
Open Research Online
The Open University’s repository of research publications
and other research outputs

Using interpreted runtime models for devising adaptive
user interfaces of enterprise applications
Conference or Workshop Item
How to cite:

Akiki, Pierre A.; Bandara, Arosha K. and Yu, Yijun (2012). Using interpreted runtime models for devising
adaptive user interfaces of enterprise applications. In: 14th International Conference on Enterprise Information
Systems (ICEIS 2012), 28 Jun - 1 Jul 2012, Wroclaw, Poland.

For guidance on citations see FAQs.

c© 2012 Science and Technology Publications, Lda (SciTePress)

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://www.iceis.org/Abstracts/2012/ICEIS 2012 Abstracts.htm

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82974067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://www.iceis.org/Abstracts/2012/ICEIS_2012_Abstracts.htm
http://oro.open.ac.uk/policies.html

USING INTERPRETED RUNTIME MODELS FOR

DEVISING ADAPTIVE USER INTERFACES

OF ENTERPRISE APPLICATIONS

Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu
Computing Department, The Open University, Walton Hall, Milton Keynes, United Kingdom

{pierre.akiki,a.k.bandara, y.yu}@open.ac.uk

Keywords: User Interfaces: Model Driven Engineering: Runtime Modelling: Enterprise Applications: Design Tools and

Techniques: Domain-Specific Architectures: Software Architectures

Abstract: Although proposed to accommodate new technologies and the continuous evolution of business processes

and business rules, current model-driven approaches do not meet the flexibility and dynamic needs of

feature-rich enterprise applications. This paper illustrates the use of interpreted runtime models instead of

static models or generative runtime models, i.e. those that depend on code generation. The benefit of

interpreting runtime models is illustrated in two enterprise user interface (UI) scenarios requiring adaptive

capabilities. Concerned with devising a tool-supported methodology to accommodate such advanced

adaptive user interface scenarios, we propose an adaptive UI architecture and the meta-model for such UIs.

We called our architecture Custom Enterprise Development Adaptive Architecture (CEDAR). The

applicability and performance of the proposed approach are evaluated by a case study.

1 INTRODUCTION

Modern businesses rely heavily on enterprise

software applications for automating their business

processes. The dependency on these applications

drives business owners to request even more features

from the software suppliers. It places a heavy

pressure on suppliers to provide the best possible

software quality, without increasing the cost. The

orientation towards generic enterprise applications

(ERP, CRM, etc.) is also being challenged by the

variation of demands amongst businesses and users.

Among various components of an enterprise

system, the user interface (UI) layer is considered

highly important since it interfaces users to the

software system. Some software companies chose to

build multiple UIs for the same functionality due to

variable user needs. Yet in certain situations the

scope of variability is unknown at design time or it

is costly to develop multiple UI versions manually.

User interface simplicity is an important

requirement for enterprise application users. Some

novice users prefer the UI to be displayed in a step-

by-step wizard whereas advanced users might feel

more productive if the UI is displayed on one page.

Generally, different users require a variable part of

the software’s feature set, which could scatter across

multiple user interfaces. Displaying a significant UI

subset in one place would help users fulfil their

repetitive tasks more efficiently.

One method to achieve UI simplification is for

enterprise applications to be adaptive/adaptable,

respectively referring to the ability of tailoring

software applications automatically/manually.

A more detailed explanation on the adaptive UI

simplification is given in Section 2 through two

practical scenarios. We should emphasize that the

objective of this paper is not to solve both scenarios.

Instead, we intend to propose a general-purpose

solution for creating enterprise applications targeting

such adaptive UI scenarios. One of the scenarios will

be partially addressed as a case study in Section 7.

We adopt a model-driven approach for devising

adaptive/adaptable UI. Hence we differentiate

between the following model-driven approaches:

Static modelling is an approach that relies on

models for UI design and eventually ends in a phase

before code generation. By definition static models

cannot change at runtime, hence are not suitable to

be used beyond the development phase.

