
Open Research Online
The Open University’s repository of research publications
and other research outputs

A statistical perspective on the dynamics of bivariate
chaotic maps for communications modelling
Conference or Workshop Item
How to cite:

Hilliam, Rachel and Lawrance, Anthony (2001). A statistical perspective on the dynamics of bivariate chaotic
maps for communications modelling. In: 2001 International Symposium on Nonlines Theory and its Applications, 28
Oct - 1 Nov 2001, Miyagi, Japan.

For guidance on citations see FAQs.

c© 2001 Japan Society for the Promotion of Science (JSPS)

Version: Accepted Manuscript

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82973426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html


A Statistical Perspective on the Dynamics of Bivariate Chaotic
Maps for Communications Modelling

Rachel M Hilliam† and Anthony J Lawrance†

†School of Mathematics and Statistics, The University of Birmingham, Birmingham, B15 2TT, England
rmh@for.mat.bham.ac.uk & A.J.Lawrance@bham.ac.uk

Abstract— Statistical and dynamical properties
of bivariate (two-dimensional) maps, are less under-
stood than their univariate counterparts. This paper
will give a synthesis of extended results with exemplifi-
cations by the contrasting bivariate logistic and Arnold
cat maps. The use of synchronization from bivariate
maps in communication modelling is also described.

I. Issues Concerning Bivariate Maps

The dynamical and statistical properties of many uni-
variate chaotic maps are well understood and have
been the basis of several chaos-based communications
models over recent years. Associated research has
also produced important statistical results and clar-
ified several statistical issues concerning independence
and non-linear dependence of their chaotic sequences
[1, 2]. A comprehensive review of the use of chaos
in telecommunications is given by [3]. More sophisti-
cated chaos-based communication systems involve bi-
variate chaotic maps for which less is known. There
are more complex issues of stability, pre-image re-
gional structure, synchronization, dynamic behaviour
and joint statistical behaviour, which deserve further
understanding. In the past, continuous chaotic flows,
rather than discrete maps, have mainly been inves-
tigated. Current experimental communication imple-
mentations of bivariate maps involving synchroniza-
tion appear to have outreached their theoretical foun-
dations in many instances. It is the purpose of this
paper to address these issues by theoretical synthe-
sization and exploration of two contrasting bivariate
chaotic maps; the focus will be on their dynamical and
statistical behaviour and their relevance to embryonic
communication systems. These maps are the bivariate
logistic map and a bivariate Arnold cat map. For the
latter there is surprising independence, not obtainable
with one-dimensional maps, both in the individual se-
quences and between them.

II. Mathematical Basis of Bivariate Maps

A general bivariate map will be taken in the form

{xt, yt} = {τx(xt−1, yt−1), τy(xt−1, yt−1)} , (1)

for t = 1, 2, . . . using a function τ = (τx, τy) over a
region A.

Perhaps the most fundamental aspect of any map
is its fixed points. As in one dimension, the existence
of fixed points, satisfying τ(x, y) = (x, y), is relevant
to the dynamical behaviour; secondly, the behaviour
at these points is determined by eigen analysis of the
Jacobian of the map at these points.

The chaotic aspect, as in one dimension, is concerned
with the idea of divergence after close initial condi-
tions, and is now determined by a Lyapunov expo-
nent matrix and its eigen values. The component-wise
divergence at time t, ∆(xt, yt), of a process started
from two nearby points (x0, y0) and (x′

0, y
′
0), where

∆(x0, y0) = (x0 − x′
0, y0 − y′0) is

∆(xt, yt) ≈ DT t(x0, y0)∆(x0, y0), t = 0, 1, . . . (2)

where DT t =
∏t

i=1 DT (xi, yi) and DT (x, y) is the Ja-
cobian of the map at the point (x, y). As t → ∞,
it may be shown that ∆(xt, yt) ≈ exp(λt)∆(x0, y0)
where λ is obtained from the largest eigenvalue
q(t, x, y) of DT t(x, y) as λ = limt→∞ 1

t [log |q(t, x, y)|].
When DT (x, y) is constant in (x, y), λ is simply the log
of the absolute value of the largest eigenvalue of DT .
This does not necessarily mean that if the sequence is
divergent the individual components will also be diver-
gent, since the directions of convergence or divergence
lie along the eigenvectors and not the x− and y-axes.
A consequence is that chaotic bivariate maps can be
used to transmit messages using synchronisation, since
a chaotic bivariate map can be non-divergent in the x
and y directions whilst the (x, y) sequence is diver-
gent. Conditional Lyapunov exponents of the map, to
be considered in Section VII, are central to determin-
ing synchronization.

