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Abstract 

A theoretical basis is presented for determining the significance of a residual stress 

distribution of arbitrary shape on the crack tip stress intensity factor for a centre-cracked plate 

as a function of crack length. The Fourier series based approach enables one to increasingly 

add more spatial definition to the stress field and thereby determine the level of detailed 

knowledge of the residual stress required to make a reliable assessment of structural integrity. 

The approach is applied to examples of measured symmetric distributions of residual stresses 

in welded plates and used to determine the significance of residual stress length-scales in 

fracture mechanics analysis.  
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Nomenclature 

a half-length of an embedded through-thickness crack in a wide plate, m 

b half-length across which a symmetric periodic distribution of residual stress 

applies, m  

c x co-ordinate where a self-equilibrated residual stress profile changes sign, m 

f equivalent force acting at the centroid of a planar intersection sub-domain, N 

m equivalent moment acting around an axis passing through the centroid of a planar 

sub-domain, Nm 

n order of term in a Fourier series expansion 

p maximum order of cosine or sine terms included in a Fourier series expansion 

r  index term  

x, y, z Cartesian axes with the z-axis directed out of the domain plane, m  

An Fourier series cosine term coefficient for order n 

Bn Fourier series sine term coefficient for order n 

Ep bounding error given by truncating a Fourier series expansion for KI at n = p  

F equivalent force acting at the centroid of a planar intersection domain, N  

G approximate KI solution function for a cosine residual stress field 

J0 Bessel function of the first kind and order zero 

KI stress intensity factor under mode I loading, MPa √m  

M equivalent moment acting around an axis passing through the centroid of a planar  

 domain, N m 

SIF stress intensity factor, MPa √m 

λ wavelength of a self-equilibrated residual stress distribution, m 

σij stress in direction i acting on the plane with the normal in the direction j, MPa 

σ0
 reference value of a residual stress field, MPa 
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σ∞  remote uniform stress in an infinitely wide plate, MPa 

σ b bending component of stress that spans a defined sub-domain, MPa  

σ m  membrane component of stress that spans a defined sub-domain, MPa 

σ se  self-equilibrated component of stress that spans a defined sub-domain, MPa 

1 Introduction 

A structure can be defined as any assembly of materials intended to withstand loads. 

Engineering structural integrity assessment is concerned with design against premature 

failure, but structures must also be fit for purpose and economic to make. Residual stresses 

can exist inside a body or structure in the absence of any externally applied loads at various 

length-scales [1]. As such they add to (or subtract from) applied stresses and are often the 

cause of unexpected failure. The science of fracture mechanics [2] has developed rapidly 

since the mid-1950s and provides methods [3], [4] for engineers to assess whether flaws or 

crack-like defects in structures will progress through various mechanisms, including 

corrosion, creep and fatigue, and ultimately become unstable.  Fracture mechanics studies 

involve both stress analysis aspects and the resistance behaviour of the material to the stresses 

imposed. The present study is based on the linear elastic analysis of stress surrounding a 

crack in an ideal material having isotropic elastic properties, which is an essential ingredient 

in most current fracture assessment methods. Here we lay out a new approach based on 

Fourier series analysis, that formalises the consideration of length-scale initiated by Bouchard 

and Withers [5] and first quantified in a specific case in [6].  It has certain advantages over 

established approaches. First it provides a general stress intensity factor solution that can be 

applied to arbitrary residual stress profiles.  Secondly, it enables one to increasingly add more 

spatial detail to the stress field and thereby determine the level of detailed knowledge of the 

residual stress required to make a reliable fracture assessment for a crack of a given length.  
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This has consequences both for the measurement strategy and the complexity of 

computational methods used to characterise residual stresses, for example in welded 

structures. 

 

“Fitness-for-service” life and integrity assessment procedures for engineering structures [7], 

[8], [9], explicitly concede the presence of actual, or potential, cracks in welded joints or 

other critical locations and consider the effect of residual stress at various levels of detail:  

i. The simplest residual stress characterisation approach, widely adopted, is to assume 

the presence of a uniform residual stress equal in magnitude to the material yield 

strength, [7], [9].  This always produces an overestimate of the local stress field at the 

crack tip, characterised by the stress intensity factor (SIF). 

ii. An upper-bound linear residual stress profile has been advocated for determining SIFs 

of cracks at T-butt welds [10]. This gives an overestimate of the SIF for cracks in the 

tensile stress region but ignores the self-equilibrating nature of the stress field.   

iii. Non-linear residual stress profiles that provide an upper-bound to measured data for a 

generic type of weldment can be found in published compendia [7-9] and are often 

used.  This approach also secures an overestimate of the SIF, especially for longer 

cracks.  

iv. A more realistic residual stress profile is assumed for a generic type of weldment 

based on analytical modelling and/or numerical analysis and/or measurements [11].  

v. A best estimate residual stress distribution is considered for a specific weldment based 

on numerical analysis validated by diverse measurements [7].  

