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Abstract

The riverine transport of elements from land to ocean is an integral flux for many element cycles and an important climate
regulating process over geological timescales. This flux consists of both dissolved and particulate material. The world’s rivers
are estimated to transport between 16.6 and 30 Gt yr�1 of particulate material, considerably higher than the dissolved flux of
�1 Gt yr�1. Therefore, the dissolution of particulate material upon arrival in estuaries and coastal waters may be a significant
flux for many elements. Here we assess the role of riverine particulate material dissolution in seawater with closed-system
experiments using riverine bedload material and estuarine sediment from western Iceland mixed with open ocean seawater.
Both particulate materials significantly changed the elemental concentrations of the surrounding water with substantial
increases in Si concentrations indicative of silicate dissolution. Seawater in contact with bedload material shows considerable
enrichment of Ca, Mg, Mn, and Ni, while Li and K concentrations decrease. Moreover, the 87Sr/86Sr of seawater decreases
with time with little change in Sr concentrations, indicative of a significant two-way flux between the solid and fluid phases.
Mass balance calculations indicate that 3% of the Sr contained in the original riverine bedload was released during 9 months
of reaction. In contrast, the estuarine material has a negligible effect on seawater 87Sr/86Sr and transition metal concentra-
tions, suggesting that these reactions occur when particulate material first arrives into coastal waters. Solubility calculations
performed using the PHREEQC computer code confirm that primary minerals are undersaturated, while secondary minerals
such as kaolinite are oversaturated in the reacted fluids. These results demonstrate that riverine transported basaltic partic-
ulate material can significantly alter the composition of seawater, although the total concentrations of many major elements in
seawater are regulated by the formation of secondary phases. This behavior has important implications for nutrient supply to
coastal waters and the isotopic mass balance of several elements in the oceans.
� 2011 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

Riverine transport from the continents to the oceans is a
major process in the global cycling of the elements. In many
instances this transport plays a critical role in other pro-
cesses. For example, it has been argued that the riverine

transport of Ca and Mg to the oceans is the most important
climate regulating process over geological timescales
(Walker et al., 1981; Berner et al., 1983; Berner, 1990;
Kump et al., 2000; Gislason et al., 2006). Riverine transport
of key nutrients (e.g. N, P, Ca, Mg, Si, Fe, Mn, Zn) is also
essential to marine primary productivity (Holland, 1984;
Falkowski, 1997; Falkowski et al., 1998; Mörner and
Etiope, 2002; Holland, 2005). The transport of radiogenic
isotopes, such as Sr and Nd (Raymo et al., 1988; Burton
and Vance, 2000; Andersson et al., 2001), and stable
isotopes such as Li, Mg and Si (De La Rocha et al., 1997;
Huh et al., 2001; Kisakürek et al., 2005; Villiers et al.,
2005; Georg et al., 2007; Wimpenny et al., 2010), are
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integral to the understanding of global biogeochemical and
element cycles.

The world’s rivers transport material from the land to
the oceans in dissolved form, a product of chemical weath-
ering, and as particulate matter from mechanical weather-
ing and the growth and decay of organic material.
Dissolved riverine transport has received much greater
attention than riverine particulate material, both in the
fluxes of elements to the oceans and the climatic implica-
tions (Gislason et al., 2006). Based on the water chemistry
and fluxes of the world’s major rivers, the global dissolved
riverine flux is estimated to be approximately 1 Gt yr�1

(Gaillardet et al., 1999, 2003; Viers et al., 2009). Global sed-
iment fluxes are somewhat more difficult to quantify due to
damming of rivers, data reliability issues, an absence of
bedload information on many rivers, many ungauged riv-
ers, uncertainties regarding the proportion of sediment that
reaches the ocean, and the huge fraction of particulate
material transported during flood events (Walling, 2006;
Syvitski, 2011). Moreover, estimates of riverine fluxes are
commonly derived from spot samples that are applied over
a longer time period. Particulate transport is more strongly
dependent on weather than dissolved transport and can
vary hourly (Gislason et al., 2006, 2008). Most particulate
matter flux estimates are restricted to suspended material,
which are estimated to have land-to-ocean fluxes of 15–
20 Gt yr�1 (Meybeck et al., 2003; Syvitski, 2003; Syvitski
et al., 2003; Walling, 2006; Peucker-Ehrenbrink et al.,
2010). Bedload fluxes are also difficult to quantify;

calculations based on lost reservoir storage and GIS
measurements suggest an annual sediment trapping of
4–25 Gt yr�1 (White, 2001; Vörösmarty et al., 2003). If it
is assumed that 40% of this material evades sedimentary
traps and reaches the ocean, then there is an additional glo-
bal bedload flux of 1.6–10 Gt yr�1 (Walling, 2006). This
additional bedload flux would increase the total land to
ocean global particulate flux estimate to 16.6–30 Gt yr�1.

These overall flux estimates illustrate that the mass
transport of particulate material is at least an order of mag-
nitude greater than the dissolved riverine transport of mate-
rial to the oceans. The importance of particulate riverine
transport varies significantly between elements due to their
distinct solubilities in river water. The relative fluxes of sus-
pended particulate material and dissolved species of ele-
ments to the oceans are shown in Fig. 1. Suspended
material fluxes dominate over dissolved fluxes for the
majority of elements (Oelkers et al., 2011). Of the metals,
only Na is greater in the dissolved flux, all others are dom-
inated by suspended material transport. For soluble ele-
ments such as Li, Mg, Ca, and Sr, suspended material
transport is less than an order of magnitude greater than
dissolved transport. For insoluble elements such as Al, Ti,
Fe, and Zr, however, suspended material transport fluxes
exceed dissolved material fluxes to the oceans by more than
a factor of 1000 (Gaillardet et al., 1999, 2003; Viers et al.,
2009). Note that these comparisons are based only on the
mass of suspended material transport; total riverine partic-
ulate transport to the oceans also includes the contribution

Fig. 1. The ratio of suspended flux to dissolved flux for selected elements transported from the continents to the oceans worldwide (Gaillardet
et al., 1999, 2003; Viers et al., 2009). These flux estimates are from comprehensive studies of global rivers and can therefore be considered for
direct comparison.
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of bedload transport, which would further increase the
dominance of particulate over dissolved transport.