Most adaptive model-driven UI approaches in

the literature depend on generative runtime models

of application artefacts that reuse the code already

implemented as a generic UI.

Runtime models are usually more opted for

adaptive features. However, in certain scenarios

such as those discussed in Section 2, using runtime

models while maintaining the generated code-based

artefacts is insufficient. Features required in such

adaptive scenarios include runtime support for

actions such as eliminating widgets; replacing a

widget with another; adding new widgets; or

composing a new UI from existing user interfaces.

In contrast, our approach uses interpreted

runtime models such that there is no need to

generate code for creating the UI. Instead, the

models are interpreted at runtime to render the UI.

2 ADAPTIVE SCENARIOS FOR

ENTERPRISE APPLICATIONS

Adapting UI functionality through automatic

simplification could make complex applications

easier to use on mobile devices and by people with

cognitive impairments (Gajos et al. 2010). Tailored

UIs could enhance user satisfaction (McGrenere et

al. 2002) but the manual development cost is high.

The following scenarios are examples for

clarifying the importance of our approach.

Scenario 1: Simplifying Individual User

Interfaces could be based on: “Elimination”,

“Substitution”, and “Realignment” of UI widgets.

We could adjust the UI per user by eliminating

unused features and also consider user level layout

adaptation. The following is one possible example:

1. Beginner: Present UI in wizard form

2. Intermediate: Divide UI among several tabs

3. Expert: Display UI widgets on one page

Scenario 2: Composing New Functionality from

Existing User Interfaces is related to dynamic

“Composition” of new UIs based on existing ones

(defined at design time) and end user behaviour.

One possible application would be on scattered

UIs, which is the case of entering information for an

inventory item in Microsoft Dynamics GP. The main

information entry is done through one UI form. Yet

various sets of item related information (Prices,

Options, etc.) are entered in separate UI forms.

UI composition and decomposition has been

addressed in some research works (Lepreux et al.

2010). Yet the researchers focused on performing

those actions at design time.

3 RELATED WORK

This section briefly summarizes the existing work

that could be classified into reference architectures

and state of the art with possible gaps.

3.1 Architectures

Architectures, which could serve for the purpose of

designing UIs and adaptive systems in general,

could be classified into the following categories:

1. User Interface Abstraction is concerned with

the representation of UIs on multiple levels of

abstraction. The CAMELEON reference

framework is one example.

2. Adaptive System Layering provides a

reference model for adaptive systems in

general. Existing work includes the Three

Layer Architecture and IBM MAPE-K loop.

3. Implementation architectures deal with the

distribution of components in a development

scenario. Common architectural patterns of

this sort include: MVC, MVP, and MVVM.

We will base our proposed architecture on the

Three Layer Architecture (Kramer & Magee 2007),

CAMELEON (Calvary et al. 2003), and MVC.

3.2 State of the Art

Runtime models constitute an important area of

research in MDE (France & Rumpe 2007). Existing

research works target adaptive UI differently.

The Multi-Access Service Platform (MASP)

targets ubiquitous UI in smart environments and

promotes runtime modelling but still relies on code

for defining the initial UI (Blumendorf et al. 2010).

Supple is introduced as a system mainly capable

of generating interfaces adapted to each user’s motor

abilities (Gajos et al. 2010). Although the adopted

technique generates the UI from an abstract model, it

does not support the various possible levels of

abstraction and designer input on the concrete UI.

The COntext Mouldable widgeT (Comet(s)) was

introduced to support UI plasticity (Calvary et al.

2005). Comets tend to target adaptation of individual

widgets while our target is the entire layout.

DYNAmic MOdel-bAsed user Interface

Development (DynaMo-AID) is presented as part of

the Dygimes UI framework (Clerckx et al. 2004).