 

Clearly the level of information required about the stress field increases moving down this 

list, as does the effort needed to calculate the resulting SIF as a function of crack length.  
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Case (iv) relies on analytical modelling and measurements, for example [11], [12].  Case (v) 

requires application of non-linear computational mechanics methods to predict residual 

stresses introduced by manufacturing processes [13] and, for safety-critical applications, 

validation of the results through application of diverse measurements [7]. Modern 

measurement techniques [1], [14] have the potential to give a reliable characterisation of the 

true state of stress in a real structure, but the information is invariably incomplete; that is only 

some components of the stress tensor are measured to a finite length-scale resolution over a 

limited spatial sub-domain.  For example strain gauges provide surface measurements at a 

few key locations; neutron diffraction measurements tend to be made on line-scans and 

synchrotron x-ray measurements can feasibly be made over areas, for example [15]. Further, 

the measured data have associated scatter and uncertainties [16].  A key issue for both 

computational modelling and measurement is what level of residual stress detail is required; 

this question can be conveniently studied in terms of self-equilibrated stress wavelength 

analysis. Here we develop a Fourier approach to examine how much detail of the residual 

stress field is required to get a sufficient estimate of the stress intensity factor for a given 

crack length.  Further, the approach is completely general providing a simple means of 

determining the stress intensity factor for an arbitrary stress field along the proposed crack 

path. 

 

In a previous paper [17], the authors have discussed the residual stress length-scales to be 

considered in engineering fracture assessments and suggested that a self-equilibrated 

component of stress can be ignored when the crack length is at least twice the size of the 

tensile zone of the profile.  In this paper, a rigorous theoretical basis for studying the 

significance of residual stress length-scale is presented. The new approach is applied to 

simple and complex examples of measured residual stresses in welded plates.  The insights 
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provided by the new approach are discussed and the implications for characterisation of 

residual stresses in weldments by computational mechanics and measurements identified.  

2 Residual stress decomposition 

2.1 Membrane, bending and self-equilibrating stresses 

In modern stress analysis of structures the three dimensional spatial distribution of the stress 

tensor under prescribed loads is generally obtained by using numerical (finite element based) 

methods.  But for engineering integrity and life assessments of structures the 3-D stress field 

is often simplified by considering single components of the tensor that act at a few key points 

in the body, or vary along a line (stress profile), or across an area (stress map).  Moreover 

stress profiles are commonly rationalised by considering equivalent “membrane” and 

“bending” stresses, see Figure 1.  Such linearised stresses are generally calculated using 

simple beam bending theory.  However, it is necessary to define membrane and bending 

stress terms with more rigour in order to determine the “self-equilibrated” residual stress 

profiles treated in this paper.   

 

First consider an arbitrary plane that divides a body into two parts creating a planar 

intersection domain, Figure 2a.  Define a Cartesian axis system (x, y, z) with its origin at the 

centroid of the plane and the z-axis normal to it, see Figure 2b.  Equivalent forces acting at 

the centroid of the domain, and moments acting about the x and y axes, can be determined by 

simple integration of the stress distribution σzz(x, y): 

 Fz = σ zz∫ dA      (1) 

 Mx = yσ zz dA∫  My = xσ zz dA∫     (2) 

 



  Cracks in Cosine Residual Stress Fields 

7 

By definition the equivalent forces and moments acting on an arbitrary cross-section through 

a complete body containing residual stress must equal zero to satisfy equilibrium (that is in 

the absence of external tractions or self-load).  However, if a sub-domain is considered, as in 

Figure 2c, the equivalent forces and moments (fx, fy, fz, mx, my, mz) associated with the 

residual stress field need not equal zero. Instead equilibrium is maintained by 

counterbalancing forces and moments arising from stresses acting over the (unconsidered)  

remainder of the domain.  The sub-domain concept is critical for interpretation of residual 

stress measurements because, for practical reasons, they tend to focus on key locations, lines 

or zones, and so invariably provide an incomplete picture of the spatial distribution of 

residual stress in a body as a whole.  For example, three direct components of the stress 

tensor might be measured by neutron diffraction at discrete locations along a straight line 

passing through the thickness of a pipe.  In this instance the sub-domain is the intersection 

between the straight line and the pipe wall thickness. 

 

An equivalent average (membrane, σm) component of σzz stress on a sub-domain is calculated 

from fz and the equivalent linearly varying (bending, σb(x) and σb(y)) components of stress 

about the x and y axes are calculated from mx and my. Self-equilibrated distributions of 

residual stress along the x and y axes, σ se(x) or σ se(y), of a sub-domain can be readily 

calculated by subtracting the membrane stress, σm, and appropriate bending stress 

component, σb(x) or σb(y), from the total stress distribution acting on a sub-domain. Thus the 

distribution of the direct component of residual stress, σzz, acting along an x-axis line passing 

through a body (i.e. a line sub-domain) comprises the sum of membrane, bending and self-

equilibrating distributions of stress, for example see Figure 1: 

     (3) 

 

σ zz (x) = σ zz
m (x) + σ zz

b (x) + σ zz
se(x)
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By definition, the membrane and bending components of residual stress acting on the sub-

domain must self-equilibrate over the cross-section of the whole domain and therefore have 

long effective ‘wavelengths’ related to the dimensions of the structural system being 

considered.  In this paper a self-equilibrated stress profile, σ zz
se , is considered to comprise a 

