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Highlights 
Oxidative stress has been implicated in aging and disease-related damage of enteric 
neurons 
Neurotrophic factors have been reported to have protective effects against oxidative 
stress 
We assessed protective effects of NT-3 and GDNF in dissociated cultures of enteric 
ganglia  
NT-3, but not GDNF protected against hydrogen peroxide-induced toxicity on enteric 
neurons  
 

Abstract 

Oxidative stress is widely recognized to contribute to neuronal death during 

various pathological conditions and aging. In the enteric nervous system (ENS), 

reactive oxygen species have been implicated in the mechanism of age-

associated neuronal loss. The neurotrophic factors neurotrophin 3 (NT-3) and 

glial cell line-derived neurotrophic factor (GDNF) are important in the 
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development of enteric neurons and continue to be expressed in the gut 

throughout life.  It has therefore been suggested that they may have a 

neuoprotective role in the ENS. We investigated the potential of NT-3 and GDNF 

to prevent death of enteric ganglion cells in dissociated cell culture after 

exposure to hydrogen peroxide (H2O2). H2O2 treatment resulted in a dose-

dependent death of enteric neurons and glial cells, as demonstrated by MTS 

assay, Bis benzimide and propidium iodide staining and immunolabelling. 

Cultures treated with NT-3 prior to exposure showed reduced cell death 

compared to untreated control or GDNF-treated cultures. GDNF treatment did 

not affect neuronal survival in H2O2-treated cultures. These results suggest that 

NT-3 is able to enhance the survival of enteric ganglion cells exposed to 

oxidative stress. 

 

Keywords: Neurotrophin-3, Glial cell line derived neurotrophic factor, enteric 

ganglia, oxidative stress, hydrogen peroxide 
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Introduction 

The neurons of the enteric nervous system (ENS), located in the wall of the 

digestive tract, regulate intestinal functions, such as motility and secretion 

[4,6,13]. Neurodegenerative changes, including neuronal loss, have been 

described in the ENS during aging [7,27,30], and may contribute to 

gastrointestinal dysfunction, such as constipation and incontinence, which 

increase in incidence in the elderly [e.g.3]. The mechanisms underlying age-

related enteric neuronal loss, however, are not understood, but there is evidence 

that reactive oxygen species (ROS) are elevated in myenteric neurons in old rats 

[37]. It has also been reported that myenteric neuronal loss is reduced in 

calorically-restricted rats[10,37]. 

Neurotrophic factors have been reported to protect neurons from oxidative 

stress [e.g.12,26,37,see 16,25]. It has therefore been suggested that increased 

survival of myenteric neurons in calorically-restricted animals might be due to the 

actions of neurotrophic factors present in the gut [37]. Two such factors, which 

continue to be expressed in the adult gut are neurotrophin 3 (NT-3) and glial cell 

line-derived neurotrophic factor (GDNF)[5,32]. Treatment of segments of 

intestinal smooth muscle (muscularis externa, in which myenteric ganglia are 

embedded) from calorically-restricted rats with NT-3 and GDNF reduced 

neuronal ROS levels and also enhanced resistance to menadione-induced 

apoptosis [37]. 

Here we examined the possible protective effects of NT-3 and GDNF in 

the ENS further, using a culture model of dissociated myenteric ganglion cells. 
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Possible protective effects of NT-3 and GDNF were examined under conditions 

of oxidative stress induced by hydrogen peroxide (H2O2), which is an established 

model [14,17,24] causing oxidative damage to cells in vivo [29]. Exogenous H2O2 

readily enters cells [18] and induces apoptosis in many cell types [9]. H2O2 has 

also recently been shown to reduce numbers of vulnerable enteric neurons in an 

organotypic culture system [38]. Here we describe the effects of H2O2 treatment, 

in the presence and absence of NT-3 or GDNF, on dissociated myenteric 

ganglion cells from rat ileum.  

 

2. Materials and Methods 

2.1 Primary cultures of enteric ganglion calls and factor treatment 

Dissociated cultures of isolated myenteric ganglia were used, to allow equivalent 

access of reagents to individual cells, and facilitate discrimination between 

individual cells when counting. Segments of myenteric ganglia were separated 

from muscularis externa of 7-day-old Sprague-Dawley rat ileum after incubation 

in collagenase type II (1mg/ml in HBSS containing 10μg/ml DNase) at 37°C. 

