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Learn Your Opponent's Strategy(in Polynomial Time)!�Yishay Mor and Claudia V. Goldman and Je�rey S. RosenscheinComputer Science DepartmentHebrew UniversityGivat Ram, Jerusalem, Israelph: 011-972-2-658-5353 fax: 011-972-2-658-5439email: yish@cs.huji.ac.il, clag@cs.huji.ac.il, je�@cs.huji.ac.ilAbstractAgents that interact in a distributed environ-ment might increase their utility by behav-ing optimally given the strategies of the otheragents. To do so, agents need to learn aboutthose with whom they share the same world.This paper examines interactions among agentsfrom a game theoretic perspective. In this con-text, learning has been assumed as a means toreach equilibrium. We analyze the complexityof this learning process. We start with a re-stricted two{agent model, in which agents arerepresented by �nite automata, and one of theagents plays a �xed strategy. We show thateven with this restrictions, the learning processmay be exponential in time.We then suggest a criterion of simplicity, thatinduces a class of automata that are learnablein polynomial time.Keywords: Distributed Arti�cial Intelligence, Learn-ing, repeated games, automata1 IntroductionStandard notions of equilibria in game theory involvea set of players holding strategies, such that no playercan gain by deviating from his current strategy whilethe others' strategies stay �xed. This idea implicitlyassumes some degree of knowledge about the players'strategies [?]. An obvious question is how this knowledgecame to be. One possible answer is to have the playersnegotiate over their strategies. This solution cannot holdin the absence of communication.We are interested in the case in which the players don'tcommunicate with each other, apart from observing eachother's move. Thus the problem we pose in this work isthe problem of learning: how the players model theiropponent and compute their best response at the same0This paper has been accepted to the workshop on Adap-tation and Learning in Multiagent Systems, to be held atThe 1995 International Joint Conference on AI (IJCAI-95),Montreal, August 1995

time? We are also interested in the complexity issue ofthe learning process.When a player is engaged in a repeated interaction,he is in fact doing three things at the same time: �rst,he is playing the game de�ned by the payo� structureof the interaction, according to some strategy. If we at-tribute the players some degree of rationality, this strat-egy should be what the player believes is a best responseto his opponent's strategy. Secondly, he is trying to learnwhat his opponent's strategy is. Note that the player'sincentive to learn is limited to information that is rele-vant for his own choice of strategy. The third behaviorthe player might be involved in is what can be called\training". If the player assumes his opponent is alsotrying to learn his strategy, he might try to inuence theopponent's beliefs, so as to push him towards a prefer-able strategy. For instance, in the repeated Battle of theSexes game (Figure 1) player I might consistently playD, even at the cost of receiving a payo� of 0 for a period,in order to \teach" player II to play R.I IIL RT 1 2 0 0D 0 0 2 1Figure 1: The Battle of the Sexes game matrixMuch is yet to be done before a model allowing forthese three simultaneous behaviors is available. We ex-amine a restricted setting: player A chooses a strategyand plays by it. Player B tries to learn A's strategyand design her strategy as a best response to it. We re-quire that B learn A's strategy in polynomial time. Weassume A restricts herself to strategies realizable by De-terministic Finite State Automata (DFS). We do so fortwo reasons: on one hand, DFS strategies have been ac-cepted widely as a model of bounded rationality. On theother hand, learning the structure of an automaton hasbeen shown to be a very hard problem [Kearns and ???,1994].



