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Abstract

Agents that interact in a distributed environ-
ment might increase their utility by behav-
ing optimally given the strategies of the other
agents. To do so, agents need to learn about
those with whom they share the same world.

This paper examines interactions among agents
from a game theoretic perspective. In this con-
text, learning has been assumed as a means to
reach equilibrium. We analyze the complexity
of this learning process. We start with a re-
stricted two—agent model, in which agents are
represented by finite automata, and one of the
agents plays a fixed strategy. We show that
even with this restrictions, the learning process
may be exponential in time.

We then suggest a criterion of simplicity, that
induces a class of automata that are learnable
in polynomial time.

Keywords: Distributed Artificial Intelligence, Learn-
ing, repeated games, automata

1 Introduction

Standard notions of equilibria in game theory involve
a set of players holding strategies, such that no player
can gain by deviating from his current strategy while
the others’ strategies stay fixed. This idea implicitly
assumes some degree of knowledge about the players’
strategies [?]. An obvious question is how this knowledge
came to be. One possible answer is to have the players
negotiate over their strategies. This solution cannot hold
in the absence of communication.

We are interested in the case in which the players don’t
communicate with each other, apart from observing each
other’s move. Thus the problem we pose in this work 1s
the problem of learning: how the players model their
opponent and compute their best response at the same

9This paper has been accepted to the workshop on Adap-
tation and Learning in Multiagent Systems, to be held at
The 1995 International Joint Conference on AI (IJCAI-95),
Montreal, August 1995

time? We are also interested in the complexity issue of
the learning process.

When a player is engaged in a repeated interaction,
he is in fact doing three things at the same time: first,
he is playing the game defined by the payoff structure
of the interaction, according to some strategy. If we at-
tribute the players some degree of rationality, this strat-
egy should be what the player believes is a best response
to his opponent’s strategy. Secondly, he is trying to learn
what his opponent’s strategy is. Note that the player’s
incentive to learn is limited to information that is rele-
vant for his own choice of strategy. The third behavior
the player might be involved in is what can be called
“training”. If the player assumes his opponent is also
trying to learn his strategy, he might try to influence the
opponent’s beliefs, so as to push him towards a prefer-
able strategy. For instance, in the repeated Battle of the
Sexes game (Figure 1) player T might consistently play
D, even at the cost of receiving a payoff of 0 for a period,
in order to “teach” player I7 to play R.
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Figure 1: The Battle of the Sexes game matrix

Much is yet to be done before a model allowing for
these three simultaneous behaviors is available. We ex-
amine a restricted setting: player A chooses a strategy
and plays by it. Player B tries to learn A’s strategy
and design her strategy as a best response to it. We re-
quire that B learn A’s strategy in polynomial time. We
assume A restricts herself to strategies realizable by De-
terministic Finite State Automata (DFS). We do so for
two reasons: on one hand, DFS strategies have been ac-
cepted widely as a model of bounded rationality. On the
other hand, learning the structure of an automaton has
been shown to be a very hard problem [Kearns and 777,

1994].



We focused, as an example, on the repeated game of
The Prisoner’s Dilemma (Fig. 2). However, most, if not
all, of our results can easily be generalized to a wider
class of two-person non-zero-sum games.
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Figure 2: The Prisoner’s dilemma game

1.1 Related Work

Finite automata players were suggested as a model of
bounded rationality, and as a means of resolving the
prisoner’s dilemma paradox, by Rubinstein [Rubinstein,
1985] and by Neyman [Neyman, 1985]. An extensive
survey of the relevant literature appears in [Kalai, 1990].
The basic concept underlying this trend is that the play-
ers are rational, but are constrained to submit automata
of limited size as their agents in the game. The num-
ber of states in the automata is accepted as a measure
of their complexity. A series of “folk theorems” have
shown that if the players are restricted to automata of
size sub-exponential in the game length (i.e. the number
of rounds) then cooperative behavior can be achieved at
equilibrium.