Ganglia were dissociated after 15 minutes incubation in trypsin-EDTA (Sigma) 

and passage through a 25 gauge needle. Cells were seeded in 150μl 199 

medium with N1 supplements (199N1) containing 10% fetal calf serum (Sigma) 

at 2X104 cells per 13mm glass coverslip coated with poly-L-lysine. After 1 hour 

incubation at 37°C, 2.5% CO2, 850μl 199N1 medium was added. 16 hours later 

medium was replaced with serum-free 199N1. Cells were supplemented with 

desired concentrations of factors 24 hours after plating.  
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2.2 Hydrogen peroxide exposure 

Dilutions of H2O2 (Sigma) were made fresh from 30% stock solution into HBSS 

for each experiment and  was used at 1, 5, 10 and 25μM. Cultures of enteric 

ganglion cells grown with NT-3 or GDNF (10ng/ml) were exposed to H2O2 and 

subsequently incubated prior to the assay for 4 hours (for bis-

benzimide/propidium iodide staining) or 6 hours (for MTS assay) at 37°C, 2.5% 

CO2. 

2.3 PGP 9.5 immunolabelling 

Cultures were washed with phosphate buffered saline (PBS, pH7.3) and fixed 

with 4% paraformaldehyde for 1 hour at room temperature. Fixed cultures were 

incubated with primary rabbit anti-PGP 9.5 antibody (1:30000 in antibody diluting 

solution (ABDS:PBS, lysine, 0.l%sodium azide, 0.1%BSA, 1% Triton X-100) for 2 

hours at room temperature, washed with PBS and incubated with fluorescein-

conjugated goat anti-rabbit antibody (1:100 in ABDS) for one hour at room 

temperature. Cultures were washed with PBS and mounted on glass slides in 

Citifluor mountant. 

2.4 Bis-benzimide/propidium iodide staining 

Culture medium was replaced with 1ml of fresh medium. 10μl bis-benzimide 

(Hoechst stain, stock 500μg/ml in PBS) was added to each coverslip. After 20 

minutes incubation at 37°C 10μl of propidium iodide (PI) was added and cultures 

were incubated at room temperature for 5 minutes. Subsequently all wells were 

washed two times with HBSS without phenol red (Sigma), fixed for1 hour in 4% 
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glutaraldehyde, washed in PBS and mounted on glass slides in Citifluor 

mountant. 

2.5 Quantification of cell numbers 

Cells stained with PGP9.5 or bis-benzimide and PI were counted under 400X 

magnification using either Zeiss Axiophot or Nikon Eclipse EB800 microscope. 

Bis-benzimide and PI-stained cells were counted in five random fields of view on 

each coverslip; PGP 9.5 stained cells were counted in a strip across the diameter 

of the coverslip. Data were obtained from three experiments and pooled for 

subsequent statistical analysis.  

2.6 Viability assay 

Viability of the cells exposed to H2O2 was assayed using CellTiter96R kit 

(Promega), which allows colorimetric estimation of the number of viable cells. 

Briefly, growth medium of cultures exposed to H2O2 was replaced with HBSS 

without phenol red (Sigma), and MTS reagent was added to the cultures. After 4 

hours incubation at 37°C absorbance was measured at 492nm.  

2.7 Statistical analysis 

Data were analysed by one-way analysis of variance (ANOVA) followed by 

Tukey’s post-hoc test. 

3. Results 

3.1 Effects of NT-3 and GDNF on cultured enteric ganglion cells 

Preliminary experiments were performed to assess the effects of NT-3 and 

GDNF in our culture model and to examine the extent of cell death occurring 

naturally during culture. Cultures containing enteric neurons and glial cells were 
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grown with 10ng/ml NT-3 or GDNF for 12 and 36 hours. Immunolabelling of 

cultures containing both neurons and glial cells with the neuronal marker PGP9.5 

allows clear distinction between the two cell types, enabling accurate cell counts. 

No significant change in neuronal number was measured after 12 hours 

treatment with either NT-3 or GDNF (Figure 1). Glial cell numbers were also 

similar in control, NT-3- and GDNF-treated cultures after 12 hours (data not 

shown). After 36 hours incubation, control cultures showed a significant (p<0.01) 

decline in neuronal numbers. In contrast, cultures grown with NT-3 exhibited 

reduced neuronal death compared to controls (p<0.01). Interestingly, GDNF 

treatment stimulated a marked increase (p<0.01) of neuronal numbers, which 

exceeded those found in cultures treated with GDNF for 12 hours. Glial cell 

numbers were affected by GDNF in a manner similar to neurons, whereas glial 

cell numbers in NT-3-treated cultures were not different than those found in 

controls (data not shown). 

These results confirm that both NT-3 and GDNF are able to affect the 

behaviour of enteric ganglion cells in this culture system. In order to minimize 

effects of cell death observed in cultures grown for 36 hours on the results of 

survival assays, further experiments were restricted to the 12 hour time point. 

