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This paper reports on a design experiment in the 
domain of number sequences conducted in the course of  
the WebLabs project.  We iteratively designed and tested a 
set of activities and tools in which 10-14 year old students 
used the ToonTalk programming environment to construct  
models  of  sequences  and  series,  and  then  shared  their 
models and their observations about them utilising a web-
based collaboration system.  We report on the evolution of 
a design pattern (programming method) called ‘Streams’ 
which  enables  students  to  engage  in  the  process  of  
summing  and  ‘hold  the  series  in  their  hand’,  and  
consequently make sophisticated arguments regarding the 
mathematical  structures  of  the  sequences  without  
requiring the use of algebra.  While the focus of this paper 
is mainly on the design of activities, and in particular their  
epistemological foundations, some illustrative examples of  
one group of students’ work  indicate the potential of the 
activities and tools for expressing and reflecting on deep  
mathematical ideas.

1 INTRODUCTION

This paper reports on a set of activities designed 
for students to construct number sequences and sum them, 
and consequently  to  be encouraged to  reason and argue 
about the structure of number sequences, both face to face 
and at  a  distance.   It  is  an initial  component of a more 
general  effort  in  which  they  engaged  in  a  range  of 
mathematical activities exploring issues such as cardinality 
and convergence.

Pattern  recognition  and  generalisation  are 
fundamental  to  mathematical  thinking  and  a  fruitful 
pathway  into  algebraic  thinking.  In  the  words  of  John 
Dossey  (1998)  “From  whence  does  algebra  grow?  It  
grows from the  study of  growth itself.   One of  the first  
places students see growth is when they look at patterns  
and patterns of numbers” (p 20). Kieran (1997) reviews 
several  examples  of  how  activities  originating  in 
observation of patterns in numeric or graphical sequences 
can create opportunities for introducing algebraic thinking. 
Sasman et al (1999) note that such an approach is implicit 
in the design of many national curricula, yet, as noted by 
Zazkis & Liljedahl (2002), most of the research focuses on 
either  fundamental  counting  sequences  or  on  advanced 
mathematical concepts.  At one end of the spectrum we 
find studies such as Steffe (1988; 1994) and Olive (2001) 
which  illuminate  the  construction  of  the  basic  number 
sequence at an early age.  At the other we find Davis & 
Vinner  (1986),  Tall  &  Schwarzenberger  (1978),  Cornu 
(1991) and, more recently, Oehrtman (2003), Kidron et al 
(2001),  Sriskanda (2003), and Floris (2004), all discussing 
learning of limits of sequences and functions, typically in 
the context of advanced high-school and college students. 

In between these extremes, the literature is dominated by the 
potentials and issues emerging from observing number patterns. 

Mason (1996) notes that school algebra is traditionally 
centred on numbers, and on functions of numbers. Observing 
and  reasoning  about  patterns  in  number  sequences  is  an 
opportunity  for  learners  to  experience  the  process  of 
mathematical generalisation.  Yet at the same time, a number of 
researchers, including Radford (2000) and Noss  et al (1997), 
point  to  the  difficulties  students  encounter  in  shifting  from 
pattern  spotting  to  structural  understanding.   Students  often 
tend  to  base  their  conclusions  on  superficial  or  incidental 
patterns they observe in the sequence, rather than on arguments 
referring  to  its  structure.   Although  the  use  of  structural 
reasoning increases modestly with age, Küchemann & Hoyles 
(2005) note that empirical reasoning remains widespread.  The 
study  reported  here  attempts  to  address  the  gap  between 
fundamental  and  advanced  concepts,  by  designing  learning 
experiences  which  allow  students  to  construct  bridges  from 
their  primary  intuitions  to  mathematical  concepts  of  number 
sequences and series.

In  the  case  of  number  sequences,  some  of  the 
aforementioned  researchers  have  suggested  that  one  of  the 
obstacles to developing an appreciation of structure is students’ 
tendency  towards  a  recursive  view,  that  is,  identifying  the 
relationship between consecutive terms rather than its general 
rule of the sequence (e.g. describing the sequence described by 
the function f: x →  2x + 1 as "add 2"). 

Several  attempts  have  been  made  to  explain  these 
difficulties. Cottrill et al (1996) use APOS theory, while others 
propose  co-variation,  correspondence,  or  a  property-oriented 
view (Confrey & Smith, 1994; Salvit, 1997).  Regardless of the 
interpretative framework, two observations are universal: first, 
that number-pattern spotting is a predominant solution strategy, 
and second that the recursive form is a predominant description 
strategy.  Indeed, pattern spotting lacks the definitiveness of a 
formal argument,  and the recursive form does not  generalise 
easily  to  functions  of  the  real  numbers  (f:R→R).   Yet  the 
association  between  recursive and  lack  of  structure suggests 
that  in  some cases,  researchers  might be confusing structure 
with representation.  Consider the sequence:   1, 4, 7, 10…
It can be represented in closed form, as: an=13∗n

Or recursively as:  a0=1 ; an=an−13

Both  are  functions.   One  is  a  function  of  the  natural 
numbers,  the  other  a  function  of  the  previous  term.   Yet 
whereas  the  former  conflicts  with  base  intuitions,  the  latter 
stems from them.  The disassociation between the perceived 
structure of the sequence and its taught representation means 
that  the  student  needs  to  tackle  two  seemingly  unrelated 
challenges:  the  mathematical  object  and  the  algebraic 
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representation.  The result is, as noted in Noss et al (1997, 
p 205): 

… algebraic  formulation  is  often  disconnected 
from  the  activity  which  precedes  it,  a 
meaningless  extra  that  neither  illuminates  the 
problem nor provides a means for validating its 
solution.  Algebra  is  viewed  as  an  endpoint,  a 
problem solution in itself rather than a tool for 
problem solving.

From  a  design  point  of  view,  the  challenge  is  to 
construct learning environments that are contiguous with 
existing  knowledge,  rather  than  seeking  to  replace  it. 
Weigand (1991) has posited that iteration sequences offer 
rich mathematical experiences that should be exploited in 
activity design.  We too start from the supposition that we 
need to construct activities and tools that allow students to 
start  from intuitive  forms,  formalise  them,  and  develop 
alternative ways to explore problem situations. 

