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Abstract 

Photodynamic therapy (PDT) is an increasingly popular anticancer treatment that uses 

photosensitizer, light, and tissue oxygen to generate cytotoxic reactive oxygen species (ROS) 

within illuminated cells. Acting to counteract ROS-mediated damage are various cellular 

antioxidant pathways. In this study, we combined PDT with specific antioxidant inhibitors to 

potentiate PDT cytotoxicity in MCF-7 cancer cells. We used disulphonated aluminium 

phthalocyanine photosensitizer plus various combinations of the antioxidant inhibitors: 

diethyl-dithiocarbamate (DDC, a Cu/Zn-SOD inhibitor), 2-Methoxyestradiol (2-ME, a Mn-

SOD inhibitor), L-buthionine sulfoximine (BSO, a glutathione synthesis inhibitor) and 3-

amino-1,2,4-Triazole (3-AT, a catalase inhibitor). BSO, singly or in combination with other 

antioxidant inhibitors, significantly potentiated PDT cytotoxicity, corresponding with 

increased ROS levels and apoptosis. The greatest potentiation of cell death over PDT alone 

was seen when cells were pre-incubated for 24 hours with 300 μM BSO plus 10 mM 3-AT 

(1.62-fold potentiation) or 300 μM BSO plus 1 μM 2-ME (1.52-fold), or with a combination 

of all four inhibitors (300 μM BSO, 10 mM 3-AT, 1 μM 2-ME, 10 μM DDC: 1.4-fold). 

Because many of these inhibitors have already been clinically tested, this work facilitates 

future in vivo studies. 

 

 

 

 

 



 
 

 

 

 

Introduction 

Compared with their normal counterparts, many types of cancer cells have increased 

intracellular levels of reactive oxygen species (ROS), reflecting a disruption of redox 

homeostasis (1, 2). The increase in ROS is attributed to intrinsic mechanisms (activation of 

oncogenes, aberrant metabolism, mitochondrial dysfunction, and loss of functional P53) and 

extrinsic mechanisms (inflammatory cytokines, an imbalance of nutrients and hypoxic 

environment), thought to either elevate ROS production or impair the ROS-scavenging 

capacity of tumour cells (1, 2, 3). 

Cancer cells adapt to this persistent oxidative stress by developing an enhanced endogenous 

antioxidant capacity, the extent of which correlates with the aggressiveness of the tumour, 

while at the same time making the malignant cells resistant to anticancer strategies that rely 

on inducing ROS stress (2). Several therapeutic approaches to killing cancer cells involve 

elevating cellular ROS levels: photodynamic therapy (PDT), chemotherapy, radiotherapy, 

immunotherapy, hormone therapy and hyperthermia (3). These anticancer therapeutic 

approaches are only successful in causing cytotoxicity if the increase in ROS exceeds a 

threshold level that is incompatible with cellular survival (2). The effective final 

concentrations of ROS in cancer cells are thus pivotal for pro-oxidant cancer therapies and 

depend on the balance of the intrinsic ROS levels, the increase in ROS caused by the therapy, 

and the competing antioxidant capacity of the tumour cells (3).  

Several mechanisms are thought to be involved in the protective cellular responses to PDT. 

These include: activation of redox sensitive transcription factors (causing an increase in 

detoxifying and antioxidant enzymes), activation of anti-apoptotic pathways, and over 

expression of heat shock proteins (inhibiting the formation of an active apoptosome), as 



 

 

reviewed by Nowis et al. (4). Moreover, tumours upregulate antioxidant haeme oxygenase-1 

(HO-1) and other cytoprotective molecules as an adaptive response against oxidative stress 

(5, 6). In addition, PDT treatment is antagonized by three major cellular antioxidant defence 

mechanisms: superoxide dismutase enzymes (Cu/Zn-SOD and Mn-SOD), the glutathione 

(GSH) system, and catalase (7, 8, 9, 10, 6). 

Cellular antioxidant systems therefore represent a useful target to improve the therapeutic 

efficacy of ROS-mediated anticancer therapies. For instance, both radiotherapy (11, 12, 13) 

and platinum-based chemotherapy (14, 15) are augmented when combined with inhibitors of 

glutathione, or superoxide dismutases. 