We focused, as an example, on the repeated game ofThe Prisoner's Dilemma (Fig. 2). However, most, if notall, of our results can easily be generalized to a widerclass of two-person non-zero-sum games.A BD CD P P T SC S T R RFigure 2: The Prisoner's dilemma game1.1 Related WorkFinite automata players were suggested as a model ofbounded rationality, and as a means of resolving theprisoner's dilemma paradox, by Rubinstein [Rubinstein,1985] and by Neyman [Neyman, 1985]. An extensivesurvey of the relevant literature appears in [Kalai, 1990].The basic concept underlying this trend is that the play-ers are rational, but are constrained to submit automataof limited size as their agents in the game. The num-ber of states in the automata is accepted as a measureof their complexity. A series of \folk theorems" haveshown that if the players are restricted to automata ofsize sub-exponential in the game length (i.e. the numberof rounds) then cooperative behavior can be achieved atequilibrium.This line of work is, in a sense, contrapositionalto other common measures of complexity. Papadim-itriou [Papadimitriou, 1992] has shown that as the boundon the number of states of the automaton becomes morerestrictive, the problem of designing the optimal automa-ton becomes harder. Fortnow and Whang [Fortnow andWhang, 1994] were the �rst to assume total ignoranceof the opponent's automaton. They show that in zero-sum games, a rational player can discover an optimalstrategy w.r.t. the opponent's automaton in polynomialtime, but in non-zero-sum games this is not the generalcase.The apparent dissent is perhaps made clear by the fol-lowing observation: Let KA be the limit on the numberof states in player A's automaton. If player B is allowedto use an automaton of size super-exponential inKA, shecan construct an automaton that will be optimal againstany strategy of A. All B has to do, is to construct a 2KAdeep tree, that will enable her to identify A's automa-ton, then compute the best-reply automaton to everyKA size automaton, and attach it to the relevant branchof the tree. This idea has two pitfalls from the point ofview of traditional complexity theory. First, it is obviousthat the time needed to construct such an automaton isunacceptable. Second, allowing automata of such sizeundermines the essence of computational learning the-ory: this automaton is an \instant learning machine".In fact, it serves as a table of all possible states of theworld, replacing the desired decision process.

1.2 Outline of this paperSection 2 unfolds the theoretical framework used in thispaper. A central concept introduced in this section isthat of automata supporting certain payo�s. The idea isto restrict the automata to those displaying some levelof rational behavior, ensuring they cannot be exploited.Section 3 addresses the issue of designing an automa-ton tuned towards a speci�c equilibrium payo�. Thenovelty of the work presented is not in the existence ofthe equilibrium, but in the constructive proof, present-ing a polynomial time algorithm. The reason we bringthis proof, is that we do not see any point in polynomialtime learning of strategies that cannot be designed inpolynomial time.Section 4 is the focal point of this paper. In this sec-tion we show that even restricting the set of automatato those supporting rational payo�s is not su�cient tomake them learnable. A further criterion of simplic-ity is needed. This criterion goes beyond the standardnumber-of-states criterion.2 PreliminariesThis paper examines the role of learning in two-person,non-zero-sum repeated games. In this section we de�nethe concepts of games and game equilibrium.Def. 1 [Games ]A Game is a 3-tuple G = fN;�;�g Where:� N is the number of players,� � = f�igi=1:::N , �i = f�i1 : : :�iMig is the set ofactions available to player i, and� � : �i�i ! RN is the Payo� function, i.e. � as-signs each player a real number payo� for any com-bination of all players actions.We will use �i to denote the payo� to player i.Def. 2 [Equilibrium ]A (Nash) equilibrium in an n-player game is a set ofstrategies, � = f�1; ::�ng, such that, given that for all iplayer i plays �i, no player j can get a higher payo� byplaying a strategy other then �j .Consider two players, A, and B, playing this game.Each player's strategy, �i, i 2 fA;Bg, is a sequence ofactions taken by player i. Strategy i can be representedby a deterministic �nite (DFS) automaton where i's ac-tions are given in every state of the automaton and thetransitions are determined by the actions taken by i'sopponent. For example if the automaton in Fig. 3 rep-resents A's strategy then, both players will stay in theinitial state if both perform cooperate. A will move tothe other state if he performs cooperate and B performsdefect (TIT-FOR-TAT).
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dFigure 3: A's strategy - exampleWhen one or more players are restricted to playingstrategies realized by DFSs, the set of equilibria change.



We will always interpret the notion of equilibrium withrespect to the set of strategies available to each player.For instance, in the repeated PD game, if all playersare rational, the only equilibrium is mutual defectionthroughout the game. However Neyman [Neyman, 1985],Rubinstein [Rubinstein, 1985] and others have shownthat even if only one player is restricted to an Automa-ton with a limited number of states, any payo� pair inthe Individually Rational Region (Fig. 4) can be accom-plished as an equilibrium payo�.
S P R TSPRT HHHHHHTTTTTT������������������������The Individual Rational Region���=

