
Open Research Online
The Open University’s repository of research publications
and other research outputs

Concerns and their separation in feature diagram
languages: An informal survey
Conference or Workshop Item
How to cite:

Tun, Thein and Heymans, Patrick (2009). Concerns and their separation in feature diagram languages: An
informal survey. In: Workshop on Scalable Modelling Techniques for Software Product Lines, 24 Aug 2009, San
Francisco, CA, USA.

For guidance on citations see FAQs.

c© 2009 The Authors

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82973841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html


Concerns and their separation in feature diagram languages:
An informal survey

Thein Than Tun Patrick Heymans
PReCISE Research Centre, Faculty of Computer Science

University of Namur, Belgium
{ttu,phe}@info.fundp.ac.be

Abstract—Feature diagrams describe valid configurations of
features in a software product line. A major limitation of
current feature diagram languages is that they are found not
to scale well when applied to realistic software product lines:
feature diagrams quickly become too complex to be understood
by engineers, and too vague to be analysed by reasoning tool.
One well-known design principle for managing complexity is
the separation of concerns. However, the nature of important
concerns in software product line development, and the extent
to which the separation of concerns is addressed by current
feature diagram languages are not clear. In this paper, we
report on our initial survey of important concerns considered
by feature diagram languages and guidelines for addressing
those concerns.

Keywords-Software Product Line; Feature Diagrams; Sepa-
ration of Concerns; Survey;

I. INTRODUCTION

A Feature Diagram (FD) shows possible valid configura-
tions of features within a software product line. In a product
line with a realistic number of features, the relationships
between features are many and varied. A major limitation
of current feature diagram languages is that they are found
not to scale well when applied to realistic software product
lines: feature diagrams quickly become too complex to be
understood by engineers, and too vague to be analysed by
reasoning tool [1], [2].

The principle of separation of concerns [3], [4] points
to an effective way to manage the size and complexity
of FDs [5]. As explained by Dijkstra [3], separation of
concerns requires a willingness

. . . to study in depth an aspect of one’s subject
matter in isolation for the sake of its own consis-
tency, all the time knowing that one is occupying
oneself only with one of the aspects. We know
that a program must be correct and we can study
it from that viewpoint only; we also know that it
should be efficient and we can study its efficiency
on another day, so to speak. [. . . ] But nothing is
gained—on the contrary!—by tackling these vari-
ous aspects simultaneously. It is what I sometimes
have called “the separation of concerns” . . .

Therefore, separation of concerns is about recognising that
a system may be decomposed using different criteria [6], and

the need to be able to distinguish a decomposition made
according to a criterion from another. We believe that such
modularisation of feature diagrams can make them scale
better.

Two issues are addressed in this paper. First, if correctness
and efficiency are some of the main concerns of programs,
what are the important concerns of FDs? For instance, FDs
may be designed to describe design options, choices of user
functionality and legal constraints. There are many other
legitimate concerns that should be taken into account in FDs.

Second, having recognised the concerns, what guidelines
for addressing those concerns are provided by FD tech-
niques? In this paper, we survey various concerns considered
by FD languages, and guidelines for separating concerns.

The rest of the paper is organised as follows. Section II
provides an overview of the FD languages surveyed, and a
summary of concerns recognised by the surveyed languages
and guidelines for addressing those concerns. Discussions
and concluding remarks are given in Section III.

II. LANGUAGES SURVEYED

Although the software product line literature has a rich
history, it is somewhat fragmented. This initial survey of FD
languages and techniques makes no claim for completeness.
We believe that many of the relevant work in the area of SPL
research has been covered and are actively seeking to expand
and revise our survey. In this paper, we have focused on the
following work: FODA [7], FORM [8], Batory et al. [9],
OVM [10], Staged Configuration [11], Reiser and Weber [1],
Metzger et al. [12], Hubaux et at. [13], and Tun et at. [14].

We now give a brief summary of each of the approaches
surveyed, roughly in the chronological order of their publi-
cation.