2 AN  ALTERNATIVE  REPRESENTATION  FOR 
SEQUENCES

This study adopts, in common with our approach 
over  many  years,  the  harnessing  of  a  programming 
language  as  a  medium of  mathematical  expression  that 
builds  on  students’  intuitive  ideas  of  a  particular 
mathematical  domain  (see  Noss  &  Hoyles,  1996,  for  a 
historical  overview  of  this  approach,  and  its  rationale). 
The idea of developing alternative representational forms 
has  a  concrete  consequence  in  the  domain  of  number 
sequences.   Traditionally, the predominant representation 
of a sequence in computer programming was as a  list: an 
ordered set of items.  This abstract definition needs to be 
implemented with respect to the particulars of the chosen 
language.  Common educational implementations attempt 
to  capture  the  essence  of  the  formal  definition  of  a 
sequence, as a function  f:N  → R.  These representations 
are  static  –  at  any  given  point  in  time,  their  content  is 
fixed.  Additionally while lists are not limited in length and 
can be extended on the fly, any actual list at any given time 
is, of course, finite.  This could be a source of epistemic 
conflict.  While we talk about infinite lists, the objects we 
manipulate are inherently finite, and the algorithms used 
are  geared  towards  finiteness.  Furthermore,  by 
emphasising  the  f:N  → R formalisation  of  sequences  it 
risks  a  conflict  with  students’  recursive  intuition 

 f :an an1 . 

Sacristán (1997) proposes an alternative approach 
that uses recursive programs as a representation of infinite 
sequences.  She  focused  on  establishing  intuitions  by 
visualising  the  sequences,  an  approach  which  proved 
successful. However, she stresses the need to supplement 
this approach with alternative representations in terms of 
numeric values.  This was achieved by allowing students 
directly to manipulate the code that instantiated the visual 
representation. Seeing the visualisation and the sequence 
unfold together gradually allowed the students to consider 
the sequence as a process and object and helped them to 
identify  local  structure.   Such  a  dual  view,  argue  Sfard 

(1991),  Tall  and  Gray  (1993),  and  others,  is  fundamental  to 
mathematical  thinking.  Sacristán’s  design  called  for  task 
specific  programs,  which  balanced  functional  richness  with 
code simplicity, so that students could observe the visualisation 
and  then  tweak  the  code  that  produces  it.  Unfortunately, 
simplicity  is  often  achieved  at  the  price  of  generality.   A 
function created to display one sequence cannot be used to plot 
another.   Arguably,  this  can  be  overcome  by  a  minor  code 
change.   Yet  we  may  want  students  to  work  with  code 
components  as  building  blocks   without  the  need  to  recode 
them.

We  propose  an  alternative  approach  that  generates  the 
terms dynamically, as these are needed.  This is precisely the 
idea  behind  the  Stream structure.   A stream  is  a  dynamic 
representation  of  a  sequence.   In  object  oriented  languages 
(such as JAVA or C++) it is implemented by an object with a 
read ( ) method (function) which retrieves the next term every 
time it is invoked. The idea of ‘streams’ is not new. Abelson & 
Sussman (1996, section 3.5) noted, for example:

If  time is  measured  in  discrete  steps,  then  we can 
model  a  time  function  as  a  (possibly  infinite) 
sequence. … we will  … model change in terms of 
sequences  that  represent  the  time  histories  of  the 
systems  being  modeled.  To  accomplish  this,  we 
introduce new data structures called streams. From an 
abstract point of view, a stream is simply a sequence. 
However,  we  will  find  that  the  straightforward 
implementation  of  streams as  lists  … doesn't  fully 
reveal the power of stream processing. 

Shapiro (1988) explains why ‘streams’ are most useful in 
concurrent  systems,  those  in  which  many  processes  are 
executed in parallel.  Streams provide a structured mechanism 
of  dividing  work  between  processes  using  an  assembly  line 
metaphor: every process sends out a stream of outputs, which 
are passed as a stream of inputs to the next.  While process II is 
busy, say, with the 5th term, process I is already generating the 
6th, and process III can work on the 4th. Streams are used as a 
fundamental mechanism in UNIX for communicating between 
applications and operating system processes (SUN, 2005) and 
the primary input – output framework in Java (Eckel, 2002).  In 
many scenarios, streams have computational advantages over 
lists. A detailed comparison is, however, beyond the scope of 
this paper.

In educational contexts, the potential of streams would 
most likely be realised in concurrent languages, and one such – 
ToonTalk (Kahn,  1996)  –  was  utilised  in  the  present  study. 
ToonTalk is  a  language  and  a  programming  environment 
designed  to  be  accessible  by  children from a  wide range  of 
ages,  without  compromising  computational  and  expressive 
power.   It  does  so  by  embedding  complex  programming 
constructs in a video-game setting as shown in Figure 1.  In 
ToonTalk,  every  programming  structure  is  concretised  as  an 
animated cartoon object: robots (labelled 2 in Figure 1) stand 
for programs, boxes (labelled 3) for data structures, birds (5) 
for message sending, nests (6) for message receiving, scales for 
comparisons,  trucks  for  process  spawning,  and  bombs  for 
process termination.  The toolbox (11) contains the data types 
and  operators,  while  the  notebook  (12)  provides  a  standard 
library of stored procedures.

2006 Research Information Ltd.  All rights reserved.
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Figure 1  The ToonTalk Environment

The  user  directly  manipulates  objects  using  a 
virtual ‘hand’ (labelled 1 in Figure 1), or with tools such as 
the magic wand for copying (labelled 8), vacuum cleaner 
(9) for cutting, pasting and erasing or bicycle pump (10) 
for changing object size. Programs are created by training 
a robot – directly leading it through the steps of a task it is 
required  to  perform.   The  robot  remembers  what  it  is 
trained to do, but only for the specific set of values with 
which  it  was  ‘trained’.  These  are  stored  in  the  robot’s 
thought  bubble  (7).  The  robot’s  memory  can  then  be 
generalised by ‘vacuuming’; that is, by erasing the values 
and  leaving  an  empty  slot  for  ‘any  value’.   Thus  the 
concept of variables is  introduced implicitly through the 
programming  metaphors.  Needless  to  say,  this  mode  of 
programming is very different from that used in traditional 
text-based  languages,  and  induces  different  patterns  and 
styles of problem solving.

The implementation of  ‘streams’ in  ToonTalk is 
straightforward (Mor  et al,  2004).  A robot generating a 
‘stream’ uses a box with the internal variables it needs and 

a  bird  for  carrying  the  terms  out.   A robot  processing  that 
stream uses a box in which it holds the nest of the bird from the 
first robot.  Robots can be chained in this manner to construct 
complex  “assembly  lines”  from  simple  self-contained 
processes.   Furthermore,  ToonTalk is  a  concurrent  language, 
which  means  that  several  programs  (robots)  can  run 
concurrently.  This allows us to generate a sequence and add up 
its  terms at  the  same time,  while  keeping the  two processes 
clearly distinguishable. 

As we noted above, children’s intuition of sequences 
tends to be predominantly recursive.  The stream design pattern 
allows us to capture this intuition and formulate it as code.  A 
typical implementation would use an internal variable to store 
the value of the previous term, and use that to generate the next. 
For  example,  consider  the  sequence  an =  2n.   In  order  to 
generate  it,  a robot needs a  box with two holes: one for the 
current value, and one for the output bird.  The robot iteratively 
multiplies the current value by two and passes a copy of the 
result to the bird, as illustrated in Figure 2.