A crucial aspect of a bivariate map is its pre-image
structure. Most simply a map can have unique pre-
image structure g = (gx, gy), such that {xt−1, yt−1} =
{gx(xt, yt), gy(xt, yt)} t = 0, 1, . . . although often it
may be more complicated with multiple pre-images.
The multiple pre-image structure of bivariate maps is
governed by pre-image curves, PIC, determined by the
determinant of the Jacobian of the map being zero.



Applying the map to all positions on these curves then
gives the critical curves, CC, of the map. The PIC
and CC curves enable the pre-image regional struc-
ture to be determined, identifying the number and
multiplicity of pre-images at any position and in par-
ticular on regional boundaries. That the number of
pre-images of a point usually depends on its position
is also true for one-dimensional maps with ‘curtailed’
branches, but not so for the standard one-dimensional
maps.

Statistical aspects of bivariate maps begin with a
bivariate invariant distribution, satisfying a Perron-
Frobenius type equation, but usually mathemati-
cally intractable for interesting non-invertible bivariate
maps such as the bivariate logistic map of Section III.
It follows that their dependency structure which in-
cludes joint dependencies is similarly intractable. Re-
course to numerical simulation is thus inevitable, but
can produce illuminating results. There can be ana-
lytical tractability for invertible maps as shown for the
bivariate Arnold cat map in Section IV.

III. Bivariate Logistic Maps - Dynamical
Properties

The bivariate logistic map in [4] couples two standard
logistic maps, with 0 ≤ c ≤ 1, in the form

{xt, yt} = {(1− c)xt−1 + 4cyt−1(1− yt−1) ,
(1− c)yt−1 + 4cxt−1(1− xt−1)} (3)

for 0 ≤ x, y ≤ 1. This map is not uniquely invert-
ible since (xt−1, yt−1) cannot be solved uniquely in
terms of (xt, yt). There are four fixed points of the
bivariate logistic map, at P1 = (0, 0), P2 = (3

4 ,
3
4 ),

P3 = (5−√
5

8 , 5+
√

5
8 ) and P4 = (5+

√
5

8 , 5−√
5

8 ). The na-
ture of these fixed points, determined by the eigen
analysis, changes as c increases, undergoing a series
of period doubling and hopf bifurcations. From (3)
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Figure 1: Critical and pre-image curves with c = 0.5

each point under the bivariate logistic map has 2 or
4 pre-images and thereby implies regions of the map’s

domain Z2 and Z4 respectively; the remaining region
Z0 is not visited by the map, and therefore has no
preimages (see Figure 1). The boundaries of these re-
gions are defined by the critical curves which are them-
selves determined by the pre-image curves given by
the equilateral hyperbola (x− 1/2)(y− 1/2) = (1−c)2

64c2 .
The critical curves follow from substituting this hyper-
bola into the map (4). In Figure 1 the critical curve
CCa defines the boundary of Z0 and Z2 and therefore
possesses only one pre-image (as two coincident pre-
images) located on PICa. The boundary between Z2

and Z4 is defined by the curve CCb. Taking the pre-
image function for points on this curve will produce
two coincident pre-images given by the curve PICb

and two further distinct pre-images, which will give ex-
cess pre-image curves, denoted by PICbe1 and PICbe2

in Figure 2. The four grey shaded regions bounded
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Figure 2: Excess pre-image curves with c = 0.5

by the curves PICb, PICbe1 and PICbe2 separate the
plane into the regions of the four pre-images of a point
in Z4. A point in Z2 will have two pre-images one in
each of the regions above and below the curve PICa.

Theoretical results on divergence behaviour can be
calculated for individual points, however bifurcation
and invariant behaviour is complex. Tracing the bi-
variate sequences individually from nearby starting
points indicates that the individual sequences also pos-
sess divergence behaviour for particular values of c.

IV. Arnold Cat Maps - Dynamical Aspects

The Arnold cat map [8] is one case of a relatively small
number of simple uniquely invertible maps, the sim-
plicity being largely due to the strong linearity in the
structure. It is given by

{xt, yt} = {(xt−1+yt−1), (xt−1+2yt−1)} mod (1) (4)

and is defined on the unit square. The map takes
different but linear forms over four regions Ai, i =
1, . . . , 4 defined by the lines x + 2y = 1, x + y =



1 and x+2y = 2. The only fixed point is (0, 0) and the
Jacobian matrix is the constant matrix (1, 1; 1, 2) with
largest eigenvalue (3 +

√
5)/2, giving a positive diver-

gence coefficient of 0.418 and chaotic characteristics.
Clearly from (4), the unique pre-image of (xt, yt) is
given by {xt−1, yt−1} = {(2xt − yt), (yt −xt)} mod (1)
and this takes different mathematical forms over four
regions delineated by x−2y = 0, x−y = 0 and 2x−y =
1, a complication for calculation.

