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Abstract 13 

40
Ar/

39
Ar dating of volcanic alkali feldspars provides critical age constraints on many 14 

geological phenomena. A key assumption is that alkali feldspar phenocrysts in magmas 15 

contain no initial radiogenic 
40

Ar (
40

Ar*), and begin to accumulate 
40

Ar* only after 16 

eruption. This assumption is shown to fail dramatically in the case of a phonolitic lava 17 

from southern Tanzania that contains partially resorbed xenocrystic cores which host 18 

inherited 
40

Ar manifest in 
40

Ar/
39

Ar age spectra. Magmatic overgrowths on the 19 

xenocrysts display variable oscillatory zoning with episodic pulses of Ba enrichment and 20 

intervals of resorption. Ba concentration profiles across contrasting compositional zones 21 

are interpreted as diffusion couples. Inferred temperature time histories recorded by 22 

these profiles reveal significant variations between phenocrysts. Combined with Ar 23 

diffusion kinetics for alkali feldspars and magma temperature inferred from two feldspar 24 

thermometry, the results indicate that >1% inherited 
40

Ar can be retained in such 25 

xenocrysts despite immersion in magma at ~900°C for tens to >100 years. In cases where 26 

the age contrast between inherited and magmatic feldspars is less pronounced, the age 27 

biasing effect of incompletely degassed xenocrysts may easily go undetected.  28 

  29 
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1. INTRODUCTION 30 

 31 

Alkali feldspars are prized for dating volcanic extrusions by the K-Ar and 
40

Ar/
39

Ar 32 

techniques because their high K concentrations generate measurable radiogenic 
40

Ar (
40

Ar*) 33 

accumulations even on the ka timescale (Quidelleur et al., 2001; Renne et al., 1997). It is 34 

generally understood that cognate feldspars, once saturated, do not accumulate 
40

Ar* while 35 

immersed in magma due to the high diffusivity of Ar in feldspars at typical magmatic 36 

temperatures (i.e., >700 °C). Whether or not xenocrystic feldspars may retain 
40

Ar* through 37 

magmatic processes is not well known because magma residence times are typically poorly 38 

constrained. Examples are known wherein this is inferred to be the case for plagioclase due to 39 

the brevity of xenocryst entrainment, magma residence and eruption processes (Layer and 40 

Gardner, 2001; Singer et al., 1998), but we are unaware of documented cases involving alkali 41 

feldspars whose magmatic residence time and temperatures are known.   42 

In a pioneering study, Gillespie et al. (1983, 1984) showed that alkali feldspars in granitic 43 

xenoliths entrained in a basalt flow were incompletely degassed, but that some domains were 44 

completely degassed and/or purged of inherited 
40

Ar* during recrystallization, enabling the age 45 

of their entrainment- hence by implication the extrusion age of the lava flow- to be determined. 46 

Although the plausibility of partial inherited 
40

Ar* retention in such circumstances was 47 

established by Gillespie et al. (1982) based on argon diffusion parameters available at the time 48 

and reasonable assumptions about the entrainment process, they did not have independent 49 

constraints on the time/temperature history of the xenoliths during entrainment.  50 

Rare examples of excess 
40

Ar hosted in melt inclusions (Esser et al., 1997) and in 51 

unidentified sites (Renne et al., 1997) in alkali feldspars are known. Alkali feldspar xenocrysts 52 

in tuffs commonly retain inherited 
40

Ar* (Renne et al., 1999), but these are generally believed 53 

to have been incorporated in late stages of eruption and/or deposition processes, hence to have 54 

experienced magmatic temperatures briefly if at all. 55 

This paper presents an example wherein significant amounts of inherited 
40

Ar* in alkali 56 

feldspar xenocrysts were retained after entrainment in a magma. We investigate whether this is 57 

consistent with independent constraints on the thermal history of the xenocrysts in the magma. 58 

The sample studied is a porphyritic phonolitic lava that crops out in the Ilongo area near 59 

Mbeya in southwestern Tanzania, in the general vicinity of the late Neogene Rungwe volcanics 60 
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(Ebinger et al., 1989). Basement rocks are not well exposed in the immediate area, but 61 

presumably belong to the Ubendian shear belt, which formed episodically between 2100 and 62 

1725 Ma, and was locally reactivated by Pan-African tectonism at ca. 750 Ma (Lenoir et al., 63 

1994). 64 

 65 

2. SAMPLE CONTEXT, PETROGRAPHY AND GEOCHEMISTRY 66 

 67 

The lava flow sample upon which this study is based was collected in the course of an 68 

inventory of potential paleontologic resources by the Tanzanian International 69 

Paleoanthropological Research Project (TIPRP) (Njau and Hlusko, 2010). The lava was 70 

sampled at Lat. S 8° 47’ 41.2”, Long. E 33° 46’ 10.6”, at 1218 m elevation. The flow is poorly 71 

exposed and surficially weathered, and its thickness is estimated at 3 m. 72 

 73 

The lava is highly porphyritic, with alkali feldspar phenocrysts up to 1 cm (~15%) and smaller 74 

phenocrysts of aegirine-augite (~5%), ferro-pargasite amphibole (~1%), plagioclase (<1%) and 75 

euhedral titanite (<1%) set in a bluish-gray (where fresh) groundmass. The amphibole 76 

phenocrysts uniformly show opacitic oxidation-resorption rims. The felty groundmass 77 

comprises alkali feldspar, aegirine-augite, oxides, apatite and devitrified glass. 78 

 79 

Many of the alkali feldspar phenocrysts contain irregularly shaped cores of another alkali 80 

feldspar or plagioclase. These cores are generally visible in crossed polars through abrupt 81 

discontinuities in extinction angles, but are most clearly revealed in backscattered electron 82 

images (see below) because the alkali feldspar overgrowths contain distinctly higher Ba than 83 

the cores. 84 

 85 

X-ray fluorescence data obtained from the Washington State University GeoAnalytical 86 

Laboratory are shown in Table 1. Chemical classification of this lava is complicated by the 87 

obvious assimilation of xenocrystic feldspars and uncertain extent of major element 88 

contamination, and a relatively high potential volatile content implied by the loss on ignition 89 

(LOI). In the classification of Le Bas et al. (1986) it is a tephri-phonolite, but the analysis 90 

normalized to a volatile-free basis corresponds to a phonolite. 91 
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 92 

