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Generating Numerical Approximations

Richard Power∗
Open University

Sandra Williams∗∗
Open University

We describe a computational model for planning phrases like “more than a quarter” and “25.9
per cent” which describe proportions at different levels of precision. The model lays out the key
choices in planning a numerical description, using formal definitions of mathematical form
(e.g., the distinction between fractions and percentages) and roundness adapted from earlier
studies. The task is modeled as a constraint satisfaction problem, with solutions subsequently
ranked by preferences (e.g., for roundness). Detailed constraints are based on a corpus of numer-
ical expressions collected in the NUMGEN project,1 and evaluated through empirical studies in
which subjects were asked to produce (or complete) numerical expressions in specified contexts.

1. Introduction

We describe in this article a computational model for planning phrases that express
proportions (e.g., “more than a quarter” and “25.9 percent,” among others, as alternative
descriptions of the proportion 0.259). This task is of interest for several reasons. First,
such expressions are very common in factual discourse—they will be found on almost
any page in a newspaper or scientific journal. Second, any numerical value can be
expressed in a variety of ways, differing along such dimensions as precision, formality,
and mathematical sophistication; generating the range of suitable phrases is therefore
non-trivial. Third, the matter has been largely ignored in the literature on Natural
Language Generation (NLG), even though many NLG systems are designed to produce
text from numerical data in domains like weather forecasting (Reiter et al. 2005), stock
market trends,2 and medical records (Hallett, Scott, and Power 2007). Finally, and more
subtly, the task provides a convenient microcosm of the general pragmatic problem
of determining optimal information content—for instance, of balancing preferences for
precision and brevity (Krifka 2002).

The work reported here was carried out in the NUMGEN project, and exploits the
NUMGEN corpus of numerical expressions drawn from families of texts describing the

∗ Department of Computing, Open University, Milton Keynes MK7 6AA, UK.
E-mail: r.power@open.ac.uk.

∗∗ Department of Computing, Open University, Milton Keynes MK7 6AA, UK.
E-mail: s.h.williams@open.ac.uk.

Submission received: 1 August 2009; revised submission received: 31 March 2011; accepted for publication:
25 May 2011.

1 NUMGEN: Generating intelligent descriptions of numerical quantities for people with different levels of
numeracy (http://mcs.open.ac.uk/sw6629/numgen). NUMGEN was funded by the Economic and Social
Research Council under Grant Ref. RES-000-22-2760.

2 http://www.ics.mq.edu.au/lt-gdemo/StockReporter/.

© 2012 Association for Computational Linguistics



Computational Linguistics Volume 38, Number 1

same facts. Because the same quantitative fact is mentioned within and across multiple
texts, the corpus provides many examples of linguistic expressions that describe exactly
the same quantity. For instance, the following excerpt from an article in the UK news-
paper The Daily Telegraph contains several expressions representing proportions, includ-
ing the two phrases given as examples in the opening sentence of this article (and shown
here in italics), both of which describe the proportion of A-level papers3 that received
the top grade (A) in 2008:

A-level results show record number of A grades
Record numbers of teenagers have received top A-levels grades. More than a quarter of
papers were marked A as results in the so-called gold standard examination reach a
new high.
The overall pass rate also rose beyond 97 per cent for the first time — the 28th straight
increase — fuelling claims that A-levels are now almost impossible to fail. [. . . ] Today’s
results for 300,000 students in England, Wales and Northern Ireland were expected to
trigger a scramble to get into university, with experts predicting a record rise in the
number of applicants going through the clearing system. Applications to university
have already increased by nine per cent this year.
According to figures released today by the Joint Council for Qualifications, 25.9 per cent
of A-level papers were awarded an A grade this summer, compared to 25.3 per cent
12 months earlier — and just 12 per cent in 1990.

(Daily Telegraph, 14th August 2008)

The NUMGEN corpus contains 14 articles reporting this story, mostly from UK news-
papers; in total, it has nearly 100 articles covering ten stories. The numerical facts found
in the corpus include cardinalities (e.g., “300,000 students”) and measures (“28 years”)
as well as proportions, but the project focused on proportions as a convenient subset.

Elsewhere we have shown that proportions tend to be expressed differently at dif-
ferent locations within a document (Williams and Power 2009). The phrases “more than
a quarter” and “25.9 percent” in the example extract provide a convenient illustration
of the nature of these differences. First, there is an obvious disparity in precision. Next,
the phrases differ in mathematical form (fraction vs. percentage); we have argued that this
distinction is conceptual as well as notational, because fractions are accessible to a wider
readership than percentages—as testified by the levels at which they are introduced
in the UK mathematics curriculum (Qualification and Curriculum Authority 1999).
Finally, one of the phrases contains not only a quantity (“a quarter”) but a modifier
(“more than”); such modifiers have been called hedges (Lakoff 1973; Crystal 1988), and
they serve (among other things) to indicate the arithmetical relationship between the
quantity that follows and the actual value (0.259 > 1/4). Our corpus study showed that
fractions and round numbers tend to occur in the opening of a document, whereas
subsequent references to the same fact are more likely to use precise percentages.

These differences in precision and formality raise two questions, one concerning
motivation (why do speakers/writers approximate?), the other concerning technique
(how do they approximate?). On the first point, various motives have been proposed.
Speakers might aim at conceptual simplicity (Krifka 2007)—for example, because round
numbers are easier to remember and calculate with; or they might wish for various rea-
sons to avoid commitment (van Deemter 2009). Also, as implied by Grice’s (1975) qual-
ity and quantity maxims, the benefits of precision need to be balanced against the costs;
this trade-off has been discussed within the framework of optimality theory (Dekker

3 The A-level examination is taken by British 18-year-olds in their final year of school; university places are
usually conditional on the grades obtained in this examination.
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and van Rooy 2000; Krifka 2002; Blutner and Zeevat 2011). Little attention has been paid,
however, to the second question—regarding the technique of approximation—despite its
intrinsic interest and its practical importance in applications of NLG.

Our aim in this article is to explain formally how speakers/writers are able to
produce numerical expressions with varying degrees of precision and formality. We
propose a two-stage generation process, the first stage producing a language-neutral
semantic form such as > 1/4, the second stage realizing this semantic form in English
or some other natural language (e.g., “over a quarter”, “more than 1/4”). Our model
considers the first stage only, and aims to generate the set of alternative semantic
forms underlying acceptable numerical expressions. Choosing the most appropriate
alternative from this set would depend on the pragmatic context; here, for generality,
the model identifies a number of criteria (roundness, accuracy, etc.) but leaves open
how they should be weighted (or otherwise combined).4

The structure of the article is as follows. In the next section we review previ-
ous linguistic and philosophical work on numerical expressions and approximation.
Section 3 adapts some important insights from this literature to propose a new formal
model for planning the semantic forms of proportion expressions; we then describe
an implementation of this model in Section 4, followed by an empirical evaluation in
Section 5. Section 6 discusses the outcome of the evaluation, and concludes.