V. Bivariate Maps - Statistical Properties

The statistical aspects of bivariate maps are consid-
erably more complicated to obtain than those of uni-
variate maps. A distinction must be drawn between
maps with a unique pre-image and maps with multiple
pre-images. For a bivariate statistical model, suppose
the process starts with the random variable (X0, Y0),
having a bivariate invariant distribution and continues
via the recursion (1) to create the sequence of random
variables (X0, Y0), (X1, Y1), . . ..

The bivariate invariant distribution function satis-
fies the equation

P{(X,Y ) ≤ (x, y)} = P{τ−1(X,Y ) ≤ (x, y)}
= P{gx(X,Y ) ≤ x, gy(X,Y ) ≤ y} (5)

when there is a unique pre-image. For maps with
k(≥ 1) pre-images of each point, let gxi(x, y), gyi(x, y)
be solutions to the equation τ{gxi(x, y), gyi(x, y)} =
(x, y) for i = 1, 2, . . . , k; then {gxi(x, y), gyi(x, y)},
i = 1, 2, . . . , k are the k multiple pre-image functions.
Thus (5) can be written

P (X ≤ x, Y ≤ y) =
k∑

i=1

P (gxi(X,Y ) < x, gyi(X,Y ) < y). (6)

This leads to a bivariate generalization of the Perron-
Frobenius operator for the invariant density for f(x, y)
of (X,Y ), as

Pf(x, y) =
k∑

i=1

f{gi(x, y)}
∣∣∣∣∂gi(x, y)

∂x∂y

∣∣∣∣ , (7)

with the invariant equation being f(x, y) = Pf(x, y).
The invariant bivariate density does not, of

course, describe the joint lag-one auto-distributions of
(X0,X1) and (Y0, Y1). The auto-distributions are de-
fined in terms of (X0, τx(X0, Y0)) and (Y0, τy(X0, Y0))
so depending on the joint invariant distribution of
(X0, Y0); by stationarity these also apply to (Xt,Xt+1)
and (Yt, Yt+1).

For joint moments, Kohda’s results [5] for univariate
maps with a constant number of multiple pre-images
can be extended in the bivariate sense. Then the
joint moment E[a(Xt, Yt)b(Xt+1, Yt+1)], for functions

a(x, y), b(x, y), can be related to the invariant joint
density by the equation

E[a(Xt, Yt)b(Xt+1, Yt+1)] =∫
A

b(x, y)P{a(x, y)f(x, y)} dx dy. (8)

It is also convenient to extend Khoda’s equidistributiv-
ity result in a bivariate sense, and assume

k−1f(x, y) = f{gi(x, y)}
∣∣∣∣∂gi(x, y)

∂x∂y

∣∣∣∣ , (9)

for i = 1, 2, . . . , k over the region A; this allows explicit
representation of (8) as

E[a(Xt, Yt)b(Xt+1, Yt+1)] = (10)∫
A

b(x, y)

[
1
k

k∑
i=1

a{gi(x, y)}
]
f(x, y) dx dy,

exactly parallel to Kohda’s univariate map result. The
theory can be further extended to higher lags to pro-
duce the recursive relation

E[a(Xt, Yt)b(Xt+s, Yt+s)] = (11)

E

[
1
k

k∑
i=1

a{gi(Xt, Yt)}b(Xt+s−1, Yt+s−1)

]
.

The results (10) and (11) are rather more complicated
when the number of preimages depends on regions of
the map, as for the bivariate logistic map. With kj

pre-images over region Aj and A =
⋃n

j=1 Aj , equidis-
tributivity is defined over each Aj as in (9) but with
kj replacing k. The integral in (10) is thus replaced
by a sum of integrals over Aj with kj replacing k in
the integrand of the jth integral. A result similar to
(11) holds in principle, but will be quite complicated.
The previous results apply most readily when there
is a common mathematical formula τ(x, y) for all po-
sitions. Sometimes, however, as with the invertible
Arnold cat map, the map takes different forms τj(x, y)
over sub-region Bj of A, say, j = 1, 2, · · · , n. The joint
expectation (10) for k = 1 then needs to be calculated
as

∑n
j=1

∫
Bj

b {τj(x, y)} a(x, y)f(x, y) dx dy.