3. 
40

Ar/
39

Ar RESULTS 93 

 94 
40

Ar/
39

Ar analysis used methods described in Appendix A. Incremental heating of three 95 

individual alkali feldspar phenocrysts (samples 34467-01, -02, and -03) produced complex 96 

apparent age spectra (Figure 1a) initially rising monotonically from ca. 10-20 Ma ages for the 97 

first 20-30% of the 
39

Ar released, then increasing erratically for the remainder of each 98 

experiment. Maximum apparent ages for individual steps range from ca. 200 Ma to ca. 5900 99 

Ma, and integrated ages for the three crystals are 41.2 ±0.1
1
, 96.9 ±0.1, and 326.5 ±0.5 Ma. In 100 

view of petrographic observations and electron microprobe results, these age spectra are 101 

straightforwardly interpreted to reflect mixing between magmatic feldspar overgrowths and 102 

older, incompletely degassed xenocrystic cores. In this interpretation the age of the magmatic 103 

feldspar would be approximated by the initial steps at 10-20 Ma. 104 

 105 

Two multigrain aliquots of amphibole phenocrysts were analyzed by incremental heating. Both 106 

yield apparent age plateaus (Figure 1b) over 100% of the 
39

Ar released, with indistinguishable 107 

plateau ages of 17.2 ± 0.5 Ma and 17.6 ± 0.2 Ma. An isochron fit to all the data from both 108 

samples yields an age of 17.9 ± 0.3 Ma, with an atmospheric 
40

Ar/
36

Ar intercept of 281 ± 9 and 109 

MSWD = 0.93. 110 

 111 

3.1. Spatial distribution of 
40

Ar 112 

 113 

To test the hypothesis that Ba-poor xenocrystic cores are the source of inherited Ar manifest in 114 

the phenocryst age spectra, two strategies were employed.  115 

 116 

3.3.1. Physical separation 117 

 118 

Several phenocrysts were crushed into small fragments and heavy Ba-rich overgrowths were 119 

separated from lighter Ba-poor xenocrysts based on density. Because the Ba substitution has a 120 

large effect on the density of alkali feldspars (3.26 g/cm
3
 for endmember BaAl2Si2O8 versus 121 

                                                        
1 Uncertainties here and throughout this paper are given at one standard deviation unless otherwise stated. 
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2.56 g/cm
3
 for endmember KAlSi3O8), the overgrowth feldspar was concentrated based on the 122 

density contrast. Accordingly, alkali feldspar phenocrysts were crushed and sized to a 177-250 123 

micron fraction, then subjected to a heavy liquid separation using dilute Li heteropolytungstate 124 

(LST). The densest fraction was analyzed by total fusion of ten individual crystal fragments. 125 

Nine of these proved to be alkali feldspar based on K/Ca > 10, whereas one with K/Ca = 0.056 126 

± 0.006 appears to be plagioclase. All ten crystal fragments yielded indistinguishable model 127 

ages (Figure 1c) with a weighted mean of 17.53 ± 0.08 Ma, with MSWD = 0.72. An isochron 128 

fit to these data yields an age of 17.55 ± 0.13 Ma, with an atmospheric 
40

Ar/
36

Ar intercept of 129 

280 ± 70 and MSWD = 0.81. 130 

 131 

The densest feldspar phenocryst (magmatic overgrowth) fragments and the hornblende 132 

phenocrysts yield indistinguishable ages that are interpreted to represent the eruption age of the 133 

lava. The atmospheric trapped 
40

Ar/
36

Ar ratios of both the feldspar overgrowths and the 134 

hornblende phenocrysts indicates that whatever inherited “excess” 
40

Ar existed in the melt was 135 

efficiently exchanged with atmosphere prior to eruption. The manifest lack of inherited 
40

Ar in 136 

these phases would seem to preclude inherited 
40

Ar in the xenocrystic cores being derived via 137 

uptake from the melt, a conclusion supported by the very low partition coefficient between 138 

alkali feldspars and silicate melts (Clay et al., 2011). 139 

 140 

3.1.2. Laser probe analyses 141 

 142 

An excimer laser was used to produce 90 µm ablation pits in the surfaces of several feldspar 143 

crystals (sample 34467) and also a traverse across the surface of one crystal (Figure 2). The 144 

resulting flat bottomed pits were around 10-50 µm deep. There was little significant age 145 

variation and 17 analyses produced a mean age of 17.74 ± 0.33 Ma. One crystal was 146 

subsequently broken to reveal the core and two traverses analyzed using the same excimer 147 

laser system. In this case two of the eight ages were significantly older, reaching 71.7±1.8 Ma 148 

in the core of the grain. Ages in the outer 100 µm of the core fell within errors of the surface 149 

ages previously measured. Based on these limited data, the two anomalously old apparent ages 150 

near the center of the core are much lower than the oldest apparent ages determined in the 151 
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incremental heating experiments, suggesting that the laser ablation pits averaged results over a 152 

relatively large region relative to the scale of the anomaly.  153 

 154 

3.2. Source of excess 
40

Ar 155 

 156 

The eruption age of the lava is straightforwardly deduced from the indistinguishable results of 157 

(i) incremental heating of amphibole phenocrysts, and analysis of alkali feldspar overgrowths 158 

by (ii) physical separation, and (iii) in situ analysis by laser microprobe. The anomalously old 159 

ages derived from the large alkali feldspar phenocryst fragments are clearly associated with 160 

lighter, Ba-poor xenocrystic cores that are readily identified petrographically.  161 

This then raises the question of how inherited Ar could be retained rather than lost by diffusion 162 

at magmatic temperatures during entrainment and magma residence of the xenocrysts. 163 

Addressing this question requires consideration of the specific mode of occurrence of inherited 164 

40
Ar* in the xenocrystic cores. If the inherited 

40
Ar* is distributed in the alkali feldspar lattice, 165 

then its retention should be governed by volume diffusion kinetics and the thermal histories of 166 

the xenocrysts. If however the inherited 
40

Ar* is sited in inclusions, as has been inferred in 167 

some alkali feldspars (Esser et al., 1997) and plagioclases (Boven et al., 2001; Jones et al., 168 

2008), such inclusions may serve as traps that retard net loss of 
40

Ar  from the composite grains 169 

and thereby enhance Ar retentivity.  An analogous mechanism was proposed by Shuster et al. 170 