2. Previous Work

2.1 Linguistic Background

Mathematically, a proportion is the cardinality of a set divided by the cardinality of
a superset. If S is a set, its cardinality CS is defined as the number of elements that S
contains; thus if SS is a superset of S (meaning that every element in S is also in SS), then
CS/CSS is a proportion. From this it follows that a proportion must lie between 0.0 and
1.0, because it will have its minimum value when S is empty, and its maximum value
when S is identical to SS. Typically, S and SS can be identified by descriptions, with S
distinguished by an extra attribute. Thus in our A-level example, SS is the set of A-level
papers marked in 2008, and S is the subset of these papers that received an A grade. To
calculate the proportion 25.9%, somebody or something (probably a computer program)
must have counted the total number of papers, then counted those distinguished by an
A-grade, then divided the latter number by the former.

Syntactically, proportion expressions usually occur as pre-modifiers in noun
phrases, in constructions of the form P of Ns where N is a noun. Both mentions of the
A-grade proportion in our sample text fit this pattern:

More than a quarter of papers were marked A
25.9 per cent of A-level papers were awarded an A grade this summer

In general, such expressions comprise a numerical value, optionally preceded by a
hedge. It is important to note that the numerical value in the expression may differ from
the actual value of the proportion, just as a place can be described with reference to
a convenient (but different) landmark (e.g., “beyond the church”). For this reason we

4 The program actually prints out solutions in order of accuracy, so that precise descriptions occur towards
the beginning and round ones towards the end.
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will introduce the term given value for the numerical value found in the quantifying
expression. To understand the expression, a reader must infer the relationship between
the given value (call it VG) and the actual value (VA). One important clue is provided by
the hedge; thus in “more than a quarter” the hedge “more than” indicates that VA > VG
where VG = 1/4. Another clue, it has been argued, is provided by the given value itself,
because round numbers are likely to be interpreted as approximations (Krifka 2002).
Thus in “a quarter of papers were marked A” the given value is a simple fraction,
suggesting that VG has been selected by the writer as a round number conveniently
near VA, and that the relationship is accordingly VA ≈ VG.

The term hedge was introduced by Lakoff (1973) and subsequently applied to nu-
merical descriptions by Dubois (1987), who studied imprecision in oral scientific presen-
tations and listed some common numerical hedges (e.g., “about”, “almost”, “nearly”,
“of the order of”, “a little over”); Crystal (1988) added a few more. Because Crystal
applied the term to any expression indicating imprecision or uncertainty, he included
some terms like “maybe”, “usually”, “probably”, which are not relevant here. However,
restricting the field to numerical hedges, all Dubois’s examples concern the relationship
between given value and actual value, and in particular VA ≈ VG. In the NUMGEN
corpus, the most common hedge was “more than” (expressing VA > VG), followed by
“about” (VA ≈ VG), “under” (VA < VG), “almost”, and “nearly”.5 In marking up the
corpus, the modifier “exactly” was also counted as a hedge, even though its purpose
is to confirm rather than to disclaim a precise commitment, since in common with the
other hedges it indicates a relationship between a given and an actual value (VA = VG).

We have discussed informally the possible forms and meanings of hedges; what
of the given value itself? From preliminary analysis of the NUMGEN corpus, three
basic forms for proportion values were identified, and used subsequently for mark-up:
fractions, percentages, and ratios. Fractions almost invariably had simple denominators
(2, 3 or 4) and were expressed in words rather than digits (e.g., “two-thirds” rather than
“2/3”). Percentages were by contrast expressed almost always in digits—“25 percent”
(or “25%”) rather than “twenty-five percent”; the numerical part was often a decimal,
usually with just one digit after the point. Ratios were sometimes used as an alternative
to fractions (e.g., “one in four students obtained an A grade”), but with more freedom in
choosing denominators, which were sometimes large or non-round numbers (“roughly
one in 17 Britons”); because they were relatively rare, they are not included in the model
presented here.6

Stepping back, one could ask whether these are merely distinctions in surface
form, because the underlying quantities are always expressible as rational numbers
(i.e., Num/Den where numerator Num and denominator Den are both integers). We
have several reasons for treating mathematical form as a deeper conceptual distinc-
tion, however.7 Firstly, as we will show later, fractions and percentages typically have
denominators from different sets—low integers for fractions, powers of ten and related

5 Note that the hedges “almost” and “nearly” do not mean the same as “less than”, because they can
also be used when VA > VG (e.g., “the temperature fell to nearly zero”). However, it has been pointed
out to us that they do not mean the same as “about” (i.e., VA ≈ VG) either; rather, they imply that VA
approaches VG from a direction indicated by the context, which might be either from above or below
(e.g., “fell”, “rose”)—a more subtle relation that we have not attempted to cover in the present article.

6 Note that by ratio here we refer not to the abstract mathematical operator, but to linguistic realizations
like “N in M”, “N out of M”, “N of any M”, where N and M are integers.

7 In terms of the standard NLG pipeline architecture (Reiter 1994), this would mean that mathematical
form is already decided in the phase of content determination, so that the distinction between fractions,
ratios, and percentages is an input to the subsequent phases (sentence planning, surface realization, etc.).

116



Power and Williams Generating Numerical Approximations

integers for percentages. They also represent distinguishable levels of numerical compe-
tence, as evidenced by the UK mathematics curriculum (Qualification and Curriculum
Authority 1999) in which percentages are introduced later than fractions and depend
conceptually upon them. Finally, judgments of roundness can only be made relative
to a given mathematical form: thus in fractions 1/3 is rounder than 3/10, whereas in
percentages 33.33% is less round than 30%. This means that any program planning to
describe a proportion VA by relating it to a round number VG will have to take account
of mathematical form in selecting VG.

2.2 Roundness

It is a matter of common observation that some numbers are perceived as rounder
than others, and hence more likely to be employed in approximations. You might
approximate 0.259 by saying “about a quarter”, but you would never approximate 0.25
by saying “about 25.9 percent.” But what exactly is meant by roundness? Linguists and
psychologists have approached this question in various ways.

In Hurford’s book The Linguistic Theory of Numerals (Hurford 1975), numbers are
distinguished according to the roles they can play in verbal numerals. A few privileged
numbers can serve as multiplicands: In English and most European numeral systems
these would include 100, 1000, 1000000, and also perhaps 10 if we take account of word
morphology (i.e., if we think of “forty” as meaning 4 × 10). An important (although less
exalted) set can be named by forming a product with one of the multiplicands (e.g.,
“twenty”, “two hundred”). Finally, at the bottom of the heap, we find the numbers
typically named as the sum of a product and another (smaller) number: thus “sixty
five” is the sum of 60 and 5, or “three hundred sixty five” is 300 + 65.

An alternative three-tier classification has been proposed by Pollmann and Jansen
(1996), on the basis of empirical evidence including number frequencies, currency sys-
tems, and approximations of the form “30 or 35 people.” At the top level of roundness
are “favorite numbers,” defined thus:

In any numeration system in base N, there is a set of favourite numbers comprising
(a) any integer power of the base, and (b) half, double, and half of half of any integer
power of the base.