A. FODA [7]

Kang et al. proposes dividing features into standard fea-
tures, alternative/optional features, specialisation features,
mutually exclusive features, and required features. They also
group features into classes based on their binding time: there
are compile-time, load-time and run-time features. Finally,
they refer to the four categories of features, discussed in
greater detail by Lee et al. (shown in Figure 1).



Capability
feature

Service

System
service

Operation

System
operation

Non-functional
property

Presentation Cost Constraints Quality
attributes

Operating
environment

feature

SW/HW
interface

SW
API

Device
driver

SW/HW platform

Middleware OS CPU

Domain
technology

feature

Domain-specific
methods

Domain
theory

Recommendation Standard Law

Implementation
technique

feature

Design
decision

Architecture
style

Process
coordination

method

Implementation
decisions

Computational
algorithm

Communication
protocol

Implementation
method

Figure 1. Feature Categories of Lee et at. [8]: Capability, Operating
Environment, Domain Technology and Implementation Techniques

B. FORM [8], [15]

Lee et al. [8], [15] propose several categories of features,
organised into a hierarchy as shown in Figure 1. FDs in
the capabilities layer address the functionality of the end
user; FDs in the operating environments layer address the
attributes of the environment in which the application is
used; FDs in the domain technologies layer address the
application specific non-technical issues, whilst FDs in the
implementation technologies layer address technologies that
are not specific to a particular domain.

In addition to these categories, Lee et al. use composed-of,
generalisation/specialisation and implemented-by relation-
ships.

C. Batory et al. [9]

Batory et al. [9] proposed an approach for “multi-
dimensional separation of concerns” [4], which recognises
that features may be partitioned in a number of ways (dimen-
sions) and the results of each partitioning is called units1.
For instance, (object-oriented) classification is regarded as a
dimension and classes of a software are units.

1Although this approach is focused on features, rather than FDs, the way
concerns are separated is of interest to this survey.

They propose using the “origami matrix” for describing
the relationships between units of dimensions. In a sim-
ple two dimensional example, one dimension is for two
classes—a singly-linked list and a doubly-linked list—and
another dimension is for additional operations—insert and
delete operations. Cartesian combination of the classes and
operations gives four possible programs (a two by two table).
Units can be “folded” along each dimension: if the operation
dimension is folded, there are two available classes, each
with insert and delete operations. The class dimension can
also be folded in the same way.

Batory et al. make two important claims about this
approach: (1) it prevents possible invalid combinations of
elements; for instance, it does not permit the selection of a
doubly-linked list with operations for singly-linked, because
folding always has to happen between rows or columns, and
not between cells, (2) complexity of n dimensions can be
reduced to the complexity of one dimension by folding them.

D. OVM [10]

Pohl et al. [10] differentiate between variability in time—
denoting changes to artefacts over time—and variability in
space—denoting static variability of artefacts. They also talk
about external variability, those relevant to customers, and
internal variability, those relevant to developers.

E. Staged Configuration [11]

Czarnecki et al. [11] propose a suite of “staged configu-
ration” approaches where FDs are specialised in a stepwise
fashion, and instantiated according to the stakeholder inter-
ests at each development stage [16].

With specialisation Czarnecki et al. refer to a process in
which variabilities in FDs are removed. In other words, a
more specialised FD has fewer variabilities than its parent
FD. A fully specialised FD has no variability. A configura-
tion, on the other hand, is an instantiation of an FD.

With multi-level staged configuration, Czarnecki et al. re-
fer to a sequential process in which an FD is configured and
specialised alternately by stakeholders in the development
stages. For instance, a stakeholder will instantiate an FD by
selecting features that are relevant to its requirements. The
instance of the model, called a configuration, is then used
to specialise the FD by removing parts of the model that are
no longer available. The resulting FD is then instantiated by
another stakeholder, and so the process repeats itself.