This line of work is, in a sense, contrapositional
to other common measures of complexity. Papadim-
itriou [Papadimitriou, 1992] has shown that as the bound
on the number of states of the automaton becomes more
restrictive, the problem of designing the optimal automa-
ton becomes harder. Fortnow and Whang [Fortnow and
Whang, 1994] were the first to assume total ignorance
of the opponent’s automaton. They show that in zero-
sum games, a rational player can discover an optimal
strategy w.r.t. the opponent’s automaton in polynomial
time, but in non-zero-sum games this is not the general
case.

The apparent dissent is perhaps made clear by the fol-
lowing observation: Let K4 be the limit on the number
of states in player A’s automaton. If player B is allowed
to use an automaton of size super-exponential in K 4, she
can construct an automaton that will be optimal against
any strategy of A. All B has to do, is to construct a 254
deep tree, that will enable her to identify A’s automa-
ton, then compute the best-reply automaton to every
K 4 size automaton, and attach it to the relevant branch
of the tree. This idea has two pitfalls from the point of
view of traditional complexity theory. First, it is obvious
that the time needed to construct such an automaton is
unacceptable. Second, allowing automata of such size
undermines the essence of computational learning the-
ory: this automaton is an “instant learning machine”.
In fact, it serves as a table of all possible states of the
world, replacing the desired decision process.

1.2 Outline of this paper

Section 2 unfolds the theoretical framework used in this
paper. A central concept introduced in this section is
that of automata supporting certain payoffs. The 1dea 1s
to restrict the automata to those displaying some level
of rational behavior, ensuring they cannot be exploited.

Section 3 addresses the issue of designing an automa-
ton tuned towards a specific equilibrium payoff. The
novelty of the work presented is not in the existence of
the equilibrium, but in the constructive proof, present-
ing a polynomial time algorithm. The reason we bring
this proof, is that we do not see any point in polynomial
time learning of strategies that cannot be designed in
polynomial time.

Section 4 is the focal point of this paper. In this sec-
tion we show that even restricting the set of automata
to those supporting rational payoffs is not sufficient to
make them learnable. A further criterion of simplic-
ity 1s needed. This criterion goes beyond the standard
number-of-states criterion.

2 Preliminaries

This paper examines the role of learning in two-person,
non-zero-sum repeated games. In this section we define
the concepts of games and game equilibrium.

Def. 1 [Games ]
A Game is a 3-tuple G = {N,«, I} Where:
e N 1is the number of players,
e a = {ailio1 N, o = {oﬂi...aém} is the set of
actions available to player i, and
o Il : x;a; — RY is the Payoff function, i.e. 1l as-
signs each player a real number payoff for any com-
bination of all players actions.

We will use m; to denote the payoff to player 1.

Def. 2 [Equilibrium ]

A (Nash) equilibrium in an n-player game is a set of
strategies, ¥ = {ot,..0™}, such that, given that for all i
player i plays o°, no player j can get a higher payoff by
playing a strateqy other then o’ .

Consider two players, A, and B, playing this game.
Each player’s strategy, o;, i € {A, B}, is a sequence of
actions taken by player i. Strategy i can be represented
by a deterministic finite (DFS) automaton where i’s ac-
tions are given in every state of the automaton and the
transitions are determined by the actions taken by ¢’s
opponent. For example if the automaton in Fig. 3 rep-
resents A’s strategy then, both players will stay in the
initial state if both perform cooperate. A will move to
the other state if he performs cooperate and B performs

defect (TTT-FOR-TAT).

Nowror

Figure 3: A’s strategy - example

When one or more players are restricted to playing
strategies realized by DFSs; the set of equilibria change.



We will always interpret the notion of equilibrium with
respect to the set of strategies available to each player.
For instance, in the repeated PD game, if all players
are rational, the only equilibrium is mutual defection
throughout the game. However Neyman [Neyman, 1985],
Rubinstein [Rubinstein, 1985] and others have shown
that even if only one player is restricted to an Automa-
ton with a limited number of states, any payoff pair in
the Individually Rational Region (Fig. 4) can be accom-
plished as an equilibrium payoft.