(2006) for He in radiation-damaged zones of apatite.  171 

 172 

At least some of the inherited 
40

Ar* in the xenocrysts is clearly parentless as indicated by a 173 

presolar apparent age of 5899 ± 67 Ma for one of the incremental heating steps. This 174 

observation supports some finite hosting of inherited 
40

Ar* by inclusions that could act as 175 

diffusion traps. Further support for this possibility may be provided by the slightly elevated Cl 176 

concentrations (i.e., 
38

ArCl/
39

ArK) from the older spots analyzed by laser microprobe, although 177 

the incremental heating data show no correlation between apparent age and 
38

ArCl/
39

ArK. 178 

 179 

In the following, we address the thermal histories of the alkali feldspar xenocrysts as an 180 

independent constraint for evaluating the possibility that volume diffusion failed to 181 

quantitatively degas inherited 
40

Ar*. 182 
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 183 

4. FELDSPAR CHEMISTRY AND XENOCRYSTS 184 

 185 

Electron probe microanalysis (EPMA) based on methods described in Appendix B reveals that 186 

the overgrowths are generally enriched in Ba, Sr, Ca and Si relative to the cores, and show 187 

oscillatory zoning. The contrast between cores and overgrowths, and oscillatory zoning in the 188 

latter, are especially evident in backscattered electron (BSE) images (Figure 3) which are 189 

strongly sensitive to Ba concentration. A number of reconnaissance traverses were run across 190 

various zones of the alkali feldspar phenocrysts and their cores as shown in Figure 4. We use 191 

the shorthand GxTy to designate traverse y in grain x. In rare cases (e.g., G13 in Figure 3) the 192 

xenocrystic cores are not completely mantled by overgrowths, but are separated from the melt 193 

by other phenocrysts, i.e. a clinopyroxene in the case of G13. 194 

 195 

In terms of ternary components An-Or-Ab, alkali feldspars and plagioclase are plotted in 196 

Figure 5.  Plagioclase data are based on core to rim traverses for two phenocrysts, and a rim-197 

core-rim traverse for a third. Alkali feldspar data, with the celsian (Cn) BaAl2Si2O8 component 198 

included with An, show that the xenocrystic cores tend to be lower in An+Cn than the 199 

overgrowths, but their compositions overlap in this space.  200 

 201 

Alkali feldspar phenocryst cores interpreted as xenocrysts are characterized by (i) irregular 202 

boundaries (resorption surfaces) and (ii) low Ba (0.01-0.03 atoms per formula unit). As shown 203 

by low resolution traverses (e.g., Figure 6), most crystals show several stepwise increases in Ba 204 

from core to rim typically followed by more regular decreases, producing an asymmetric 205 

sawtooth pattern. Ba is generally correlated with Ca, Al and Sr, and anticorrelated with Si and 206 

K. Among these elements, Ba shows the largest amplitude variations relative to measurement 207 

precision, hence its variations are the best resolved and most useful for diffusion modeling. 208 

 209 

4.1. Thermometry 210 

 211 

Determining magmatic intensive variables for the magma is complicated by the high LOI, 212 

manifest xenocryst contamination, and the absence of an appropriate phase assemblage. For 213 
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example, at 0.1 GPa MELTS (Ghiorso and Sack, 1995) predicts liquidus temperatures of 1131 214 

°C and 945 °C for fO2 values at the NNO buffer for the bulk composition (i) recalculated 215 

volatile-free and (ii) assigning the LOI entirely to H2O, respectively. For the bulk composition 216 

shown in Table 1, MELTS predicts alkali feldspar of appropriate Or-Ab-An composition at 217 

temperatures between 970 and 1030 °C and H2O concentrations between 0 and 0.8 wt-% at 0.1 218 

GPa and NNO. However, MELTS fails to produce an amphibole or Na-Fe
3+

-rich 219 

clinopyroxene under any of these conditions and the validity of temperatures inferred from 220 

phase equilibria by this approach may be questionable. Opacitic rims on the amphibole attest to 221 

disequilibrium with the melt upon eruption, but the argon isotopic data betray no evidence of a 222 

xenocrystic origin of this phase. The clinopyroxene shows no evidence of resorption or 223 

disequilibrium, and we infer that it too is a cognate phase. We conclude that the bulk 224 

composition of this lava lies outside the composition space that is well-calibrated for phase 225 

equilibria, and we constrain temperatures using two-feldspar thermometry as described below. 226 

 227 

Establishing equilibrium between any particular plagioclase composition and a corresponding 228 

composition of alkali feldspar is challenging. However, a relatively narrow range of 229 

temperatures between 843 and 914 °C is obtained from two-feldspar thermometry (Putirka, 230 

2008) by comparing both core and rim compositions of the plagioclase with the most extreme 231 

compositions of alkali feldspar overgrowths. The global regression solution of (Putirka, 2008), 232 

calibrated by 42 experiments, was used. A pressure of 0.3 GPa was assumed based on a 233 

geothermal gradient of 30 °C/km and a maximum of 300 °C for partial retention of 
40

Ar* in the 234 

xenocrysts. The thermometer is insensitive to pressure between 0 GPa (876 °C) and 1.0 GPa 235 

(884 °C).  Tests for equilibrium (Elkins and Grove, 1990) yielded absolute values of 236 

component activity differences between the two phases of <0.45 for An, <0.03 for Ab, and 237 

<0.04 for Or. We take the midpoint temperature as a reasonable approximation of the average 238 

temperature for alkali feldspar growth, and the extremities of temperature estimates as a 239 

conservative approximation to the uncertainty. Thus we infer that alkali feldspar growth (and 240 

Ba diffusion across discrete growth zone interfaces) occurred at 879 ± 36 °C, subject to the 241 

assumption that high Ba concentrations do not invalidate application of the thermometer. 242 

 243 

5. Ba DIFFUSION MODELLING 244 
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 245 

Retention of 
40

Ar* at magmatic temperatures, in light of Ar diffusion data for alkali feldspars 246 

(Foland, 1974; Lovera et al., 1997; Wartho et al., 1999; Zeitler, 1987), would seem to require 247 

very brief heating of the xenocrysts by the magma prior to eruption. To evaluate the duration of 248 

magmatic heating, zoning profiles of trace elements across xenocryst/phenocryst feldspar 249 

contacts were analyzed and interpreted as diffusion couples. Our approach is analogous to 250 

several previous studies (Coombs et al., 2000; Costa and Chakraborty, 2004; Costa et al., 2003; 251 

Costa and Dungan, 2005; Morgan and Blake, 2006; Morgan et al., 2006; Morgan et al., 2004; 252 

