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Abstract

Research in electronic communications has developed chaos-
based modelling to enable messages to be carried by chaotic
spreading sequences. When such systems are used it is neces-
sary to simultaneously know the resulting chaotic sequence at
both the transmitting and receiving stations. This is possible
using the idea of synchronization providing there is no noise
present in the system. When noise is present in the trans-
mission channel, recovery of the spreading sequence may be
inaccurate or even impossible and the resulting sequence may
no longer lie within the chaotic map range. A usual method of
dealing with this problem is to cap iterations lying outside the
range at their extremes, a procedure which increases the loss
of synchronization. This paper discusses how synchroniza-
tion can be improved by the transformation of the spreading
sequence to be transmitted; the method uses knowledge of
the invariant distribution of the chaotic spreading sequence,
before noise corrupts it in the transmission channel. An ‘in-
verse’ transformation is applied at the receiver station with
the result that the noise has a reduced impact on the synchro-
nization and also on the subsequence recovery of the mes-
sage.

1. Communications using Synchronization

The need to simultaneously know a chaotic sequence at
each of the transmitting and receiving stations has led to much
research in the area of synchronous chaos, see [5], [3] for rel-
evant background. The basic idea revolves around the differ-
ence between two chaotic sequences {εt} and {ε′t}. Under
synchronization, the absolute difference

∆εt = |ε′t − εt|, t = 0, 1, ...

is zero or quickly converges to zero. The idea that two dy-
namical systems can synchronize involves bivariate or higher
dimensional chaotic sequences. The possibility of synchro-
nization was initially noted by [6], and involves one of the
two chaotic systems being driven by at least one component
of the other system. The idea has been widely exploited in

the continuous case; however, there is far less literature con-
cerning the use of this property in relation to discrete maps,
the topic of this paper.

A discrete bivariate dynamical system {Xt, εt} with t =
1, 2, . . . is generated by

{Xt, εt} = τ{Xt−1, εt−1}
≡ (τX{Xt−1, εt−1}, τε{Xt−1, εt−1}) . (1)

The communication system starts by generating Xt from
(1), initiated by {X0, ε0}, which is transmitted to the re-
ceiver station. Here the received Xt is used to give εR

t =
τε{Xt−1, ε

R
t−1}, using an arbitrary initial value εR

0 . The
receiver and transmitter will synchronize in εt if |∆εt| =
|εR

t − εt| → 0 as t → ∞ where,

∆εt = τε(Xt−1, ε
R
t−1) − τε(Xt−1, εt−1). (2)

First order approximation gives

|∆εt| ≈
∣∣∣∣∂τε(Xt−1, εt−1)

∂ε

∣∣∣∣ |∆εt−1| (3)

leading to

ln |∆εt| ≈ t

[
1
t

t−1∑
i=1

ln
∣∣∣∣∂τε(Xi, εi)

∂ε

∣∣∣∣
]

+ ln |∆ε0| . (4)

For a theoretical analysis the average term can be replaced
with the ensemble expectation, giving synchronization if a
quantity called the conditional Lyapunov exponent

λε|X = E

[
ln

∣∣∣∣∂τε(X, ε)
∂ε

∣∣∣∣
]

, (5)

obeys the condition λε|X < 0.

2. Invariant Distribution of Bivariate Chaotic Maps

The bivariate invariant distribution of a bivariate map is
required for message detection. An outline is given next and



more detail can be found in [4]. The distribution function
satisfies the equation

P{(X, ε) ≤ (x, ε)} = P{τ−1(X, ε) ≤ (x, ε)}
= P{gX(X, ε) ≤ x, gε(X, ε) ≤ ε)}

(6)

where g = (gX , gε) are the pre-image functions such that

{Xt−1, εt−1} = {gX(Xt, εt), gε(Xt, εt)} .

If the map has k (≥ 1) pre-images there are functions
{gXi(x, ε), gεi(x, ε)}, i = 1, 2, . . . , k, which are the solu-
tions to

τ {gXi(x, ε), gεi(x, ε)} = (x, ε)

and called multiple pre-image functions. So then (6) can be
written

P (X ≤ x, ε ≤ ε) =
k∑

i=1

{gXi(X, ε) ≤ x, gεi(X, ε) ≤ ε}.
(7)

This leads to a bivariate generalization of the Perron-
Frobenius operator for the invariant density for f(x, ε) of
(X, ε) as

Pf(x, ε) =
∑

f{gi(x, ε)}
∣∣∣∣∂2gi(x, ε)

∂x∂ε

∣∣∣∣ (8)

with the invariant equation being f(x, ε) = Pf(x, ε).
As an illustration of a tractable bivariate map, consider the

Arnold cat map [1], [4],

{Xt, εt} = {(Xt−1 +εt−1), (Xt−1 +2εt−1)} mod (1) (9)

which has unique pre-images

{Xt−1, εt−1} = {(2Xt − εt), (εt − Xt)} mod (1). (10)

It can be shown that this map has an independent bi-
variate uniform invariant distribution over [0, 1] and this
knowledge can be used to obtain the joint lagged mo-
ments E[a(Xt, εt)b(Xt+s, εt+s)]. Unusually the lagged and
squared lagged auto and cross correlations are all zero. The
map is potentially useful in communication systems, though
not for systems where synchronization via a drive-response
or master-slave system is necessary.