(Fourier) series of superposed self-equilibrated residual stress distributions having different 

characteristic in-plane wavelengths, λ.  For example, the largest value of λ is likely to 

approach the length of the intersection line (the extent of the sub-domain), whereas there will 

be much shorter wavelength fluctuations associated with geometric stress concentrations and 

microstructural features at various length scales (grains, precipitates, dislocations, etc).  In 

choosing a spacing and gauge volume for stress measurement one is inherently disregarding 

shorter wavelength fluctuations.  Such arguments have led to the membrane component of 

stress being classified as a long length-scale stress, bending as a medium length-scale stress, 

and the self-equilibrated component as a short length-scale stress [5].  Typically, structural 

integrity assessments focus solely on the membrane and bending components and the self-

equilibrated stress is neglected completely, for example [10].  Our Fourier analysis allows a 

more rigorous consideration of the effects of the self-equilibrated stress 

2.2 Fourier-based residual stress decomposition  

An arbitrary spatial distribution of residual stress along a line in a body can be broken down 

into the sum of a series of basis functions.  A number of different families of basis functions 

have been used by other researchers.  For example Korsunsky et al. [18] have used 

Chebyshev polynomials and Kartal et al. [19] employed Legendre polynomials in eigenstrain 

analyses. Here we adopt a classical Fourier approach because the basis functions have a well 

defined wavelength that is inversely proportional to the order of the term and because the 
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terms are separated into even and odd functions which is convenient for determining stress 

intensity factor contributions.  

 

Consider the distribution of a single tensor component of residual stress, (x), which may 

be measured or predicted, along a line of finite length, 2b.  Then, assuming that the residual 

stress can be represented by a piece-wise continuous function on that line, the distribution can 

be transformed onto a periodic interval [-π, π] and expressed as the sum of multiple 

wavelength components using a Fourier series analysis : 

  

for a reference value, !!, of the residual stress distribution. The coefficients An and 

Bn are given by integrating the residual stress distribution according to: 

   (4) 

     (5) 

  for n = 1 to ∞    (6) 

  for n = 1 to ∞    (7) 

 

The membrane residual stress, σ zz
m (x) , discussed previously is simply represented by the A0 

term in Eq. (4) and the bending and self-equilibrated components of stress are represented by 

the An and Bn terms.  Symmetric residual stress problems involve only the cosine terms 

(Bn = 0 for all n).  This type of stress distribution is the particular focus of interest of the 

present paper.  This class of problems includes centre cracks growing laterally through 

σ zz

σ zz (x) =σ 0
1
2
A0 + An cos(nx)+ Bn sin(nx)

n=1

n=∞

∑
n=1

n=∞

∑
#

$
%

&

'
(
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1
πσ 0

σ zz (x)dx
−π

π

∫

An =
1
πσ 0

σ zz (x)cos(nx)dx
−π

π

∫

Bn =
1
πσ 0

σ zz (x)sin(nx)dx
−π

π

∫
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symmetric residual stress fields, and edge cracks where the sample is constrained to inhibit 

bending, however the approach described is completely general. 

 

For example, the symmetric analytical stress profile: 

 σ zz (x)
σ 0

= e
−
1
2
x
c
"

#
$
%

&
'
2

1− x
c
"

#
$
%

&
'
2(

)
*

+*

,
-
*

.*
 

   (8) 

has been used by Terada [20] to describe the distribution of longitudinal (welding direction) 

residual stress with distance from the weld centre-line, where σo is the peak stress at the plane 

of symmetry, x is the distance from the symmetry plane and c is the location where the stress 

profile changes sign.  This function can be represented to high accuracy (see Figure 3) over a 

periodic interval [-4c, 4c] by a Fourier series having 5 terms (p = 4) with coefficients An = 

0.000, 0.283, 0.451, 0.216, 0.045. 

 

3 SIFs for even stress functions: the cosine Fourier terms 

The re-distribution of stress in a body caused by the introduction of a crack can be solved by 

methods of linear elastic stress analysis.  The stress field surrounding a crack of length 2a in 

an infinitely wide plate under uniform applied far-field stress, σ∞ , has been expressed by 

Irwin [21] using the method of Westergaard [22].  

     (9) 

where KI is the mode I stress intensity factor that represents the strength of the crack-tip stress 

field.  

 

Now consider the same crack loaded by a periodic cosine residual stress function defined by: 

KI =σ∞ πa



  Cracks in Cosine Residual Stress Fields 

11 

     (10) 

where σo is the peak stress located at mid-length of the crack, 2a is the length of crack and 2b 

is the interval over which the cosine function of order n is acting, where b > a, see Figure 4a. 

Various approaches can be adopted to determine the stress intensity factor, for example 

integrating the stress profile with a weight function or Green’s function along the crack 

flanks.  A more convenient approach is to define the mode I stress intensity factor in terms of 

the Bessel function, J0, of the first kind and order zero: 

 KI =σ 0 πa J0
πna
b

!

"
#

$

%
&     (11) 

Where J0(0) = 1.  This expression follows from the solution for a point load on page 138 of  

Tada, Paris and Irwin [23] integrating over the crack length, and then using Gradshteyn and 

Ryzhik [24] to evaluate the resulting integral after some simplification.  By rearrangement the 

equation can be expressed in the following non-dimensional form: 

 G a
b
,n

!

"
#

$

%
&=

KI

σ 0 πb n
=

na
b
 J0

πna
b

!

"
#

$

%
&      (12) 

If n increases without bound then KI is asymptotically:    

 KI

σ 0 πb / n
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π
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    (13) 

 

When the Bessel function J0 in Eq. (12) cannot be readily evaluated, the following 

approximation for the mode I stress intensity factor for a centre-crack in a periodic cosine 

residual stress field may be used:  
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(14) 

σ zz (x) =σ 0 cos
nπ x
b
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where [H, J] = [0, 1] for 0 < a/b ≤ 0.36/n or [1, 0] for 0.36/n < a/b < 1. 