Figure 4: Payo�s of the PD gameWe will denote the automaton that represents i's strat-egy (i 2 fA;Bg), and have Q states by AQi . In this work,we are concerned with connected automata. 1When playing against an automaton, the game historyis eventually cyclic. If player A is an automaton, and Bis indeed trying to maximize her payo�, it is enough forher to consider only simple cycles in A (i.e. cycles inwhich every state is passed only once). Thus, when con-sidering the possible payo�s induced by an automaton,it is su�cient to examine it's simple cycles.Def. 3 A cycle C in AQi implements < �; � > if�A(C) = � and �B(C) = �Def. 4 A cycle C in AQi supports < �; � >2 if1. C implements < �; � >2. 8 C' s.t. C' implements < � 0; � 0 >, if � 0 < �then � 0 < �Def. 5 A cycle C in AQi �-supports < �; � > if it sup-ports < � 0; � 0 > s.t. k < � 0; � 0 > � < �; � > k � �Def. 6 An automaton AQi �-supports < �; � > if 9C 2AQi s.t. C �-supports < �; � >.1In this we follow other researchers [Gilboa and Samet,1989; Fortnow and Whang, 1994] who used this restrictionto avoid \in�nitly vengeful" strategies. Connected automataare such that have no disjoint states, i.e. for any states i; jthere is an input sequence that leads from i to j. Anotherway to avoid unrevertable actions is to allow players to optout (see [Mor and Rosenschein, 1994; Mor, 1995]).2Notice that if < �;� > is not a Nash equilibrium pointthen it cannot be supported

3 Polynomial Time Design of anAutomaton StrategyTheorem 1 9AQi , AQi �-supports < �; � > .(where � =c�Q�1)Furthermore, there exists an algorithm that constructsthe appropiate automaton for any < �; � > in polyno-mial time in Q.Proof. For any given < �; � >, we have the equalities:� = KT � T +KS � S +KR �R+KP � P (1)� = KS � T +KT � S +KR �R+KP � P (2)where K� denotes the number of states in AQi in whichplayer A gets the payo� �3. Without loss of generality,we will assume P=0. In general we have, KT + KS +KR + KP = K. We will �rst normalize these values,getting KT + KS + KR = 1 � KP . Putting the aboveequations in a matrix form we have the equation: T S RS T R1 1 1 ! � KTKSKR ! =  ��1�KP !Denote by M the above matrix, and by � its determi-nant. � = T 2 � S2 � 2 �R � (T � S)M�1 = 1� �0@ (T �R) �(S � R) R(S � T )�(S �R) (T � R) �R(T � S)S � T �(T � S) T 2 � S2 1ANow, we can deduce the coe�cients of Equation 1 andEquation 2 by �xing a value for KP .KT = 1� (�(T � R)� �(S �R) + (1�KP )R(S � T )) (3)KS = 1� (��(S � R) + �(T �R)� (1�KP )R(T � S)) (4)KR = 1� (�(S � T ) � �(T � S) + (1�KP )(T 2 � S2)) (5)We have normalized the coe�cients values to 1, butthe sum of the coe�cients should be the number of statesof the automaton AQi , that is Q. Hence, the �nal valuesof the coe�cients are given by :K0T = KT �Q; K0S = KS �Q; K 0R = KR �Q; K 0P = KP �Q(6)We can now construct the desired automaton. Theconstruction consists of three stages:� Construct a cycle Cimp with Q2 states that �-implements < �; � >, using the coe�cients com-puted above to determine the number of states ofeach type.3 To be precise, this is the payo� the player gets in thisstate when playing his optimal strategy at that point. Wewill refer to the payo� that B gets as the type of this state.The payo� is de�ned by the actions of both players, whilethe state de�nes only the action of the automaton player.However, the optimal or best response strategy is unique forany state, even if the state under question would not havebeen reached by an optimal strategy.