The degree to which this particulate matter plays a role
in the compositional evolution of seawater depends on its
dissolution rate after it arrives in the ocean. The world’s
deltas and estuaries act like fluidized bed reactors and are
periodically reworked for days to months after arrival from
fluvial systems (Aller, 1998), so there is considerable time
for interaction between particulate matter and seawater
prior to deep burial. This interaction between deposited
particulate matter with saline pore fluids leads to a series
of diagenetic reactions that has been referred to in the liter-
ature as reverse weathering (Mackenzie and Garrels, 1966;
Michalopoulos and Aller, 1995; Zhu et al., 2006; Aller
et al., 2008; Dürr et al., 2009). Oelkers et al. (2011) con-
cluded that a Si dissolution rate of 1 � 10�16 mol cm�2 s�1

is sufficient to dissolve 1% of the riverine transported par-
ticulate material to the oceans annually. Of the particulate
material that arrives to the ocean, the more reactive frac-
tion originates from volcanic islands (Oelkers and Gislason,
2004; Wolff-Boenisch et al., 2004, 2006). This fraction con-
stitutes up to 45% of the total suspended flux globally
(Milliman and Syvitski, 1992). Basaltic glass dissolution
rates at the pH and temperature range of ocean waters
suggests that �0.05% of basaltic suspended material would
dissolve in seawater each day (Oelkers and Gislason, 2001;
Gislason and Oelkers, 2003; Jones and Gislason, 2008).
Even basaltic glass that is already severely weathered con-
tinues to dissolve when exposed to seawater (Stefánsdóttir
and Gislason, 2005). Gislason et al. (2006) and Wallmann
et al. (2008) concluded that the particulate flux of Ca that
subsequently dissolves in seawater is comparable to that de-
rived from the dissolved flux. Tracing and understanding
these contributions will constrain the current understanding
of ocean circulation, biological productivity, and element
cycling (Jeandel et al., 2011). This study aims to further illu-
minate the role of riverine transported particulate material

to the oceans on the global cycles of the elements through
the direct measurement of elements liberated to seawater
from particulate material dissolution.

2. MATERIALS AND METHODS

2.1. Sampling localities and methods

This study focuses on the reactivity of particulate sam-
ples obtained from the Hvı́tá River and the Borgarfjörður
Estuary in western Iceland (Fig. 2). Several studies have
previously focused on the major element and isotope
systematics of this river and estuary system (Gislason
et al., 1996; Gannoun et al., 2006; Pogge von Strandmann
et al., 2006, 2008a,b, 2011; Vigier et al., 2006; Georg
et al., 2007; Vigier et al., 2009; Pearce et al., 2010). These
studies provide the basis for understanding the interaction
between riverine particulate material and seawater in this
study. Iceland is ideal for identifying particle–fluid interac-
tions for a number of reasons. First, the dominantly
homogeneous basaltic geology of Iceland allows for the
elimination of lithological variability from weathering pro-
cesses. Second, there is a low biological influence as vegeta-
tion is comparatively sparse and soils are poorly developed.
Third, the oceanic boreal climate is well characterized,
with a mean annual temperature of 4 �C and a seasonal
variability of ±15 �C (Eythorsson and Sigtryggsson, 1971;
Saemundsson, 1979; Gislason et al., 1996). The mean
annual precipitation at these western Iceland sampling
sites is estimated to be between 770 and 1000 mm a�1

(Eythorsson and Sigtryggsson, 1971; Georg et al., 2007;
Pogge von Strandmann et al., 2008b).

The Hvı́tá River catchment covers approximately
1685 km2 and consists of mostly basaltic rock with some
minor felsic outcrops, all younger than 3.3 Ma (Gislason
et al., 1996; Tronnes, 2003). To the eastern part of the
catchment is the Langjökull icecap, so part of the

Fig. 2. A map of Borgarfjörður Estuary in western Iceland, showing the sample locations used in this study.
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transported particulate material is tilled. Glacial dominated
tributaries and spring-fed tributaries often have a high pH
due to isolation from atmospheric CO2. Hvı́tá River has both
spring and glacial components, and the pH measured close to
the mouth of the river is between 7.70 and 7.93 (Georg et al.,
2007; Pogge von Strandmann et al., 2008a; Pearce et al.,
2010). Physical erosion and chemical weathering rates are
estimated at 1090 and 72 t km�2 yr�1, respectively (Pogge
von Strandmann et al., 2006). The Borgarfjörður Estuary is
over 25 km long and up to 5 km wide. It is <2 m deep for
the first 5 km from the river mouth but then increases rapidly
to a depth of around 100 m after 10 km. The river discharge is
low, leading to a tide-dominated estuary that is both verti-
cally and horizontally well mixed.

Bedload material from the Hvı́tá River was collected from
a sandbank immediately adjacent to the main flow. Three
kilograms of material was collected and split between 1 L
plastic containers. The sampling location (see Fig. 2) was at
the confluence of the catchment (i.e. it includes contributions
from the Norðurá and Grimsá tributaries), but before the
start of the Borgarfjörður Estuary. Estuarine sediment was
collected �29 km away from the Hvı́tá River particulate
sample site, near the center of the Borgarfjörður Estuary
mouth (see Fig. 2). This site is approximately 20 km from
the mixing zone at high tide, and therefore the coexisting
brine is dominated by seawater. Temperature, pH, salinity,
and elemental concentrations demonstrate that the overlying
water-column has a predominantly marine composition at
this distance (Pogge von Strandmann et al., 2008b; Pearce
et al., 2010). Surface sediment was collected at a water depth
of �100 m using a weighted bucket dragged behind a boat

over a distance of �10 m. Three repeat passes yielded
>3 kg of material that was homogenized and split into three
separate sample pots. All solids were dried at 40 �C immedi-
ately after collection but no other processing was done. The
open-ocean surface water used in the closed system experi-
ments was collected from the sub-tropical North Atlantic
Ocean during the TOPOGULF cruise. The water represents
an amalgamation of surface water collected from the central
gyre and is consequently low in dissolved silica (0.28 ppm Si).
Open-ocean seawater was chosen for this study as an end
member of fluids present in the mixing zone. Moreover the
use of open-ocean seawater allows a clearer identification
of the effects of particulate–fluid interaction than the brack-
ish estuarine waters that have already interacted with partic-
ulates in the natural environment. The water was acidified to
pH 2 using 7 M HCl upon collection and was subsequently
stored in the dark. Prior to commencing the experiments
the pH was re-equilibrated to 8.1 at 21 �C using 1 M NaOH.