3.2 Effects of different concentrations of H2O2 on enteric ganglion cells in culture 

Pilot experiments were performed to determine the response of enteric ganglion 

cells to different concentrations of H2O2. Cultures were exposed to 1,5,10 or 

25μM H2O2 then incubated for 6 hours before assessing cell viability by MTS 

assay. Effects of H2O2 on the viability of enteric ganglion cells are shown in 
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Figure 2. While 1μM H2O2 did not significantly affect cell viability, higher 

concentrations decreased it in a significant dose-dependent manner, with about 

50% decrease in viability at 10μM H2O2 compared to control. 25μM H2O2 

eliminated almost all cells, therefore for further experiments H2O2 was used at 1, 

5 and 10 μM. 

Analysis of PGP9.5-immunolabelled cultures treated in the same way as 

those used for MTS assay revealed that neurons and glial cells were differentially 

affected by H2O2 (Table 1). Neurons were more vulnerable to H2O2 than glial 

cells. 

3.3 Effects of pre-treatment with neurotrophic factors on viability of H2O2-treated 

enteric ganglion cells 

After optimising culture time and H2O2 concentrations, we investigated whether 

treatment of enteric neurons with 10ng/ml NT-3 or GDNF prior to H2O2 exposure 

increased viability of enteric ganglion cells. Cultures grown with NT-3 exhibited a 

slightly increased survival compared to controls, although the difference was not 

statistically significant at any H2O2 concentration (Figure 3A); GDNF treatment 

did not affect cell viability (Figure 3B).  

The effects of factors were then examined in more detail, employing bis-

benzimide  and PI (live/dead) staining;  bis benzimide stains nuclei of all cells, 

while PI is excluded from living cells, therefore allowing accurate measure of total 

cell numbers and the extent of cell survival. Cell cultures were incubated for 12 

hours with 10ng/ml NT-3 or GDNF, then treated with 10μM H2O2 and stained with 

PI and bis-benzimide 4 hours later. This shorter H2O2 exposure time resulted in 



Page 9 of 24

Acc
ep

te
d 

M
an

us
cr

ip
t

 9

reduced cell losses compared to those seen after 6 hours exposure (Table 1). 

H2O2-treatment of control cultures without trophic factors resulted in a significant 

increase in PI-positive cells (p<0.02, Figure 4A). Cultures grown with NT-3 prior 

to H2O2 exposure exhibited significantly (p<0.01) decreased numbers of PI-

stained cells compared to H2O2 controls without factor treatment. GDNF 

treatment also decreased PI positive cells in cultures exposed to H2O2, but the 

effect was not statistically significant. Cultures not exposed to H2O2 showed 

comparable numbers of PI stained cells in each factor treatment and in controls. 

Counts of Hoechst positive cells are summarized in Figure 4B. In the 

absence of H2O2, NT-3 did not affect total cell numbers, but GDNF increased cell 

numbers compared to both control (p<0.05) and NT-3-treated cultures (p <0.02). 

This observation confirms the results of the cell counts performed on PGP9.5 

immunolabelled cultures. Addition of H2O2 had no effect on cell numbers in 

untreated or NT-3-treated cultures (Hoescht labels both live and dead cells), but 

interestingly decreased the total cell numbers in cultures grown with GDNF 

(p=0.01), reducing cell numbers to levels similar to those in control and NT-3-

treated cultures exposed to H2O2.  

 

4. Discussion 

In this study, we investigated the effects of NT-3 and GDNF on cultured 

enteric ganglion cells exposed to H2O2. Our results demonstrate decreased cell 

death in cultures grown with NT-3 prior to H2O2 exposure, as opposed to control 

cultures, and cultures grown with GDNF. In contrast, GDNF stimulated an 
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increase in the number of cells present in the cultures, an effect abrogated by 

H2O2 treatment.  

Two previous studies have demonstrated that H2O2 has a toxic effect on 

enteric neurons in vitro. These studies either used an organotypic model of rat 

myenteric ganglia, in which the ganglia remained intact [1,38] or a mixed 

preparation of cells from dissociated whole intestine from embryonic mice [1]. 

The cultures in the latter study were manipulated to remove enteric glia, which 

were thereby shown to have a protective effect against H2O2-induced neuronal 

toxicity [1]. The protective effects of NT-3 in the present study were unlikely to be 

due to an increased number of enteric glia in NT-3-treated cultures, because glial 

cell numbers were not significantly different between the NT-3-treated cultures 

and the control or GDNF-treated cultures. Moreover in previous work, in which 

dissociated enteric ganglia were grown in the presence of NT-3 for longer 

periods, glial numbers were not increased [31].  In future studies, however, 

counts of neurons and glia in H2O2-treated cultures should be performed. 

NT-3, a member of the neurotrophin family, promotes differentiation of 

enteric neurons and glia from precursor cells during ENS development [5,32]. 

NT-3 has also been found to protect against menadione-induced apoptosis of 

myenteric neurons in the muscularis externa from calorically-restricted rats [37].  