 

The first term comes from Eq. (13) and the second term is based on the KI solution for an 

infinite periodic array of cracks, spaced 2b apart, in an infinitely wide plate loaded by an even 

cosine residual stress function of order n = 2 (see Figure 4b).  The stress intensity factor 

handbook of [23] provides KI solutions for the periodic case n = 1 and 2 based on integration 

of Westergaard’s stress function [25] and the present authors have generalised this approach 

to consider any positive integer value of n:  

KI =σ 0 πa 2b
πa
tan πa

2b
 . 1+ (−1)r+1(4n2 )(4n2 − 22 )....(4n2 − 4r2 )

22r (r!)2 (2r + 2)2
sin πa

2b
"

#
$

%

&
'

(

)
*

+

,
-

2r+2

r=0

r=n−1

∑
/
0
1

21

3
4
1

51
 

   (15) 

 

The limits for [H, J] in Eq. (14) have been assigned by inspecting Figure 5 that compares the 

SIF approximation, Eq. (14), with the exact solution, Eq. (12).  

 

The SIF can now be determined for an arbitrary even residual stress function through an 

appropriate summation of Fourier-based cosine SIF terms based either on the exact solution, 

Eq. (12), or approximate solution, Eq. (14), for a centre-cracked infinite body:   

 KI ≈σ 0
1
2
A0 πa + An

πb
n
G a

b
,n

"

#
$

%

&
'

n=1

n=∞

∑
*

+
,

-

.
/     (16) 

where A0 and An are the Fourier coefficients defined in Eq. (5) and Eq. (6).  The first term 

defines the contribution to KI from the membrane stress and the second term the contribution 

from the self-equilibrated component of residual stress.  

4 Validation and applications of the Fourier approach 

Before we deploy the new Fourier-based SIF solution for a centre-cracked plate it is 

worthwhile to compare its predictive capability with other approaches in the literature. Tan 
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[26] presented a flexible method derived from exact closed-form solutions for determining 

SIFs for a centre-crack in an infinite plate under arbitrary residual stress fields.  This method 

was applied to solve the case of a crack subjected to a symmetric n = 4 cosine residual stress 

distribution.  Figure 6 shows how the approximate SIF solution, Eq. (14), for cosine loading 

with n = 4 agrees closely with that of Tan et al. 

 

Of course in general a Fourier series rather than a single component will be needed to 

represent a given residual stress distribution.  For example Terada [20] published exact SIF 

results (in tabular form) for a centre-crack loaded by his symmetric analytical residual stress 

function, which has been considered earlier in this paper, see Eq. (8) and Figure 3.   

 

Using Eq. (16), the first 4 Fourier series components (n = 1 to 4) have been combined with 

the ½ A0 !" membrane stress term (in this case zero) to produce the SIF results shown in 

Figure 7.  These results are presented in the more usual normalised form, often referred to as 

the SIF configuration factor defined by:  

 KI

σ 0 πa
    (17) 

 

where σo is the peak stress.  It is seen that the Fourier-based SIF solution correlates closely 

with Terada’s published data.  Also shown in Figure 7 is the SIF solution of Tada et al. [23] 

for Terada’s residual stress function which is claimed to be accurate to within 0.5%.  

Interestingly the small error in Tada’s solution, evident at values of "x/c"> 2.0, is not present 

in the Fourier series result.  While it is reassuring that the series approach shows excellent 

agreement with existing solutions, it is more important to examine the extra insights that a 
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Fourier approach can deliver.  This is best achieved through a consideration of practical 

examples. 

4.1 Application case 1: simple weld in a flat plate 

Consider residual stress measurements in the longitudinal direction (i.e. the direction of 

welding) made by Kanazawa et al. [27] at various distances from the weld-line of a long 

single weld bead in a flat plate shown in Figure 8a.  As longitudinal stresses are expected to 

be symmetric about the weld centre-line [x/c = 0 ], the measured profile has been to assumed 

to act symmetrically on both sides of the weld (so that it corresponds to the interval required 

in Eq. (4)).  The measured profile has stimulated a number of approaches to predict the 

resulting stress intensity variation for a centre-crack in a wide plate spanning the weld, as 

summarised in (Figure 8a). Terada [20] concluded that his analytic stress function presented 

earlier in Eq. (8) simulated the “test result fairly except for minor differences on the 

compression side” and derived exact SIF results for this stress function, see Figure 8b. Tada 

and Paris [28] analysed the same data and proposed a different analytical stress function 

meeting the same boundary conditions (an even function having a maximum value at x/c=0 

and crossing the axis at x=c with the residual stress vanishing far from the weld as x/c → ∞). 

     (18) 

 

A similar analytic stress function representing the same problem is given by [29]:  

  
   (19) 

 

The three analytic stress functions, Eq. (8), Eq. (18) and Eq. (19) are all given in Tada, Paris 

and Irwin [23] and are compared with the original experimental residual stress data in Figure 
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8a.  None of the functions provide an exact fit to the stress measurements, although Eq. (8) 

and Eq. (18) perform well within the tensile region ("x/c"< 1), but are they sufficiently good 

and which is the most appropriate given the data and any likely associated measurement 

errors?  