(Pollmann and Jansen 1996, page 225)

With a numerical system based on 10, this definition yields the set F(10) defined as
follows:

F(10) = { f |f = 10n ∗ K} where K is 1, 2, 1/2 or 1/4, and n is any integer.

Note that this definition allows n to take negative values, or zero; hence 0.05 is also
classified as a favorite number because it can be formed by f = 10−1 × 1/2.

The special status of F(10) numbers is attested by currency systems: For instance,
in pounds sterling there are coins for £0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, and 2.0, as well
as notes for £5, 10, 20, 50, 100, and so forth. In a survey of currencies from 84 countries
(Pollmann and Jansen 1996), only 13 out of about 1,000 coins/notes lay outside F(10)
(e.g., a three-dollar banknote in the Cook Islands). Frequency data also support the
principle: Using a corpus of Dutch newspaper articles, Jansen and Pollmann (2001)
found spikes (local maxima) in the frequency plot for numbers belonging to F(10) (thus
10 was more common than 9 or 11). From experiments on phrases like “30 or 35 people,”
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they also arrived at a wider group of round numbers (termed “sequences”), formed
by multiplying any favorite number F by a low integer M with values in the range
M = 1 . . . 20: This set would include for example 5, 10, 15, . . . 95, 100, which are multiples
M*F of the favorite number 5.

Another approach to roundness is to think of measurements as taken from scales
of different granularity, as suggested for example by Krifka (2007). A scale is defined
as a set of evenly spaced points, so that consecutive points are always separated by a
unit distance d—it is equivalent, in other words, to Pollmann and Jansen’s concept of
“sequence.” However, scales can be organized into systems of varying granularity, so
that for example in the metric system for measuring length we have meters, decimeters,
centimeters, millimeters, and so forth, with granularity increasing tenfold from each
scale to the next. Less obviously, we can think of the minutes in an hour as belonging
to the following four scales, in which the units are respectively one hour, half an hour, a
quarter of an hour, and five minutes (example from Krifka 2007):

0---------------------------------60----------------------...--120

0---------------30----------------60----------------90----...--120

0------15-------30-------45-------60-------75-------90----...--120

0-5-10-15-20-25-30-35-40-45-50-55-60-65-70-75-80-85-90-95-...--120

The roundness of a number, relative to a scale system, can then be equated with the
coarsest-grained scale to which it belongs (i.e., the earliest scale, if they are arranged
in order of increasing granularity). Thus in this scale system 45 is rounder than 40,
although in most systems (e.g., metric distance) 40 would be rounder than 45.

3. Formal Model for Proportions

We have reviewed some insights from the literature on hedging, mathematical form,
and roundness; we now aim to draw these together into a formal model that can be
implemented and evaluated.

The first crucial insight from linguistic work on hedging is that proportions (and
indeed other quantities) are expressed by relating them to another, typically different
quantity that we have called the given value VG, with the hedge (if present) indicating
the nature of this relationship. Thus in expressing the proportion 0.259 by “over a
quarter,” we have an actual value VA (0.259), a given value VG (1/4), and a relationship
VA > VG. This leads to the idea that underlying any numerical expression there will
be some kind of arithmetical relationship between VA and VG. The task of producing
the expression can therefore be divided into two stages: (a) choosing an appropriate
semantic relationship such as VA > 1/4 or VA ≈ 26/100; (b) choosing an appropriate
linguistic realization of this relationship, such as “over a quarter” or “about 26 percent.”

The second crucial insight, from the work on favorite numbers and roundness, is
that given numbers can be conceptualized as points along scales, of varying granularity,
organized into systems. This is obvious in Krifka’s (2007) example of time measures,
and also for distance measures where we are familiar with different systems such as
imperial units (inches, feet, yards, etc.) and metric units (centimeters, meters), but it
can be applied also to representing proportions. Adopting the simplest and most direct
approach, we can measure proportions on scales that divide the interval from 0.0 to 1.0
into N equal segments, where N is an integer greater than 1. A scale system can then
be defined as a set of scales ordered by increasing granularity (and hence increasing
N). Thus if we denote a scale with N segments by SN, an example of a scale system
would be the set [S10, S100, S1000], for which the units correspond to 10%, 1%, and 0.1%.
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To specify a given value VG we must choose (a) a system, (b) a scale from the system,
and (c) a point from the scale—the points on a scale SN being represented by integers
from 0 to N.

This formalization of the given value has the advantage of distinguishing not only
degrees of roundness, but also different mathematical forms, which can be equated with
scale systems. Thus the system including [S10, S100, S1000] corresponds to the mathemati-
cal form percentages, whereas simple fractions use instead a system with very low values
of N, including [S2, S3, S4]. Equating roundness with the N value of the scale, it follows
that simple fractions are rounder than percentages, and that within any scale system,
earlier scales are rounder than later ones. For instance, within the percentage system,
40% would be considered rounder than 45%, because it first appears on the S10 scale
whereas 45% first appears on S100.

Conceptualized in this way, the semantic form of a proportion expression is the
result of four choices, each from a finite domain of options.8

� Choose an arithmetical relation between VA and VG (e.g., from the
set {=,≈,>,<}).

� Choose a scale system for expressing VG (e.g., either fractions or
percentages).

� Choose a scale from this system.
� Choose a point from this scale.

Thus to obtain the semantic form for “over a quarter,” starting from VA = 0.259, we
would choose (1) the relation >, (2) the scale system [S2, S3, S4, . . .] (fractions), (3) the
scale S4, and (4) the point 1. Alternatively, to obtain the semantic form for “about 26 per-
cent,” the choices would be (1) the relation ≈, (2) the scale system [S10, S100, S1000, . . .]
(percentages), (3) the scale S100, and (4) the point 26.

3.1 Scale Systems

We have described the outline of a model for planning proportion expressions; to im-
plement this model in an actual generator, we need to make specific assumptions about
the scale systems to be employed. We have suggested earlier that there are two major
scale systems for proportions, corresponding to fractions and percentages, the former
based on very low values of N (e.g., [S2, S3, S4]), the latter based on powers of ten. As a
preliminary test of this idea, we have taken all VG values for fractions and percentages in
the NUMGEN corpus, and re-expressed them as rational numbers of the form Num/Den,
reduced to their minimal terms so that numerator Num and denominator Den have no
common factor, and counted the frequencies of all denominators.9 The results (Table 1)
show a clear difference in the two distributions, with fractions having denominators in
the range 2–4 (apart from a couple of outliers), and percentages spread more widely,
with peaks in powers of 10 or their multiples.

8 Note that in a constraint-based model these choices are not sequentially ordered, so we are not, for
instance, implying that the arithmetical relation should be chosen first.

9 Thus, for example, 50% would be expressed as 1/2, which is 50/100 reduced to minimal terms; similarly,
7.5% would be expressed as 3/40 after reducing 75/1000.
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Table 1
Denominators for fractions and percentages in NUMGEN corpus.