Nakamura, 1995; Singer et al., 1995; Zellmer and Clavero, 2006), which were focused on 253 

kinetics of magma processes in arcs and mid-ocean ridge environments. The basis is that 254 

initially sharp concentration boundaries between crystal growth zones become relaxed due to 255 

diffusion across the boundary in an approach to equilibrium. The extent of relaxation is 256 

governed by the time, temperature, and diffusivity of the species in the medium of interest. In 257 

the present case, zoning profiles of Ba were particularly useful as Ba concentrations could be 258 

measured with reasonable precision and they contrast significantly across the 259 

xenocryst/overgrowth contacts; moreover Ba diffusion data are available for alkali feldspars 260 

(Cherniak, 2002).   261 

 262 

Electron microprobe traverses for major elements, Ba and Sr were conducted using methods 263 

described in Appendix B. Contacts between xenocrysts and overgrowths were modeled as 264 

diffusion couples wherein the composition across the contact (x=0) is given (Crank, 1975) by: 265 

 266 



C(x) 
C1 C2

2

C1 C2

2
erf

x

2 Dt









 267 

 268 

where C1 and C2 (C2 > C1) are the initial concentrations on either side of the contact, D is the 269 

diffusivity and t is the time duration. For each contact, a least-squares technique was used to 270 

solve for the best-fit value of the composite parameter Dt.  271 

 272 

5.1. Excitation volume effects 273 

 274 
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For modeling traverse results as diffusion profiles it is important to correct for the excitation 275 

volume of the electron beam, which stimulates x-ray emission over a finite region that varies 276 

for each element’s x-ray lines with material composition and density as well as electron beam 277 

energy. The averaging effect across a compositional interface produces a spuriously smooth 278 

composition gradient which, unless corrected for, produces overestimation of the extent of 279 

diffusion. The effect of varying beam energy for our conditions is illustrated in Figure 7. For 280 

this correction (Ganguly et al., 1988) we used a Monte Carlo estimate (Jercinovic et al., 2008) 281 

for the lateral spread of electrons in the sample assuming a linear density-composition 282 

relationship along the BaAl2Si2O8 - KAlSi3O8 join. Using this approach, a value of  = 0.34 283 

mm was determined for a 15 kV beam, and  = 0.05 mm for a 10 kV beam. We used data 284 

acquired solely at 10 kV for Ba diffusion modeling. 285 

 286 

An additional complication arises when the compositional interface is inclined with respect to 287 

the electron beam, i.e. is not perpendicular to the sample surface. If not accounted for, an 288 

inclined interface produces bias in the inferred location of the interface and also introduces 289 

asymmetry in the shape of the concentration profile, and the magnitude of both of these effects 290 

depends strongly on the size of the activation volume (Arnould and Hild, 2003), hence on 291 

beam energy as discussed above. For this reason, contacts visibly non-orthogonal to the plane 292 

of the thin section were eschewed. Several profiles (e.g., G11T1) yielded discernible 293 

asymmetry in Ba concentration profiles suggestive of inclined contacts, and these profiles were 294 

not considered for diffusion modeling. Asymmetric profiles may also arise from diffusion-295 

limited initial crystal growth (Solomatov, 1995), further underscoring the need to avoid using 296 

such profiles for diffusion modeling. 297 

 298 

5.2 Oblique traverses 299 

 300 

In order to increase spatial resolution, electron probe traverses were made oblique to the traces 301 

of vertical contacts and the results subsequently projected onto an orthogonal traverse. This 302 

was accomplished simply by multiplying traverse distance by the cosine of the angle between 303 

the traverse and the normal to the interface. Contacts were determined to be vertical within an 304 

estimated 10° by noting displacement of the well-defined Becke line upon racking the focus on 305 
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a petrographic microscope. This approach proved highly effective in increasing spatial 306 

resolution without introducing any apparent bias, as shown in Figure 8. All of the data used for 307 

diffusion modeling were acquired using this technique. 308 

 309 

5.3. Ba Dt values 310 

 311 

A test for the validity of the diffusion couple model is that successive contacts between 312 

overgrowth zones with sharp Ba concentration contrasts should yield increasing values for the 313 

cumulative quantity Dt from rim to core provided that the crystals maintain internal thermal 314 

equilibrium. Although we assume that the diffusivity is temperature dependent following an 315 

Arrhenius relationship, this assumption is not required for the expectation that Dt should be 316 

cumulative and thus increase inwards from rim to core. This was tested affirmatively with four 317 

contacts in G15 that yielded reproducible data with statistically acceptable fits (Figure 9). 318 

These data indicate an initial Dt value of 2.7 ± 0.6 
2
 at the xenocryst/overgrowth boundary, 319 

dropping to 0.4 ± 0.2 m
2 

~300  from the xenocryst margin.  320 

 321 

The Ba Dt values of greatest interest are those between xenocrysts and the innermost 322 

overgrowth layer because these reflect the maximum cumulative duration of heating of the 323 

xenocrysts. Accordingly, detailed traverses across this contact were acquired for several 324 

phenocrysts. Ba profiles for three of these met our reliability criteria: (i) symmetric profiles 325 

implying subvertical contacts are present; (ii) consistent and unambiguous values of C1 and C2 326 

are evident; at least 3 values intermediate between C1 and C2 are present; (iii) multiple 327 

traverses across the same contact yield similar results. Data from multiple traverses across each 328 

contact meeting these criteria were combined for a single regression.  329 

 330 

After correction for excitation volume effects (i.e. subtraction of 0.05 
2
), grains G2, G13 and 331 

G15 yielded values of Dt = 0.2 ± 0.1, 1.5 ± 0.3, and 2.6 ± 0.6 
2
, respectively. It is noteworthy 332 

that the Dt values correlate with the number of distinct overgrowth bands. While three 333 

phenocrysts may not be representative of the whole rock, G15 has the most overgrowth layers, 334 

and G2 the least, of any observed in thin section. This relationship supports a model wherein 335 
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the xenocrysts were entrained into the magma episodically, consistent with the heterogeneous 336 

zoning patterns discussed below. 337 

 338 

5.4 Crystal growth rates 339 

 340 

Assuming isothermal conditions and using the diffusion data of Cherniak (2002), these results 341 

can be used to estimate diffusion timescales for each contact. Combining these timescales with 342 

measured widths of overgrowths between the contacts allows determining average crystal 343 

growth rates. At 879 °C deduced from two-feldspar thermometry, the implied growth rate of 344 

the innermost 108 mm of overgrowth in crystal G15 is 3.5 x 10
-12

 cm/s, increasing to 6.4 x 10
-345 

11
 cm/s for the next 189 mm. These implied rates are consistent with magmatic sanidine growth 346 

rates estimated in various studies, which range from 10
-7

 to 10
-14

 cm/s (Calzolaio et al., 2010; 347 

Christensen and Depaolo, 1993; Davies et al., 1994; Long, 1978; Zellmer and Clavero, 2006). 348 