 

The use of a Fourier series approach allows one to choose the number of terms and hence the 

degree to which the curve fits the data.  As is evident from Figure 8a, a Fourier series analysis 

produces a reasonable fit with 6 cosine terms (p = 5; A0=0.072; A1=0.347; A2=0.359; 

A3=0.208; A4=0.087; A5=-0.014). The fact that the zero’th term is non-zero (A0 = 0.072) 

immediately reveals that the measured stress profile is not fully self-equilibrated over the 

measured sub-domain "x/c"< 4 giving a small membrane component of stress (0.036σo).  

This is an indication that either measurements have not been made over a sufficiently wide 

sub-domain to define fully the expected self-equilibrated stress field or perhaps, more 

plausibly, that there are significant uncertainties in Kanazawa’s measured data.  

 

The SIF results for a centre-crack spanning the weld are summarised in Figure 8b.  The slight 

deviation from unity apparent at a/c = 0 for the Fourier series result (based on Eq. (16)) arises 

because the y-axis has been normalised by the stress measured at x/c = 0 rather than by the 

stress given by the fitted function (see Figure 8a).  One could argue, given the potential for 

experimental scatter at each point, that the stress at x = 0 would be better estimated from the 

fitted curve rather than the measured data point.  Also shown are Terada’s “exact” SIF results 

for stress function Eq. (8) and results from the following SIF solutions given in Tada, Paris 

and Irwin [23] for stress functions Eq. (18) and Eq. (19) respectively:  
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 KI

σ 0 πa
=

1+ a c( )2 − a c( )2

1+ a c( )4
"
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$
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1
2

 
   (20) 

 KI

σ 0 πa
=

1

1+ a c( )2( )
3
2

    (21) 

 

For short crack lengths [a/c < 1.0] Terada’s exact results, Eq. (20) and the Fourier approach 

(Eq. (16)) give similar results, but the performance of Eq. (21) is poor. For longer crack 

lengths [a/c > 1.0] marked variations in magnitude (up to 14%) are evident for the analytical 

solutions compared with the Fourier-based p = 5 solution. This is owing to the approximate 

nature of the fitted idealised stress profiles to the experimental data (Figure 8a). The Fourier-

based SIF solution, Eq. (16), models a finite positive value of membrane stress in the 

measured data over the sub-domain considered; this makes the SIF more positive than 

Terada’s results based on Eq. (8) which is a completely self-equilibrated stress function in the 

range [-4 < x/c < 4]. If the membrane stress component is subtracted from the stress profile 

then the normalised SIF, for the Fourier-based p = 5 case, changes sign at a/c = 2.1.  Overall 

the Fourier-based analysis approach gives a good fit to the measured stress data and therefore 

should give reliable SIF results over the entire crack length range.   

4.2 Application case 2: complex butt weld in a plate 

The previous example was for a relatively simple residual stress profile, but in real cases it is 

common to record more complex variations and an important question is how critical is it to 

capture all the detail when calculating SIFs?  A good example is provided by residual stress 

measurements made on an aluminium alloy butt-welded plate joined by a variable polarity 

plasma-arc (VPPA) welding technique [30].  Plates approximately 140 mm wide and 240 mm 

long and 12 mm thick were butt welded together.  The bulk longitudinal residual stress field 
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across the mid-width cross-sectional plane of the welded plate was measured using neutron 

diffraction, synchrotron x-ray diffraction [30], laboratory x-ray diffraction [31] and the 

contour method [32].  Figure 9a shows the variation in longitudinal stress (that is the 

component of stress parallel to the weld) based on sets of neutron diffraction data combined 

with synchrotron X-ray results and averaged across several locations through the thickness. 

The typical uncertainty of these combined stress measurements is ± 10 MPa [30]. Note that 

the measured data cover a sub-domain [-60, 60] mm of the 278 mm wide cross-section.  The 

stress distribution is complex but, as one might expect, is essentially symmetric about the 

weld centre-line. 

 

Residual stress profiles of this kind are commonly idealised using a polynomial stress 

function for subsequent use in weight function numerical calculations to determine the stress 

intensity factor solution, for example [33].  But this particular measured stress distribution is 

too complex to fit using a single polynomial function.  Instead, the general closed-form SIF 

solution of Tan et al. [26] for a centre-cracked plate under an arbitrary shape stress field 

acting along the crack faces has been successfully applied.  Recognising the symmetry of the 

stress field, the problem was simplified by averaging stress data at mirror locations relative to 

the weld centre-line and fitting two piecewise polynomial stress functions; that is a 10th order 

polynomial was fitted over the range 0 < x < 24 mm and a 5th order polynomial for 24 mm < x 

< 50 mm ensuring slope continuity between the two functions.  The fitted polynomials are 

shown in Figure 9a and the resultant SIF solution for a through-thickness crack 

symmetrically emanating from the centre of the weld is depicted in Figure 9b. 

 

As the measured residual stress profile (comprising 90 points) is essentially symmetric about 

the weld centre-line, the Fourier stress and SIF analysis approach can be applied without 
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mirroring and averaging.  Figure 9a shows how a cosine Fourier series analysis (p =20) 

matches the measured data closely and provides a better quality of fit than the compound 

polynomial approach of Tan et al.; that is it captures more effectively the measured peaks and 

covers data over the entire sub-domain [-60, 60] mm.  Also shown on this plot are Fourier 

analysis fits using fewer terms (p = 5 and 10).  The membrane stress, given by the first term 

of the series (½ A0), is 12.3 MPa.  It is non-zero because the measured stress data analysed 

cover a sub-domain (less than 50%) of the total plate cross-section.  The remaining terms An 

(n = 1 – 20) of the Fourier analysis define the self-equilibrated component of residual stress.  