3. Synchronization of the Bivariate Logistic Map without
Noise

The bivariate logistic map [2], [4] is suitable for drive-
response synchronization. The bivariate logistic map cross
couples two standard logistic maps and allows for some auto-
memory. With 0 ≤ c ≤ 1, it takes the form(

Xt

εt

)
=

(
(1 − c)Xt−1 + 4cεt−1(1 − εt−1)
(1 − c)εt−1 + 4cXt−1(1 − Xt−1)

)
(11)

for 0 ≤ Xt, εt ≤ 1. The general conditional Lyapunov ex-
ponent is λε|X = ln(1 − c). If c is taken large enough, say
c = 0.9999 then, λε|X = ln 0.0001 ≈ −9.21 and hence the
systems starting from nearby points should quickly synchro-
nize in ε and εR. As an illustration, if the X variable is used to
drive the response system, starting with (X0, ε0) = (0.6, 0.4)
and εR

0 = 0.7, say, then ε in the transmitter and receiver are
perfectly synchronized to six decimal places after only two
iterations, with

ε0,...,5 = (0.400000, 0.959944, 0.153813, 0.520786)
εR
0,...,5 = (0.700000, 0.959974, 0.153813, 0.520786).

The invariant distribution is only available from numeri-
cal simulations, although for c near 1 it is very close to
beta( 1

2 , 1
2 ).

4. Synchronization of the Bivariate Logistic Map with
Noise, Capping Adjustment

The fast synchronization of the bivariate logistic map, seen
in Section 3, quickly deteriorates once channel noise is in-
corporated. By simply adding noise nt to the transmitter
variable Xt, the resulting signal X ′

t = Xt + nt may es-
cape the [0, 1] bounds of Xt and hence X ′

t will be outside
[0, 1] and no longer acceptable as input to the receiver map
εR
t = (1 − c)εR

t−1 + 4cX ′
t−1(1 − X ′

t−1). To avoid this prob-
lem a usual practice is to cap the variable X ′

t at its bounds,
[5]. For the bivariate logistic map, (0, 0) is a stationary point
and therefore X ′

t is capped at 1 × 10−10 and 1 and therefore
generated as

X ′
t =




Xt + nt if 0 ≤ Xt + nt ≤ 1
1 if Xt + nt > 1
1 × 10−10 if Xt + nt < 0.

(12)

Figure 1 illustrates the synchronization problem when the
transmitted variable is subject to strong AWGN with vari-
ance σ2

n = 1/8, that of X; thus the signal to noise ratio,
SNR = 20 log (σX/σn), is 0. In practice, the signal to noise
ratio can be adjusted by applying an amplification factor to
{Xt} on the left hand side of (12) as it is transmitted and suit-
ably redefining the capping. When X ′

t exceeds the bounds
[0, 1] the capping results in an enforced period of desynchro-
nization of εR and ε. There are less severe problems with
synchronization in the middle of the range where the variable
is only slightly perturbed. Thus if an alternative to capping
could be used, the synchronization should be improved, and
this is the subsequent direction of the contribution.
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Figure 1: Synchronization of ε (◦) and εR (×) using capping
with SNR = 0 and the double logistic map.

5. Reducing the Effect of Noise by Transformation

This section is concerned in a general way with transforma-
tion as an alternative to capping. To avoid a bounded variable
escaping its bounds [a, b], say, after adding noise, one alterna-
tive to capping is to first transform the variable from its closed
interval [a, b] to an infinite range (−∞,∞). Adding noise to
this transformed variable would obviously have no effects on
the bounds. A reverse transformation could then be applied,
so the resulting variable was again in the original [a, b] range.
Suitable inverse transformations will result in a variable X ′

t

which has the same invariant distribution as the original Xt

variable.
It will be shown in Section 6 that in communication use

the transformed transmitted variable reduces the loss of syn-
chronization of ε and εR caused by capping at the limits,
and avoids boundary values, shown in Figure 1. The general
method will be demonstrated with noise added to uniform and
beta distributed values.