� Construct a \punishment" chain Cpun: Q2 states inwhich A plays D. The chain is linked so that B canonly escape from it by playing C for Q2 successiverounds.� link Cimp to Cpun so that any deviation from thecycle will lead to the �rst state in Cpun, and thelast punishing state is linked back to the �rst stateof the cycle.This automaton �-supports < �; � > because this isthe way we built it.Notice that after we have computed the coe�cientsfrom equations 4 to 6 (in O(1) time), we can build theautomaton by determining the action and the transitionsamong the states in one pass over all states.4 Learnable and Unlearnable Strategies4.1 An Unlearnable Automaton StrategyDenote by TLB(AQA) the expected time that will takeplayer B to learn A's automaton whose number of statesis bounded by Q.Theorem 2 9AQA s.t. AQA�-supports < �; � >^ TLB(AQA) = 
(2Q) 4Proof.For any < �; � >, we construct an automaton that�-supports < �; � > as follows:� Build a cycle, Cimp that implements < �; � > as inTheorem 1. Denote it the consensus cycle.� Build the punishing chain, Cpun that is based onthe automaton presented in [Fortnow and Whang,1994]. The idea is to choose a random binary stringof Cs and Ds and to construct the punishing chainso that B can escape from it only by following thisstring.It was shown in [Fortnow and Whang, 1994] that Cpuncannot be learnt in polynomial time. Therefore if B en-ters Cpun then TLB(AQA) = 
(2Q).Lemma 2.1 B enters Cpun with probability (1� (12 )Q2 ).Proof. When B visits a state in the consensus cycle forthe �rst time, he has no information regarding whichaction he should choose in order to stay in this cycle.Hence with probability 12 , B stays in the consensus cycleand with probability 12 , he enters Cpun. There are Q2states in the consensus cycle, therefore the probability ofB following the whole consensus cycle is given by (12 )Q2and the probability of B entering Cpun is (1 � (12)Q2 ).4Exponential time might not disturb some researchers.Many of the strategies discussed in the context of PD aretwo or three state automata strategies. However, note thatthe number of states de�nes the granularity of the grid ofpossible payo� vectors. Thus, for instance, the class of two-state automata allows for 10 distinct payo� vectors, only 3or 5 of which are in the rational region (depending or therelation between S, P , and R).

Figure 5 is an example of such an automaton for� = � = 3P + 2R5
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dFigure 5: An Example of an Unlearnable Automatonstrategy4.2 Learnable Automata StrategiesOur objective is to categorize a class of game-playingautomata that are learnable in polynomial time. Thecategorization we propose is based on a criterion of sim-plicity. Indeed, one motivation for studying automata-based strategies was their relative simplicity. Althoughthe standard measure of complexity used for automatais the number of states, it obviously does not capture theintuitive notion of complexity. Consider the automatonwe used as an example for unlearnability. Clearly, it ismore complex than an automaton with the same numberof states, which are all identical.Def. 7 [Csimp] In the course of theorem 1 we de�nedfour types of states (see Footnote 3) in an automaton forthe PD game. We will group the states of the automatoninto chunks of connected (in the automaton graph) statesof the same type. Let #(A) be the number of states inan automaton A, and #C(A) be the number of chunks ofequi-type states. We denote by <c the complexity relationbetween two automata:A <c ~A if:1. #(A) < #( ~A)_2. #(A) = #( ~A) ^#C(A) < #C( ~A)The class of simple automata is:Csimp � A : 9 < �; � > s:t: A supports < �; � > ^8 ~A : ~A supports < �; � >) A <c ~ATheorem 3 The class Csimp is learnable in polynomialtime, i.e. TLB(AQA) = O(Q)Proof. The proof consists of the following stages:First, we show a canonical structure of the automatain Csimp, then we compute the size of this class usingthe canonical structure. This size is polynomial in thenumber of states of the automata, therefore a polynomialnumber of examples is su�cient to distinguish among thedi�erent automata in the class.