The specific Brunauer Emmett Teller (BET) surface
area, major elemental composition, and mineralogy of the
particulate material are shown in Table 1. The mineralogy
of the samples was determined by counting �300 grains
using a Scanning Electron Microscope (SEM). The olivines
present had a typical composition of Mg1.6Fe0.4SiO4 (for-
sterite > fayalite), although the SEM analysis suggested sig-
nificant H2O was present, indicative of partial alteration to
phyllosilicates. The feldspars fell into two distinct catego-
ries, bytownite (�Na0.2Ca0.8Al1.8Si2.2O8) and anorthoclase
(�Na0.7K0.2Ca0.1Al1.1Si2.9O8). Both the micro-crystalline
material and volcanic glass had compositions close to the
bulk sample. The mean grain sizes for the samples, as deter-
mined by SEM analysis, are �200 lm for the Hvı́tá riverine
bedload and �75 lm for the Borgarfjörður estuarine sedi-
ment. Despite the difference in grain size, the two samples
exhibit comparable BET surface areas, mineralogy, and
bulk compositions, with the exception of the presence of
minor calcite in the Borgarfjörður Estuary sample (see Ta-
ble 1). The presence of calcite in the Borgarfjörður Estuary
sample is consistent with the dominance of seawater in the
brine present at this sampling locality; note that seawater is
supersaturated with respect to calcite.

2.2. Experimental methods

Closed-system experiments were performed by reacting
bedload material from Hvı́tá River and surface sediment
from the Borgarfjörður Estuary with open-ocean seawater.
In total, four closed system experiments were performed.
Two experiments were performed with Hvı́tá River bedload
material; one at 5 and the other at 21 �C. Corresponding
experiments were also performed on the Borgarfjörður
Estuary surface sediment. Each experiment used 250 g of
particulate material and 900 ml seawater and ran for a per-
iod of 9 months. The reactors were periodically sampled,
taking 30 ml aliquots of fluid through a 0.22 lm filter. This
sample was divided; one sub-sample was used for pH mea-
surements and the second for elemental analysis. The reac-
tors were manually shaken weekly and after each sampling.
The removal of samples lowered the fluid volume by �25%
during the experiments.

Table 1
The BET surface areas, bulk compositions, 87Sr/86Sr isotopic
ratios, and mineralogical assemblage of the samples before the
experiments. Assemblages were estimated by grain counting using
Scanning Electron Microscopy.

Borgarfjörður Estuary Hvı́tá River

BET (m2 g�1) 7.357 6.358

SiO2 (%) 40.71 46.74
Na2O (%) 2.9 2.67
MgO (%) 8.52 8.17
Al2O3 (%) 12.83 15.24
P2O5 (%) 0.19 0.14
K2O (%) 0.45 0.28
CaO (%) 15.7 14.02
TiO2 (%) 2.44 1.45
MnO (%) 0.26 0.24
Fe2O3

* (%) 14.41 10.81
Sr (mg kg�1) 271.1 152.9
87Sr/86Sr 0.70629 0.70318

Microcrystalline (%) 50.25 55.07
Volcanic glass (%) 18.23 18.94
Ca feldspar (%) 10.84 10.57
Olivine (%) 7.39 7.93
Fe–Ti oxides (%) 4.93 4.41
K feldspar (%) 2.46 2.64
Quartz (%) 1.48 0.44
Calcite (%) 4.43 0

* Denotes total iron.
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Element analysis for both particulate and water samples
were conducted using an Agilent 7500 quadruple induc-
tively coupled plasma mass spectroscopy (Q-ICP-MS).
Samples of the original particulate material were dissolved
first using 1 ml HNO3 and 1 ml HF, evaporated, then at-
tacked again using 2 ml HCl and 1 ml HNO3 (aqua-regia)
prior to analysis. This digestion procedure resulted in com-
plete dissolution of the particulate samples. An In Re spike
was used for calibration purposes and total blank contribu-
tions were negligible compared to sample concentrations.
Uncertainties determined using replicate samples and stan-
dard measurements did not exceed ±5%, except where ele-
ment concentrations were below detection limits (see
Table 2), or where there was very high initial concentrations
in the seawater (e.g. Na). Silica concentrations in the solid
samples were determined using a fusion method and using
inductively coupled plasma atomic emission spectroscopy
(ICP-AES). Silica concentrations in the fluid samples were
ascertained by colorimetry on a Technicon auto-analyzer
using the Molybdate Blue method (Koroleff, 1976). The er-
ror on this method is ±4%.

The 87Sr/86Sr ratios for each sample were measured
using a VG Sector 54 thermal ionization mass spectrometer
(TIMS). Samples were evaporated, taken up in 3 M HNO3

and run through Sr-spec columns. The purified Sr was then
loaded onto outgassed Ta filaments. The samples were run
at 88Sr beam potentials of 2 V and 100 ratios were collected
using a multi-dynamic peak jumping routine. Resulting
87Sr/86Sr ratios were normalized to an 86Sr/88Sr ratio of
0.1194. Six analyses of the NBS 987 standard yielded an
average 87Sr/86Sr of 0.710232 ± 0.000011 (2 SD). The com-
monly accepted literature value is 0.710263 ± 0.000016
(Stein et al., 1997). Individual errors did not exceed
±0.000017 87Sr/86Sr. Total blanks (acid digestion, column
chemistry) for Sr were found to be negligible compared to
the Sr amounts from the samples.