 349 

5.5 Heterogeneous growth histories 350 

 351 

The compositions of successive overgrowths vary between phenocrysts although many discrete 352 

compositions are common to several. For example, Figure 5 shows that crystals G2, G14 and 353 

G15 have zones with ~0.06 atoms per formula unit (APFU) Ba; crystals G3, G11 and G13 354 

have zones with ~0.07 APFU Ba; crystals G2, G11, G13 and G15 have zones with ~0.09 355 

APFU Ba; crystals G13, G14 and G15 have zones with ~0.11 APFU Ba; crystals G11 and G15 356 

have zones with ~0.13 APFU Ba.  357 

 358 

Similarly, some overgrowth layers are recorded only locally in a given crystal. For example, 359 

Figure 5 shows that G11T1 transects a zone of ~0.07 APFU Ba, whereas G11T2 traverses a 360 

contact between a zone with 0.04 APFU Ba and a more rimward one with ~0.12 APFU Ba, 361 

without the 0.07 APFU zone present in G11T1. The variable distribution of compositional 362 

zones within and between individual phenocrysts may be partly a function of spatially variable 363 

nucleation and growth, but to some extent is clearly a preservation artifact due to 364 

heterogeneous resorption between growth zones. An extreme case is shown by crystal G13 in 365 

Figure 3. 366 
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 367 

5.6 Episodic crustal assimilation 368 

 369 

The steplike increases in Ba concentration (Figure 3) in magmatic overgrowths outward from 370 

xenocryst cores are clear evidence of discrete pulses of Ba enrichment in the magma. Many of 371 

the stepwise composition boundaries between xenocrystic cores and innermost overgrowths, 372 

and between successive overgrowths, are partial resorption surfaces based on their irregular 373 

shapes. The slow declines in Ba concentration after each sharp increase are likely the result of 374 

progressive Ba depletion in the magma owing to strong partitioning into the alkali feldspar. 375 

 376 

Ba partitioning between alkali feldspar and melt is known to be complex, with relatively strong 377 

dependence on Or content of the feldspar (Icenhower and London, 1996; Mahood and Stimac, 378 

1990). Our feldspars are typically 50-60 mol-% Or, thus we expect that the partition coefficient 379 

to be relatively constant and likely greater than 5 (Ginibre et al., 2004). Therefore the 380 

oscillatory zoning of magmatic feldspar likely reflects magma that was episodically enriched in 381 

Ba. In cases where Ba-rich zones grew on resorption surfaces, Ba influx likely accompanied 382 

changes in P-T-X conditions in the magma which destabilized the substrate feldspar. We 383 

speculate that a likely source of Ba (and water, tending to destabilize feldspars) would be mica-384 

rich crystalline basement rocks given the strong partitioning of Ba into micas relative to other 385 

silicate phases (Philpotts and Schnetzler, 1970).   386 

 387 

No two of the analyzed crystals show identical zoning patterns. For example, G2, G3 and G15 388 

all show cores with a discrete increase from ~0.2 APFU (atoms per formula unit) Ba followed 389 

by large discrete increases to ~0.062, ~0.082, and ~0.071 APFU Ba (respectively). Some 390 

overgrowth layers are visibly discontinuous as seen in Figure 3. 391 

 392 

The heterogeneous growth histories presumably reflect spatially and temporally variable Ba 393 

concentration in the melt and/or local variations in alkali feldspar solubility such that some 394 

layers may have been precipitated and subsequently resorbed in some crystals. Whether this 395 

heterogeneity reflects disequilibrium at the scale of a thin section, or late mixing of 396 

phenocrysts with disparate prior histories, is unclear. 397 
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 398 

6. RETENTION OF INHERITED ARGON 399 

 400 

We take the value of Dt determined for Ba diffusion across the innermost xenocryst-401 

overgrowth contact in each phenocryst to represent a lower bound on the time-temperature 402 

history available for 
40

Ar* to diffuse out of the xenocryst, as some 
40

Ar* presumably would 403 

have been degassed by conductive heating prior to entrainment. Based on available Ba 404 

diffusion data (Cherniak, 2002), Dt values can be translated into square-pulse time 405 

temperature-time (T-t) histories as shown in Figure 10. For comparison, square-pulse 406 

equivalent T-t curves are shown for selected fractions of 
40

Ar* lost by diffusion from the 407 

xenocrysts based on the kinetic data compiled by Lovera et al. (1997) for diffusion radii 408 

comparable to the dimensions of the xenocrystic cores selected for 
40

Ar/
39

Ar analysis. The 409 

dimensions of cores in the crystals analyzed by 
40

Ar/
39

Ar incremental heating (e.g., as shown in 410 

Figure 1a) are not known, but cores up to 2 mm are observed and the overall dimensions of 411 

phenocrysts selected for the incremental heating 
40

Ar/
39

Ar analysis were larger than average. 412 

More typical are cores of 0.4 to 0.8 mm dimensions, as shown in Figure 3).   413 

 414 

We do not know the specific activation energies (Ea) or pre-exponential factors (D0) governing 415 

Ar diffusion in the xenocrystic cores. Moreover, it is possible that these parameters, as well as 416 

any diffusion domain structure initially present in these feldspars, have changed due to 417 

structural transformations and/or annealing in response to heating when the xenocryst was 418 

entrained by the magma. Given such uncertainty, we considered values of Ea and log(D0/r0
2
) 419 

one standard deviation from the mean values (46 ± 6 kcal/mol and 5 ± 3 log(s
-1

), respectively) 420 

reported by Lovera et al. (1997), which is the most comprehensive study currently available on 421 