T Th\elndividual Rational Region

)

Figure 4: Payoffs of the PD game

We will denote the automaton that represents 1’s strat-
egy (i € {A, B}), and have @ states by AZ»Q. In this work,
we are concerned with connected automata. !

When playing against an automaton, the game history
is eventually cyclic. If player A is an automaton, and B
is indeed trying to maximize her payoff, it is enough for
her to consider only simple cycles in A (i.e. cycles in
which every state is passed only once). Thus, when con-
sidering the possible payoffs induced by an automaton,
it 1s sufficient to examine 1t’s simple cycles.

Def. 3 A cycle C' AZ»Q implements < «,F > f
M4(C) = and Mig(C) = B

Def. 4 A cycle C' in AZ»Q supports < a, 8 > of

1. C implements < «a, 3 >
2.V C" st Cimplements < a', 8 >, ifa’ < «
then B/ < f3

Def. 5 A cycle C' in AZQ e-supports < «, 3 > of it sup-
ports < o' B> st ||[<a’,f ' >—<a,f>]|<e¢

Def. 6 An automaton AZ»Q e-supports < o, > f AC' €
AZQ s.t. C e-supports < a, 3 >.

'In this we follow other researchers [Gilboa and Samet,
1989; Fortnow and Whang, 1994] who used this restriction
to avoid “infinitly vengeful” strategies. Connected automata
are such that have no disjoint states, i.e. for any states s, j
there is an input sequence that leads from ¢ to 7. Another
way to avoid unrevertable actions is to allow players to opt
out (see [Mor and Rosenschein, 1994; Mor, 1995]).

2Notice that if < a, 8 > is not a Nash equilibrium point
then it cannot be supported

3 Polynomial Time Design of an
Automaton Strategy

Theorem 1 EIAZQ, A?e-supports < o, > .(where e =
ex Q1)

Furthermore, there exists an algorithm that constructs
the appropiate automaton for any < «,f > in polyno-
meal time in Q.

Proof. For any given < «, 3 >, we have the equalities:
a=Kp T+ Ks - S+ Kr-R+Kp-P (1)
B=Ks - T+Kp-S+Kr-R+Kp-P (2)

where K, denotes the number of states in AZQ in which
player A gets the payoff 73. Without loss of generality,
we will assume P=0. In general we have, Kp 4+ Kg +
Kr+ Kp = K. We will first normalize these values,
getting Ko + Kg + Kr = 1 — Kp. Putting the above
equations in a matrix form we have the equation:

TSR Ky o
(STR).(KS):( ; )
111 Kpgp 1-Kp

Denote by M the above matrix, and by ¢ its determi-
nant.

§=T"-5*-2.R-(T-25)

. (I'—R) —(S—R) R(S—T)
M7t=-.| =(S-=R) (I'—-R) —R(T-25)
b S—T —(I'-S) T?-5

Now, we can deduce the coefficients of Equation 1 and
Equation 2 by fixing a value for Kp.

Kr = 3(a(f' = R)= (5 = R)+ (1 - Kp)R(S = 7)) (3)

| =

Kg =
K= (a(8 = 1) = B(I = 5) + (1= Kp)(T* = 5) (3)

We have normalized the coefficients values to 1, but
the sum of the coefficients should be the number of states
of the automaton AZ»Q, that is (). Hence, the final values
of the coefficients are given by :

Kp=Kp-Q, Ke =Ks-Q, Kr=Kr-Q, Kp = Kp-Q

(6)

We can now construct the desired automaton. The
construction consists of three stages:

o Construct a cycle Cjpp with % states that -
implements < «, 3 >, using the coefficients com-
puted above to determine the number of states of
each type.

® To be precise, this is the payoff the player gets in this
state when playing his optimal strategy at that point. We
will refer to the payoff that B gets as the type of this state.
The payoff is defined by the actions of both players, while
the state defines only the action of the automaton player.
However, the optimal or best response strategy is unique for
any state, even if the state under question would not have
been reached by an optimal strategy.

