changes in the flux of UV-B radiation
can induce an increase in the capacity of sporopollenin to absorb
UV-B radiation. For example, in a field setting UACs increase by
95% in Vicia faba (broad bean) when compared to plants grown
without UV-B (Rozema et al., 2001). Given that absorption of UV-
B radiation in the spore/pollen wall is based on the physical
properties of the aromatic ring and the need for plants to protect
themselves from the harmful effects of UV-B we hypothesise that
the UAC/UV-B relationship holds across a wide range of plant
species. Experimental evidence to support this assumption is
documented in the literature. For example, Blokker et al. (2005)
report finding both pCA and FA within the sporopollenin of
bryophytes and from widely divergent angiosperms. Furthermore,
changes in UAC concentrations are not significantly related to
other key environmental parameters including relative humidity,
temperature and precipitation (Lomax et al., 2008) (Fig. 2).

Spore UACs of Lycopodium cernuum collected in tropical SE
Asia (Watson et al., 2007) show a positive relationship with

altitude and analysis of Polygonum sp. pollen collected in the
Hengduan Mountains (27100029.800N, 100110040.100E) again
demonstrates the same positive relationship (Fig. 3). Spearman’s
rank correlation coefficient analysis of the combined dataset
reveals a strong correlation coefficient (altitude vs. UACs
rs¼0.95, po0.0001). The pilot data (Fig. 3) also suggest increasing
sensitivity at higher altitudes due to the increase in UV-B
radiation flux. This implies that the relationship between UACs,
UV-B and altitude is non-linear and that transfer functions used to
predict altitude from UACs would be derived from either a power
law or some other non-linear function. The prospect of increasing
sensitivity at high altitude is intriguing as this is currently an area
of uncertainty in existing palaeoaltimetry proxies. However,
caution is warranted when interpreting our combined dataset
due to different geographic locations and thus varying overhead
stratospheric O3 and UV-B fluxes, the data clearly indicate a
strong relationship between UACs present in spore and pollen
walls with altitude.

The chemical analysis of leaf tissue indicates that there is a
significant positive relationship between altitude, UV-B radiation
flux and leaf tissue UACs. For example in the Blue Mountains,
Jamaica, at altitudes from 800 to 1600 m.a.s.l. the calculated UV-B
flux increases from 9.45 kJ m�2 day�1 to 9.75 kJ m�2 day�1 and
total UV-B absorbance by leaf tissue UACs increase by 67% in
leaves of Bocconia frutescens (Tree poppy); a further three species
yield similar results, although the pattern is less clear in an
introduced species Trifolium repens (white clover) (Rozema
et al., 1997). An additional study, looked at the response of Fagus

sylvatica (European Beech) over an altitudinal transect of 685 m,
from 131 to 816 m.a.s.l. to altitudinal UV-B fluxes in the Hunsrück
mountain range (Germany), showed a highly significant (r2 0.68,
Po0.001) linear relationship between leaf UACs and altitude; the
relationship between leaf UACs and the sum of the daily max-
imum UV index (UV-I) during the growth season is also highly
significant (r2 0.54, Po0.005) (Fig. 4A and B) (Neitzke and
Therburg, 2003). Furthermore, analysis of 14 plant species col-
lected in Hawaii spanning a 3000 m elevation transect resulting in
a 15% increase in UV-B radiation reveals a statistically significant
positive relationship between UV-B tolerance and elevation with
tolerance increasing with altitude (Sullivan et al., 1992). A
companion paper (Ziska et al., 1992) reported that plants from
high elevations consistently produced more leaf tissue UACs than
lowland species even when grown without exposure to UV-B,
suggesting both adaptation and acclimation to high incident
levels of UV-B (Ziska et al., 1992). The analysis of leaf UAC found
in the high altitude specialist Polylepis tarapacana (high altitude
quenoa) from two sites (4300 and 5000 m.a.s.l.) again reveals a
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strong positive relationship between UACs and altitude with a
35% (winter) and 32% (summer) increase in UACs between the
sites in response to a 15% increase in winter UV-B flux and a 12%
increase in summer UV-B flux between the two sites (Gonzalez
et al., 2007), demonstrating that the UAC/altitude relationship is
sensitive to changes in UV-B over a very wide altitudinal range.