Ar diffusion in alkali feldspars and includes data from orthoclase, microcline, and perthite. Ar 422 

diffusion experiments using sanidine reported by Zeitler et al. (1987) fall within the range of 423 

values reported by Lovera et al. (1997). Thus the data encompass a reasonable range of 424 

expected diffusion parameters, although we cannot dismiss the possibility that the feldspar 425 

studied herein is more or less retentive. Lovera et al (1997) suggest a value of r0 = 6 m as 426 

being the most relevant diffusive lengthscale to extracting D0 from their log(D0/r0
2
) data. In 427 

modeling diffusive loss from our alkali feldspars crystals we assume the effective diffusive 428 
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lengthscale (r) for calculating log(D0/r
2
) from the aforementioned D0 value is between 250 and 429 

1000 microns, consistent with observations of xenocrystic core and whole-grain dimensions. 430 

 431 

Thus, Figures 10a-c show results corresponding to the more retentive values (Ea = 40 kcal/mol; 432 

log(D0/r0
2 

= 2 log(s
-1

)),  and Figures 10d-f  show results for the least retentive (Ea = 52 433 

kcal/mol; log(D0/r0
2 

= 8 log(s
-1

)). Plane slab diffusion geometry was assumed. For each set of 434 

parameters, these results provide a maximum constraint on the fraction of 
40

Ar* lost because 435 

they ignore the additional diffusion distance provided by successive overgrowths on the 436 

xenocrysts. The core-overgrowth relationships (based on petrography) appear epitaxial, in 437 

which coherent phase boundaries are expected. Hence the margins of the xenocryst cores are 438 

not expected to serve as natural diffusion boundaries and the lengthscales of whole phenocrysts 439 

are logical maximum diffusion dimensions.  440 

 441 

It is noteworthy that the dense overgrowth fragments analyzed by 
40

Ar/
39

Ar (see section 3.3.1 442 

and Figure 1(c)) yielded apparent ages with only minor skew towards older ages. The 443 

xenocryst/overgrowth boundaries are expected to be coherent, requiring that inherited 
40

Ar* 444 

diffusing out of the xenocrystic cores must diffuse through whatever overgrowths existed 445 

before exiting the phenocrysts. The lack of observed excess 
40

Ar in the overgrowth fragments 446 

analyzed supports the possibility raised by the laser probe data (see section 3.1.2) that the 447 

inherited 
40

Ar* has a sharply peaked spatial distribution, with peaks in the xenocrystic cores 448 

and tails of very low concentrations (into the Ba-rich overgrowths). This would be enhanced by 449 

a higher diffusivity of Ar in the Ba-rich overgrowths, which is possible in view of the large 450 

range in kinetic parameters observed by Lovera et al.  (1997).  451 

 452 

It is also noteworthy that all of the xenocrystic cores observed are separated from the innermost 453 

overgrowth layer by a resorption surface. If significant 
40

Ar* was lost from the cores prior to 454 

initial overgrowth formation, and if the kinetics of resorption were faster than those of Ar 455 

diffusion, as seems likely, the Ar diffusion profiles in the cores would have truncated tails prior 456 

to the initial precipitation of magmatic overgrowth feldspar. Such a scenario would produce an 457 

initially sharp discontinuity in 
40

Ar* concentration across the core/overgrowth contact. 458 

 459 
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Our modeling suggests that none of the T-t histories experienced by grains G2, G13 or G15 are 460 

consistent with retention of significant 
40

Ar* if the Ar diffusion parameters (Ea = 52 kcal/mol 461 

and log(D0/r0
2
) = 8) 1 greater than the means of the Lovera et al. (1997) distributions are 462 

used, even with diffusion radii at the large end of the plausible range of grain dimensions 463 

(Figures 10d-f). On the other hand, if diffusion parameters (Ea = 40 kcal/mol and log(D0/r0
2
) = 464 

2) 1 less than the means of the Lovera et al. (1997) distribution are used (which yield lower 465 

diffusivities than higher Ea values at magmatic temperatures), a core with the T-t history of 466 

grain G2 would be expected to retain as much as 70% of its 
40

Ar* for any diffusion dimension 467 

>250 m, and all three T-t histories could retain > 10% of their 
40

Ar* for diffusion dimensions 468 

>500 m. The possible siting of some inherited 
40

Ar* in diffusion traps as discussed previously 469 

is thus permitted but not required to explain our results. We reiterate that ascribing constant 470 

diffusion parameters to the core feldspars may be an oversimplification as they may have 471 

undergone structural changes upon heating in the magma. 472 

 473 

The actual fraction of 
40

Ar* retained or lost from each xenocryst is unknown without 474 

information about their original Ar retention age(s). However, reasonable values can be 475 

modeled. If the original age was ~2 Ga (Ubendian; Lenoir et al., 1994) the youngest (41.2 Ma) 476 

and oldest (327 Ma) integrated ages would correspond to 99% and 90% 
40

Ar* loss, 477 

respectively, assuming instantaneous loss at 17 Ma.  If the original age was 750 Ma (Pan-478 

African; Lenoir et al., 1994), these values would be 95% and 60%, respectively. Thus the 479 

amount of 
40

Ar* retained by the xenocrysts is consistent with the integrated ages regardless of 480 

the original ages of the xenocrysts, within the wide range of possible argon diffusion 481 

parameters. 482 

 483 

7. CONCLUSIONS 484 

 485 

Inherited 
40

Ar* is clearly associated with xenocrystic cores within alkali feldspar phenocrysts 486 

in the phonolitic lava studied here. The cores unequivocally retained inherited 
40

Ar* despite 487 

immersion in magma at 879 ± 36 °C. Alkali feldspar phenocrysts in a single thin section reveal 488 

diverse histories of nucleation on xenocrysts and subsequent growth histories marked by 489 

episodic Ba-enrichment in the magma and instability reflected in partial resorption events. Ba 490 
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diffusion profiles across xenocryst/phenocryst boundaries reveal magma residence times of the 491 

xenocrysts ranging from thousands to tens of thousands of days (8-110 years). Based on these 492 

constraints, retention of significant and variable fractions of inherited 
40

Ar* in the xenocrysts is 493 

expected for plausible values of diffusion parameters provided that diffusion lengthscales are 494 

approximated by physical phenocryst dimensions. These results accord well with the results of 495 

incremental heating 
40

Ar/
39

Ar experiments on individual phenocrysts. 496 

 497 

Without knowing the actual Ar diffusion parameters in both core and overgrowth phases, their 498 

specific three dimensional geometries, and the initial 
40

Ar* concentrations of the cores, it is 499 

impossible to make more quantitative statements about the expected extent of 
40

Ar* retention. 500 

However, we note that techniques such as x-ray tomography (Ketcham and Carlson, 2001) can 501 