F. Reiser and Weber [1]

Reiser and Weber [1] consider the issue of managing large
FDs and changes made to them over time, in the context of
automotive software development. They point out that FDs
need to reflect the structure of several organisations involved
in the software development. They argue that dividing the
FDs along organisational boundaries will make it difficult
to propagate changes made to a local diagram. Managing a



Approach Concerns How concerns are addressed Degree of
formality

Degree of
automation

FODA [7] Feature relationships, such as standard, alter-
native/optional, specialisation, mutually ex-
clusive and so on; dependency time, such as
compile-time, load-time and run-time

Many of these concerns can be expressed in FDs. In
a sense, these are the core concerns of FDs. However,
exactly how these concerns are to be separated in FDs
is not detailed in this technical report.

Diagrammatic
only.

Not
discussed
in the report.

FORM [8],
[15]

There are four main feature perspectives or
concerns recognised here. They are: Capa-
bilities (functional and non-functional), Op-
erating Environments, Domain Technologies
and Implementation Technologies.

Separation of these concerns are achieved by layering
of the FDs according these concerns. For instance,
FDs in the top layer address only the requirements of
end users. Links between elements of the diagrams
are expressed informally.

Diagrammatic
only.

Not
discussed
in the report.

Batory et at.
[9]

Concerns represented as dimensions. No
complete list of dimensions are given. As
examples, classes and class operations are
used as dimensions.

Each concern is represented as an axis in an origami
matrix. They propose a way of folding the matrix in
order to generate valid configurations while managing
the complexity.

Tool-support
suggests a
formal basis.

A set of tools
is presented.

OVM [10] Temporal variability versus design variabil-
ity, and external variability versus internal
variability

It is not clear how separation of concerns are reflected
in the FDs.

Diagrammatic
only.

A tool for
OVM dia-
gramming.

Staged
Configura-
tion [11]

Concerns are related to stakeholders in the
development, such as the end user, devel-
oper, customer, and so on. No complete list
is given.

Concerns are addressed through alternate specialisa-
tion and configuration of the FD.

Meta-model
is given.
Classen et
al. [16] gives
a semantics.

Not clear.

Reiser and
Weber [1]

Organisational structure, changes to FDs Hierarchical structuring of FDs where changes can be
localised and propagated in a controlled way.

Diagrammatic
only.

Diagramming
tool.

Metzger et at.
[12]

Product line variability vs software variabil-
ity

Each of the two main concerns is expressed as an
FD, and are then related through logical constraints.
They describe a way of merging the FDs, and various
automated analysis that can be performed.

FD
semantics
formalised.

Proof-of-
concept
prototype.

Hubaux et at.
[13]

Design and runtime perspectives, default
configuration

As it is an experience report, no approach for achiev-
ing the separation of concerns has been proposed.

Informal dis-
cussions.

Not applica-
ble.

Grünbacher et
al. [2]

Solution structure, multiple product lines
(system of systems architecture), asset types,
organisational structure, and market needs

Business and technical decisions are elicited. Varia-
tion points are detected using a tool, before model
fragments are created.

Largely
informal.

The
DOPLER
tool suite.

Tun et at. [14] Requirements, problem world context, spec-
ification, quantitative constraints

FDs are divided into requirements, problem world
context and specification FDs, whilst quantitative
constraints are expressed over each of them. As in
[12], they link the FDs through logical constraints.

Partial
formalisation
of the
approach.

The use of
an industrial
tool
illustrated.

Table I
SUMMARY OF CONCERNS

large global FD is also unsatisfactory because it will make
FDs unmanageable.

They propose multi-level feature trees in which FDs are
refined in a hierarchical fashion. Elements of a child FD can
selectively reuse elements in the parent FD, allowing local
changes to be made without affecting the global structure of
the FDs.

G. Metzger et al. [12]

Metzger et al. propose distinguishing two kinds of vari-
ability, product line variability and software variability,
where the former is concerned with “ability of a software
system or artefact to be efficiently extended, changed, cus-
tomized or configured for use in a particular context” [17],
whilst the latter is concerned with “the variation between
the systems that belong to a PL in terms of properties and
qualities, like features that are provided or requirements that
are fulfilled” [12].