Frequencies

Denominator Fractions Percentages

1 0 13
2 33 16
3 29 0
4 18 11
5 0 12

10 0 24
14 2 0
20 0 13
25 0 35
40 0 4
50 0 21

100 0 54
Other 0 139

Total 82 324

These data support an initial calibration of the model with separate scale systems
for fractions and percentages, the system for fractions being simply [S2, S3, S4]. For
percentages, we need to decide (a) how far to extend the granularity (e.g., whether to
include S10000, S100000, etc.), and (b) which intermediate scales to include (e.g., whether
to include S20, which would cover percentages divisible by 5, such as 5% and 15%).
For practical convenience in presenting and testing the model, we have decided to limit
granularity to S1000, so that we cover, for instance, 25.9% but not 25.95%. Regarding
intermediate scales, Table 1 provides support for S20 but even stronger support for S25,
which would yield percentages like 16% divisible by 4 rather than 5. This result could
also be due to bias in our (fairly small) corpus, however; searching for phrases of the
form “X percent” in the Google Labs Ngram Viewer10 showed a clear preponderance
of percentages divisible by 5 compared with neighbors divisible by 4 (Table 2). We
therefore begin by limiting the scale system for percentages to [S10, S20, S100, S1000]11—
that is, powers of ten up to 1,000 with a single intermediate scale for percentages
divisible by 5.

3.2 Imposing Constraints

Having specified two scale systems and a set of arithmetical relations (=,≈,>,<), we
can generate a large (but finite) set of semantic forms, most of which will of course be
unsuitable for describing any particular input proportion such as 0.259. To narrow these
down, we need to impose constraints which can be separated into three categories: (1) Is
the description true? (2) Is the description competent? (3) Is the description appropriate,
given the context and the speaker’s goals?

10 The search was performed in July 2011 at http://ngrams.googlelabs.com/.
11 These initial settings of the scale systems are motivated by a trade-off between keeping the model simple

while covering the most likely solutions; they could and should be modified if, for example, a domain
has special requirements or conventions (such as the use of eighths in U.S. stock prices).
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Table 2
Hits on Google Labs Ngram Viewer (millions) for percentages divisible by 5, and close neighbors
divisible by 4. The data were obtained by searching for bigrams such as “15 percent” in the
Google English Books corpus for the years 1800–2000.

Divisible by 5 Divisible by 4

Percentages Frequencies Percentages Frequencies

15 2.1 16 0.7
25 2.4 24 0.5
35 1.3 36 0.4
45 0.9 44 0.4
55 0.6 56 0.3
65 0.7 64 0.2
75 1.5 76 0.2
85 1.0 84 0.2
95 1.2 96 0.2

Total 11.7 Total 3.1

To obtain a true description, the generator must obviously ensure that the relation-
ship asserted between VA and VG actually holds. Thus for VA = 0.259, the solution
VA > 26/100 (choosing the 26th point along the S100 scale from the percentage scale
system, with the relation >) should be rejected as untrue, because the actual value 0.259
is less than the given value 26/100, not greater.

Having overcome the hurdle of truth, a candidate solution can be checked for what
we have called “competence.” By this we mean that a solution should be excluded if
another solution is superior in all contexts. Consider, for example, the solution VA < 4/10
(again for the input VA = 0.259), in which VG is represented by the fourth point along
the S10 percentage scale. As a method for approximating 0.259 we would argue that this
is incompetent, because using the same arithmetical relation < and the same scale S10,
a closer approximation could have been obtained by choosing the third point instead
of the fourth. Of course the generator could get even closer by choosing, for instance,
VA < 26/100, but VA < 3/10 has the potential benefit of using a rounder scale, so both
are competent.

Finally, from the set of true and competent solutions, the generator needs to select
the semantic form that is most appropriate pragmatically. Here many factors come into
play, some of which have been mentioned previously (e.g., technical sophistication of
the reader/hearer, ease of comprehension, utilities of different levels of precision, eval-
uation of the proportion as higher or lower than expected). We have not included such
factors in the model described and evaluated in this article, but it is worth commenting
briefly on how this could be done, through optimization methods typical of constraint-
based applications.

In broad terms, what is required is a function that associates a contextually based
cost with each solution, so that the set of true and competent solutions can be ranked
from most to least appropriate. Plausibly, this function would measure various features
of the solution, including mathematical difficulty, emphasis, roundness, and accuracy,
and combine them through a weighted sum, with weights reflecting the contextual
revelance of the features. Thus, for contexts in which readers lack mathematical so-
phistication, solutions using the percentage scale system should incur extra cost; if the
writer’s aim is to emphasize that the actual value is higher than expected, solutions
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using the arithmetical relation < should be penalized; where small differences in the
actual value have important practical consequences, accuracy should receive a higher
weighting than roundness; and so forth.

4. Implementation of the Generator

The input to the generator is a proportion, specified as a real number between 0.0
and 1.0 correct to three places of decimals; the output is a set of alternative semantic
forms describing the proportion, where each semantic form is constructed by making
four choices from finite domains: (1) a scale system, (2) a scale from this system, (3) a
point from this scale, and (4) an arithmetical relation. To implement a generator of this
kind, it is convenient to formulate the task as a constraint satisfaction problem, which is
characterized by the following components (van Hentenryck 1989):

� A set of variables V1. . .Vn

� For each variable Vi a finite domain Di of possible values
� A set of constraints on the values of the variables

A solution assigns to each variable Vi a specific value from its domain Di, while
respecting all constraints. In implementations using Constraint Logic Programming
(CLP), programs typically have a three-part structure: first, the domains of the variables
are initialized; secondly, constraints over the variables are imposed; finally, values for
the variables are chosen—a process sometimes called “labeling.” The labeling stage
introduces backtracking points whenever a variable can take one of several values,
so that multiple solutions can be generated if desired (and if they exist). However,
by using the constraints before labeling in order to reduce the domains of the vari-
ables, CLP can achieve substantial efficiency gains over algorithms that rely on
generate-and-test, and has been used successfully for a variety of NLP tasks (Koller
and Niehren 2000).

4.1 Assigning Domains to Solution Variables

Any solution is defined by four variables which we will call System, Scale, Point, and Re-
lation. For two of these variables, domains can be assigned during initialization: System
must belong to {Fraction, Percentage} and Relation to {=,≈,>,<}. For the other vari-
ables, the domain can be assigned only during the search phase, because it depends on
the values of other variables. For instance, the domain of Scale can be set to {S2, S3, S4}
as soon as System receives the value Fraction, or alternatively to {S10, S20, S100, S1000} if
System receives instead the value Percentage. Similarly, the domain of Point can be set
only when a value of Scale has been chosen—in general, if Scale has the value SN, Point
should have the domain 0. . .N.

4.2 Constraints

Having initialized the domains of the variables (where possible), the program next
applies five constraints which rule out solutions that are ill-formed (i.e., outside our
scale systems), untrue, or incompetent; for convenience these will be given names (see

122



Power and Williams Generating Numerical Approximations

subsequent list). The first two (Scale Domain, Point Domain) perform the conditional
domain assignments just described, thus ensuring that solutions lie on the scales that
we have prescribed. The third (Correct Description) is concerned with correctness, and
the final two (Minimal Distance, Extreme Point) with competence.

1. Scale Domain: The scale must belong to the selected scale system. For
instance, if System = Fraction, the domain of Scale is {S2, S3, S4}.