The Fourier-based SIF solution for p = 20 correlates very closely with that of Tan et al., see 

Figure 9b.  The p = 10 case gives an accurate value of the peak KI at a crack half-length of 20 

mm.  The analysis based on just 6-terms also performs well in approximating the peak KI to 

within 5%, but does not capture the “knee” evident in the more detailed solutions at a crack 

half-length of 10 mm.  But for cracks longer than about 25 mm the SIF solution is fairly 

insensitive to the number of terms p ≥ 5 included in the analysis.  

 

This example illustrates the power of the Fourier-based residual stress decomposition 

approach for dealing with highly complex measured residual stress data. It suggests that from 

a structural integrity viewpoint, it is not necessary to determine in great detail the fluctuations 

in stress around 10 mm, thereby reducing the number of measurements saving both time and 

money.  Moreover the SIFs can be readily determined by simple summation of Fourier terms. 

The Fourier-based solution has the added advantage that the measured data can be examined 

at various levels of detail at the discretion of the analyst.  

5 Discussion 

Stress decomposition coupled with Fourier-based SIF analysis is a highly effective approach 

for the engineering assessment of cracks in residual stress fields. It can help one to identify 
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the origins of residual stress, define in-plane length-scales of a direct component of stress, 

facilitate the determination of SIFs and help quantify to what level of detail residual stress 

data are required for fracture assessment of cracks in structures.  

 

Measured, or numerically determined, residual stresses acting on a sub-domain in a structure 

(measurements at discrete points along a line through the thickness of pipe weld for example) 

are regularly broken down into underlying membrane, bending and self-equilibrated types of 

stress for structural integrity analysis [7].  These categories of stress are related to the 

structural origins of the residual stress field and thereby associated with different length-

scales across an imaginary plane dividing the entire structure.  In general, the membrane 

component of residual stress acting over a sub-domain arises from long-range force 

equilibrium across the structure and therefore has an associated wavelength, λ, of structural 

dimensions.  Likewise local bending maintains long-range moment equilibrium, whereas the 

self-equilibrated component of stress self-balances over the length-scale of the sub-domain 

being considered (e.g. the pipe thickness).  A Fourier analysis for a symmetric stress field 

allows the self-equilibrated component to be further decomposed into the sum of a series of 

cosine functions of varying wavelengths, λn, and magnitudes, σ0An.  The power of the Fourier 

series approach in analysing highly complex measured residual stress data has been 

demonstrated by the VPPA weld case study.  The different characteristics of membrane, 

bending and self-equilibrated cosine components of stress are illustrated in Figure 10a.  Here 

the stresses have been normalised to give a common peak stress, σm = σb = σse = σ0, that acts 

over a reference sub-domain length, 2b, but the bending stress is assumed to reach a 

maximum tensile value at any length, x/b, being considered for fracture mechanics 

assessment. 
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It is instructive to examine the relative contributions of membrane, bending and cosine self-

equilibrated stresses to the SIF used in fracture mechanics analysis following the approach of 

Withers [6].  The SIF for a through-thickness crack in a wide plate under membrane stress is 

given by Eq. (9) with σ∞ = σm.  The equivalent SIF for a pure bending stress of tensile 

magnitude σb at one crack tip and compression –σb at the other tip can be derived from page 

138 of Tada, Paris and Irwin [23] giving KI = ±½σb(πa)½.  For a self-equilibrated cosine 

function of peak magnitude, σn, the SIF is given by G(a/b, n), from Eq. (12) or Eq. (14). The 

SIFs for these kinds of loading can be compared with each other directly using the 

normalisation shown in Eq. (22) assuming a common peak stress, σm = σb = σn
 = σ0.  
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The results of this SIF comparison are presented in Figure 10b and relate to the unit 

membrane, bending and cosine components of stress shown in Figure 10a.  It is observed that 

the membrane stress makes the greatest relative contribution to the SIF followed by the 

cosine functions for short cracks.  But for longer cracks, the bending component increases in 

importance and the magnitude of the cosine contribution depends on the order, n, and exact 

crack length.  In general the SIF for combined membrane, bending and self-equilibrated 

(symmetric) residual stress can be evaluated from: 
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where the first term of the Fourier series analysis A0 = 2σm/σ0 and G(a/b,n) is the cosine SIF 

solution defined either by Eq. (12) or Eq. (14).  
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The cosine SIF solution has periodic properties of high engineering relevance.  The 

maximum magnitude of KI for any value of n can be approximated using Eq. (13), (see Figure 

5) even although this expression is strictly an asymptotic limit:  

 

 KI max
≈

2
π
σ 0

πb
n
= 0.8σ 0

b
n

    (24) 

 

First, it should be noted the maximum SIF magnitude defined by this approximate limit is 

independent of crack length.  Secondly, as the order, n, of the cosine function increases, the 

magnitude of KI decreases with the inverse of the square root of n, for example see Figure 

10b.  Thus, the higher the order of the Fourier term, the less it will contribute to the SIF in a 

Fourier-based analysis.  But even more significant is the fact that the peak magnitude of KI 

depends on the square root of the wavelength of the cosine function, λn = 2b/n.  This property 

demonstrates that the longer the residual stress length-scale, the greater its contribution to the 

SIF of embedded cracks in structures, and therefore its importance in fracture mechanics 

analysis and structural integrity assessment. For example, periodic residual stress variations 

at the grain-scale of stainless steel components for σ0  =  50 MPa and 2b = λ = 0.0005 m 

(assuming λ is approximately 5 times an average grain size of 0.1 mm) will have a negligible 

influence on fracture (KI  ≈  0 . 6  MPa√m).  Thus the power of the Fourier approach is that it 

enables one to investigate the dependency of the SIF on the degree of detail to which the 

residual stress profile needs be known or estimated.  