This consistent series of results – from widely spaced geo-
graphic locations and across several phylogenetic species exposed
to different total UV-B fluxes, rates of change in UV-B flux
with altitude and overhead stratospheric ozone concentrations –
suggests that the plant responses to changes in altitudinal UV-B
fluxes are highly consistent and mechanisms underpinning this
response are evolutionarily conserved. Therefore, the positive
relationship between altitude and UV-B radiation, as reflected
by changes in plant chemistry, and as corroborated by our recent
findings open up the exciting possibility of developing a novel
palaeoaltimetry proxy that is truly climate independent, which is
applicable over a wide range of altitudes.

Although the relationship between altitude and UV-B flux is
independent of climate, the flux of UV-B to the surface can be
influenced by overhead conditions. For example, cloud cover
frequently increases with altitude in mountainous terrain. Eco-
physiological, morphological and biochemical investigations have
demonstrated that plants are adapted to the high flux of UV-B
radiation associated with high altitude (Sullivan et al., 1992; Ziska
et al., 1992; Rozerma et al., 1997; Neitzke and Therburg, 2003;
Gonzalez et al., 2007). Meta-analysis also suggests that UACs
response to changes in UV-B radiation flux are rapid (Searles
et al., 2001) implying that plants are responding to maximum
UV-B flux characteristic of clear skies. Consequently, even though
cloud cover may increase with altitude, we hypothesise that this
factor will not directly impinge on the predictive power of the
relationship, however this clearly requires testing in the field.
Nonetheless, our pilot data (Fig. 3) show a clear relationship
between spore and pollen UACs supporting our hypothesis that

cloud cover does not limit the predictive capability of the
relationship.

5. Taphonomic factors

There are several factors that could impact the effective
assessment of UV-B based on fossilised dispersed pollen and
spores. These fall under the categories of taphonomy that acts
as a powerful filter for any palaeobotanical investigation. Some of
these factors are specific to dispersed terrestrial palynomorphs.
They centre on two questions: where do the pollen and spores
come from, and how are they altered by diagenesis? Pollen
produced by some wind-pollinated plants, particularly temperate
trees and herbs, such as pines, oaks, alders, hazels and grasses,
can be dispersed long distances from the parent plants and in
huge quantities (Bush and Rivera, 1998, 2001; Culley et al., 2002;
Poska et al., 2010; Hjelle and Sugita, 2012). Pollen taken from
sediments and surface samples are therefore regarded as dis-
tance-weighted assemblages with predominantly local pollen
represented alongside some long-distance transported grains
(Prentice, 1988; Odgaard, 1999, 2001; Jackson and Williams,
2004; Bunting and Hjelle, 2010). Such long-range dispersal can
subtly change the composition of pollen assemblages from sites
that do not contain the parent plants, especially those where
there is little surrounding vegetation of significant stature such as
tundra and alpine regions (Gajewski, 1995; Sugita et al., 2010).
While this exotic pollen is detectable with altitudinal changes as
well (Willis, 1994) it does not obscure the dominant local
vegetation signal: Even at altitudes in excess of 2500 m the pollen
record can preserve local vegetation type information without a
loss of fidelity (Willis, 1994; Hooghiemstra and van der Hammen,
2004). Studies from moss polsters (surface samples representing
no influx of water borne grains) indicate that the majority of
pollen are contributed from a 10 m radius with a significantly
smaller proportion of grains from up to 1000 m (Bunting and
Hjelle, 2011). Q2Even lakes of up to 19 ha in size from western
Norway indicate that most pollen is received from within a 1 km
radius (Hjelle and Sugita, 2012).