VI. Statistical Behaviour of Bivariate
Logistic and Arnold Cat Maps

As mentioned in Section II, the bivariate logistic map
is intractable as far as explicit results for its joint in-
variant distribution and invariant behaviour are con-
cerned. A thorough numerical study is beyond this
brief format; behaviour is controlled by the value of
c, with c = 1 implying a pair of non-related logis-
tic maps. For 0 < c ≤ 1 a variety of joint in-
variant distributions are evident, often indicating sig-
nificant concentrations and periodic-like behaviour.



There is no evidence of independence. In contrast, the
Arnold cat map (6) can be shown to have a bivariate
mean-centred independent uniform invariant distribu-
tion over the unit square; thus each Xt and Yt are
independent. It cannot be the case that (Xt, Yt) is
independent of (Xt−1, Yt−1); this could be checked by
evaluating the probability P (Xt < x1, Yt < y1,Xt−1 <
x0, Yt−1 < y0). With less effort it can be verified that
(Xt,Xt−1) are independent, as also are (Xt, Yt−1) and
(Yt,Xt−1). From calculations of lagged correlations
and quadratic correlations and simulation evidence,
it seems that the {Xt} and {Yt} sequences are indi-
vidually independent and independent of each other.
The conclusions are that the generation of univariate
sequences with chaotic characteristics and statistical
independence can be achieved by the use of bivariate
Arnold cat maps. Such statistical behaviour cannot
be achieved from univariate maps because of the di-
rect functional dependence of successive values.

VII. Embryonic Chaos-communications
Implementations of Bivariate Maps

The communications motivation for the study of bi-
variate maps comes from the need for secure systems.
When a message is encrypted using a chaotic map
it is necessary to simultaneously know the resulting
chaotic sequence at both the transmitting and receiv-
ing stations. This is possible using a discrete bivariate
chaotic system (1) and the idea of synchronization.
The fact that two chaotic systems can synchronize if
one of them is driven by at least one component of the
first system was initially observed by Pecora and Car-
roll [7] and has been widely exploited in the continuous
case; however there is far less literature concerning the
use of this property in relation to discrete maps. In the
discrete bivariate case, the chaotic signal xt is gener-
ated by (1) started with (x0, y0) and sent down the line
to the receiver, where there exists an identical copy of
the bivariate map, generating (xR

t , yR
t ) in the following

way. The receiver system uses x0 together with some
arbitrarily chosen yR

0 to give xR
1 and yR

1 ; on the next it-
eration of the map, the system transmitted x1 and the
newly made yR

1 are used to produce xR
2 and yR

2 , and
so on. Thus the transmitter drives the receiver system
according to the equation (xR

t , yR
t ) = τ(xt−1, y

R
t−1).

For the receiver and transmitter to synchronise
∆yt = yR

t − yt → 0. First order approxima-
tion gives |∆yt| ≈

∣∣∣∂τy

∂y (xt−1, yt−1)
∣∣∣ |∆yt−1| leading to

log |∆yt| ≈ t
[
1/t

∑t
i=1 log |∂τy(xi, yi)∂y|

]
+ log |∆y0|.

The average term can be replaced with the ensemble
expectation and so yR will synchronize with y if the
conditional Lyapunov exponent

λy = E

(
log

∣∣∣∣∂τy(X,Y )
∂y

(x, y)
∣∣∣∣
)

(12)

satisfies the condition λy < 0. The received sys-
tem generating yR

t is used to produce a cascaded
xC

t = τx(xC
t−1, y

R
t−1). If the other conditional Lya-

punov exponent λx < 0, (xC
t , yR

t ) jointly synchronises
with (xt, yt). That is the transmitter and receiver sys-
tems are synchronised by the transmission by one of
the two variables, xt.

Once synchronized, a message bit can be transmit-
ted, with one of the binary values leaving the sys-
tem as it is and synchronized, and the other binary
value modifying the transmitted chaotic signal and
causing loss of synchronization. In this way, detection
of synchronization or otherwise decodes the transmit-
ted bit. Noise needs to be allowed for in the trans-
mission channel so disturbing the ideal situation of
perfectly accurate decoding. Recent work has how-
ever suggested that suitable transformations can be
made to the transmitted xt variable before the noise
corrupts the signal. Back-transforming the combined
received signal and noise in an appropriate way, en-
sures that the invariant distribution of the sequence
at the receiver matches the invariant distribution at
the transmitter. By this approach, not only is the ef-
fect of noise reduced, but calculation for modulation
techniques which involve correlation detection will be
based on the correct invariant distribution.
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