The thermodynamic calculations presented in this study
were performed using the PHREEQC computer code
(Parkhurst and Appelo, 1999). The database used was
phreeqc.dat, with additional thermodynamic data on mag-
nesite, siderite, thomsonite, scolecite, mesolite, laumontite,
heulandite, analcime, Ca-stilbite, Ca-mordenite, Ca-clinop-
tilolite, Fe-celadonite, antigorite, amorphous SiO2,
amorphous FeOOH, amorphous Al(OH)3, gibbsite,
allophane, and imogolite taken from previous studies (Gysi
and Stefansson, 2008; Gudbrandsson et al., 2011). All
computer models assumed saturation with respect to atmo-
spheric CO2 and O2 at the measured temperature and pH.

3. RESULTS

3.1. Element release during dissolution

Dissolution of both the bedload material from the Hvı́tá
River and estuarine sediment from Borgarfjörður signifi-
cantly changed the elemental concentrations of the sur-
rounding seawater. The temporal variation of selected
major element concentrations in seawater is shown in
Fig. 3, while the complete range of measured element

concentrations and 87Sr/86Sr values of the reacted fluids
are shown in Table 2.

The concentrations of dissolved Si in seawater increase
markedly in all four experiments, indicating the dissolution
of primary silicate material. The greatest change in concen-
tration occurs in the Hvı́tá bedload experiment at 21 �C,
where the Si concentration rises from 0.28 to 6.18 ppm
(see Fig. 3). This concentration subsequently decreases over
time, although it remains relatively high at the end of the
experiment (4.8 ppm). The smallest change in Si concentra-
tion occurs in the Borgarfjörður sediment experiment at
5 �C, reaching 2.89 ppm by the end of the experiment. Tem-
perature has a greater effect on Si release than the identity
of the sample.

Other elements show considerable enrichment in seawater
during the experiments. In particular, Mn and Ni are consid-
erably enriched in seawater when reacted with the Hvı́tá
River bedload (Fig. 3), similar to previous work on weath-
ered basaltic glass/seawater experiments (Stefánsdóttir and
Gislason, 2005). Manganese concentrations increase to 0.8
and 2 ppm at 5 and 21 �C, respectively, in the Hvı́tá River
bedload experiments. Unlike Si, the behavior of Mn and Ni
in the Borgarfjörður estuarine sediment experiments con-
trasts with that of the Hvı́tá bedload experiments. Although
Mn initially increases it rapidly falls below detection in the
Borgarfjörður estuarine sediment experiments. Dissolved
Ni increased in all experiments, although to a greater extent
in the Hvı́tá River bedload experiments, increasing from
0.1 to >10 ppb at both temperatures. Other measured transi-
tion metals (Cu, Zn, and Mo) show various differences in
behavior between the bedload and estuarine samples, but
these numbers are close to or below the detection limit (see
Table 2). The concentrations of Fe, both in the original sea-
water and all reacted samples, remained below the analytical
detection limit of 20 ppb.

There is a significant difference in the alkali metal release
rates to seawater between the estuarine and riverine sam-
ples. The high concentrations of Na in seawater prevented
accurate measurements of any changes in concentration.
Both Li and K, however, decrease in the seawater reacted
with Hvı́tá River bedload material. In the case of Li the de-
crease is substantial, dropping from >150 to <50 ppb at
both temperatures (Fig. 3). In the case of K the decrease
in seawater concentrations are less pronounced, although
this is likely due to the abundance of K in seawater. In con-
trast, seawater in contact with Borgarfjörður estuarine
material displays slight increases of Li and K at both 5
and 21 �C. Therefore, unlike the Si release, the behavior
of alkali metals appears dependent on whether the material
has already been exposed to saline water.

The alkali earth metals, namely Mg, Ca, Sr, and Ba,
also show temporal concentration variations throughout
each experiment. These elements are generally enriched
in seawater when reacted with the Hvı́tá riverine bedload
material, especially Ba (Fig. 3). Mg and Ca also show
measureable increases greater than the statistical error,
while Sr fluctuates near the original seawater composition
(Table 2). The seawater reacted with estuarine material
from Borgarfjörður displays a large increase in Mg, Ca,
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and Sr concentrations. In contrast to the Hvı́tá bedload
material, the increase in Ba concentrations is minimal
(Fig. 3).

Solubility calculations were performed using the PHRE-
EQC computer code (Parkhurst and Appelo, 1999) to as-
sess the saturation states of various minerals; the

Fig. 3. The concentrations of selected elements in seawater when mixed with basaltic riverine and estuarine material in closed-system batch
reactors. The dashed lines indicate the concentrations in the original seawater. Error bars are shown for K, Mg, and Ca, for all other elements
the errors are within the size of the symbols.
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Table 2
The measured concentrations of measurable elements and 87Sr/86Sr values in seawater during the experiments.

Sample No. Tempera
-ture

Time Time Mass
solid

Mass
fluid

pH Si Li B Mg Al K Ca Mn Ni Rb Sr Cu Ba Zn Mo U 87Sr/86Sr

Units Celsius Hours Months grams grams ppm ppb ppm ppm ppb ppm ppm ppb ppb ppb ppm ppb ppb ppb ppb ppb

Hvı́tá 0 5 0 0 250.1 895.9 8.13 0.28 155 5.16 1546 181 447 455 0 0.1 130 8.85 0 7 39 13 3.4 0.709155
Hvı́tá 1 5 22 0.03 250.1 865.9 7.53 1.16 138 4.68 1500 190 414 521 104 1.6 137 8.65 3 120 63 11 0.3 0.708909
Hvı́tá 2 5 49 0.07 250.1 835.9 7.10 1.53 117 4.51 1520 221 414 519 122 2.6 133 8.73 3 156 39 10 0.1 0.708827
Hvı́tá 3 5 92 0.13 250.1 805.9 6.95 1.76 109 4.55 1538 184 416 529 130 2.7 134 8.79 3 175 47 10 0.0 0.708789
Hvı́tá 4 5 291 0.40 250.1 775.9 6.67 2.17 94 4.57 1594 183 430 550 171 4.2 138 9.16 3 205 44 9 0.0 0.708713
Hvı́tá 5 5 816 1.13 250.1 745.9 6.61 2.75 72 4.44 1558 149 420 538 306 4.6 135 9.02 3 216 43 8 0.0 0.708619
Hvı́tá 6 5 1632 2.27 250.1 715.9 6.70 3.09 64 4.44 1558 169 421 540 450 5.4 137 9.04 3 230 55 6 0.0 0.708564
Hvı́tá 7 5 3018 4.19 250.1 685.9 6.68 3.33 48 4.25 1496 142 398 516 589 6.6 131 8.78 2 220 41 5 0.0 0.708482
Hvı́tá 8 5 6042 8.39 250.1 655.9 6.65 3.61 44 4.29 1522 181 407 531 798 10.3 133 8.80 3 217 54 5 0.0 0.708472