 

The error, Ep, from truncating the series expansion for KI at the p’th term is bounded by 

 

Ep ≤ An KI
n=p+1

∞

∑ max≤ 0.8σ 0 b
An
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∑                 (25) 



  Cracks in Cosine Residual Stress Fields 

22 

 

using Eq. (4) and Eq. (24). The Fourier-based approach then intrinsically converges as n 

increases, noting that standard Fourier series theory implies that, for a piecewise continuous 

function, with discontinuities only at a finite number of points, the coefficients An are O(1/n) 

for large n. Hence, from Eq. (25), the Fourier series expansion for KI is absolutely 

convergent. Smoother residual stress distributions lead to more rapid decay of An with 

increasing n, and often the sign of An alternates, which both increase the rate of series 

convergence.  

 

The convergence properties can be illustrated by comparing SIF results from the p = 5 and p 

= 10 cases with the p = 20 solution, see Figure 9b.  The maximum differences in SIF are 4.6  

MPa√m and 2.4 MPa√m for the p = 5 and p = 10 cases respectively for a ½-crack length of 8 

mm.  The peak KI values for the truncated p = 5 and 10 analyses are accurate to within 5% 

and 1% respectively of the p = 20 solution for a ½-crack 19 - 20 mm long.  Even the p = 5 

case is within the expected range of accuracy for SIF solutions in engineering applications. 

Note also how good estimates of KI were obtained in the other studies using 6 terms (p = 5) or 

fewer.  

 

The cosine KI solution, Eq. (12), initially increases with crack length and reaches a maximum 

at na/b ≈ 0.3, see Figure 5.  The magnitude of this first peak is marginally lower (a few per 

cent) than the asymptotic limit for later cycles defined by Eq. (13). The latter is therefore 

taken as a good engineering approximation to the maxima for all the cycles.  The appropriate 

KI solution then falls with increasing crack length until it first changes sign at na/b = 0.75 and 

remains negative up to a crack length na/b = 1.75.  It is important to note that KI first becomes 

negative at a crack length equal to about 1.5 times the tensile length-scale, b/n, of the cosine 
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function and does not return to a positive value until 3.5 times the tensile length-scale.  

Similar behaviour is observed in more realistic self-equilibrated weld residual stress profiles 

that comprise several Fourier term contributions; for example in Figure 7, KI first changes 

sign at 1.75 times the tensile length-scale, see Figure 3) and in Figure 8b KI changes sign at a 

crack length about 2.1 times the tensile length-scale when the membrane component is 

removed (see earlier description of application case 1).  These results support an engineering 

“rule of thumb” stating that KI for self-equilibrated residual stress profiles becomes 

insignificant when the crack is longer than twice the length of the tensile zone in agreement 

with the less rigorous arguments of Bouchard and Withers [17].  

 

The tensile length-scale “rule of thumb” combined with the knowledge that the maximum 

magnitude of KI becomes small at short stress wavelengths can be used to assess the 

significance of local perturbations in residual stress.  This assessment is essential in the 

planning stage for residual stress measurements of complex structures and in the determining 

the level of sophistication required in computational mechanics predictions of residual stress 

in welds.  For example, measurement scientists or engineering analysts [7] may need to 

decide whether to measure/model phase transformation effects in welded joints made from 

ferritic steel.  Consider a localised cosine form of residual stress distribution representing the 

expected, or bounding, magnitude of stress fluctuation and wavelength. Two significance 

tests can be applied.  First what is the magnitude of the peak SIF from Eq. (24) and is this 

significant to the fracture or other assessment being made?  Secondly, if the crack length of 

concern is greater than twice the tensile length-scale of the stress perturbation then it will 

have a negligible effect on fracture and therefore can be ignored.  For example, a localised 

100 MPa magnitude cosine perturbation over a wavelength of 5 mm would give a maximum 

KI = 2 MPa√m for cracks < 5 mm long but would be benign for longer cracks.  In this instance 
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it may well be judged irrelevant to undertake the more detailed measurements and analysis 

required to capture the short length-scale residual stress field.  

 

The properties of the approximate cosine SIF solution can be used to help design and inform 

residual stress measurement studies of engineering components.  Consider a set of point 

residual stress measurements that are equally spaced along a straight line and have an 

identical measurement uncertainty, Δσ0.  If the uncertainty is truly random then the worst-

case maximum error in stress profile could be represented by a cosine function of amplitude 

Δσ0 and wavelength equal to twice the measurement spacing.  The maximum SIF error for 

this worst case is given by Eq. (24).  This analysis neatly demonstrates how increasing the 

density of measurement points can reduce the uncertainty in a stress distribution and the 

calculated SIFs for a centre-cracked structure.  Indeed if a tolerable error/uncertainty in the 

SIF can be defined, and the measurement method uncertainty is known, then the 

measurement spacing required can be estimated.  Thus for a 2 MPa√m error in SIF with 

random uncertainty in stress of 25 MPa (typical of neutron diffraction measurements in 

stainless steel), a 10 mm spacing is adequate, whereas for one-half the error in SIF 

(1 MPa√m) a minimum measurement spacing of 2.5 mm would be required. 