The present results are thus in keeping with this previous report. Other members 

of the neurotrophin family, notably BDNF, have been found to be protective 

against oxidative stress in several different neuronal culture systems [36,16,25]. 
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GDNF is a member of the GDNF family of neurotrophic factors. It has 

been shown to perform a critical role in the survival, as well as proliferation of 

ENS precursor cells [5,32] and has previously reported to protect against 

oxidative stress in isolated intestinal preparations [37] and some other systems 

[e.g.26], and against hyperglycaemia –induced myenteric neuronal death in 

culture [2]. Here we found that GDNF did not prevent H2O2-induced cell death in 

cultures of enteric ganglion cells, under the conditions employed. We did observe 

however, that GDNF treatment increased the total number of cells in the cultures, 

as shown by the results of cell counts of both PGP9.5 and Hoechst stained 

cultures. Postnatal enteric ganglia contain neural precursors [33,34], so it is not 

unexpected that GDNF would promote differentiation of these cells in vitro. 

GDNF is known to have a number of actions in the postnatal ENS [28]. 

Interestingly, the present results suggest that new cells arising due to GDNF 

treatment may be more vulnerable to oxidative damage than differentiated 

neurons and glia present in the cultures. This possibility is suggested by the 

reduction of total cell numbers measured in GDNF-treated cultures exposed to 

H2O2, that reached levels found in non-factor treated controls. One possible 

explanation of this finding is differing sensitivities of mature and dividing cells to 

DNA-damaging agents, such as oxidative stress; immature cells undergoing 

apoptosis rather than activating DNA repair and cell survival programs [20,24].  

Our findings raise the question of the mechanisms involved in the 

protective effect of NT-3 on enteric ganglion cells. One possible explanation is 

that NT-3 might influence protein levels or activity of antioxidant enzymes [23]. 
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Evidence supporting this possibility includes observations that nerve growth 

factor stimulates activity of glutathione peroxidase [11] and BDNF exerts 

protective effects on auditory neurons via increased levels of glutathione [15]. 

Mattson et al. [23] demonstrated that neurotrophic factors increased antioxidant 

enzyme activity in cultured hippocampal neurons. Neurotrophic factor treatment 

could also lead to reduced ROS generation; NT-3 treatment decreased 

generation of free radicals by myenteric neurons in muscularis externa 

preparations [37]. Finally, it is known that neurotrophic factors activate signalling 

pathways that promote expression of other survival-promoting proteins [e.g.29].  

 

In conclusion, these results provide further support for the suggestion that 

neurotrophic factors, particularly NT-3, may have protective roles in the ENS. 

Such an effect could have important implications not just for aging, but also 

disease states such as diabetes, which affect the ENS and gastrointestinal 

functions [e.g.8]. In this context, it is important to note that oxidative stress has 

been implicated in enteric diabetic neuropathy [8,19,38] and that recent evidence 

has shown a reduction in the levels of neurotrophic factors in the diabetic gut 

[21].  
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Figure Legends: 
 

Figure 1:  Mean cell numbers in cultures after 12 and 36 hours incubation with 

NT-3 or GDNF (10ng/ml). Data from 3 separate experiments; 3 replicas per 

experiment. Error bars represent ±S.E.M. *** p<0.001;**p<0.01 

 

Figure 2:  Survival of cultured enteric ganglion cells exposed to different 

concentrations of H2O2, measured using MTS assay. Results are expressed as 

percentage of untreated controls.   Data are means of 3 separate experiments; 4 

replicas per experiment. Error bars represent ±S.E.M. ***p<0.001 

 

Figure 3:  Survival of enteric ganglion cells treated with 10ng/ml NT-3 (A) or 

GDNF (B) prior to H2O2 exposure. Means from 3 separate experiments, 

expressed as a percentage of untreated controls; 4 replicas per experiment. 

Error bars represent  ±S.E.M.  

 

Figure 4:  Total number of PI (A) and Hoechst (B) positive cells in NT-3 and 

GDNF (10ng/ml) treated cultures after exposure to H2O2, compared to controls. 

Graphs show mean number of stained cells counted in 3 separate experiments; 3 

replicas per experiment. Error bars represent ±S.E.M.  

***p≤0.01;**p<0.02;*p<=0.05 
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Table 1: Effects of H2O2 on neuronal and glial cell numbers 

 

 

Treatment   Number of   Number of  N/GC      
          neurons  glial cells  ratio 

   (+ SEM)   (+ SEM) 
Control  440 + 9.3  912 + 14.6  0.48  

5  μM H2O2  129 +13.9  404 +33.6  0.32  

10 μM H2O2   15 + 1    88 + 5.1  0.17  

25 μM H2O2   1    15 + 2.6  0.06  
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Revised Figure 1
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Revised Figure 2
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Figure 3
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