Borgarfjörður 0 5 0 0 254.3 858.1 8.13 0.28 155 5.16 1546 181 447 455 0 0.1 130 8.85 0 7 39 13 3.4 0.709155
Borgarfjörður 1 5 22 0.03 254.3 828.1 8.11 1.21 224 4.89 1613 37 519 557 176 1.9 212 10.20 13 10 21 17 0.3 n.a.
Borgarfjörður 2 5 49 0.07 254.3 798.1 8.07 1.48 222 4.88 1694 64 524 625 160 1.5 175 11.07 21 8 31 16 0.3 n.a.
Borgarfjörður 3 5 92 0.13 254.3 768.1 8.04 1.82 201 4.89 1688 67 525 615 158 0.7 172 11.02 26 8 23 17 0.3 0.70915
Borgarfjörður 4 5 291 0.40 254.3 738.1 7.96 1.76 194 4.97 1745 43 532 637 131 1.3 166 11.02 23 8 30 17 0.4 n.a.
Borgarfjörður 5 5 816 1.13 254.3 708.1 7.69 2.20 193 5.36 1793 43 556 640 0 0.8 172 11.41 14 10 25 17 1.3 n.a.
Borgarfjörður 6 5 1632 2.27 254.3 678.1 7.76 2.40 183 5.22 1725 39 531 621 0 0.9 164 10.97 11 10 25 15 1.7 0.709164
Borgarfjörður 7 5 3018 4.19 254.3 648.1 7.71 2.63 166 5.01 1643 31 501 591 0 1.1 154 10.29 10 9 33 15 2.0 n.a.
Borgarfjörður 8 5 6042 8.39 254.3 618.1 7.71 2.89 170 5.27 1711 33 519 604 0 1.2 159 10.52 13 10 46 15 3.2 0.709152

Hvı́tá 0 21 0 0 250.9 907.1 8.13 0.28 155 5.16 1546 181 447 455 0 0.1 130 8.85 0 7 39 13 3.4 0.709155
Hvı́tá 1 21 22 0.03 250.9 877.1 7.18 1.87 113 4.55 1466 16 402 507 163 3.4 173 8.76 3 167 41 12 0.1 0.708753
Hvı́tá 2 21 49 0.07 250.9 847.1 6.86 2.66 87 4.70 1528 11 414 519 218 3.7 152 8.81 3 212 41 12 0.0 0.708675
Hvı́tá 3 21 92 0.13 250.9 817.1 6.74 3.24 80 5.05 1622 4 437 549 286 4.7 154 9.41 4 243 32 11 0.0 0.708609
Hvı́tá 4 21 291 0.40 250.9 787.1 6.66 6.18 58 4.95 1602 0 431 548 508 6.5 154 9.35 3 257 33 8 0.0 0.708514
Hvı́tá 5 21 816 1.13 250.9 757.1 6.65 5.24 44 4.88 1617 4 430 556 883 9.1 155 9.46 2 262 38 7 0.0 0.708424
Hvı́tá 6 21 1632 2.27 250.9 727.1 6.65 5.94 30 4.71 1577 8 421 554 1258 11.1 151 9.26 5 258 44 5 0.0 0.708363
Hvı́tá 7 21 3018 4.19 250.9 697.1 6.77 5.78 36 4.51 1530 7 408 540 1592 13.6 145 8.88 2 240 49 6 0.0 0.708352
Hvı́tá 8 21 6042 8.39 250.9 667.1 6.84 4.79 18 4.52 1635 1 427 576 1989 10.6 149 9.52 4 244 41 6 0.0 0.708330

Borgarfjörður 0 21 0 0 251.0 904.0 8.13 0.28 155 5.16 1546 181 447 455 0 0.1 130 8.85 0 7 39 13 3.4 0.709155
Borgarfjörður 1 21 22 0.03 251.0 874.0 8.07 1.75 200 5.27 1679 104 538 587 176 2.9 214 11.10 20 11 28 19 0.1 n.a.
Borgarfjörður 2 21 49 0.07 251.0 844.0 8.01 2.38 190 5.56 1718 9 547 600 181 0.6 191 11.01 19 12 22 18 0.2 n.a.
Borgarfjörður 3 21 92 0.13 251.0 814.0 7.97 2.71 186 5.73 1738 10 557 601 105 0.4 185 10.92 17 11 25 16 0.4 0.709147
Borgarfjörður 4 21 291 0.40 251.0 784.0 7.81 3.51 173 5.93 1728 4 553 584 35 0.6 183 10.71 16 10 22 18 0.8 n.a.
Borgarfjörður 5 21 816 1.13 251.0 754.0 7.69 4.28 201 6.38 1813 5 581 620 0 0.0 189 11.22 13 14 22 16 1.3 n.a.
Borgarfjörður 6 21 1632 2.27 251.0 724.0 7.67 4.92 192 6.35 1769 164 564 593 0 2.4 182 10.90 28 14 60 16 1.7 0.709151
Borgarfjörður 7 21 3018 4.19 251.0 694.0 7.62 5.17 190 6.11 1681 86 527 569 0 2.6 174 10.35 15 14 41 15 2.1 n.a.
Borgarfjörður 8 21 6042 8.39 251.0 664.0 7.59 4.59 172 6.08 1724 91 530 583 0 0.7 164 10.25 13 13 40 15 3.2 0.709171

Detection 14 0.04 0.01 46.3 1.8 4.9 0.01 3.0 1.2 0.31 3.3 1.4 3.2 0.9 0.3
Maximum
error (%)