5.1. Uniform distribution

Consider a general random variable X having a marginal
distribution which is uniform over [0, 1]. This variable is
transformed to [−∞,∞], using an inverse N(0, σ2

X) distri-
bution function, where σ2

X is the variance of the marginal
distribution of X . Normally distributed noise, n ∼ N(0, σ2

n),
is added; σ2

n is assumed to be known. The resulting vari-
able also follows a Normal distribution. This can then be
transformed back to [0, 1]. So the original variable with noise
added is

X ′ = ΦN(0,σ2
X

+σ2
n){Φ−1

N(0,σ2
X

)
(X) + n}, (13)

where ΦN(0,σ2) is the distribution function of a Gaussian ran-
dom variable with mean 0 and variance σ2. X ′ has a uniform
[0, 1] distribution like X .

Consider the following example in Figure 2 where a ran-
dom sample of size 2000 is drawn from a uniform [0, 1] dis-

tribution, σ2
X = 1/12 and n ∼ N(0, 1/12) giving SNR = 0,

as shown in panels (a) and (b); the resulting distribution of
X ′ in panel (c) appears to be uniformly distributed. Hence
the form of the distribution is preserved. However, when the
capping method is used, the resulting distribution of X ′ is far
from uniform, as illustrated by panel (d).
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Figure 2: Distribution of (a) x, (b) Φ−1
N(0,1/12)(x) + n, (c) x′

under transformation, (d) x′ under capping.

5.2. Beta distribution

The transformation approach always works for any dis-
tribution. Suppose X has a marginal invariant distribution
which is beta(1

2 , 1
2 ) over [0, 1]. This can be initially trans-

formed to a uniform distribution, applying the earlier proce-
dure, then finally transforming back, resulting in a beta dis-
tribution; thus corresponding to (13),

X ′ = beta−1[ΦN(0,σ2
X

+σ2
n){Φ−1

N(0,σ2
X

)
(beta(X)) + n}]

(14)
where beta(.) is the distribution function of the beta(1

2 , 1
2 )

distribution. Again using SNR = 0, Figure 3 panel (a)
shows a random sample of 2000 from a beta(1

2 , 1
2 ) distribu-

tion. Panel (b) shows the preserved beta distribution using
the transformation method, compared to the capping method
in panel (c).
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Figure 3: Distribution of (a) x, (b) x′ for transformation, (c)
x′ for capping.

6. Chaos Synchronization with the Bivariate Logistic
Map - Comparing Capping and Transformation to Re-
duce Noise Effects

The method of capping, used in Section 4 to keep X′
t in

the range of the bivariate map τ , is replaced by the prefer-
able method of transformation discussed in Section 5. Con-
tinuing to use the bivariate logistic map as the basis of the
communication system, in which {εt} and {εR

t } are synchro-
nized by {Xt}, the marginal distribution of {Xt} is taken as a
beta( 1

2 , 1
2 ) distribution [4]. Thus to generate the received val-

ues {X ′
t} and hence generate the {εR

t } as discussed in Section
1, (14) is adapted to the form

X ′
t = beta−1[ΦN(0,σ2

X
+σ2

n){Φ−1
N(0,σ2

X
)
(beta(Xt)) + nt}].

(15)
In a communication context, as when using capping, an ad-
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Figure 4: Synchronization by transformation of ε (◦) and εR

(×) with SNR = 0, using the double logistic map.

justable signal to noise ratio needs to be incorporated into the
transmission process. Thus an amplification factor a is in-
cluded in the transformation of Xt before its transmission.
The equation (15) in the communications context then be-
comes

X ′
t = beta−1[ΦN(0,a2σ2

X
+σ2

n){Φ−1
N(0,a2σ2

X
)
(beta(Xt))+nt}].

(16)
This gives a signal to noise variance ratio of a2(σ2

X/σ2
n);

a specific SNR requires an amplification factor of a =
(σn/σX)10(SNR/20). The improved synchronization of

(εt, ε
R
t ) using the transformation method is demonstrated by

Figure 4. Table 1 illustrates the improvement in synchroniza-
tion from transformation over capping, both in regard to mean
and standard deviation of |ε − εR|. From Table 1 reasonable
synchronization is seen to need a SNR of at least 10-15 deci-
bels.

SNR a Capping Transformation
mean sd mean sd

−5 10
−5
20 0.4166 0.3157 0.3458 0.2901

0 1 0.3835 0.2858 0.3187 0.2532
5 10

5
20 0.2588 0.2422 0.2314 0.2119

10 10
10
20 0.1773 0.1708 0.1528 0.1463

15 10
15
20 0.0910 0.0927 0.0723 0.0669

Table 1: Mean and standard deviation for |ε − εR| using the
double logistic map.

7. Conclusions

It has been shown how using a method of transforming the
transmitted variable increases the ability of the receiver sys-
tem to synchronize with the transmitter system and avoids
the standard method of capping the transmitter variable at its
limits. Of further importance is the preservation of the un-
derlying invariant distribution of the spreading values at the
receiver.
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