2. Point Domain: The point chosen as given value must belong to the
selected scale. For instance, if Scale is S4, the domain of Point is 0..4.

3. Correct Description: The relation must be adapted to the given value so
that the proportion is described correctly. For instance, if VA is 0.259 and
VG (i.e., Point/Scale) is 1/4, then Relation must be one of {≈,>}.

4. Minimal Distance: For a given relation and scale, the point selected as
given value should be as close as possible to the actual value of the
proportion. For instance, if VA is 0.259, Relation is >, and Scale is S4, Point
must be 1, not 0.

5. Extreme Point: If extreme points (equivalent to 0.0 and 1.0) are used
as given values, the relation should not be either > or < (i.e., when
approximating one should avoid expressions like “more than 0%”
and “less than 100%”).

Whereas the first three constraints are straightforward and obviously necessary, Mini-
mal Distance and Extreme Point make more interesting claims that require discussion
and empirical testing.

4.2.1 Minimal Distance. The assumption here is that when making an approximation, the
generator should make the best possible use of the chosen scale, by considering only
points that are adjacent to the actual value.12 This means, for instance, that if VA = 0.259
and Scale = S10, the only points that should be considered are 2 and 3. Which of these is
chosen will depend on the relation: for ≈ it will be 3 (which is closer); for < and > the
choice will depend on correct description. Note that we have not excluded > 2 on the
grounds that < 3 is closer, because there might be pragmatic reasons for preferring one
relation to the other.13

4.2.2 Extreme Point. This constraint prohibits the use of the relations > and < in associa-
tion with given values at the extreme points of the scale (e.g., 0/10 and 10/10 if Scale =
10); such combinations are not found in the NUMGEN corpus and it is hard to imagine
contexts when they would be appropriate as approximations.14

12 Note that we are assuming that the purpose of the given value is to approximate the actual value. The
minimal distance constraint would not apply when the given value had a special practical significance:
For instance, in a country where a referendum was valid only with turnout exceeding 55%, a journalist
might report “Turnout was more than 55%” when the actual value was 93%.

13 Intuitively, “more than 20%” seems to emphasize how high the proportion is compared with what was
desired or expected, and “less than 30%” how low.

14 One sometimes hears pronouncements like “I will not accept less than 100% effort” (e.g., in a team talk),
but this seems more a rhetorical flourish than an attempt to approximate an actual value.
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4.3 Preferences

The constraints just described yield multiple solutions for any given input value; to
complete the model, we need to consider contextual reasons why speakers/writers
might prefer some solutions to others. Regarding for example the System variable,
we have already pointed out some reasons why writers might prefer fractions to per-
centages (or vice versa), including location within the document, and the educational
level of the reader. Similarly, with regard to Relation, considerations of emphasis might
favor > over < (or vice versa), as in the sentence “More than a quarter of papers
were marked A. . . ” in our initial example, which focuses attention on how easy the
A-level examinations have become. For present purposes, nothing can be said about
these choices except that they depend on contextual features outside the scope of our
current model. However, regarding the choice of Scale, we can filter out some solutions
on the assumption that speakers/writers apply a trade-off between roundness and
accuracy. That is, we can show that however these two factors are weighted (provided
that they are not judged irrelevant or even undesirable), some solutions will be inferior
to others and can therefore be discarded. This is done by the following rule:

Roundness Preference
If two solutions have the same values for System and Relation, and different values for
Scale, then the solution with the larger Scale value should be discarded unless it has
higher accuracy.

A similar rule could be formulated for solutions along the same scale with different
accuracies, but in our implementation this case is already covered by the Minimal
Distance constraint.

One advantage of the Roundness Preference rule is that it avoids duplicate solutions
in which the values for Point/Scale are arithmetically equivalent, such as 5/10 and 10/20
(values for System and Relation being the same). According to Krifka’s Round Number
Round Interpretation principle, readers of a phrase like “about 50%” will apply an
interpretation bias favoring coarse-grained representations (i.e., scales with a relatively
low N-value), and writers will take this bias into account. We can therefore prefer 5/10
to 10/20, 50/100, and any other equivalent given value with Scale exceeding 10, and
filter out these dispreferred duplicates.15

In our implementation, filtering through the Roundness Preference is applied after
labeling, because it relies on comparing each candidate solution with the other can-
didates. In general this kind of procedure can lead to computational inefficiency; in
planning descriptions of proportions, however, the number of candidates should not be
large enough for this to be a problem, given that most combinations will already have
been eliminated by the constraints applied before labeling.16

15 Note incidentally that this principle has empirical consequences, because different Scale values imply
different degrees of approximation. Thus if “more than 50 percent” means “> 5/10,” the implied range
of the proportion (applying the Minimal Distance Constraint) is from 50.1% to 59.9%, whereas if it
means “> 10/20” the implied range is from 50.1% to 54.9%.

16 If efficiency became an issue, owing for instance to very complex scale systems, it could be increased by
using branch-and-bound search, which discards any solution (even if incomplete) as soon as its cost
exceeds the best alternative found so far, thus avoiding the need to generate all solutions before filtering.
Some simple efficiency tests using the Sicstus Prolog statistics operator showed that with our current scale
systems (two systems each with four scales), runtimes averaged over 100 trials were 3.5 milliseconds;
extending each system first to 8 then to 12 scales increased average runtimes to 6.0 and 11.9 milliseconds;
extending the number of systems first to three then four increased them to 5.5 and 11.4 milliseconds.
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Table 3
Solutions generated for VA = 0.259.

System Point/Scale Relation Realization

Perc 259/1000 = exactly 25.9 percent
Perc 26/100 ≈ about 26 percent
Perc 26/100 < less than 26 percent
Frac 1/4 ≈ about a quarter
Frac 1/4 > more than a quarter
Perc 5/20 ≈ about 25 percent
Perc 5/20 > more than 25 percent
Perc 3/10 ≈ about 30 percent
Perc 3/10 < less than 30 percent
Frac 1/3 ≈ about a third
Frac 1/3 < less than a third
Frac 1/2 ≈ about a half
Frac 1/2 < less than a half

4.4 Example of Output

Table 3 gives a full listing of output for our original A-level example (VA = 0.259),
with solutions ordered by accuracy.17 For convenience, the table includes a possible
verbalization of each semantic form.

5. Evaluation

Overall, we would like the generator to satisfy two requirements: First, it should allow
all the good solutions; second, it should exclude the bad ones. This assumes (a) that
we can measure “goodness,” and (b) that we can draw a line separating wheat from
chaff. Theoretically these are difficult tasks to achieve, because we are dealing with
dimensions of judgment that are continuous and partly subjective, but this should
not stop us from looking for practical evaluation criteria which can support rough
assessments and comparisons of different algorithms.

To evaluate a proposed linguistic solution, the two criteria in common use are the
judgments of native speakers, and frequency in a corpus. Using the former method, we
could ask people to judge whether the 13 plans proposed previously for describing 0.259
are all appropriate (to some context), and whether there are other acceptable solutions
that have been omitted. Using the latter method, we could collect from a corpus all
phrases describing a given proportion (say 0.259), identify the plans behind them, and
find out whether (i) the solutions actually found in the corpus are all generated by our
model, and (ii) solutions absent from the corpus are not generated.