0.05 0.02 14.6 2.27 2.3 >100 2.2 2.8 6.4 80.3 6.7 2.5 81.3 29.5 14.22 32.78 >100 0.000017

n.a.: denotes “not analyzed”, italics denote concentrations below the detection limit.
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saturation state of the reactive fluids with respect to selected
minerals is provided in Electronic Supplement. The carbon-
ate concentrations of these fluids were assumed to be in equi-
librium with atmospheric CO2 during the experiments. The
majority of the primary minerals are undersaturated in the
fluids. In the Hvı́tá bedload experiments at 5 and 21 �C, al-
bite, anorthite, enstatite, forsterite, and K-feldspar all be-
come more undersaturated with time, while diopside
becomes less supersaturated. In the Borgarfjörður estuarine
sediment experiments anorthite, enstatite, and forsterite re-
main undersaturated throughout the experiments and diop-
side remains supersaturated at both studied temperatures.
Both albite and K-feldspar change from undersaturated to
supersaturated with time during the Borgarfjörður estuarine
sediment experiments. The carbonate minerals aragonite,
calcite, dolomite, and strontianite all become undersaturated
and the SiO2 polymorphs chalcedony and quartz change
from undersaturated to saturated in all experiments through
time. Amorphous silica remains undersaturated.

Other minerals display a range of saturation states. In
the Hvı́tá bedload experiments, chlorite, illite, imogolite,
allophane, gibbsite, alunite, scolecite, and thomsonite all
change from supersaturated to undersaturated at both stud-
ied temperatures, with kaolinite becoming less supersatu-
rated and talc becoming more undersaturated. This is in
sharp contrast to the Borgarfjörður estuarine suspended
experiments, where alunite, gibbsite, chlorite, imogolite,
allophane, kaolinite, scolecite, and thomsonite all remain
saturated or supersaturated in the fluid phase at 5 and
21 �C. Illite and talc change from under- to supersaturated
with time at both temperatures.

3.2. Impact of dissolution on reacted seawater isotopic

compositions

The impact of particulate dissolution in seawater on mar-
ine isotopic compositions was assessed in these experiments

using the radiogenic Sr system. The evolution of 87Sr/86Sr
in the reacted seawater is shown as a function of elapsed time
in Fig. 4. The 87Sr/86Sr ratios of seawater reacted with the
Hvı́tá bedload material decrease continuously with time.
As the 87Sr/86Sr ratio of the original bedload material in these
experiments is 0.70318 (relative to the original seawater
87Sr/86Sr ratio of 0.70916), and the total Sr concentration
in the seawater is close to constant (Table 2), the observed
temporal evolution of the reacted seawater 87Sr/86Sr ratio
indicates the continuous two-way flux of Sr out of and into
the solids. In contrast, the 87Sr/86Sr ratios of seawater reacted
with the Borgarfjörður estuarine material remain relatively
constant. The two-way flux of Sr from the riverine bedload
can be due to (1) metal exchange, (2) adsorption, and/or
(3) the dissolution of primary material and concurrent pre-
cipitation of Sr-bearing secondary phases. In all likelihood
all three of these processes contribute. Assuming that the
Sr released to seawater had the same 87Sr/86Sr ratio as the
bulk particulate matter, the 87Sr/86Sr ratio of the reacted sea-
water can be calculated from the following mass balance
relationship:

87Sr=86Srfluid ¼
mSr;sw � 87Sr=86Srswð Þ þ mSr;solid � 87Sr=86Srsolidð Þ

mSr;sw þ mSr;solidð Þ
ð1Þ

where mSr,sw and mSr,solid denote the mass of Sr contained in
original seawater and that released from the solids, respec-
tively. The suffixes fluid, solid, and sw after 87Sr/86Sr denote
the isotopic ratio of the reacted seawater sample, original
particulate material, and original seawater, respectively.
Rearranging Eq. (1) yields:

mSr;solid ¼
mSr;sw

87Sr=86Srsw � 87Sr=86Srfluid

� �

87Sr=86Srfluid � 87Sr=86Srsolid

� � ð2Þ

which provides an estimate of the total Sr released from the
particulate material directly from the measured 87Sr/86Sr

Fig. 4. The measured 87Sr/86Sr ratios in seawater after reaction
with the particulate material. Each experiment had an initial
measured seawater 87Sr/86Sr of 0.70916 (labeled on y-axis). The
measured 87Sr/86Sr values of the particulate samples before the
experiments were 0.7063 for the Borgarfjörður estuarine material
and 0.7032 for the Hvı́tá bedload material. The errors are within
the size of the symbols.

Fig. 5. A comparison of the measured Sr concentrations in
seawater reacted with Hvı́tá bedload material at 5 �C with
corresponding calculated Sr concentrations from the measured
change in seawater 87Sr/86Sr. This assumes no Sr is incorporated
into secondary phases in the calculated concentrations. The error
bars on the measured line are from uncertainty in ICP-MS
measurements, the error bars on the calculated line are from
uncertainties associated with measurements of 87Sr/86Sr.
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ratio of the reacted seawater. Results of this calculation are
shown in Fig. 5. Based on this calculation it is estimated
that 3% of the total Sr present in this bedload material
was released during the 9 month long experiment. This cal-
culated flux is markedly different from the estimate ascer-
tained by considering the variation of the total Sr content
of the reacted seawater. In contrast, 87Sr/86Sr ratio analysis
of the Borgarfjörður sediment dissolution experiments
show that only a negligible fraction of the total original
Sr contained in this solid was released to seawater in this
experiment. Note that the calculations performed using
Eqs. (1) and (2) are based on the assumption that the Sr re-
leased to the fluid has the same 87Sr/86Sr ratio as the bulk
solid. This assumption is supported by the observation that
there is only a minor difference in the 87Sr/86Sr ratios be-
tween coexisting glasses and feldspars in evolved volcanic
rocks (Davies and Halliday, 1998) and therefore this differ-
ence should be negligible in basaltic rocks.