 

The Fourier-based approach presented here could be extended to cover isolated cracks in 

asymmetric residual stress profiles through developing a generic SIF solution for sine 

functions of arbitrary order. In addition, a similar Fourier-based SIF approach could be 

developed for edge-cracked (unrestrained) plates that would have wider applicability and 

relevance to cracked engineering structures.  The Fourier-based methodology also opens up 

the possibility of estimating the out-of-plane length-scale of a residual stress field.  This is 

important for the purpose of assessing the level and significance of elastic follow-up in non-
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linear fracture mechanics analysis and high temperature deformation and damage processes.  

In addition, the out-of-plane length-scale has a key influence in determining what stress 

remains in test specimens extracted from weldments and in application of the Contour 

Method of residual stress measurement.   

6 Conclusions 

1. Direct components of the residual stress tensor acting normal to a planar sub-domain of a 

structure have often been decomposed into membrane, bending and self-equilibrated 

distributions of stress for engineering structural integrity analysis. Here we have used a 

classical Fourier series approach to analyse both the long and the short wavelength 

fluctuations in residual stress within a single framework. 

2. A closed-form SIF solution for a through-thickness crack in a wide plate under a periodic 

cosine residual stress field of order n has been developed.  When combined with a Fourier 

analysis, SIFs for a through-thickness crack in a wide plate within a symmetric residual 

stress field of arbitrary shape can be determined by superposition. The new approach has 

been successfully applied both to simple and complex examples of measured residual 

stresses in welded plates. 

3. The Fourier-based SIF analysis approach intrinsically converges as n increases and 

therefore complex residual stress fields can be represented using a truncated Fourier 

series involving relatively few terms without introducing large errors.  

4. The magnitude of the peak SIF for any order cosine stress function depends solely on the 

peak stress and square root of the wavelength, |KI|max = 0.8σ0√(0.5λn), thus the longer the 

residual stress length-scale the greater its significance in fracture mechanics assessment.  

Conversely, short length-scale residual stress fluctuations can often be ignored. 
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5. The Fourier-based SIF results support an engineering “rule of thumb” stating that KI for 

self-equilibrated residual stress profiles becomes insignificant when the crack length 

exceeds about twice the length of the tensile zone proposed by [17]. 

6. The insights provided by the new approach enable one to determine the degree of detail, 

and the accuracy, to which a residual stress field need be known for the engineering 

assessment of cracks in structures. Examples discussed include the significance of 

intergranular stresses and when local stress perturbations, such as introduced by phase 

transformations, need to be characterised by more detailed measurements or refined 

computational analysis.  It is also shown how measurement spacing requirements can be 

estimated if a tolerable uncertainty in SIF is defined, or if a set of stress measurements 

has been already obtained, how the Fourier SIF approach can be used to bound potential 

random error in the residual stress distribution in a fracture mechanics analysis.   
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Figure 1.  Decomposition of the residual stress distribution σzz along a line of length L into membrane, 
σm, bending, σb, and self-equilibrating, σse, stress profiles.  

Figure 2.  (a) Arbitrary plane intersecting a general body. (b) Equivalent forces and moments acting 
on the intersection domain. (c) Equivalent forces and moments acting on a sub-domain of the 
intersection.Figure 3.  Terada’s analytical function [20] simulating the distribution of longitudinal 
residual stress with distance from a butt weld in a wide plate; x/c is the distance from the weld, c is the 
distance at which the stress function changes sign and the stress function is normalised by the peak 
value, σ0, at x/c = 0. The Fourier series stress analysis (p = 4) gives a highly accurate fit to the 
function.  

Figure 4. Single crack in a cosine residual stress field spanning length 2b of order n = 1 (top), and  
periodic array of cracks spaced at 2b in a cosine residual stress field of order n = 2 (bottom). 

Figure 5. Normalised SIFs from Eq. (12) for a single crack in an infinite plate under arbitrary cosine 
loading (n = 1 – 12) compared with results of the approximate SIF solution Eq. (14). 

Figure 6.  Comparison of the approximate cosine SIF solution for a single crack in an infinite plate 
with the solution of Tan et al. [26] for a cosine function (n = 4).  

Figure 7.  Normalised SIF results, for the analytical residual stress function shown in Figure 3.  

Figure 8. (a) Longitudinal residual stress data measured by Kanazawa et al. [27] at various distances 
from a long single weld bead in a flat plate compared with various analytical approximations, see also 
Figure 3, (b) Corresponding SIF results. 

Figure 9. (a) Measured longitudinal residual stress data (thickness averaged) for a variable polarity 
plasma-arc (VPPA) butt weld joining two aluminium alloy plates (240mm x 140 mm x12mm) [30]. 
Four analytical representations of the measured stress profile are shown: a compound polynomial fit 
and Fourier series analysis fits for p = 5, 10 and 20.  (b) Associated SIF results based on the approach 
of Tan et al. [26] and the Fourier-based SIF analysis for p = 5, 10 and 20.  

Figure 10.  (a) Normalised membrane and self-equilibrated cosine stress distributions (n = 1, 2, 4, and 
8) acting across ½-range b, and normalised bending stress acting across x/b.  (b) Associated 
normalised SIFs. 
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