As a simple example, they describe an on-line store where
the software variability has an addition optional feature

of credit card payment, and the debit card payment and
payment upon invoice are alternative features.

H. Hubaux et at. [13]

Hubaux et at. investigate the practical challenges of
applying FD languages. One of the challenges reported in
this paper is that of making modelling perspectives (such
as design time versus runtime perspectives) explicit in FDs.
Another challenge is that of expressing default configura-
tions for parts of the FDs.

I. Grünbacher et al. [2]

Grünbacher et al. discuss the challenges of structuring the
modelling space for software product lines. They argue that
maintaining a single FD for the entire system is not feasible
and proceed to suggest strategies for feature modelling from
various perspectives. They also present some examples of
how these strategies can be applied, supported by existing
tools.



J. Tun et at. [14]

Tun et at. propose separating the concerns of FDs into
descriptions of requirements, problem world context and
specification features, following the Jackson–Zave frame-
work for requirements engineering [18], [19]. In addition,
they express quantitative constraints on the feature modes,
links connecting the three models, in order to generate
feature configurations that satisfy stated requirements and
quantitative constraints.

III. DISCUSSIONS AND CONCLUSIONS

Table I summarises the concerns recognised by the sur-
veyed approaches and how the concerns are separated in
those approaches. Notice that we are concerned with identi-
fying concerns discussed by the surveyed approaches, rather
than comparing the approaches on the basis of concerns they
address.

It is interesting to note that the earlier FD languages
(such as FODA [7] and FORM [8], [15]) seem to be more
concerned with design and implementation issues, whilst
later FD languages (such as Staged Configuration [11] and
Feature Tree [1]) are more concerned with stakeholders and
organisational structures. There is a tendency to expand the
scope of FDs: in addition to describing variability in the
design, a need for describing the variability in the wider
system context has been recognised by FD approaches. This
perhaps explains, in part, the phenomenon of increasing size
and complexity of FDs.

The list of concerns recognised by the surveyed ap-
proaches, in particular by Lee et al. [8], [15], is very com-
prehensive. They range from cost of features, CPU platform
to organisation structure. This indicates that variability has
to be addressed at different times in the development and in
different parts of the system structures.

Although, several concerns of FDs are well-known, there
is no consensus on how best to separate these concerns.
Many of the proposed approached are well-grounded and
probably constructive when applied to real problems. More
evidence of how they have been applied will strengthen
confidence in these approaches.

We see a deep synergy between SPL and requirements
engineering research. For instance, techniques on view-
points [20], model synthesis [21], inconsistency manage-
ment [22] may shed new lights on how concerns of FDs
should be managed.

Despite the apparent difficulties, SPL engineers in various
industries have been successfully producing commercial
software used by many customers. Insightful reports on how
SPL engineers actually manage concerns in FDs will have
positive influence on the research.

ACKNOWLEDGEMENT

We thank our colleagues Andreas Classen and Ar-
naud Hubaux for useful comments on an earlier draft. This

research is supported by the CERUNA programme of the
University of Namur, and by the Interuniversity Attraction
Poles (IAP) Programme of the Belgian State, Belgian Sci-
ence Policy.

REFERENCES

[1] M.-O. Reiser and M. Weber, “Managing highly complex product families with
multi-level feature trees,” in IEEE International Conference on Requirements
Engineering (RE’06). Los Alamitos, CA, USA: IEEE Computer Society, 2006,
pp. 146–155.

[2] P. Grünbacher, R. Rabiser, D. Dhungana, and M. Lehofer, “Structuring the
product line modeling space: Strategies and examples,” in VaMoS, ser. ICB
Research Report, D. Benavides, A. Metzger, and U. W. Eisenecker, Eds.,
vol. 29. Universität Duisburg-Essen, 2009, pp. 77–82.

[3] E. W. Dijkstra, “On the role of scientific thought,” in Selected Writings on
Computing: A Personal Perspective. Springer-Verlag, 1982, pp. 60–66.