Lemma 3.1 Any automaton in Csimp consists of a con-sensus cycle and a punishment chain.Proof. By de�nition, an automaton A in Csimp is aminimal-complexity automaton that supports a certain< �; � >. Since it supports < �; � > it must haveat least one cycle that implements this payo� vector.Among all these cycles, choose the one that is minimalin complexity and call it the consensus cycle (i.e. Cimp).The transition table of the automaton holds two entriesfor each state in the consensus cycle. One entry is part ofthis cycle and the other is not, leading to another chainwhich eventually will have a connection back to the con-sensus cycle. We are left to prove that there is at mostone such chain.Assume the contrary. Choose the chain, ~C, s.t. �B( ~C)is minimal. Denote by s ~C a state in ~C that is accessedfrom the consensus cycle. Redirect all the transitions outof the consensus cycle to s ~C . Since all the other chainsdi�erent from ~C and the consensus cycle are no longeraccessible, remove them. We have constructed an au-tomaton that still supports < �; � > but has less statesthan A in contradiction to A being in Csimp. Denote ~Cthe punishment chain.Lemma 3.2 All the states in the punishment chain areof type S.Proof. From Lemma 3.1, we know that there exists atmost one punishment chain in automaton A. Replacethis chain, Cpun, by another one, C 0pun, with the samenumber of states which are all of type S. Denote by A'the modi�ed automaton.�B(C 0pun) � �B(Cpun) so if A supported < �; � > sodoes A'. However, A0 �c A (A0 =c A when the statesin Cpun are equi-type). therefore A 2 Csimp i� all thestates in Cpun were equi-type.By contradiction, assume all the states in Cpun areof type di�erent from S. W.lo.g. assume this type is P.Every chain ~C 6= Cimp in A can be decomposed into twoparts: a pre�x of Cimp that will be denoted by h, andCpun. The average payo� of B in ~C is given by�B( ~C) = Kh � �h +Kpun �PKh +Kpunwhere Kh is the number of states in h, Kpun is the num-ber of states in Cpun and �h is the average payo� thatB receives in h.Let K 0pun be the number of states in Cpun when theyare all of type S and �B( ~C) remains unchanged.Kh � �h +Kpun � PKh +Kpun = Kh � �h +K 0pun � SKh +K 0punK 0pun � Kpun � Kh � (�h � P )Kh � (�h � P ) + � ; � > 0Therefore K 0pun < Kpun in contradiction to the as-sumption that A is in Csimp.Lemma 3.3 For each automaton A 2 Csimp, and foreach type of state t, there is at most one chunk of statesof type t in A.

Proof. By contradiction: assume that 9A 2 Csimp9ts.t. there is more than one chunk of states of type tin A. We construct an automaton ~A that supports thesame payo� vector, and ~A <c A. This contradicts Abeing in Csimp: all we have to do is to group all thestates of type t together.Lemma 3.4 jCsimpj < 4!Q3Proof. There are four possible types of states, thereforeby Lemma 3.3 there could be at most four chunks. Hencethere are 4! possible ways to arrange them. Each chunkhas at most Q states, but the number of states in oneof the chunks is determined by the size of the others.Therefore there are less than Q3 possible combinationsof chunks' sizes for each of the 4! arrangements.We have shown that for every Q, the number of au-tomata with O(Q) states in Csimp is polynomial in Q.Therefore, player B could enumerate all the possible au-tomata and he could learn which automaton is A's intime polynomial in A's automaton's size. This completesthe proof of Theorem 3.4.3 An example of a learning algorithmSo far, we dealt with all payo� vectors in the individuallyrational region. However, the range of possible payo�srequires a more detailed inspection in our context.In the setting we studied, player A designs an automa-ton that is \tuned" towards a certain payo� vector, andplayer B tries to learn that automaton and play accord-ingly. It is reasonable that A will choose an automatonthat gives B a payo� of P (or P + �), so as to maximizehis own payo�. However, we might want to allow morecomplex situations, emerging from various possible be-liefs of the players. Consider, for instance a setting inwhich B can opt out of the game, and be matched witha di�erent partner. If both players believe B can re-ceive an expected payo� of � if he opts out, then A willconstruct his automaton so as to award B at least � inequilibrium 5. Let us assume that A restricts himself tostrategies that grant B a payo� of at least � at equi-librium. Still, among all these strategies, A will choosethat which maximizes his own payo�. Consider againthe graph in Figure 4. Given that A maximizes his pay-o� for a certain minimal payo� he attributes to B, theonly possible payo�s to be received by both players canbe represented in the upper and rightmost boundaries.The �rst line is de�ned by KR+KT = 1 and the secondis de�ned by KR +KS = 1.Assuming player B knows that A's automaton is sim-ple, i.e., A's automaton is in Csimp, we construct thefollowing learning algorithm for B (see Figure 6). Noticethat B doesn't know how many states there are in A'sautomaton (Q). In the algorithm LearnSR(Q), B couldhave played C all the time in order to play according toA's automaton (a chunk of S type states connected toa chunk of T type states). But, if B would have playedso, A could have taken advantage of that and play D5this observation coincides with empirical data on humanbehavior [Roth et al., 1991]