(—a(S—R)+8(T-R)—(1=Kp)R(T-15)) (4



o Construct a “punishment” chain Cpyp: % states in
which A plays D. The chain is linked so that B can
only escape from it by playing C' for % successive
rounds.

o link Cipp to Chun so that any deviation from the
cycle will lead to the first state in Cpun, and the
last punishing state is linked back to the first state
of the cycle.

This automaton e-supports < «, [ > because this is
the way we built it.

Notice that after we have computed the coefficients
from equations 4 to 6 (in O(1) time), we can build the
automaton by determining the action and the transitions
among the states in one pass over all states. o

4 Learnable and Unlearnable Strategies
4.1 An Unlearnable Automaton Strategy

Denote by TLB(Ag) the expected time that will take
player B to learn A’s automaton whose number of states

is bounded by @.
Theorem 2 EIA% s.t.
A TLp(AY) =Q(29) *
Proof.

For any < «,f >, we construct an automaton that
e-supports < «, 3 > as follows:

Age-supports < a,f >

o Build a cycle, Cyppyp that implements < o, § > as in
Theorem 1. Denote it the consensus cycle.

¢ Build the punishing chain, Cpy, that is based on
the automaton presented in [Fortnow and Whang,
1994]. The idea is to choose a random binary string
of Cs and Ds and to construct the punishing chain
so that B can escape from it only by following this
string.

Tt was shown in [Fortnow and Whang, 1994] that Chun
cannot be learnt in polynomial time. Therefore if B en-

ters Cpypn then T'Lp (Ag) = Q(29).

Lemma 2.1 B enters Cpypn with probability (1 — (%)%)
Proof. When B visits a state in the consensus cycle for
the first time, he has no information regarding which
action he should choose in order to stay in this cycle.
Hence with probability %, B stays in the consensus cycle

and with probability %, he enters Cpyn,. There are %

states in the consensus cycle, therefore the probability of

B following the whole consensus cycle is given by (%)%

and the probability of B entering Cpu, is (1 — (%)%)

]

*Exponential time might not disturb some researchers.
Many of the strategies discussed in the context of PD are
two or three state automata strategies. However, note that
the number of states defines the granularity of the grid of
possible payoff vectors. Thus, for instance, the class of two-
state automata allows for 10 distinct payoff vectors, only 3
or 5 of which are in the rational region (depending or the
relation between S, P, and R).

Figure 5 is an example of such an automaton for

3P+ 2R
5

a:ﬁ:

Figure 5: An Example of an Unlearnable Automaton
strategy

4.2 Learnable Automata Strategies

Our objective is to categorize a class of game-playing
automata that are learnable in polynomial time. The
categorization we propose is based on a criterion of sim-
plicity. Indeed, one motivation for studying automata-
based strategies was their relative simplicity. Although
the standard measure of complexity used for automata
1s the number of states, it obviously does not capture the
intuitive notion of complexity. Consider the automaton
we used as an example for unlearnability. Clearly, it is
more complex than an automaton with the same number
of states, which are all 1dentical.

Def. 7 [Cyimp] In the course of theorem 1 we defined
four types of states (see Footnote 3) in an automaton for
the PD game. We will group the states of the automaton
into chunks of connected (in the automaton graph) states
of the same type. Let #(A) be the number of states in
an automaton A, and #C(A) be the number of chunks of
equi-type states. We denote by <. the complezity relation
between two automata:

A<, Adf
1 #(4) < #(A)v
2. #(A) = #(A) AH#C(A) < #C(A)

The class of simple automata 1s:

Comp=A:I<a,8> st. Asupports <a,F> A
VA : A supports < a,f>=> A<, A

Theorem 3 The class Cyipp 25 learnable in polynomeal
time, i.e. TL(A%Y) = 0(Q)

Proof. The proof consists of the following stages:

First, we show a canonical structure of the automata
in Cgimp, then we compute the size of this class using
the canonical structure. This size is polynomial in the
number of states of the automata, therefore a polynomial
number of examples is sufficient to distinguish among the
different automata in the class.