Give the robot its input box The robot multiplies ‘current’ by 2 And passes a copy to the bird

The  bird  will  carry  it  to  its 
nest

Sequence  terms  are  stacked  on  the 
nest

While the robot repeats its actions indefinitely.

Figure 2: Generating the powers of 2 sequence
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We  have  mentioned  the  importance  of 
maintaining a cohesive process-product view of sequences. 
In traditional list programming, the process (generating the 
sequence) is decoupled from the product (an enumeration 
of  the first  n terms).  Similarly,  the relationship between 
successive terms of the sum series is lost, as each one is 
computed independently from the original list.  A stream is 
an object which ties together the process and the product. 
This is particularly true in a language such as  ToonTalk, 
which allows the user to observe the execution of code, by 
watching the  animated components  of  the  program play 
out their programmed behaviour.  Decomposing a complex 
structure into a chain of simple ones encourages students 
to  toggle  between  the  process  view  (in  this  case, 
“summing  up”)  and  the  product  /  object  view  (in  this 
example, the sequence of sums).

A final rationale for the stream approach concerns 
the nature of infinity and its (unsurprising) difficulty as a 
concept for learners. Several researchers (Tirosh, 1991; Li 
& Tall, 1993; Falk and Lavy, 1989; Dubinsky et al, 2005) 
have  commented  on  the  tension  between  potential  and 
actual  infinity.   Any  manifestation  of  infinity  in  a 
computational  medium is  inevitably  potential,  since  the 
computer’s memory and processing power is finite.  The 
stream  pattern  is  as  close  as  possible  to  this  intuitive 
concept  of  infinity;  it  will  continue  providing  terms 
indefinitely  until  it  is  interrupted.   It  can  also  possibly 
provide a bridge towards the conception of actual infinity: 
since it is not possible to count the length of a stream (as is 
possible with lists), the stream object itself represents all 
terms of the sequence – ad infinitum.  Again, the power of 
streams is not in the representation of any specific infinite 
process  –  but  in  the  possibility  of  combining  and 
manipulating infinite processes.

2.1 The Experimental Context

The  work  reported  here  formed  part  of  the 
WebLabs Project (www.weblabs.eu.com, European Union, 
Grant  #  IST-2001-32200),  which  aimed  to  explore  new 
ways  of  constructing  and  expressing  mathematical  and 
scientific  knowledge  in  communities  of  young  learners. 
Our  approach  brought  together  two  traditions: 
constructionist  learning as  described by  Harel  & Papert 
(1991) and collaborative  knowledge-building in the spirit 
of Scardamalia & Bereiter (1994).  We use ToonTalk as our 
primary platform for construction, building open ‘toolsets’ 

for students to construct models, and supplementing these with 
other appropriate tools as necessary (for example, Excel).  As a 
parallel and intimately related development, we have designed 
and built a web-based collaboration system called WebReports 
for  sharing  and  discussing  these  constructions.   This  system 
allows students to seamlessly embed their models in free form 
text documents they publish them on the web.  Thus the central 
tenets of the approach are that  students simultaneously  build 
and  share  models of their emerging mathematical knowledge. 
The details of the system have been described elsewhere, by, 
for example, Mor et al (2005), and  Simpson et al (2006). 

Alongside the technical development, a main focus of 
WebLabs was  on  designing  and  testing  a  set  of  activity 
sequences  to  support  learning.   Our  activities  followed  a 
common pattern.  We identify our learning aims and then began 
each  activity  sequence  by  discussing  an  intriguing 
mathematical  theme.   We  encourage  students  to  propose 
conjectures or derive concrete questions to explore, which are 
then  formulated  by  us  into  modelling/programming  tasks. 
Students  complete  these  tasks  individually  or  in  pairs  and 
publish their individual models (ToonTalk programs) along with 
their observations about them, in personal  webreports (we use 
WebReports to refer to the system and  webreports to refer to 
actual  documents  within  it).   Students  are  encouraged  to 
comment on each other’s models, which are then used as input 
to  an  instructor-led  group  discussion.   The  product  of  this 
discussion is  a  group webreport which represents  the shared 
understandings of the group, a process that encourages students 
to reflect on their work, to acknowledge the need to construct 
rigorous  arguments  for  their  claims,  and  to  negotiate  socio-
mathematical  and  socio-technical  norms  within  the 
(international) community, using the terminology of Yackel & 
Cobb (1995). 

Ideally,  at  this  point  in  the  students’  work  the 
webreport would  be  reviewed  by  another  group,  perhaps  in 
another  country,  and  an  inter-group discussion  would  ensue, 
using the WebReports ‘comment’ mechanism (see Figure 3 for 
an illustration of the WebLabs common activity framework).  In 
fact,  we  rather  seldom  succeeded  in  orchestrating  such  a 
discussion,  largely  due  to  pragmatic  limitations  but  also 
because  of  the  difficulty  in  establishing  a  distributed 
community  of  practice.   More  usually,  a  class  was  split  to 
produce  group  webreports and  each  group  then  elected  a 
representative  to  present  their  webreport to  the  whole  class 
using the electronic whiteboard for whole class discussion.

2006 Research Information Ltd.  All rights reserved.
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Figure 3  WebLabs common activity framework

The above pattern of activities emerged following iterative 
design  and  evaluation  in  this  domain  and  others,  for 
example  1D  collisions,  as  described  in  Simpson  et  al 
(2005) 

3 DESIGN  OF  TOOLS  AND  ACTIVITIES  FOR 
SEQUENCES AND SERIES

3.1 The preliminary programming task

The first activity we used was the “Add-a-number 
challenge”.  Its motivating question was posed more as a 
ToonTalk puzzle than a mathematical one.  We asked the 
students  “how  would  you  train  a  robot [the  ToonTalk 
equivalent of ‘program a procedure’]  to count 1, 2, 3, 4,  
and  so  on”?   As  expected,  students  would  generally 
propose a construction similar to the one in Figure 4, and 
we  would  follow  their  instructions  on  the  interactive 
whiteboard.   Even  this  preliminary  activity  confronts 
students  with  one  of  the  most  fundamental  concepts  of 
algebra:  the  idea  of  variables  and  generalisation.   This 
concept is prompted by a unique affordance of  ToonTalk. 

Most  programming  languages  distinguish  clearly  between 
constants and variables.  Code is  written for the general  case 
(“any n”) and tested for specific cases (or written for a singular 
setting).  ToonTalk employs  programming  by  example.   This 
means  that  robots  are  trained  for  specific  values,  which can 
then be  generalized  by ‘erasing’ the  specific  value  from the 
robot’s  memory.   In  the  case  of  this  task,  generalisation  is 
required immediately - after the robot runs once, the value of 
current is no longer 0, and needs to be generalised if we want 
the robot to continue counting past 1. 