4. DISCUSSION

4.1. Comparison to natural system behavior

The experiments presented above indicate a significant
difference between the chemical interactions of Hvı́tá bed-
load and the Borgarfjörður sediment with seawater. The de-
gree to which this difference may be an artifact associated
with the drying of the samples, one of which was recovered
from fresh river water the other from saline estuary brine,
prior to their use in the experiments can be assessed using
mass balance calculations. The total mass of residual salts
precipitated on the particulates during drying can be esti-
mated assuming the particulate material has a porosity of
40%, consistent with a closed packed geometry and a
density of 3 g cm�3. Using the Hvı́tá River composition
reported by Pogge von Strandmann et al. (2008b), mass

balance calculations suggest that residual salts dissolution
would have increased the Li, K, and Ca concentration of
the reacted seawater during our experiments by 0.08 ppb,
0.13 ppm, and 1.06 ppm, respectively. This contrasts with
the observed behavior of these elements, as Li and K de-
crease markedly, while Ca increases by 61–95 ppm, in the
reacted seawater (Table 2). It seems likely therefore that
residual salt dissolution was insignificant during these
experiments. In contrast, parallel calculations indicate that
residual salts precipitated on the Borgarfjörður estuarine
material would result in an increase of 0.04 ppm Li,
392 ppm Mg, 0.3 ppm Si, 108 ppm K, 136 ppm Ca, and
2.3 ppm Sr in the reacted seawater. These values are compa-
rable to that observed in the experiments for all these ele-
ments except Mg and Si, suggesting that the observed
variation of Li, K, Ca, and Sr are dominated by the disso-
lution of residual salts. The extremely fast release of K, Mg,
and Ca from the Borgarfjörður sediment (Fig. 3) supports
the argument that these are due to readily dissolvable salts.
This conclusion is validated by the negligible variation in
reacted seawater 87Sr/86Sr ratio during the experiments de-
spite the increase in Sr concentrations. In contrast, the Mg
concentration increased less than and the Si concentration
increased more than that suggested by the residual salt cal-
culation. These calculations also indicated that the effect of
residual salt dissolution was negligible for transition metals
such as Mn and Ni.

Despite the likely effect of dissolved salts on the release
rates of some of the elements from the Borgarfjörður estu-
arine material, the differences in behavior between the river
and the estuary materials remain considerable. Fig. 6 shows
the relative enrichments of elements in the seawater reacting
with the Hvı́tá bedload material and Borgarfjörður estua-
rine material at 5 �C. The largest differences in behavior be-
tween the two samples after discounting for the
contribution of dissolved salts are exhibited by Ba, Mn,

Fig. 6. The ratio of the concentration of selected elements relative to that of the initial seawater in the Hvı́tá bedload and the Borgarfjörður
sediment experiment at 5 �C. The original seawater and final four Borgarfjörður reacted seawater Mn concentrations were below the detection
limit of 0.01 ppb, so this detection limit was adopted for these solutions to calculate the ratios shown in this figure. Therefore, Mn ratios
shown are likely to represent a lower limit of this ratio. The symbols match those described in the legend of Fig. 1.
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and Ni. The increases in Ba concentrations during the
Borgarfjörður estuarine experiments are minimal, while
the concentrations are over 30 times higher in the Hvı́tá
bedload experiments than the initial fluid (Table 2). The
metals Mn and Ni are released in both experiments but
are much more so in the Hvı́tá bedload experiment. The in-
creases in reacted seawater Mn concentrations shown in
Fig. 6 are likely to be underestimates as the detection limit
(0.01 ppb) was used as the value for the original seawater.
The behavior of Mn in the Borgarfjörður experiments is
noteworthy as concentrations only remain above the detec-
tion limit for about a month (see Table 2), suggesting that
Mn is subsequently incorporated into a precipitating sec-
ondary phase that does not immediately begin to precipi-
tate. A subsequent drop in seawater concentration is also
observed for Si and Ni (see Fig. 3). While Si concentrations
are elevated by more than an order of magnitude for all the
experiments, the residual salt corrected release from Hvı́tá
bedload material is greater by 25% than the corresponding
Borgarfjörður sample (Table 2).

The observations summarized above suggest that the
estuarine sediment’s prior exposure to saline water has al-
ready led to some release, exchange, and/or precipitation
of material in the estuary that has altered the reactivity of
the particulate material. This conclusion is consistent with
the behavior for the transition metals Cu, Cd, and Zn,
whose dissolved concentrations reach peaks in dissolved
concentrations in the middle part of another Icelandic estu-
ary (Ólafsdóttir and Ólafsson, 1999). As Ca, Si, Ni, and Mn
are essential nutrients required for marine primary produc-
tion (Bruland et al., 1991), it is clear that the continuous ar-
rival of riverine particulate material is fundamental to
maintaining the vitality of near coastal ecosystems (Jeandel
et al., 2011). Therefore, any change to sediment supply,
either increasing through elevated soil erosion, or decreas-
ing through damming, will have a significant impact on
nutrient availability in coastal areas around basaltic
terrains.

4.2. The potential role of basaltic particulate material

dissolution to ocean chemistry

The behavior of Sr isotopes in this investigation is clear
evidence for the substantial release of elements from river-
ine particulate material to the oceans. Experiments using
Hvı́tá riverine bedload material exhibit a large change in
seawater 87Sr/86Sr with little change in the total Sr concen-
trations. In contrast, the Borgarfjörður estuarine sediment
experiments exhibit an increase in total Sr concentration
and constant 87Sr/86Sr values around the starting value of
0.70916, suggesting that the Sr released to seawater origi-
nated from dissolved salts or the dissolution of phases pre-
cipitated in the estuary; negligible Sr originated from the
dissolution of primary solids (Fig. 4 and Table 2). The dif-
ference in behavior between the riverine bedload and estu-
arine material from the same catchment is most logically
accounted for by the prolonged contact of the latter with
marine and brackish water prior to sampling, such that
the Sr that is readily dissolvable/exchangeable from the
estuarine particulate material has already been added to

seawater. This is supported by the fact that the 87Sr/86Sr
composition in the Borgarfjörður estuarine sediment is
higher than the Icelandic riverine bedload material (Ta-
ble 1). The percent of the total original Sr released from
the Borgarfjörður estuarine sediment during its interaction
with seawater can be estimated if it is assumed that the
87Sr/86Sr ratio of the Borgarfjörður sediment is a mixture
of the original basaltic material and secondary phases with
the same 87Sr/86Sr composition as seawater. Based on this
hypothesis, 14.9% of Sr in the original basaltic material
can be inferred to have been dissolved while interacting
with estuarine waters.