Lemma 3.1 Any automaton in Cgimp consists of a con-
sensus cycle and a punishment chain.

Proof. By definition, an automaton A in Cymp 18 a
minimal-complexity automaton that supports a certain
< a,f >. Since it supports < «,F > it must have
at least one cycle that implements this payoff vector.
Among all these cycles, choose the one that is minimal
in complexity and call it the consensus cycle (i.e. Cipyp).
The transition table of the automaton holds two entries
for each state in the consensus cycle. One entry is part of
this cycle and the other is not, leading to another chain
which eventually will have a connection back to the con-
sensus cycle. We are left to prove that there 1s at most
one such chain. ~ ~
Assume the contrary. Choose the chain, €', s.t. Tp(C)
is minimal. Denote by sz a state in C that is accessed
from the consensus cycle. Redirect all the transitions out
of the consensus cycle to ss. Since all the other chains

different from C' and the consensus cycle are no longer
accessible, remove them. We have constructed an au-
tomaton that still supports < «, § > but has less states
than A in contradiction to A being in Cj;mp. Denote C
the punishment chain. a]

Lemma 3.2 All the states in the punishment chain are
of type S.

Proof. From Lemma 3.1, we know that there exists at
most one punishment chain in automaton A. Replace
this chain, Cpyn, by another one, C'/ . with the same
number of states which are all of type S. Denote by A’
the modified automaton.

TB(C pun) < T (Cpun) so if A supported < a, 3 > so
does A’. However, A" <, A (A" =, A when the states
in Cpyn are equi-type). therefore A € Clyjpp iff all the
states in Cpyupn Were equi-type.

By contradiction, assume all the states in Cpy, are
of type different from S. W.lo.g. assume this type is P.
Every chain ' # Cjpp in A can be decomposed into two
parts: a prefix of Cjp,p that will be denoted by h, and
Cpun- The average payoff of B in C is given by
Ky -7 + Arpun - P

A7h + [{pun
where K}, is the number of states in h, Ky, is the num-
ber of states in Cpyup and 7 is the average payoff that
B receives in h.
Let K, be the number of states in Cpy, when they

are all of type S and 73(6’) remains unchanged.

73(6') =

Ky -7p + Kpyn - P . Ky 'ﬁh+[\/7;,un -5
Kp + Kpyn - K+ K ;nm
Ky - (ﬁh - P)

K- (Th—P)+e
Therefore K 7, < Kpyn in contradiction to the as-
sumption that A is in Clsipmp. o

K n < Kpun

pun

,e> 0

Lemma 3.3 For each automaton A € Cyimp, and for
each type of state t, there is at most one chunk of states
of type t wn A.

Proof. By contradiction: assume that 34 € Cyypmpdt
s.t. there is more than one chunk of states of type ¢
in A. We construct an automaton A that supports the
same payoff vector, and A <. A. This contradicts A
being in Cyimp: all we have to do is to group all the
states of type t together. a]

Lemma 3.4 [Cyim,p| < 41Q3

Proof. There are four possible types of states, therefore
by Lemma 3.3 there could be at most four chunks. Hence
there are 4! possible ways to arrange them. Each chunk
has at most () states, but the number of states in one
of the chunks is determined by the size of the others.
Therefore there are less than @2 possible combinations
of chunks’ sizes for each of the 4! arrangements. o

We have shown that for every Q, the number of au-
tomata with O(Q) states in Clyipmp is polynomial in Q.
Therefore, player B could enumerate all the possible au-
tomata and he could learn which automaton is A’s in
time polynomial in A’s automaton’s size. This completes
the proof of Theorem 3. o

4.3 An example of a learning algorithm

So far, we dealt with all payoff vectors in the individually
rational region. However, the range of possible payoffs
requires a more detailed inspection in our context.