However, this solution has a serious shortcoming - the 
robot does not keep a record of the numbers it generates.  Since 
all  computations  are  done  ‘in  place’,  the  only  term  of  the 
sequence we can access is the last.  This problem provides a 
motivation for introducing birds -  ToonTalk’s message-passing 
mechanism.  Whenever a bird is given an object, it will carry it 
to its  nest. If we provide our robot with a bird, and train it to 
hand the sequence term over to it, we will have them stacked on 
the nest as the robot runs.

Train the robot to take a number 1 
from the toolbox and drop it on the 
input, to increment it.

Generalise the program by erasing 
the  value  of  the  input  from  the 
robot’s memory.

Give the robot its input box. The robot will 
continually  repeat  the  actions  it  has  been 
taught.

Figure 4  Training a robot to countHowever, this solution has a serious shortcoming - the robot does not keep a record of the
numbers it generates.  Since all computations are done ‘in place’, the only term of the sequence we can access is the last.  This
problem provides a motivation for introducing birds - ToonTalk’s message-passing mechanism.  Whenever a bird is given an
object, it will carry it to its nest. If we provide our robot with a bird, and train it to hand the sequence term over to it, we will

have them stacked on the nest as the robot runs.

International Journal for Technology in Mathematics Education, Volume 13, No 2
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3.2 Training  Add-a-number:  from  the  natural 
numbers to arithmetic progression

The  first  programming  task  that  we  set  for 
students  was  to  train  a  robot  to  generate  the  natural 
numbers, and send them to a nest.  To scaffold students’ 
work,  we  provide  an  active  worksheet:  a  webreport 
template  that  includes  the  instructions  for  the  task  and 
questions related to it.  Students create a webreport of their 
own by clicking a button on this page, and use the prompts 
on it  to scaffold their report.   The unique feature which 
makes  the  worksheet  ‘active’ is  that  the  ToonTalk tools 
required for the task are embedded in it, and at the click of 

the  mouse  students  can  load  them  into  their  programming 
environment. In this particular case, the worksheet contains a 
task-in-a-box (see Figure 5) - a  ToonTalk box containing task 
instructions, an untrained robot, an input box, and output nest. 

The  task-in-a-box  serves  several  purposes  at  once. 
First,  it  helps students overcome the shift in medium from a 
(mainly  textual)  web  page  to  the  animated  programming 
environment.   More  important,  it  supports  their  work  by 
providing  the  input  box  to  be  used  in  training.   Last,  it 
implicitly sets a standard for packaging and sharing  ToonTalk 
models, one that can be used to establish a shared culture for 
discussion and exploration within and across school sites. 

Figure 5  Add a number active worksheet and task-in-a-box

Note, as illustrated in Figure 5, that the input box 
contains  two holes  with numbers:  an increment and the 
current value.  A third hole contains the output bird.  The 
robot needs to be trained to perform two actions: hand a 
copy of current to the output bird, and then drop a copy of 
the increment over current (thus adding them).  This is the 
first  occurrence  of  the  Stream pattern:  the  numbers  are 
sent out to the nest, one after the other, ‘ad infinitum’. 

From a mathematical point of view, the  streams 
method  generates  the  natural  numbers  by  repeated 
application of the  successor function.  At this stage, this 
kind  of  observation  was  not  shared  with  the  students. 
Instead,  the  students  were  engaged  in  constructing  this 
procedure, manipulating it and using it as a building block 
in larger constructions, thus establishing their concept of 
the  natural  numbers  as  an  object,  the  product  of  this 

process.  The structure of the input box we provide the students 
provokes  them to  take  generalisation  one  step  further.   The 
preliminary task already illustrated the need to generalize the 
current  variable.   However,  by generalising the increment as 
well, students can use the program to generate any arithmetic 
progression!  The next part of the worksheet asks students to 
predict which sequences can be generated by their robot and 
which  cannot.   These  questions  aim  to  promote  students’ 
mathematical conjecturing and argumentation, and specifically 
raise their awareness to the relationship between the procedural 
and the structural facets of sequences.  After reflecting on these 
examples, students are asked to provide one more sequence that 
their robot can generate and one it cannot.  The latter question 
is probably the hardest - in order to say that the robot  cannot 
produce a sequence one has to argue about the nature of the 
class of sequences it can produce.

3.3 Training  Add-up:  constructing  the  partial 
sums series as an operation on a sequence

Once  students  have  posted  their  Add-a-number 
robot and answered the questions, they are introduced to 
the  next  task:  train  a  robot  to  add  up  the  terms  of  a 
sequence.   We  refer  to  this  as  the  Add-up robot. 
Mathematically,  this  robot  embodies  the  concept  of  a 
sequence of partial sums, and implements it as a function 
on the domain of  sequences:  for  any given sequence,  it 
will produce the sequence of its partial sums.  In concrete 
terms, we give the nest of the first sequence to the Add-up 
robot, which sums the numbers coming in to that nest, and 

sends the results out to its output nest Figure 6 illustrates how 
Add-a-number and Add-up robots are working in conjunction. 
The arrows, step numbers and dark bubbles (added for clarity) 
show the order of operations as an element passes down the 
stream.  Students chain the Add-a-number robot to the Add-up 
robot by placing the former’s output nest in the latter’s box. 
Add-a-number generates an arithmetic sequence by repeatedly 
adding a copy of the ‘add’ to the current value (1) and copying 
the result to the out bird (2).  The out bird carries this result to 
the nest in Add-up’s input box (3). Add-up then adds this value 
to the total (4) and copies the result to its own out bird (5), 
which takes it to its nest (6) .

2006 Research Information Ltd.  All rights reserved.
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Figure 6  “Chaining” Add-a-number to Add-up

Directing students  to  this  pattern addresses  two 
aims.   First,  our  initial  experiments  have  shown  –  as 
suggested by the literature – that students tend to become 
confused between source sequences and the corresponding 
sequences  of  partial  sums.  This  confusion  causes 
difficulties  in  reasoning  about  limits,  and  sequence 
behaviour in general.  Second, by using one sequence as 
an  input  to  a  process  which  generates  another  one,  we 
address  both  process  and  object  perspectives  and 
encourage students to construct connections between them.

Students are asked to construct the Add-up robot 
and post it on their webreport.  They then chain it with the 
Add-a-number  robot,  and  experiment  with  summing 
different sequences.  Next, they are asked to answer some 
questions  regarding  the chain  of  robots.   Observing  the 
patterns  in  and  between  these  examples  can  lead  to 
conjectures regarding the rules governing the co-variance 
of the source sequence and the corresponding sequence of 
partial  sums.  The  Add-a-number  and  Add-up  phase  of 
activities is concluded by a group discussion, driven by the 
goal  of  composing  a  consensus  webreport based  on  the 
individual  webreports for  Add-a-number  and  Add-up. 
First, the Add-a-number robot is constructed by the group. 
Students instruct  the teacher how to train the robot, and 
where  others  disagree,  discuss  their  solutions  until  a 
consensus  is  reached.   After  the  robot  is  trained  and 
posted, the students continue to discuss the answers to the 
questions  in  the  worksheet,  and  when  necessary  the 
teacher displays students’ individual webreports to refresh 
their  memory.   This  process  is  iterated  for  the  Add-up 
robot. 