The notable change in the seawater 87Sr/86Sr temporal
evolution in the Hvı́tá experiments with little change in to-
tal dissolved Sr concentrations implies that there is either a
rapid dissolution of Sr-bearing primary material
(87Sr/86Sr = 0.70318) that is coupled to the formation of
Sr bearing secondary phases, and/or that there is consider-
able exchange of Sr between the solid and fluid phases.
Mass balance equations using Eq. (2) suggest that the Hvı́tá
bedload material liberated 3.1% of its Sr, with much of this
release occurring within the first 24 h of the experiments.
The absence of contemporaneous increase in overall dis-
solved Sr concentrations (Fig. 5) strongly suggests that
the Sr release from the Hvı́tá bedload material is coupled
with the reverse flux of Sr into a solid phase.

The Sr isotopic system is not the only system to display
variations within Borgarfjörður Estuary. Measurements of
Li isotopes in suspended particulate matter show a linear
relationship between d7Li and 1/[Li] (Pogge von Strandmann
et al., 2008b), which suggests that suspended particles incor-
porate seawater Li into alteration minerals. Measurements
of Mo isotope variations in the Borgarfjörður Estuary
showed a dramatic drop in d98/95Mo at the mouth of the estu-
ary below that of both the incoming dissolved d98/95Mo in the
Hvı́tá River and seawater d98/95Mo values (Pearce et al.,
2010). The authors suggested this was due to the release of
isotopically light Mo adsorbed to particles or a change in re-
dox conditions, consistent with the non-conservative behav-
ior of U and the decrease in d7Li from the same samples
(Pogge von Strandmann et al., 2008b). The measurements
of Li, Mo, and U in this study each show decreases in
dissolved seawater concentrations during the Hvı́tá bedload
experiments and little change in the Borgarfjörður experi-
ments (Table 2). This suggests that these elements may be
adsorbed from seawater by incoming riverine particulates,
or are incorporated into precipitating secondary phases upon
arrival in the estuary, as observed for Sr in this study. As it is
commonly assumed that riverine isotope composition is con-
servatively transferred to the ocean, the observed net sink of
these elements into particulate phase has significant implica-
tions for the interpretation of the cycles of numerous
elements.

The 3.1% Sr release from the Hvı́tá bedload material in
seawater calculated from the change in 87Sr/86Sr using Eq.
(2) suggests that basaltic particulate dissolution could be
much greater than is evident from the changes in dissolved
element concentrations. Note that this Sr release rate is
likely independent of the fluid/solid ratio in our experi-
ments, because the saturation states of most of the primary
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minerals are strongly undersaturated. The fluid/solid ratio
will, however, have an effect of the saturation state of sec-
ondary minerals, which will affect the degree to which re-
leased elements are reincorporated into the solid phase.
The reactivity of the particulates in seawater is also evi-
denced by the increase of Si concentrations in all four
experiments points, an observation complemented by light
d30Si measurements indicative of basalt dissolution affect-
ing Si(OH)4 concentrations in waters around the basaltic is-
land of Kerguelen in the Southern Ocean (Fripiat et al.,
2011) and the long-held theory that silica in seawater is con-
trolled by silicate minerals (Mackenzie et al., 1967). Other
studies have observed that Nd isotopic compositions are
dramatically affected by interaction with basaltic particu-
late material on continental margins (Lacan and Jeandel,
2005; Arsouze et al., 2009).

All of this evidence suggests that riverine particulate
material dissolves to a significant extent once it arrives in
the ocean and that this dissolution can have important con-
sequences for global element fluxes. As can be seen in
Fig. 1, particulate transport dominates dissolved riverine
transport for the vast majority of elements globally. It fol-
lows from this figure that just a 1% release of an element
from particulate material would mean that particulate
material transport would be the primary riverine flux to
the ocean for numerous elements including Fe, Al, Cr,
and Zn, while being a considerable input of Si and Mn.
Note that this 1% is considerably less than the 3% of the
Sr released from the Hvı́tá bedload during the 9 month dis-
solution experiments presented above, and the 15% of the
Sr released based on the relative Sr isotope composition
of the riverine versus the estuarine particulate material.
This suggests that the dissolution of basaltic particulate
material in seawater may be an important and hitherto
overlooked component of global element cycles. Results
also indicate that a significant proportion of the mass dis-
solved into seawater is rapidly removed by the reincorpora-
tion into the solids. Although this process limits the degree
to which the overall concentrations of elements in seawater
are affected by the addition of particulate material, the dis-
solution of riverine transported particulates may greatly af-
fect the isotopic composition of seawater.

5. CONCLUSION

The results summarized above demonstrate that riverine
transported basaltic particulate material can significantly al-
ter the composition of seawater upon their arrival to the
ocean. Although the overall effect of this process is mitigated
in terms of the total concentration of many major elements in
seawater due to reincorporation into the solid phase, riverine
transported basaltic material–seawater interaction appears
to have a significant effect on two distinct processes:

(1) The release of numerous metal nutrients to near coast-
al waters: as riverine transported basaltic material–
seawater interaction appears to provide a substantial
quantity of these nutrients to reacted seawater, it can
be concluded that anthropogenic influences such as
increasing soil erosion and/or the damming of rivers,

and variations in natural cycles such as soil formation
or glaciations, could have an important effect on the
ecosystem health of near coastal waters.

(2) The isotopic composition of seawater: the dissolution
of primary particulate material has been demon-
strated to influence strongly the 87Sr/86Sr ratio of
reacted seawater. Mass balance calculations suggest
that similar variations are likely for other isotopic
systems. If such effects are shown to be general, river-
ine transported material–seawater interaction may
prove to be a major contribution to isotopic mass
balance in the global oceans.
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