[4] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S. Jr., “N degrees of separation:
Multi-dimensional separation of concerns,” in ICSE, 1999, pp. 107–119.

[5] C. W. Krueger, “Using separation of concerns to simplify software product
family engineering,” in Dagstuhl Seminar No. 01161, 2001.

[6] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,”
Commun. ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

[7] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-Oriented
Domain Analysis (FODA) Feasibility Study,” SEI, Carnegie Mellon University,
Tech. Rep. CMU/SEI-90-TR-21, November 1990.

[8] K. Lee, K. C. Kang, and J. Lee, “Concepts and guidelines of feature modeling
for product line software engineering,” in Proceedings of the 7th International
Conference on Software Reuse. London, UK: Springer-Verlag, 2002, pp. 62–
77.

[9] D. Batory, J. Liu, and J. N. Sarvela, “Refinements and multi-dimensional
separation of concerns,” SIGSOFT Softw. Eng. Notes, vol. 28, no. 5, pp. 48–57,
2003.

[10] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line Engineer-
ing: Foundations, Principles and Techniques. NJ, USA: Springer, 2005.

[11] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged configuration through
specialization and multi-level configuration of feature models,” Software Pro-
cess: Improvement and Practice, vol. 10, no. 2, pp. 143–169, 2005.

[12] A. Metzger, P. Heymans, K. Pohl, P.-Y. Schobbens, and G. Saval, “Dis-
ambiguating the documentation of variability in software product lines: A
separation of concerns, formalization and automated analysis,” in RE’07, New
Delhi, India, October 2007, pp. 243–253.

[13] A. Hubaux, P. Heymans, and D. Benavides, “Variability modelling challenges
from the trenches of an open source product line re-engineering project,” in
Proceedings of 12th International Software Product Lone Conference. IEEE
Computer Society, 2008, pp. 55–64.

[14] T. T. Tun, Q. Boucher, A. Classen, A. Hubaux, and P. Heymans, “Relating re-
quirements and feature configurations: A systematic approach,” in Proceedings
of International Software Product Line Conference (to appear), San Francisco,
CA, USA, 24-28 August 2009.

[15] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “Form: A feature-
oriented reuse method with domain-specific reference architectures,” Annals of
Software Engineering, vol. 5, no. 0, pp. 143–168, 1998.

[16] A. Classen, A. Hubaux, and P. Heymans, “A formal semantics for multi-level
staged configuration,” in VaMoS, ser. ICB Research Report, D. Benavides,
A. Metzger, and U. W. Eisenecker, Eds., vol. 29. Universität Duisburg-Essen,
2009, pp. 51–60.

[17] M. Svahnberg, J. van Gurp, and J. Bosch, “A taxonomy of variability realization
techniques: Research articles,” Softw. Pract. Exper., vol. 35, no. 8, pp. 705–754,
2005.

[18] M. Jackson, Software Requirements & Specifications: A Lexicon of Practice,
Principles and Prejudices. ACM Press, 1995.

[19] P. Zave and M. Jackson, “Four dark corners of requirements engineering,” ACM
TOSEM, vol. 6, no. 1, pp. 1–30, 1997.

[20] S. M. Easterbrook and B. A. Nuseibeh, “Using viewpoints for inconsistency
management,” Software Engineering Journal, vol. 11, no. 1, 1996.

[21] S. Uchitel and M. Chechik, “Merging partial behavioural models,” in ACM
International Symposium on Foundations of Software Engineering (FSE’04),
Newport Beach, 2004.

[22] G. Spanoudakis and A. Zisman, “Inconsistency management in software
engineering: Survey and open research issues,” in Handbook of Software
Engineering and Knowledge Engineering, K. S. Chang, Ed. World Scientific
Publishing Co, 2001, pp. 329–380.

[23] D. Benavides, A. Metzger, and U. W. Eisenecker, Eds., Third International
Workshop on Variability Modelling of Software-Intensive Systems, Seville,
Spain, January 28-30, 2009. Proceedings, ser. ICB Research Report, vol. 29.
Universität Duisburg-Essen, 2009.