4 A  FEW  ILLUSTRATIVE  EXAMPLES  OF 
ACTIVITIES (AND LEARNING)

While  the  main  focus  of  this  paper  is  on  the 
design  of  the  activities  and  their  close-knit  relationship 
with  the  knowledge  we  were  attempting  to  build,  we 
provide here a very general overview and a few illustrative 
examples of what one group of students did and – we hope 
–  learned.   The  results  reported  here  are  from  an 
experiment conducted in London in autumn 2004.  This 

experiment  involved  a  group of  10  boys,  aged  13-14,  for  6 
hourly sessions and a full day workshop.  The activities were 
also undertaken by students in Bulgaria, Cyprus and Portugal, 
although we do not report these here.  Our main sources of data 
are  the  models  and  texts  that  students  published,  and  in-
activity-probes: short interviews – typically up to five minutes 
–  conducted while a  student  was engaged in an activity  and 
referring  to  it.   The  use  of  this  tool  aims  at  capturing  the 
process  of  knowledge  construction  and  allows  students  to 
express their situated abstractions in the context that they are 
formed.

Most  students  found  the  activities  engaging.   They 
completed the tasks successfully, and then refined their answers 
through collaboration.  They identified the natural numbers as a 
case of arithmetic progression, and then expanded that class to 
a  more general  one.   They used formalisations derived from 
their ToonTalk experience to make sophisticated mathematical 
arguments.

4.1 Using  Robot  structure  as  a  stepping  stone  to 
mathematical structure

Establishing  elaborate  norms  of  mathematical 
discourse is a lengthy process, the foundations of which can be 
seen in this activity.  At the initial stage of the activity, we saw 
a shift from  modelling a particular robot to thinking about a  
class of sequences.  This shift was prompted by questions about 
which  sequences  their  robots  could  and  could  not  generate. 
Interestingly, some students interpreted this as which sequences 
could  you  generate  with  a  robot  similar to  yours  (see  the 
example provided in Figure 8).  This indicates that they did not 
see the robot as an isolated item, but as a representative of a 
mathematical class. 

Students’  initial  classifications  matched  our 
expectations  from the  literature.   For  example,  they  exclude 
negative numbers or fractions from the arithmetic progression 
class  (defined  by  the  Add-a-number  robot).   These 
classifications were refined, and later elaborated, in the course 
of  the  activity.   We saw two forces  driving this  refinement: 
students testing of their conjectures by manipulating the tools 
they  created,  and  challenging  each  other’s  claims  through 
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webreports commenting and face to face discussion.  The 
dynamics  of  learning  through  collaboration  and 
communication are discussed further below.

BOB  (we  use  students’  internet  pseudonyms  as 
anonymised  identifiers)  published  a  characteristic  report 
on Add-a-number.  Following the worksheet structure, he 
first included the robot he had constructed and answered 
the questions regarding the specific sequences.  He then 
reflected  on  the  on  the  task,  generalising  the  class  of 
sequences that can be generated by such a robot:

How would you explain to a friend what kind of 
sequences your robot can generate, and how it 
can be used to generate those sequences? 

It can generate quite a lot of sequences, e.g. x 3  
by copying the number 2 times, then dropping, 
one by 1 the numbers onto the original. Or, the 
nine times table, by copying the number 8 times 
etc.  However,  it  cannot  produce  non  whole 
numbers (I think) 

Describe one sequence that cannot be generated 
by it, and explain why. 

Dividing e.g. by 4. 

Note  that  BOB does  not  consider  changing  the 
input to the robot, but sees a class of robots which can be 
trained  ‘similarly’ to  the  one  he  trained.  This  class  of 
robots corresponds to the class of arithmetic progression 
sequences. 

Martin, on the other hand, sees that he does not 
need to retrain the robot.  In an ‘in-activity-probe’ taken 
right after he trained his first robot, we asked him if he 
could use it to generate other sequences and how. 

M:  Just go into it, I have to change it but I won't  
have to erase it, I could add 1 for that – 1 there 
[points to ‘add this’ hole],   I could just make it  
add 2, I could just change its function to have to  
add 2.

In other words, use the same process but change 
the  input.   Another  in-activity-probe  at  the  same  stage 
shows  an  interesting  confusion.   As  before,  we  probed 
Albert immediately after he had trained his Add-a-number 
robot,  and  asked  him  how  to  use  it  to  generate  other 
sequences.  He suggested changing the increment from 1 
to 3.  We asked him what sequence would result:

Albert:  Going up time 3 .. er.. times 3 sequence. 

Y: Times 3 sequence. 

A: Or add 3 sequence.

Albert is confusing the closed form (an = 3*n) with the 
recursive form (an = an-1 +3).  The term times 3 relates to 
the  times 3 table with  which students  are  familiar  from 
school.   On  the  other  hand,  the  term  add  3 relates  to 
students  intuition,  whish  also  maps  directly  to  the 
ToonTalk representation. 

4.2 Distinguishing  process,  parameters  and 
product

Students came to recognise that observed patterns can 
be  decomposed  into  generic  processes  and  the  varying 
parameters they are initiated with.  This realisation is a further 
step towards developing a structural view.  This distinction is 
made salient by the particular design pattern we promoted for 
the Add-a-number robot.  In the naïve implementation of the 
robot,  both the  process  (incrementing by a  constant)  and  its 
parameters  (the  value  of  the  increment)  are  defined  by  the 
robot’s training.  By asking the students to train the robot with a 
box that contains the increment of 1, we enable them to later 
generalise that increment to any number.  The process defines 
the class of sequences (arithmetic progression) while the value 
defines its domain (natural, integer or rational numbers). 

Indeed,  students  acknowledged  this  distinction,  and 
characterised the classes of sequences associated with the robot. 
They  were  able  to  explain  how  modifying  the  parameters 
affects  the  generated  sequence,  and  what’s  more,  how  it 
determines its mathematical properties. 

The streams pattern was very conducive to this affect. 
By seeing the output sequence not just as a pattern of numbers, 
but as the result of a composite process, students were able to 
decompose this process to its original elements and achieve a 
sophisticated  analysis  of  the  sequence  structure.   Albert 
suggested  providing  his  robot  with  the  initial  value  1  and 
increment 4, to generate the sequence {1, 4, 7…}.  We asked if 
this sequence would ever contain a number divisible by 3:

A: Yes, No, one above.

Y:   How can you get  the same robot to  generate a  
sequence which will have numbers divisible by 3?

A:  Yes, you change their current to 0 when you start  
off.