We would argue, however, that the overall performance of the program is actually
not the most instructive aspect to evaluate. Any reasonably complex system is based
on a number of methods and assumptions, some of which might be correct and some

17 We have preferred to include some very inaccurate solutions such as “about a half”, in order to cater
for all positions along the roundness/accuracy trade-off. For instance, “half of the birds flew away”
seems acceptable in a context in which the exact proportion is unimportant, whereas the more accurate
“a quarter” or “a third” might sound fussy.
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incorrect; separate evaluations of these components should provide more useful evi-
dence on how the model can be improved. We have therefore designed the empirical
study so that as well as assessing overall coverage and quality, it allows us to evaluate
the Minimal Distance and Extreme Point Constraints, the Roundness Preference, and
the suggested scale systems for fractions and percentages.

5.1 Method

The model was evaluated through two surveys in which participants were asked to
fill in gaps in sentences describing proportions, with reference to data from which the
actual value VA could be easily computed. The surveys were presented on-line using
SurveyMonkey18 through a link sent to two computational linguistics mailing lists
(SIGGEN and SIGDIAL). Survey 1, completed by 50 participants, tested the predictions
of the model concerning given (VG) values for percentages. Survey 2, completed by
62 participants,19 investigated given (VG) values for fractions, and their relationship to
the decision whether to use a fraction or a percentage; it also included four questions
testing the Extreme Point constraint. The content of all questions was adapted from
newspaper articles in the NUMGEN corpus. In detail, the composition of the surveys
was as follows:

A. Eight questions where subjects were asked to provide the given number
(VG) in a sentence that already contained a hedge, with reference to data
determining an actual value (VA). The context of the VG response was
varied systematically to cover the three approximation relations (≈,<,>)
with actual values at different distances from a convenient round number.
[Survey 1]

B. Ten questions where subjects were asked to complete a sentence by
providing a fraction/percentage (possibly including a hedge). The data
were varied so that the actual value was sometimes close to a convenient
VG value from the fraction scale system [S2, S3, S4] (i.e., halves, thirds,
quarters), and sometimes close to VG values on other scales (e.g., fifths,
sixths, tenths). [Survey 2]

C. Four questions where subjects were asked to choose a hedge for a sentence
that already contained a given (VG) number, in each case either 0% or
100%. Their purpose was to test the Extreme Point constraint on the choice
of relation. [Survey 2]

Examples of each kind of question are shown in Figure 1. The instructions in both
surveys were as follows, with the italicized paragraph occurring only in Survey 2.

This survey will take about 5 minutes to complete. Its purpose is to investigate how
people choose numerical descriptions. It is not a test where answers are either right
or wrong.

18 http://www.surveymonkey.com/.
19 In fact, 65 people completed Survey 2, but three were eliminated, one for responding at random, and two

for giving responses that were not proportions. Our policy was to eliminate participants only when all
their responses were nonsensical, therefore as can be seen, a few obviously mistaken responses remain.
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Figure 1
Snapshots of questions from the surveys, illustrating the three question types.

Imagine that you are the subeditor of a newspaper. You have been asked to
complete an article which has some gaps where data were not yet available to the
original author.

You are given the incomplete sentence, and the data which it should describe. Your
task is to choose a suitable expression to complete the sentence, leaving the rest of the
wording unchanged (even if you disagree with it).

Each expression should use either a fraction or a percentage, and may also include
modifying words like “over”, “about” (e.g., “55 percent”, “over a half”).

The data are fictional, but assume they are correct. We are interested in your choice
of numerical expression, not in the validity of the data.

Schematically, each question presented the raw data of a proportion in the form CS/CSS
(cardinality of set divided by cardinality of superset)—for instance, 712 out of 1,000 UK
teenagers—so that the actual value VA could be calculated. The values of CSS were chosen
so that this calculation would be relatively simple (1,000).20

The whole design is shown in Table 4, where the questions are numbered in order
of presentation, and the gaps to be filled by the subjects are shown by question marks.
In Survey 1, all participants viewed questions A1–A8 in the same order on separate

20 There is a possible bias here in that the denominator used in presenting the data (1,000) might lead
participants to favor scales that easily divide this number (e.g., 10 in preference to 3). Without a control
we cannot rule out this possibility, but the results for fractions, where 3 was actually the most common
denominator (46.8% of responses), show no evidence that non-decimal scales were handicapped.
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Table 4
Design of the surveys. Questions A1–A8 were presented in Survey 1, and questions B1–B10 and
C1–C4 in Survey 2. VA is the actual value, derived from data supplied in the question; VG is the
given value; the Relation holds between VA and VG. Responses required from subjects are
shown by “?”.

Q VA Relation VG

A1 0.712 ≈ ?%
A2 0.437 > ?%
A3 0.625 ≈ ?%
A4 0.336 < ?%
A5 0.475 ≈ ?%
A6 0.561 < ?%
A7 0.286 ≈ ?%
A8 0.619 > ?%

B1 0.372 ? ?
B2 0.493 ? ?
B3 0.894 ? ?
B4 0.744 ? ?
B5 0.661 ? ?
B6 0.056 ? ?
B7 0.257 ? ?
B8 0.170 ? ?
B9 0.605 ? ?
B10 0.339 ? ?

C1 0.983 ? 100%
C2 0.028 ? 0%
C3 0.962 ? 100%
C4 0.021 ? 0%

pages.21 In Survey 2, similarly, questions B1–B10 were presented on separate pages,
followed by questions C1–C4 presented on a single page (see Figure 1).22

5.2 Results

Before presenting the results schematically, we will look in detail at the responses
actually typed for the question A1 (top of Figure 1). Subjects were asked to complete
the sentence About [. . . ] percent of UK teenagers under 16 have used sunbeds during the
last year given the data 712/1,000, equivalent to VA = 0.712. Reproduced as strings, the
following responses were received (some more than once):

70, 71, 71.2, 70%, seventy, 75, 20, 15, 2

As can be seen, the same answer was sometimes given in different forms (70, sev-
enty, 70%); in collating the results, these were all normalized to 70. Occasional bizarre

21 Questions A1–A8 were ordered so that Relation values varied from one question to the next and were
evenly distributed.

22 To check that there were no effects of question order, questions B1–B10 were presented to half the
subjects in one order, and to the other half in the reverse order. Because no differences were
apparent—the preferred response was the same for every question—the data were then amalgamated.
For questions C1–C4, the order was randomized.
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Table 5
Results for questions A1–A8 (50 participants). VA is the actual value indicated by the question
data; R is the arithmetical relation implied by the hedge in the question text. Response
frequencies for VG (given value) are shown in parentheses, or unspecified if the response
occurred only once.