This system is mostly concerned with simple mobile

applications. Furthermore, the adopted approach for

generating task trees could lead to a combinatorial

explosion making it hard to use for large scale

enterprise applications.

4 PROPOSED ARCHITECTURE

Our proposed architecture for enterprise applications

with adaptive UI capabilities (CEDAR) is illustrated

in Figure 1. The proposed artefacts column

illustrates the distribution of the adaptive

components according to each of the reference

architectures (Three Layer Architecture,

CAMELEON, and MVC) discussed in Section 3.1.

4.1 Adaptive Components

This section will elaborate on the function of each of

the adaptive components under the four layers.

L1 - Client Components Layer: The components

in this layer will be deployed to the client machine.

The “Context Monitor” will be responsible for

monitoring any changes in the current context. This

component was allocated to the client since it would

be able to monitor changes to the environment in

addition to any changes in the user’s behavior.

The ability to cache data on the client will

provide dynamically generated systems with much

better performance. The “Caching Engine” will be

responsible for caching any part of the model.

The “UI Renderer” will be responsible for

rendering the UI model using one of the existing

presentation technologies. Additionally, this

component will be responsible for managing events,

data binding, and validation by linking the dynamic

UI layout to the application code behind.

L2 - Decision Components Layer: These

components will be deployed to the application

server and will handle decision making in the

adaptive scenario.

The “Context Evaluator” will handle the

information submitted by the “Context Monitor” in

order to evaluate whether the change requires the

models to be adapted.

The “Caching Engine” on the application server

will assume a role similar to that of its counterpart

on the client. Yet in this case the caching will not be

made on the session level for each individual user

but on the application level for all the users.

L3 - Adaptation Components Layer: These

components will be deployed to the application

server and will be responsible for performing the

actual adaptation on the models.

The “Adaptive Engine” will be responsible for

taking a UI model as input and conducting the

adaptation according to one of the adaptive models.

The “Trade off Manager” assumes the role of

balancing the trade-offs between the different

adaptation constraints in order to meet each set of

constraints as much as possible.

The “UIDL Converter” will be responsible for

handling the conversion between the user interface

model (stored as relational data) and the necessary

User Interface Description Language (UIDL).

L4 - Adaptive & User Interface Models Layer:

The adaptive and UI models will be stored on the

database server. A relational database will be used

for managing the various required models.

The adaptive models will represent a generic rule

set according to which the UI models will be

adapted. Such rules will be based on the various

adaptive factors relevant to the changing contexts.

4.2 Adaptive Procedure & Advantages

Two main approaches could be considered for

adapting the UIs of enterprise applications. The

following paragraphs explain the procedure, which

could be mapped to steps S1 to S5 on Figure 1.

The first approach is a direct adaptation. A

change in the context gets reported (S1) to the

“Context Evaluator”. A decision is made on whether

the UI should be adapted. The adaptive engine is

called (S2) for obtaining the new UI. The adaptive

engine will send the adapted UI back for caching

(S4). Then it will be transferred to the client and

modified on the fly (S5).

The second approach differs from the first by the

method through which the adapted UI is handed to

the user. Instead of modifying the UI while the user

is working, the adapted version (S2) is stored (S3)

and the UI is proposed as a new option (S5). This

could be more convenient in many enterprise

scenarios such as those described in Section 2. The

convenience lies in preventing the user from being

confused by a UI that is constantly changing.

An advantage of the proposed architecture is the

separation of concerns allowing the adaptive

functionality to be consumed as a generic service.

Additionally, the layering conceptually allows the

integration of various adaptive models, which in turn

allow the UI to adapt according to different factors.

Previous research works (Section 3.2) focus on

adapting the UI according to specific adaptive

factors (Screen size, physical impairments, distance

from display devices, etc.). A general architecture

could be considered as a more extensible method in

terms of accommodating various types of adaptive

factors within a generic middleware.