quantify three dimensional interior morphologies of crystals. Ba increases x-ray absorption 502 

significantly and thus the strong Ba contrasts between cores and overgrowths favors the 503 

possibility of mapping core-overgrowth boundaries with this technique. Mapping cores of 504 

individual crystals prior to 
40

Ar/
39

Ar analysis would permit modeling with numerical diffusion 505 

codes (Huber et al., 2011) capable of operating on arbitrary geometries. Such approaches 506 

would likely be fruitful in cases such as we have explored here. 507 

 508 

Inherited 
40

Ar* in alkali feldspar xenocrysts entrained in lavas is probably not be a ubiquitous 509 

phenomenon, but it is probably more common than is widely supposed. The time scale of 510 

magma residence inferred for alkali feldspars in some studies (Morgan et al., 2006) is shorter 511 

than determined here, thus the present case is not an extreme one. Detection of the effects 512 

shown here would be more difficult if the inherited components were only slightly older than 513 

the magmatic event mobilizing them, as may be exemplified in alkali feldspar megacrysts in 514 

the Fish Canyon Tuff (Bachmann et al., 2007)which yielded slightly but significantly older 515 

ages than phenocrysts. Selection of large phenocrysts for 
40

Ar/
39

Ar dating, commonly 516 

employed to maximize measurement precision, is counterproductive in such cases because the 517 

retention of inherited 
40

Ar* is enhanced by an increased diffusion lengthscale.  518 

 519 

Finally, we stress that in cases such as this where the fraction of inherited 
40

Ar* retained is 520 

likely very small, uncertainties in Ar diffusion parameters are too large to permit useful 521 
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constraints on the kinetics of magmatic processes. What we have shown here is that within 522 

such uncertainties, and in light of independent constraints posed by Ba diffusion profiles, the 523 

observed retention of detectable inherited 
40

Ar* in alkali feldspar xenocrysts is plausible under 524 

some realistic circumstances. 525 

 526 
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Appendix A. 
40

Ar/
39

Ar Methods 536 
 537 
Samples were prepared using standard methods and facilities described elsewhere (Renne et 538 
al., 1999). Samples were irradiated in the CLICIT facility of the Oregon State University 539 
TRIGA reactor in two batches. The first irradiation, for 5.0 hours and using the Fish Canyon 540 
sanidine (FCs) standard (Renne et al., 2010), consisted of alkali feldspar phenocrysts 3-4 mm 541 
in dimension. The second batch, irradiated for 2.0 hours and using the Alder Creek sanidine 542 
(ACs) standard (Nomade et al., 2005), consisted of (i) small (177-250 ) fragments of dense 543 
alkali feldspar separated via LST, and (ii) amphibole phenocrysts. 544 
 545 
Samples were analyzed in three distinct sets of experiments. Incremental heating and single 546 
crystal fusion analyses were conducted at the Berkeley Geochronology Center (BGC), and spot 547 
fusion analyses with a UV laser microprobe were conducted at the Open University (OU). 548 
BGC and OU data are given in electronic annexes EA-1 and EA-2, respectively. 549 
 550 
At BGC, irradiation batch 1 and 2 samples were analyzed with MAP 215C and MAP 215-50 551 
mass spectrometers (respectively), as described previously (Renne et al., 1998). Mass 552 
discrimination was monitored by online analysis of air pipettes based on a power law 553 
relationship (Renne et al., 2009) which gave D = 1.00630 ± 0.00148 per amu  for Batch 1, and 554 
D = 1.00694 ± 0.00127 per amu for Batch 2, each based on 29 pipettes interspersed with the 555 
unknowns. Radioactive decay of 

37
Ar and 

39
Ar were corrected using the decay constants of 556 

(Renne and Norman, 2001) and (Stoenner et al., 1965), respectively.  557 
 558 
At OU, several grains of one sample were analysed using a Nu Noblesse mass spectrometer 559 
mated to a 193 nm eximer laser system. Mass discrimination was determined by ablation of a 560 
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standard glass containing modern atmospheric argon indicating a discrimination factor of 561 
1.0113 per amu. 562 
 563 
Ar isotope data, corrected for backgrounds, mass discrimination and radioactive decay are 564 
given in Tables EA-1 and EA-2. Apparent ages were computed from these data corrected for 565 
interfering isotopes using the production ratios given by (Renne et al., 2005) and (Renne et al., 566 
2008). Ages are based on the calibration of (Renne et al., 2010), as updated by (Renne et al., 567 
2011). 568 
 569 
In the step-heating experiments, the significance of step ages at higher fractional degassing is 570 
not obvious. A presolar age of 5899 ± 67 Ma for one step clearly indicates that some of the 571 
40

Ar is unsupported, i.e., it is decoupled from parent 
40

K.  We hypothesize that some of the 572 
40

Ar* degassed from the xenocryst cores diffused into K-poor voids and/or inclusions. 573 
 574 
Appendix B. Electron Microprobe Analysis 575 
 576 
Electron probe microanalysis (EPMA) was conducted with a Cameca SX-51 instrument in the 577 
Dept. of Earth and Planetary Science at the University of California, Berkeley. The sample was 578 
a carbon-coated polished thin section.  Data acquisition, analysis, and correction procedures 579 
were conducted with the software Probe for EPMA (version 8.48). 580 
 581 
Analyses were conducted with a beam current of 10 nA and a beam diameter of 1 micron.  The 582 
accelerating voltage varied for some experiments as described below. In particular, to explore 583 
the effects of activation volume as discussed below, several parallel traverses were run at 584 
variable accelerating voltages of 10, 15 and 20 kV.  Elements were acquired using the 585 
analyzing crystals LIF for Fe ka, Mn ka, PET for Ti ka, Ca ka, K ka, Ba la, and TAP for Al ka, 586 
Na ka, Si ka, Mg ka, Sr la.  The counting time was 30 seconds for all elements.  The intensity 587 
data for Na ka and K ka was corrected for Time Dependent Intensity (TDI) loss (or gain) using 588 
a self calibrated correction. 589 
 590 
At 10 kV the typical detection limits (at the 99% confidence interval) in weight percent were 591 
0.042 for Si, 0.018 for Al, 0.062 for Ti, 0.349 for Fe, 0.258 for Mn, 0.028 for Mg, 0.035 for 592 
Ca, 0.035 for Na, 0.036 for K, 0.178 for Ba, and 0.066 for Sr. At 15k V the typical detection 593 
limits (at the 99% confidence interval) in weight percent were 0.035 for Si, 0.013 for Al, 0.027 594 
for Ti, 0.069 for Fe, 0.062 for Mn, 0.016 for Mg, 0.018 for Ca, 0.027 for Na, 0.019 for K, 595 
0.080 for Ba, and 0.049 for Sr.  At 20 k V the typical detection limits (at the 99% confidence 596 
interval) in weight percent were 0.032 for Si, 0.012 for Al, 0.018 for Ti, 0.037 for Fe, 0.034 for 597 
Mn, 0.013 for Mg, 0.013 for Ca, 0.027 for Na, 0.014 for K, 0.052 for Ba, and 0.041 for Sr.   598 
 599 
The error on formula unit concentrations was determined by propagating the analytical 600 
uncertainty through calculations of structural formulae (Giaramita and Day, 1990). 601 