The proxy is based on extracting geochemical information
from fossil spores and pollen grains. It is essential, therefore, to
understand the stability of sporopollenin in response to diagen-
esis before undertaking extensive analysis. Fossil Pinus pollen
UACs have recently been recovered from Holocene sediments
(Willis et al., 2011). Steemans et al. (2010) demonstrated that the
chemical composition of sporopollenin is stable at lower grades of
diagenesis with samples dating to the Late Silurian (�419 MyBP)
showing excellent biogeochemical preservation.

The geochemical stability of sporopollenin has also been
confirmed in an experimental setting (Watson et al., 2012).
Artificially simulated diagenesis of spore material was generated
by pyrolysis at varying temperatures for 48 h, representing
different degrees of subsurface maturation of sporopollenin.
Results specifically demonstrated that the phenolic content of
sporopollenin (i.e. the UACs which are the basis of this proxy)
remains unaffected at lower grades of diagenesis and is stable up
to an experimental temperature of 200–250 1C. This level of
experimental heating represents thermal alteration equivalent
to the lignite rank.

For application of the proxy to establish the palaeoelevation
and the uplift history of the Tibetan Plateau, we note that average
maximum exhumation rates obtained by fission track studies
from across the plateau lie in the range 0.1 km/Ma, from zircon
ages in northern Tibet (Jolivet et al., 2001), to 0.5 km/Ma, from
apatite ages in deeply incised gorges from SE Tibet (Clark et al.,
2005). These results indicate that, even in the most rapidly
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Fig. 4. Leaf UV-B absorbing compounds (UACs) responses to altitude and UV-B

radiation flux (measured as UV absorption of methanolic extracts per cm2).

(A) Absorption at 280 nm by Fagus sylvatica leaf UACs in response to changes in

altitude; (B) Absorption over 280–400 nm in response to changes in UV-B as

measured using the UV index weighted to erythemal UV-B (305 nm). Redrawn

from Neitzke and Therburg (2003).
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exhuming regions, the rocks exposed on the Tibetan Plateau have
not been heated above 200–250 1C (the approximate zircon
annealing temperature) since the Paleogene or earlier, implying
that pollen recovered from basins of Neogene age are most likely
to have retained their primary biogeochemical signature.

6. Conclusions

Understanding the relationship between orogensis, high-
altitude plateau evolution and climate change requires the deve-
lopment of palaeoproxies that can both constrain uplift rate and
palaeoaltitude with a high degree of fidelity. Current palaeoalti-
metry proxies are underpinned by a large degree uncertainty
leading to poorly constrained estimates of uplift rate and pre-
dicted palaeoaltitude. To fully deconvolve the relationship
between climate and orogenesis a climate-independent proxy is
required; currently published proxies all rely on uplift-derived
climate change to provide the mechanistic underpinning of
the proxy.

We propose that the physical relationship that exists between
altitude and UV-B radiation and newly developed techniques/
instrumentation to quantify spore and pollen UACs now offer the
potential to deliver a palaeoaltimetry proxy that can be widely
applied. This proxy also has the potential to satisfy all of the
necessary requirements i.e. (1) is independent of climate; (2) is
widespread in applicability; (3) has a precision better
than71 km, and (4) is independent of global climate models
(GCMs) and assumptions relating to atmospheric lapse rates. To
fully test these assertions the challenge is to test this newly
identified potential proxy to determine: (i) the sensitivity of spore
and pollen wall UACs to altitudinal fluxes in UV-B radiation and
(ii) construct a series of UAC/altitude transfer functions to predict
present day altitudes as a mechanisms for proxy validation. Pilot
data (Fig. 3) combined with the examination of the literature
presented here lead us to hypothesise that these conditions will
be met resulting in the first widely applicable climate indepen-
dent palaeoaltimetry proxy.
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