Figure 1: Proposed Architecture for Adaptive User Interfaces

5 UI META-MODEL

User Interface Description Languages (UIDLs)

are used to define technology and modality

independent UI. Several UIDLs (UsiXml, UIML,

XIML, etc.) currently exist. Yet UsiXml is

considered to have the most comprehensive meta-

model complying with the CAMELEON reference

framework. Additionally, it is possible to define

mappings and transformations between the various

levels of abstraction (Tasks & Domain Model, AUI,

CUI, and FUI). Hence we chose to rely on UsiXml’s

meta-models (Guerrero-Garcia et al. 2008) for UI

persistence and transfer. Currently we are only

working with the CUI and the domain model. UML

class diagrams are used to represent domain models

whereas UsiXML’s meta-model is used for the CUI.

As indicated in its definition (www.usixml.org),

UsiXml is not intended to handle all attributes and

events of all widgets in all toolkits but merely a

subset. Yet our dynamic approach would not allow

the UI layout to be defined through code. Hence we

required a level of abstraction capable of making the

model extensible to support a vast subset of features

from different technologies. To achieve that, we

define a UI widget in terms of its “Properties” and

“Events” and allow the designer to extend those

according to different technology profiles. Binding

the UI to the data model is also considered in the

meta-model by defining a “Data Binding” capable of

linking a “Component Property” to a class diagram

“Property”. To validate the input values, “Validation

Rules” could be defined on the data-bindings for

checking a value before committing it to the data

source. We should note that setting the property

values in addition to tying up the events, and

bindings will be fully conducted at runtime through

the “UI Renderer” depicted in Figure 1.

In order to link the layout to the code behind, the

developer will have to attach a “Code Behind

Method” to a widget event in a similar manner to

how it is done under a regular IDE.

http://www.usixml.org/

Figure 2: Our Concrete User Interface Designer

6 TOOL SUPPORT

The CUI designer of the IDE we devised for creating

enterprise UIs with runtime adaptive abilities is

illustrated in Figure 2. Although the architecture is

intended to encompass the various abstraction levels

of the CAMELEON framework the tool support at

this stage is limited to the CUI and Domain Model.

Developers’ productivity and their understanding

of the methodology are critical for maintaining a

reasonable software development cost. Since many

developers tend not to understand modelling very

well, we adopted a familiar development approach.

Our tool encompasses a visual designer for UI

development, which is quite similar to those present

in widely adopted IDE’s such as Visual Studio.NET,

NetBeans, Eclipse, etc. This type of tool will allow

developers to create the user interface in a traditional

manner by dragging and dropping widgets onto a

canvas. Additionally, developers could click on each

widget in order to adjust its properties or to tie up its

events to a code behind method.

This tool was developed with C# using both

Windows Forms and the Windows Presentation

Foundation (WPF) for the UI. Currently the model

related data is being stored in an SQL Server 2008

database but other database management systems

could be also used. The adaptive middleware was

developed using the Windows Communication

Foundation (WCF) in order to make it accessible

from anywhere (web or intranet) as a service. To

test out our approach we had to develop a rendering

engine for at least one presentation technology. WPF

was the technology of choice but with the existence

of the meta-models the UI rendering engine could be

easily adapted for other technologies as well.

As previously noted this tool is not fully

developed since we still need to incorporate visual

designers for the abstract UI and task trees. Adding

those will provide full tool support for the proposed

architecture and the ability to adapt the UI at the

different levels of abstraction. This will be done by

keeping in mind the need to maintain a familiar

development approach. In spite of that, at this stage

developers could use the tool to create fully

functional UIs with the existing designers.

7 EVALUATION CASE STUDY

To assess our proposal, we conducted a case study

based partially on Scenario 1 discussed in Section 2.

The standard for role based access control

(RBAC) could be utilized by enterprises for

protecting digital resources (Ferraiolo et al. 2001). In

RBAC, “Users” are assigned “Roles”, which are in

turn assigned permissions on “Resources”. In our

case, the UI is the resource we need to secure.