Learn(Q):Play CIf payo� = S thenLearnSR(Q)elseLearnRT(Q)LearnSR(Q):For i=1 to 1 fPlay C for 2i timesPlay D for 4i timesg
LearnRT(Q):KR = 0Repeat fPlay C for KR timesPlay DPlay DIf payo� = P thenKR  KR + 1else breakgKS = 0While (payo� = T) fPlay DKS  KS + 1gRepeat fPlay C for KR timesPlay D for KS timesgFigure 6: The Learning algorithmforever. Hence we have added in B's learning algorithm,a step where B will play D to prevent A from abusinghim. B will discover the size of Q in polynomial timesince he will know it after log2 steps.5 Conclusions and Future WorkWhen players do not communicate about their actions,it might take each of them exponential time to �nd thebest response to his opponent's strategy. We have shownthat this holds even if one of the players is playing a �xed,Nash{equilibrium strategy.We have �rst de�ned the notion of an automaton thatsupports a payo� vector < �; � >. We have also pre-sented an algorithm to design an automaton that sup-ports a certain payo� vector to be received by the play-ers if they play according to it. We have shown that thecomplexity of this algorithm is polynomial in the num-ber of states of the automaton. The reason for derivingthis proof is that we do not see any point in polynomialtime learning of strategies that cannot be designed inpolynomial time.We have de�ned the class of automata Csimp that canbe learned in polynomial time and we have also givenan example sub-class for which we have speci�ed thelearning algorithm.Other issues that need to be further investigated re-gard extensions of the results presented in this paper:In the Prisoner's dilemma, a player can punish his oppo-nent without harming himself. An interesting question iswhich payo�s can be supported when this doesn't hold.In some games, equilibria in pure strategies do notexist, players must randomize their actions. It might bepossible to use unlearnable automata in order to createpseudo-random strategies.In this work we have con�ned ourselves to a scenario inwhich one player remains static and the other is adap-tive. A more general model will need to account formutual learning. In such a model, players have to learnnon-�xed strategies. Furthermore, players may attemptto manipulate each other's learning process.We have shown the existence of a learning algorithm

for the class of simple automata, but have not con-structed an algorithm. The automata learning litera-ture [Rivest and Schapire, 1993; Kearns and ???, 1994]shows how to construct such algorithms, when \homingsequences" are available - input sequences that guaran-tee a certain state is reached. A side-e�ect of Lemma 3.2is to identify such a sequence: Once the learning playeris thrown out of the consensus cycle, she can return to its�rst state by playing C for a known number of rounds.References[Aumann and Brandenburger, 1991] R. Aumann andA. Brandenburger. Epistemic conditions for Nashequilibrium. Working Paper 91-042, Harvard BusinessSchool, 1991.[Fortnow and Whang, 1994] L. Fortnow and D. Whang.Optimality and domination in repeated games withbounded players. Technical report, Department ofComputer Science University of Chicago, Chicago,1994.[Gilboa and Samet, 1989] I. Gilboa and D. Samet.Bounded vs. unbounded rationality: The tyranny ofthe weak. Games and Economic Behavior, 1:213{221,1989.[Kalai, 1990] Ehud Kalai. Bounded rationality andstrategic complexity in repeated games. In T. Ichi-ishi, A. Neyman, and Y. Tauman, editors, Game The-ory and Aplications, pages 131{157. Academic Press,San Diego, 1990.[Kearns and ???, 1994] David Kearns and ??? Learning??? ??? MIT press, Cambridge, Massachusetts, 1994.[Mor and Rosenschein, 1994] Yishay Mor and Je�rey S.Rosenschein. Time and the prisoner's dilemma, 1994.Submited to the 1995 International Conference onMultiagent Systems.[Mor, 1995] Yishay Mor. Computational approaches torational choice. Master's thesis, Hebrew University,1995. In preparation.[Neyman, 1985] A. Neyman. Bounded complexityjusti�es cooperation in �nitely repeated prisoner'sdilemma. Economic Letters, pages 227{229, 1985.[Papadimitriou, 1992] Christos H. Papadimitriou. Onplayers with a bounded ,number of states. Games andEconomic Behavior, 4:122{131, 1992.[Rivest and Schapire, 1993] R. Rivest and R. Schapire.Inference of �nite automata using homing sequences.Information and Computation, 103:299{347, 1993.[Roth et al., 1991] Alvin E. Roth, Vesna Prasnikar,Mashiro Okuno-Fujiwara, and Shmuel Zamir. Bargin-ing and market behavior in jerusalem, ljubljana, pitts-burg, and tokyo: an experimantal study. In ???, pages1068{1095, ???, 1991. ???[Rubinstein, 1985] A. Rubinstein. Finite automata playthe repeated prisoner's dilemma. ST/ICERD Discus-sion Paper 85/109, London School of Economics, 1985.