Q R VA Responses (frequencies)

A1 ≈ 0.712 70 (33), 71 (8), 71.2 (5), 75, 20, 15, 2
A2 > 0.437 40 (26), 43 (21), 30 (2), 45
A3 ≈ 0.625 60 (19), 62 (17), 63 (10), 62.5 (2), 30, 20
A4 < 0.336 35 (30), 34 (17), 50, 40, 1
A5 ≈ 0.475 50 (17), 48 (12), 47 (12), 45 (5), 47.5 (2), 46, 25
A6 < 0.561 60 (27), 57 (17), 56 (3), 55 (2), 30
A7 ≈ 0.286 30 (28), 29 (15), 28 (4), 25, 28.6, 1
A8 > 0.619 60 (38), 61 (9), 62 (2), 50

Table 6
Results for questions B1–B10 (62 participants). Questions marked with an asterisk were
predicted to favor fractions because their actual values are close to fractions from scales 2–4;
nearest fractions are shown in column F. Response frequencies are shown in parentheses, or
unspecified if the response occurred only once.

Q VA F Fraction responses Percentage responses

B1 0.372 3/8 1/3 (28) 37 (13), 40 (9), 37.2 (6), 33, 30, 38
B2* 0.493 1/2 1/2 (45) 50 (9), 49.3 (5), 49 (3)
B3 0.894 9/10 90 (46), 89.4 (5), 89 (4)
B4* 0.744 3/4 3/4 (28), 2/3 75 (17), 74.4 (5), 74 (4), 70 (2), 80
B5* 0.661 2/3 2/3 (34), 1/2 (4) 66 (13), 66.1 (5), 60 (2), 70
B6 0.056 1/20 1/2 5 (25), 5.6 (10), 6 (10), 56 (2), 10, 60, 1.2, 1
B7* 0.257 1/4 1/4 (34) 25 (15), 25.7 (6), 26 (5)
B8 0.170 1/6 1/6 (3), 1/5, 1/4 17 (48), 20 (6), 1.7 (2)
B9 0.605 3/5 1/2 (8), 2/3 (8) 60 (37), 60.5 (6), 61
B10* 0.339 1/3 1/3 (39) 34 (10), 33.9 (6), 30 (2), 35 (2), 40

responses (20, 15, 2) were not excluded. Collating in this way, and ordering by frequency,
the results for the first eight questions were as shown in Table 5.

For questions B1–B10, we were interested in whether subjects would choose a
fraction or a percentage, and whether fractions would conform to the proposed scale
system (favoring denominators in the range 2–4). Responses such as “a quarter”, “two
thirds”, “1/4”, “2/3”, were classified as fractions; responses like “one out of four”, “2
of every 3” were instead classified as ratios. For each actual value, a convenient fraction
was located within a distance of 0.01 on the proportion scale: for instance, 0.257 is just
0.007 above 1/4, and 0.372 just 0.003 below 3/8. Five of these fractions lay within the
proposed scale system (denominators 2–4) and five lay outside (denominators 5, 6, 8,
10, 20); questions in the former category are marked by an asterisk in Table 6.

For questions C1–C4, subjects had to choose from the four hedging options about,
less than, more than, and approximately.23 The purpose of these questions was to test the

23 The plausible option “almost” was omitted because, as pointed out earlier, this denotes a subtler relation
of approaching the given value either from above or below. We hope in future work to extend the model
so that it includes this relation as well as the four treated here.

129



Computational Linguistics Volume 38, Number 1

Table 7
Results for questions C1–C4 (62 participants). Response frequencies are shown in parentheses.
For these questions, actual and given values (VA, VG) were specified in the question, and
participants were asked to choose the hedge—and thus, implicitly, the arithmetical relation.

Q VA VG Responses (frequencies)

C1 0.983 100% about (25), approximately (31), less than (6)
C2 0.028 0% about (30), approximately (19), more than (13)
C3 0.962 100% about (29) approximately (23), less than (10)
C4 0.021 0% about (28), approximately (27), more than (8)

Table 8
Predictions for questions A1–A8. Coverage reports the number of responses conforming to the
predictions. Quality reports the number of predicted solutions that were produced by at least
one subject.

Q R Actual Predictions Coverage Quality

A1 ≈ 0.712 70, 71 41 (82%) 2/2
A2 > 0.437 40, 43 47 (94%) 2/2
A3 ≈ 0.625 60, 62, 63 46 (92%) 3/3
A4 < 0.336 35, 34, 40 48 (96%) 3/3
A5 ≈ 0.475 50, 48, 47 41 (82%) 3/3
A6 < 0.561 60, 57 44 (88%) 2/2
A7 ≈ 0.286 30, 29 43 (86%) 2/2
A8 > 0.619 60, 61 47 (94%) 2/2

Extreme Point constraint—our hypothesis was that when constrained to use the extreme
points 0% or 100% as given values, people would avoid the relations < and >. Two other
hedges were employed so that on a random response the frequencies would be equally
divided, with half favoring either < or >. Results for these questions are presented in
Table 7, which shows that the hedges “less than” and “more than” (corresponding to <

and >) were strongly dispreferred for extreme given values.24

5.3 Analysis of Issues
5.3.1 Overall Performance. Comparing the solutions generated by the program with those
produced by human authors (including participants in our survey), we can ask (a) how
many solutions produced by humans were generated by the program, and (b) how
many solutions generated by the program were produced by humans—thus addressing
the competing criteria of coverage and quality. A model that generates many solutions
will increase coverage at the expense of quality, because it accepts some solutions that
competent authors would never produce.

Considering coverage first, the results predicted for questions A1–A8 are shown in
Table 8; comparing these with the actual results in Table 5, we observe that participants
chose one of the predicted given values in 357 out of 400 responses, giving an overall

24 Collating the results for VG = 100% we obtain the frequency distribution 54-54-16 for the three choices
“about,” “approximately,” “less than” (χ2 = 23.3, df = 2, p < 0.00001). For VG = 0% the corresponding
distribution is 58-45-21 for the three choices “about,” “approximately,” “more than” (χ2 = 17.1, df = 2,
p < 0.0002).
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coverage rate of about 90%. Turning to quality, the final column of Table 8 shows that
all of the predicted solutions occurred at least once in a sample of 50 responses, giving
a quality rate of 100%. This confirms that the fairly high coverage rate was not achieved
by the artifice of generating an overlarge set of predicted solutions.

For questions B1–B10 (Survey 2), considering only responses that were fractions or
percentages, we obtained 576/588 responses conforming to the predicted given values
(98% coverage), and 49 out of 76 predicted given values used at least once (64% quality).
Here the quality rate is lower because our model generates some very rough approxima-
tions using fractions (e.g., < 1/2 for actual values like 0.257 and 0.170)—responses that
would only occur in contexts where roundness overwhelmingly dominates precision.

5.3.2 Fraction and Percentage Scales. Responses to questions B1–B10 supported our as-
sumption that fractions are normally drawn from a scale system with denominators in
the range 2–4. This is shown (a) by the preponderance of fractions using these scales,
and (b) by the tendency of subjects to prefer percentages when the closest fraction used
another scale (e.g., fifths or tenths).