Table 1: CRUD to UI Property Mappings

CRUD Permission UI Property Value

Allow / Deny (Create) isEnabled True / False

Allow / Deny (Delete) isEnabled True / False

Allow / Deny (Read) isVisible True / False

Allow / Deny (Update) isEnabled True / False

Table 1 lists the mapping between the CRUD

permissions and UI-specific properties. The

“Create” and “Delete” permissions are applied on

the domain model UML classes whereas “Read” and

“Update” are applied on UML class properties.

To demonstrate that the proposed method is not

only meant for newly developed applications we

chose an existing open source dental practice

software called OpenDental (www.opendental.com).

We selected the “Claims” form, illustrated in the UI

studio in Figure 2. It has 87 widgets of 9 different

types, and was reverse engineered from code into

relational data based on our proposed meta-model.

We tested the performance of the dynamic UI,

which loads all the widgets at runtime from a

database, versus the code based compiled UI.

Both versions of the “Claims” form were loaded

and closed 1000 times. The time was plotted on the

graph illustrated in Figure 3. The dynamic UI took

slightly more time when it was loaded the first time

then the caching allowed a significant drop in the

time. Overall we could say that our approach will

not incur negative impact on performance.

Figure 3: User Interface Performance

8 CONCLUSIONS

Adaptive user interfaces could be considered as a

means for addressing variations in the needs of

enterprise application users without incurring a high

increase in the cost of developing such applications.

In this paper, we have presented an approach that

uses interpreted runtime models for creating

enterprise applications, which makes it easier to

realize both adaptive and adaptable user interfaces.

Additionally, the dynamic model-driven nature of

the proposed method could make enterprise

applications more resilient to change in both

technology and business requirements.

In the future we will adopt the proposed

approach as a basis for devising an adaptive solution

for the scenarios discussed in Section 2.

REFERENCES

Blumendorf, Marco, Lehmann, Grzegorz and Albayrak,

Sahin (2010) ‘Bridging Models and Systems at

Runtime to Build Adaptive User Interfaces’

Calvary, Gaëlle, Coutaz, Joëlle, Dâassi, Olfa, Balme,

Lionel and Demeure, Alexandre (2005) ‘Towards a

New Generation of Widgets for Supporting Software

Plasticity: The ”Comet”’

Calvary, Gaëlle, Coutaz, Joëlle, Thevenin, David,

Limbourg, Quentin, et al. (2003) ‘A Unifying

Reference Framework for Multi-Target User

Interfaces’

Clerckx, Tim, Luyten, Kris and Coninx, Karin (2004)

‘DynaMo-AID: a Design Process and a Runtime

Architecture for Dynamic Model-Based User Interface

Development’

Ferraiolo, David F., Sandhu, Ravi, Gavrila, Serban, Kuhn,

D. Richard and Chandramouli, Ramaswamy (2001)

‘Proposed NIST standard for role-based access

control’

France, Robert and Rumpe, Bernhard (2007) ‘Model-

Driven Development of Complex Software: A

Research Roadmap’

Gajos, Krzysztof Z., Weld, Daniel S. and Wobbrock,

Jacob O. (2010) ‘Automatically Generating

Personalized User Interfaces with Supple’

Guerrero-Garcia, Josefina, Vanderdonckt, Jean and

Gonzalez-Calleros, Juan Manuel (2008) ‘Towards a

Multi-User Interaction Meta-Model’

Kramer, Jeff and Magee, Jeff (2007) ‘Self-Managed

Systems: an Architectural Challenge’

Lepreux, Sophie, Vanderdonckt, Jean and Kolski,

Christophe (2010) ‘User Interface Composition with

UsiXML’

McGrenere, Joanna, Baecker, Ronald M. and Booth,

Kellogg S. (2002) ‘An Evaluation of a Multiple

Interface Design Solution for Bloated Software’

http://www.opendental.com/