Albert  sees  which  properties  of  the  sequence  are 
determined by the process and which by the initial conditions, 
and how these interact. 

Constructing the Add-up robot inspired further sophistication of 
students’  arguments.   Again,  when  asked  if  a  particular 
sequence (2, 6, 16, 20, 30 …) can be generated by the chain 
they remarked:

No. Because you can’t retrain the robot.  You would 
need to add these boxes (4 and 10) or retrain the robot 
to  alternate  between  adding  4  and  10  (change  the 
value by typing).

This  is  less  of  a  programming  claim  than  a 
mathematical one.  Add-a-number can generate any arithmetic 
sequence.  Chain it with Add-up, and you get a corresponding 
sum series.  The sequence at hand is the result of alternately 
adding  4  and  10  –  and  is  neither  of  the  first  form nor  the 
second. an= an-1 + 4 : n =2m, an= an-1 + 10 : n =2m+1. 

But when Allen presented their  response in a  group 
discussion, a second observation emerged:

We believe if you change the 16 to a 12 it would be 
fine.  If you um… started with um… with the ‘in’ as 
2 ‘cause each it’ll go up by 2: [pointing at the spaces 
between the sequence terms] 2, 4, 6, 8, 10, 12 and so 
on.  So you get the answer, uh, and that would be a 
way  without  actually  having  two  birds,  which  is 
impossible.  

2006 Research Information Ltd.  All rights reserved.
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The  sequence  was  not  a  sum  series  of  an 
arithmetic progression, but if you changed the third term to 
12 it would be.  Not only did he note the structure of the 
sequence,  he  also  saw  how  a  new  structure  could  be 
constructed from it.

4.3 Developing  programming  and  mathematical 
norms 

The  task-in-a-box  method  proved  to  be  highly 
effective.   Students  picked  up  the  standards  we  set  by 
imitation,  without  us  having  to  detail  explicitly  the 

conventions  for  programming,  packaging  and  publishing 
ToonTalk models.  Figure 7 shows Luminardi’s Add-a-number 
robot, as he had published it in his report.  Using the scheme 
we initiated in  the active  worksheet  but  appropriating to  his 
needs, he replaced box labels to describe how his tool should be 
used.  Establishing such conventions as norms was crucial to 
facilitate communication in later phases.  It ensured that models 
shared  by  one  student  would  be  readable  by  another. 
Furthermore,  they  were  important  even  from  an  individual 
perspective, as they allowed students to easily revisit work they 
had done,  reuse  tools  they had constructed or  reflect  on the 
evolution of their ideas.

Figure 7  Luminardi’s add a number robot

Figure 8  Superpat313’s add a number and its description

While  these  norms  emerged  at  the  level  of 
programming  style,  they  evolved  into  a  standard  of 
mathematical discourse. Students quickly got into the habit 
of attaching written descriptions to their models, labelled 
‘description’  or  ‘read  this’.  Superpat313  published  his 
robot in a similar way (see Figure 8).  He followed the 
same convention (from the description text in the leftmost 
hole  to  the  nest  in  the  rightmost).   In  contrast  to 
Luminardi’s  product,  the  labels  on  Superpat313’s  report 
suggest that he was more focused on presentations (‘what I 
did’, ‘my trained robot’) than on usage.

As expected, most of the descriptions by students 
were procedural.  Nevertheless, they constitute a first step 
towards students’ reflective articulation of their work.  For 
example, students used the box we provided as a package 
for the task to package their completed models.  By doing 
so,  they  adopted  the  programming  conventions  we  set 
without us  needing to impose them explicitly.   Students 
appropriated  the  packaging  scheme  to  their  needs  – 
changing  the  box  labels  and  adding  box  cells  (holes  in 
ToonTalk terminology)  as  needed.   This  packaging 
convention goes beyond aesthetics: it standardizes the use 
of  ‘streams’,  and prompts students  to attach a reflective 
text to their model.

4.4 Refining  individual  knowledge  through 
communication and collaboration

Our  original  vision  saw the  WebReport system 
mainly as a vehicle for highly structured communication 
between  remote  groups.   We  envisioned  one  group 
publishing  a  well  thought  out  report  on  its  findings, 
another  responding  to  it,  until  a  joint  consensus  report 
emerges  from the  discussion.   We now realise  that  this 

view was over-ambitious.  We have managed, in several cases, 
to  facilitate  inter-group  discussion  around  a  report,  but  this 
never went as far as publishing a joint report.  We believe that 
the  reasons  behind  this  are  predominantly  pragmatic,  rather 
than fundamental.  The need to coordinate activity calendars, 
the length of time required to compose group reports and the 
availability of technology are the prime factors we found for 
the lack of success in this area.  We believe that all this would 
change in an environment where such inter-group discussion is 
embedded in curricular activity.

In a way, these pragmatic shortcomings worked to our 
advantage.  We split the London group into two sub-groups, let 
each one publish a  group report  and comment on the others 
report, and then had representatives of each group present the 
report and the responses to the class.  This procedure led to an 
animated discussion in which the students reflected deeply on 
the  activity.   Writing  the  group  report  and  group comments 
provided  a  sense  of  joint  enterprise,  which  was  highly 
engaging.  The realisation that they are publishing to a wider 
audience entailed a strong commitment of students to their text. 
Having the text, and no less important – the ToonTalk models – 
available for discussion proved to be valuable cognitive aids for 
discussion.  Students could draw on these artefacts to stimulate 
their memory or support their arguments.
The need to negotiate a common agreement provoked students 
to refine their classification of sequences.  The dichotomy of 
‘sequences that can /  cannot be generated by Add-a-number’ 
gave way to  a  hierarchy  of  ‘sequences  that  can  /  cannot  be 
generated under such and such conditions’.
At the same time we, as designers, learnt an important lesson: 
these forms of collaboration are as effective in  a  traditional, 
face-to-face,  setting  as  they  are  for  a  remote  one.   We 
conjecture that in fact, in order for a medium to successfully 
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promote remote collaboration it should first be grounded 
in existing classroom practices.
After  publishing  their  individual  webreports on  Add-a-
number, the London students had a quick group discussion 
about  which  sequences  it  can  generate.   They  had  no 
problem  generalising  to  a  wide  range  of  arithmetic 
progression sequences, including negative progression:

Q:  Now if I  wanted to generate the sequence 
that’s written down here, that’s 2, 3, 4, 5?

L:  Change the current to 1.

:

Y:  The next thing is, what about this sequence? 
Minus  1,  minus  2,  minus  3,  minus  4?  Yeah, 
Mark. 

M: Change the current to 0 and change the add 
this to -1.

G:  So what is it that stays the same and what 
changes to create this sequence compared to 1, 2, 
3, 4, ...?

Axel:  Um, its just, it ... what it does stays the 
same but just the numbers it uses are changed.