In the setting we studied, player A designs an automa-
ton that is “tuned” towards a certain payoff vector, and
player B tries to learn that automaton and play accord-
ingly. It is reasonable that A will choose an automaton
that gives B a payoff of P (or P 4+ ¢), so as to maximize
his own payoff. However, we might want to allow more
complex situations, emerging from various possible be-
liefs of the players. Consider, for instance a setting in
which B can opt out of the game, and be matched with
a different partner. If both players believe B can re-
ceive an expected payoff of 8 if he opts out, then A will
construct his automaton so as to award B at least § in
equilibrium ®. Let us assume that A restricts himself to
strategies that grant B a payoff of at least 8 at equi-
librium. Still; among all these strategies, A will choose
that which maximizes his own payoff. Consider again
the graph in Figure 4. Given that A maximizes his pay-
off for a certain minimal payoff he attributes to B, the
only possible payoffs to be received by both players can
be represented in the upper and rightmost boundaries.
The first line is defined by Kg + K7 = 1 and the second
is defined by Kp + Kg = 1.

Assuming player B knows that A’s automaton is sim-
ple, i.e., A’s automaton is in Cjmp, We construct the
following learning algorithm for B (see Figure 6). Notice
that B doesn’t know how many states there are in A’s
automaton (Q). In the algorithm LearnSR(Q), B could
have played C all the time in order to play according to
A’s automaton (a chunk of S type states connected to
a chunk of T type states). But, if B would have played
so, A could have taken advantage of that and play D

®this observation coincides with empirical data on human
behavior [Roth et al., 1991]



LearnRT(Q):
Kr=0
Repeat )
Learn(Q): Play C for Kg times
Play Play D
If payoff = S then Play D
LearnSR(Q) If payoff = P then
else Kr— Kr+1
LearnRT(Q) else breaf?
g =10
LearnSR(Q): While (payoff = T) {
For 1=1 to oo Play D
Play C for 2° times Ks— Kg+1
Play D for 4° times
} epeat )
Play C for K times

flay D for Kg times

Figure 6: The Learning algorithm

forever. Hence we have added in B’s learning algorithm,
a step where B will play D to prevent A from abusing
him. B will discover the size of Q in polynomial time
since he will know it after log, steps.

5 Conclusions and Future Work

When players do not communicate about their actions,
it might take each of them exponential time to find the
best response to his opponent’s strategy. We have shown
that this holds even if one of the players is playing a fixed,
Nash—equilibrium strategy.

We have first defined the notion of an automaton that
supports a payoff vector < «, 8 >. We have also pre-
sented an algorithm to design an automaton that sup-
ports a certain payoff vector to be received by the play-
ers if they play according to it. We have shown that the
complexity of this algorithm is polynomial in the num-
ber of states of the automaton. The reason for deriving
this proof is that we do not see any point in polynomial
time learning of strategies that cannot be designed in
polynomial time.

We have defined the class of automata C;pp that can
be learned in polynomial time and we have also given
an example sub-class for which we have specified the
learning algorithm.

Other issues that need to be further investigated re-
gard extensions of the results presented in this paper:
In the Prisoner’s dilemma, a player can punish his oppo-
nent without harming himself. An interesting question is
which payoffs can be supported when this doesn’t hold.

In some games, equilibria in pure strategies do not
exist, players must randomize their actions. It might be
possible to use unlearnable automata in order to create
pseudo-random strategies.

In this work we have confined ourselves to a scenario in
which one player remains static and the other is adap-
tive. A more general model will need to account for
mutual learning. In such a model, players have to learn
non-fixed strategies. Furthermore, players may attempt
to manipulate each other’s learning process.

We have shown the existence of a learning algorithm

for the class of simple automata, but have not con-
structed an algorithm. The automata learning litera-
ture [Rivest and Schapire, 1993; Kearns and 777, 1994]
shows how to construct such algorithms, when “homing
sequences” are available - input sequences that guaran-
tee a certain state is reached. A side-effect of Lemma 3.2
is to identify such a sequence: Once the learning player
1s thrown out of the consensus cycle, she can return to its
first state by playing C' for a known number of rounds.
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