Out of 235 fraction responses overall, only 5 denominators were used, covering the
range 2–6, with frequencies as follows: halves 58 (24.7%), thirds 110 (46.8%), quarters
63 (26.8%), fifths 1 (0.4%), and sixths 3 (1.3%). Thus overall, 98.3% of fraction responses
used the proposed scales. Strikingly, none of the subjects chose three-fifths as a given
number for 0.605 (question B9), where the 16 fraction responses divided equally be-
tween half and two-thirds. Similarly, no subjects chose nine-tenths for VA = 0.894 (ques-
tion B3), for which the overwhelming preference was 90%, and there were no fraction
responses at all. The data thus supported a clear division into fraction and percentage
scale systems, with most subjects staying within a fraction system with scales limited to
the range 2–4.

Regarding the decision whether to use a fraction or a percentage, the actual values
were chosen so that five were close to convenient fractions in the range 2–4, and five
were not (see Table 6). For the former group, fractions outnumbered percentages by
185 to 114; for the latter group, percentages outnumbered fractions by 237 to 50—a
clear crossover (on a 2 × 2 association test, χ2 = 120.5, df = 2, p < 0.00001). Another
way of showing this result is to correlate fraction frequencies with the distance between
the actual value and the nearest fraction with a denominator in the range 2–4: As this
difference increases, fraction frequencies decline, so that we obtain a strong negative
correlation (product-moment correlation r = −0.9, df = 8, p < 0.01).

5.3.3 Minimal Distance. The Minimal Distance constraint relates the choice of the given
value VG to the choices made for the relation and the scale. It states that VG should
be chosen from the scale so as to minimize the distance from the actual value VA,
while obtaining a true description. Applied for example to question A1, for which the
relation is ≈ and VA = 0.712, the only point along the S10 scale satisfying the constraint
will be VG = 7/10, yielding a distance from VA of 0.012 (compared with a distance
of 0.088 when VG = 8/10, the nearest rival). For the other scales, the nearest points
are respectively, 14/20, 71/100, and 712/1,000, with the result that there are only two
predicted VG values, 7/10 and 71/100 (realized as 70% and 71%): 14/20 is a duplicate
of 7/10 removed by the Roundness Preference, and 712/1,000 is inconsistent with the
relation ≈ because it is exactly equal to VA.

Excluding non-serious responses such as “about 15 percent” as an approximation
of 0.712, we can find in Table 5 (questions A1–A8) only seven violations of minimal
distance (2%), compared with 357 responses respecting the constraint (98%). The only
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violation that occurred more than once was “about 28 percent” as an approximation
of 0.286. For questions B1–B10 we counted only five violations (1%) compared with
583 respecting the constraint (99%). Four of these violations were obvious arithmetical
mistakes (e.g., 56% as a realization of 0.056); the other was the response 33% as an
approximation for 0.372, suggesting an attempt to realize the underlying form 1/3 as
a percentage.25

5.3.4 Extreme Point. The Extreme Point constraint states that the relations < and > will
be avoided with given values at the extremes of the scale (VG = 0%, 100%). To test this
claim, the survey contained four questions (C1–C4) in which subjects had to choose a
hedge to accompany an extreme value of VG. For instance in question C1, with VA =
0.983, the sentence presented was A survey has found that [. . . ] 100 percent of people believe
they are smarter than average, and subjects had to choose from the hedges about, less than,
more than, approximately in order to fill the gap. The arithmetically correct answers to
this question are < 100 (represented by “less than”) and ≈ 100 (represented by “about”
and “approximately”); most subjects, however, respected the Extreme Point constraint
by opting for the latter, with only 6/62 choosing “less than.” Overall, 211/248 responses
to questions C1–C4 respected the constraint (85%), with 37 violations (15%).

5.3.5 Roundness Preference. Two questions in Survey 1 were included specifically to test
the Roundness Preference; both employed the relation ≈ in combination with an actual
value exactly midway between two round numbers, one on the scale S10 and the other
on the scale S20. The prediction was that subjects would favor the VG value taken from
the coarser-grained scale (S10). Results were as follows:

� For question A3 (≈, VA = 0.625), 19 subjects chose “about 60 percent” and
no subjects chose “about 65 percent.”

� For question A5 (≈, VA = 0.475), 17 subjects chose “about 50 percent” and
5 chose “about 45 percent.”

The overall count was therefore 36 to 5 in favor of the Roundness Preference (p <

0.00001, binomial test), but there was at least a hint of some other factor intruding, with
over 10% of responses going the other way.

6. Conclusion

We have proposed and tested a theoretical model for planning expressions that describe
proportions, with varying degrees of formality and precision. Our central idea is that
such expressions describe an arithmetical relationship between an actual value VA and
a given value VG, where the relation belongs to the set {=,≈,>,<} and the given
value is a point from a scale belonging to a scale system. We use the concept of scale
system in order to distinguish the two commonest mathematical forms for representing
proportions—fractions and percentages. In everyday usage, fractions are conceptually

25 The use of 33% as an approximation suggests an alternative way of setting up the model using a single
scale system [S2, S3, S4, S10, S20, S100, S1000], and treating the choice between fraction and percentage
as a subsequent step influenced but not determined by the scale value. This approach receives some
support from the peaks in Table 2 for 25% and 75%, which would correspond to points along the S4 scale.
However, overall we obtained 67 responses of 1/3 as a fraction compared with only one as a percentage,
confirming a strong association of the scales [S2, S3, S4] with a particular mathematical form.
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simpler because they have low-valued scales (usually in the region 2–4), whereas per-
centages use higher-valued scales based on powers of ten; both scales, however, could
be extended to finer granularities, for instance, to meet the requirements of specialized
domains. Scales for proportions are characterized by their SN numbers: lower SN values
represent coarser granularities and are associated intuitively with rounder given values.
The model provides a convenient formalization of the notions of mathematical form and
roundness, and a framework for investigating the detailed structure of scale systems
and the constraints and preferences that inform the planning process.

In evaluating the model, we found that most given values produced by partici-
pants in our survey were predicted by the model, with an overall coverage over 90%;
quality was also high (i.e., most generated solutions were employed at least once by
participants). These results support our assumptions about the composition of the scale
systems for fractions ([S2, S3, S4]) and percentages ([S10, S20, S100, S1000, . . . ]), which
determine the range of generated given values. Regarding the other assumptions of
the model, we found overwhelming evidence for a Minimal Distance constraint, which
requires speakers/writers to choose (for a specified scale and relation) the nearest point
to the actual value that yields a true description, and strong evidence for an Extreme
Point constraint, which disallows approximations in which the relations > or < are used
in combination with extreme points of a scale (e.g., with the percentages 0% or 100%).
We also found clear evidence for a Roundness Preference which, all other things being
equal, favors solutions using coarser-grained scales within the selected system.

We hope that with some calibration of the details, our model can provide a reliable
set of plans for describing any proportion, although when incorporated into an NLG
application it would obviously have to be complemented by a module for selecting
the best solution for a given pragmatic context. Despite not covering this problem
in the model, we have given examples of how pragmatic considerations might affect
each component of a solution (scale system, given value, arithmetical relation), thus
providing a framework for investigating such questions systematically.
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