Many students retrained a robot for each sequence when 
working individually. We were surprised to note that the same 
students saw that you could obtain the required sequences by 
changing the input conditions, without changing the robot - that 
is,  they  saw  the  process.  We  asked  them  to  explain  this 
phenomenon. They offered two factors. Albert put it down to 
reflection:

Well,  when you're like,  um, working on it  yourself 
and you're just doing it, you don't really think about 
all the different ways you just like try and do it in the 
one way you think you would ... you know how to do 
it.  If you actually like, discuss it you kind of try a 
different way.

While Alan suggested confidence:
 um, maybe when you’re changing it in the box, you 
may do something wrong and it will muck up so you 
think it  doesn’t work and you go on to do training 
robots.

The students then split into two groups.  Each group published 
a consensus webreport.  

Whereas  most  students  were  very  cryptic  in  their 
personal  reports,  often  skipping  some  of  the  questions,  the 
group reports are far more elaborate. 
Yishay’s  group’s  responses  regarding  the  Add  a  number 
sequences are given in Table 1:

Sequence Explanation
2, 3, 4, 5… Yes. Start the current on 1.

-1, -2, -3, -4… Yes. Start the "in" as -1, current as 0.

-7, -6, -5, -4.. Yes. Start the current as -8.

2, 4, 6, 8… Yes. Have the in as 2 (current as 0).

5, -1, -7… Yes. In is -6, current is 11.
0, 3, 6, 9,...
1.1, 2.1, 3.1, 4.1...
-4, -6.9, -9.8, -12.7...

current -3, in is 3
in is 1, current 0.1
current -1.1, in is -2.9

Table 1. Yishay’s group’s responses regarding the Add a number sequences

Gordon’s group’s responses regarding the Add a number sequences are given in Table 2.

Sequence Explain

2, 3, 4, 5… Change the Current to 1 (The Add this value being 1)

-1, -2, -3, -4… Change the Add this value to -1 (the Current being 0)

-7, -6, -5, -4.. Change the Current value to -8 (the Add this value being 1)

2, 4, 6, 8… Change the Current value to 0 (the Add this value being 2)

5, -1, -7… Change the Current value to 11 (the Add this value being -6)

Write  down a  sequence  of  your  own,  
which can be generated by your robot.

8, 16, 32, 64...

Write  down a  sequence  of  your  own,  
which  cannot be  generated  by  your 
robot.

Triangle numbers. 1, 3, 6, 10, 15...
(The Add this keeps changing)
You also can’t to Perfect numbers.

Table 2. Gordon’s group’s responses regarding the Add a number sequences

2006 Research Information Ltd.  All rights reserved.
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After they completed their reports, each group commented 
on the reports from the other group.  Having both groups 
on the same site gave us the opportunity to allow them to 
present their comments verbally.  Several comments dealt 
with  establishing  norms.   For  example,  Gordon’s  group 
posted a comment titled ‘can you explain’ which included 
the following issues:

We think you should use the boxes labels instead 
of "in" and "n".  Or you can say what in and n 
mean.

In your  answers  in  the  first  table,  you haven't 
completed your all your statements - you haven't 
said  what  value  the  other  field  ("in")  should 
hold.

You haven't defined "r".

When presenting  it,  Albert  argued  why the  other  group 
should have used precise variable names:

Ok, what we thought… our team … on looking 
at your, um, report … saw that you’d used ‘in’ 
…  um…  ‘in’  and  ‘n’ to  express  your  um… 
expressions  or  what.  So  we  think  that  you 
should, um, have used the box labels instead of 
‘in’ and ‘n’ ‘cause otherwise we can’t tell what 
‘in’ and ‘n’ mean.

Yishay’s  team  classified  the  sequences  that  can  be 
generated by the Add-a-number robot as “Any sequence 
that adds the same number each step to the current” and 
noted:

you cannot do:

- square numbers
- anything where you times or divide
- in can't go up in prime numbers
- any sequence with two stages
- triangular numbers

It can only go up (or down) in the same number 
each time.

To which the other group commented:

You assumed that you cannot multiply or divide, 
but this can be done.  You can also do the square 
numbers, by using ^2.  We disagree with your 
statement  "any  sequence  with  two  stages" 
because you could use advanced formulas (*2; 
+1).

This  second  group  of  students  had  discovered  that 
ToonTalk allows them to replace the additive variable with 
any unary function.  Instead of  adding the value of this 
variable to the current term, it would apply the function it. 
In doing so they had re-formalised arithmetic sequences as 
a  special  case  of  iterative  sequences.   Later  in  the 
discussion, Alan (from Yishay’s group) responded to these 
comments,  acknowledging  what  they  had  learnt  from 
them:

Um, again, before we knew that you could use 
the  semi-colon,  before  we knew you could do 
the  semi-colon,  we  didn’t  think  you  could  do 
multiplication or division.

Not only had Alan’s group obtained a richer  concept of 
sequence  structure  through  the  discussion,  they 

acknowledge  the  evolution  of  their  knowledge.   This 
acknowledgment is important in the individual meta-cognitive 
sense, as it promotes critical reflection. It is also important in 
the development of a community of practice, in which changing 
one’s stance is legitimised.

4.5 Using ToonTalk language to talk about sequences 

ToonTalk  terminology  became  part  of  the  students’ 
repertoire, allowing them to develop a formalism for rigorously 
describing and sharing information about sequences.   During 
discussions  students  could  refer  to  their  models  as  taken-as-
shared,  and  use  them to  fill  the  gaps  in  their  mathematical 
terminology  for  describing  sequences.   In  several  groups, 
students  consistently  referred to  the  natural  numbers  as  “the 
add-one sequence”.  Thus, where a mathematician would say 
“an = B*n +C, where B = 3 and C = 1” our students would say 
“an  Add-a-number  robot  with  current  equals  1  and  add-this 
equals 3”.  Not only are these descriptions equivalent, they are 
both as precise.  Once the formalism is established, the natural 
numbers  become  an  instance  of  the  class  of  arithmetic 
sequences.   Furthermore,  using  a  recursive  formalism meant 
that the arithmetic sequences became in turn a special case of a 
much  larger  class,  as  the  examples  in  the  previous  section 
demonstrate.

Using  this  language,  students  can  construct  new 
structures from existing ones by applying conceptual metaphor 
(Lakoff & Núñez, 1998). They could describe the powers of 2 
in  terms  of  “replacing  the  add-this  in  Add-a-number  with  a 
times two”. 

Students became very proficient at using the tools, both in 
terms of completing the programming tasks,  and in terms of 
using the tools they created when appropriate.  During a group 
discussion, Alan demonstrated how to train the Add-up robot. 
When he finished training, he tested it on the floor.

Alan: It's run out of numbers.

Y:  So if you wanted not to run out of numbers?

A:  You'd create...  you can create an add a number 
robot.

Y: Do you have the one you’ve created on the web?

A: yeah…

Y: so go fetch it.