 602 
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 775 

Figure Captions 776 

 777 

Figure 1. Continuous laser 
40

Ar/
39

Ar results. (A) Age spectra for individual sanidine 778 

phenocrysts. (B) Age spectra for replicate aliquots of amphibole phenocrysts. (C) Age 779 

probability plot for individual dense (Ba-rich) fragments of alkali feldspar overgrowths. 780 

 781 

Figure 2. Laser ablation 
40

Ar/
39

Ar results for two traverses, one (filled symbols) along the 782 

surface of a one grain and one (open symbols) across an interior surface of another grain 783 

broken to reveal the core. Uncertainties in traverse distances are ±50 . 784 

 785 

Figure 3. Backscattered electron (BSE) images of alkali feldspar phenocrysts. Brightness 786 

reflects elevated Ba concentrations. Note dark, partially resorbed cores (xenocrysts) in each 787 

phenocryst and variably complex zoning in overgrowths. 788 

 789 



  

 26 

Figure 4. Ba concentration (atoms per formula unit) in various profiles measured along linear 790 

reconnaissance traverses in six different feldspar grains. Traverses are approximately normal to 791 

the traces of compositional zone boundaries. All data were acquired with a 15 kV beam. Colors 792 

distinguish traverses in a given grain, and different symbols distinguish different traverses. 793 

Distance scales for each traverse begin and end at arbitrary positions, but each distance scale 794 

increases from interior to exterior portions of the grains. Portions of profiles with <0.03 Ba 795 

APFU are from cores (xenocrysts). 796 

 797 

Figure 5. Ternary representation of feldspar compositions, combining anorthite (An) and 798 

celsian (Cn) components, with symbols as indicated. 799 

 800 

Figure 6. Core to rim electron microprobe traverse across grain G15 (see Figure 3) showing 801 

variations in Ba, Sr, K, Na and Ca in units of cations per formula unit (8 oxygen atoms). 802 

 803 

Figure 7.  Effects of varying acceleration voltage on excitation volume in parallel traverses 804 

across a contact between core and overgrowth in grain G13. Two traverses (A and B) were 805 

made at 10 kV. The larger excitation volume at 15 and 20 kV produces gentler profiles across 806 

the contact, spuriously implying more extensive diffusion. Differences in Ba concentration of 807 

the overgrowth at ~2-5 mm from the contact are due to lateral variations along the contact.  808 

These data were not used for diffusion couple modeling. All data used for diffusion modeling 809 

were acquired at 10 kV. 810 

 811 

Figure 8. Effects of varying orientation of traverse relative to trace of interface between cores 812 

and overgrowths, measured on grain G15. Relationships are shown schematically in the inset, 813 

which shows three traverses in plan view of thin section across a vertical compositional 814 

boundary. The highly oblique traverse provides highest spatial resolution. Distances are 815 

subsequently projected to orthogonal coordinates. Data used for diffusion modeling were 816 

acquired at 59° from normal. 817 

 818 

Figure 9. Electron microprobe traverses (2 data point errors) across selected boundaries in 819 

the grains indicated, shown with least squares fitted diffusion profiles (red curves with 820 
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dashed error envelopes). Traverses identified with subscripted 0 (e.g., G150) are from the 821 

contact between a xenocryst core and the innermost overgrowth zone. Values of Dt and 822 

their uncertainties, computed from the regression and corrected for excitation volume 823 

effects, are shown. 824 

 825 

Figure 10. Permissible time-temperature square-pulse heating scenarios that predict the Ba 826 

diffusion profiles (colored bands bounded by error limits) compared with time-temperature 827 

square-pulse heating scenarios that predict 10–90% 
40

Ar* loss (green curves; calculated for 828 

three different diffusion radii (r) as indicated). The vertical band centered at 879°C shows the 829 

magma temperature and range inferred from two-feldspar thermometry. The intersection of the 830 

vertical band (the inferred magma temperature) and the colored bands (the permissible time-831 

temperature histories constrained by the Ba diffusion profiles) defines the magma residence 832 

time. The mutual intersection of the two aforementioned bands with a green curve defines the 833 

predicted fractional loss of 
40

Ar* due to magma residence. Fractional 
40

Ar* loss curves are 834 

calculated from diffusion data summarized by (Lovera et al., 1997), with mean values of 835 

activation energy (Ea = 46 ± 6 kcal/mol) and pre-exponential factor log(D0/r0
2
) = 5 ± 3). 836 

Fractional loss curves are shown for diffusion parameters one standard deviation higher and 837 

lower than these mean values, representing lower and upper bounds (respectively) on argon 838 

retentivity. The fractional loss curves in panels (a-c) correspond to Ea = 40 kcal/mol and 839 

log(D0/r
2
) = 2. Those in panels (d-f) correspond to Ea = 52 kcal/mol and log(D0/r

2
) = 8. 840 
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Table 1. XRF Data 

Major and Minor 
Element Oxides (Wt.-%) 

SiO2 52.33  

TiO2 0.72 

Al2O3 21.45  

FeO* 3.47  

MnO 0.18 

MgO 0.47  

CaO 3.18  

Na2O 7.62  

K2O 5.67  

P2O5 0.11 

LOI  4.32  

Sum 99.51 

  

Trace Elements (ppm) 

Ni 3   

Cr 3   

Sc 1   

V 43   

Ba 2401   

Rb 140   

Sr 1503   

Zr 303   

Y 25   

Nb 149   

Ga 20   

Cu 3   

Zn 94   

Pb 20   

La 117   

Ce 195   

Th 21   

Nd 54   

U 3   
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