Alan  downloaded  the  Add-a-number  robot  he  built  in  a 
previous session and chained it to his newly built Add-up robot. 
He explained:

So you take it out [takes out input box] and you want  
to take this robot out [takes add a number robot out of 
the box] and you give this numbers box to the in [takes 
Add a number’s nest and puts it in add up’s hole] and 
then you start this robot up [points to Add a number]

We then asked Paul  to  give  a  commentary on Alan’s  robots 
while they ran:

The 'add up' robot is taking the numbers from the nest  
which says numbers I think, and the numbers in the 
numbers  nest  are  coming  from  the  other  sequence  
which the  other  robot  is  doing  so  he's  taking these  
numbers and he's adding them on to the total creating 
a different sequence out of the other sequence.
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Celia:   What is  this different  sequence that  it's  
created?  This last sequence what is it, can you 
describe it?

P:   It's,(pause)   it  adds,  it's  going  up  I  think,  
(laugh) it's going up 1 and adding that number on 
each time to the total. 

While  the first  part  of  his  description is  procedural,  his 
answer to Celia’s question shows a deeper understanding. 
He describes  a  process  which  isn’t  seen  on  screen:  the 
result of the application of Add-up to the output of Add-a-
number.

Students  made  sophisticated  structural  arguments  using 
ToonTalk terminology.  While discussing the sequence  2, 
6, 16, 20, 30 … they argued whether it could be produced 
by  the  Add-a-number  and  Add-up  robots.  One  group 
claimed you “needed to retrain the robot to first add 4 then 
add 10”. However, Simon remarked:

I  think  … that  sequence  would  work  if  it  was 
possible  to  have  two  birds  [unclear]  one  nest,  
because you’re using two alternating sequences  
and  you’re  putting  them all  into  one,  like,  end 
result basically  
Richard: and if  you could have two birds, what 
would these two alternating sequences be?
Simon: it would be… one would be ‘add 4’ and 
the other one would be ‘add 10’ 

Simon  saw  the  sequence  as  a  composite  of  two  other 
sequences, a structure he did not have the tools to describe 
algebraically – and might not for several years – but could 
argue about in a coherent manner using a language situated 
in his programming experiences.

5 CONCLUSIONS

Our  main  conclusion  is  that,  under  rather 
carefully controlled circumstances and with a great deal of 
design effort, the modelling approach (in which students 
construct and share programs that express the organisation 
of  rich  phenomena)  can  assist  in  developing  students' 
understandings  of  structure  and  consistency  in 
mathematical situations.  For some of these phenomena, it 
is  likely  to  take  several  years  before  our  students  will 
encounter the armoury of algebraic tools that would enable 
them to conduct a detailed study.  Given this scenario, the 
tools we designed did provide an interim solution to this 
difficulty  that  at  least  led to the students engaging with 
non-trivial ideas in mathematics. The examples we include 
demonstrate students’ engagement with ideas of variables, 
partial sums, equivalence and rate of change.

We saw how the ‘streams’ design pattern allowed 
students to mould their intuitions into a situated formalism 
with which they could explore quite complex ideas, and 
argue  convincingly  and  with  commitment  for  their 
hypotheses.  Nevertheless, it would be premature to argue 
that we can explicitly illustrate any relationship between 
our  students’  activities  and  their  subsequent  ability  to 
handle algebraic expression: this putative linkage is, more 
generally, an area that warrants subsequent research. 

By  constructing  robots  that  generate  number 
sequences  and  then  publishing  their  theories  about  the 
class  of  sequences  which  could  be  generated  by  their 

robots,  students  were led  to  reflect  on  structures  rather  than 
merely  patterns.   Their  initial  conjectures  were,  not 
unexpectedly, based on simple patterns.  At first, students did 
not  make  implicit  mathematical  statements:  their  discourse 
remained  strictly  within  the  bounds  of  what  was 
straightforward  in  the  ToonTalk domain,  based  on  simple 
procedures  –  add  2,  ‘times  by  3’ etc.   Yet  given  time,  the 
statements  students  made  regarding  the  sequences  that  they 
constructed illustrate  how they came to  transcend the purely 
procedural view, and associated the process of generating the 
sequence  with  its  mathematical  structure.   This  can  be  seen 
even in the early examples of identifying the type of sequences 
that  can  be  generated  by  robots  similar to  the  one  they 
constructed.  Using the ‘streams’ paradigm, the sum series was 
modelled by passing the output of one process as an argument 
to another.  This approach encourages a view of sequences that 
is  both  a  process  that  unfolds  and  an  object  which  can  be 
manipulated  by  another  process.  As  a  result,  some  students 
began clearly to express the relationship between a sequence 
and  its  series,  an  issue  many  learners  find  –  again 
unsurprisingly – confusing. 

Collaboration and discussion played a central role in 
the construction of individual and group knowledge.  The need 
to publish their thoughts in writing, and in a public medium, 
provoked students to reflect on their experiences and intuitions. 
The process of writing a joint report required that they find a 
shared  mathematical  language,  and  revisit  their  arguments. 
Reading  others’  reports  critically,  encouraged  attention  to 
detail. Yet all these results were contingent on two major facets: 
that the students had something engaging to talk about, and that 
they  had  a  reason  to  talk  about  it.  In  our  case,  the  former 
consisted of their models and conjectures, and the latter was 
built into the activity structure.

In conclusion, we note that our evidence confirms the 
claim, well observed in the literature, that students’ intuitions of 
number  sequences  are  intuitively  recursive  (that  is,  between 
successive  terms  of  the  co-domain,  rather  than  as  a  relation 
between  corresponding  elements  of  the  domain  and  the  co-
domain).   The  ‘streams’ approach  seemed  to  offer  a  viable 
bridge between these two ways of expressing a sequence as a 
function.   Of course,  this  is  not  to  suggest  that  the standard 
functional  form should be rejected;  rather to propose a more 
approachable  route  into  sequences  and  functions  that  is 
contiguous  with  students’  intuitions.   Once  students  have 
established  their  skills,  our  expectation  would  be  to  address 
functions  of  the  natural  numbers  in  a  ‘streamlike’ way,  for 
example, by chaining an Add-a-number robot with an Apply-
function  robot,  which  applies  a  function  to  every  incoming 
input  and  outputs  a  stream  of  new  values.   This  idea  was 
employed in our design of activities on cardinality of infinite 
sets, as discussed by Kahn et al (2005). 

As for the group of students referred to in this paper, 
the power of the ‘stream’ approach was indeed revealed several 
months later, when they returned to study sequences but at a 
much  higher  level.   We  challenged  them,  for  example,  to 
construct sequences that ‘get closer to zero but never go below 
it’.  Although they had not been working in this domain for 
very long, the students demonstrated impressive proficiency in 
‘stream’  programming  –  using  it  to  construct  complex 
sequences and initiate surprising explorations. 

2006 Research Information Ltd.  All rights reserved.
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