In this study, MCF-7 cancer cells were used to investigate whether combining PDT with 

inhibitors of the four main antioxidant defences: diethyl-dithiocarbamate (DDC, an inhibitor 

of Cu/Zn-SOD), 2-Methoxyestradiol (2-ME, an inhibitor of Mn-SOD), L-buthionine 

sulfoximine (BSO, an inhibitor of GSH synthesis) and 3-amino-1,2,4-Triazole (3-AT, an 

inhibitor of catalase), either singly or in combination, would augment PDT ROS-mediated 

cell death. In addition, we investigated whether: i) there was any correlation between the 

inhibition of specific antioxidant pathway(s) and sensitivity to PDT-induced death and ii) if 

there was any relationship between cellular ROS levels and cell death in the presence of the 

various antioxidant inhibitors. These approaches lead the way to the therapeutic use of 

antioxidant inhibition plus PDT to sustain a high intracellular level of ROS in cancer cells 

that would otherwise be resistant to oxidative stress, thereby improving existing PDT 

treatment and expanding its use to more aggressive tumour types. 

 

Materials and Methods 

The various experimental conditions and subsequent assays are summarised in Fig. 1 

 



 
 

 

Cell cultures 

Human breast adenocarcinoma cell line MCF-7 was a kind gift from Dr. Marilena Loizidou, 

UCL Medical School, London. MCF-7 cells were maintained as monolayers in 25 mM 

glucose DMEM supplemented with: 100 µU/ml streptomycin, 100 µU/ml penicillin and 10% 

heat-inactivated fetal calf serum (FCS). For experiments, cells were grown in triplicate at a 

density of 1 × 105 cells/well in 500 µl growth medium in 24-well tissue culture plates and 

allowed to attach for 24 hrs to attain ~100% confluence. 

 

PDT treatment 

All incubations and washes prior to PDT were carried out under subdued lighting. Thirty 

minutes prior to PDT, standard serum-containing DMEM was replaced with fresh medium 

without serum, containing 5 μg/ml AlPcS2 (a gift of Prof David Phillips, Imperial College. 

Stock 5mg/ml in water (16)). Then cells were rinsed 3 times with warm PBS, followed by 

warm phenol red-free DMEM supplemented with 1% pen/strep and 10% FCS. Test samples 

were immediately exposed (for 15 mins) to 28.6 J/cm2 water-filtered halogen white light 

from a 500W bulb (or not in the case of dark cytotoxicity). Samples were then incubated 

under standard cell culture conditions for a further 24 hrs post PDT in the dark, and then 

assayed for viability.  

 

Cell viability analysis 

Cells were washed three times with PBS and the collected culture medium and washes were 

combined to ensure that any detached cells were not lost. The remaining attached cells were 

removed with trypsin-EDTA and the cell suspension combined with the cells already 

collected and the total cell number was determined by haemocytometer. The cells were 

incubated with 20 µg/ml propidium iodide (PI) on ice and analysed by flow cytometry using 



 

 

a FACSCaliburTM cytometer. For each sample, 10,000 events were acquired on a logarithmic 

scale and the gating of single cells was achieved by analysis of forward and side scatter dot 

plots using BD CellQuest™ Pro software. PI fluorescence intensity was measured in FL-3 

with an emission wavelength of 670 nm. For measurement of apoptosis 24 hrs after PDT, 

cells were incubated with 1:100 Annexin V-FITC (Sigma, A9210) for 15 min at room 

temperature in the dark and then analysed by flow cytometry (as detailed above) but using 

FL-1 with an emission wavelength of 530 nm.  

 

Measurement of ROS  

ROS levels were determined by flow cytometry using the fluorescent probes 2’, 7’-

dichlorodihydrofluorescein diacetate (DCFH-DA) or dihydroethidium (DHE). Cells were 

seeded in 24-well tissue culture plates at a density of 2 x 105 cells/ml and incubated at 37 °C 

overnight and then treated with 5 μg/ml AlPcS2 and the various inhibitors for the indicated 

times. After incubation, the photosensitizer-containing medium was removed and the cells 

rinsed 3 times with warm PBS.  Fresh phenol red-free culture medium with 10 µM DCFH-

DA or 10 µM DHE was added under subdued light conditions and the test samples then 

exposed to 28.6 J/cm2 water-filtered white light (or not in the case of dark cytotoxicity). The 

cells were then washed twice with cold PBS, trypsinized and centrifuged for 5 minutes at 550 

g and at 4 oC. The cell pellet was resuspended in 200 µl cold PBS and probe fluorescence 

was measured using FACSCaliburTM cytometer by collecting 10,000 events for each sample. 

ROS levels were expressed as mean fluorescence intensity (MFI) as calculated by BD 

CellQuest™ Pro software. ROS was also measured in a cell-free system in 96-well plates 

(Corning: black, clear-bottom, flat) comprising fresh phenol red-free culture medium 

containing 0.2 µM DCFH-DA, 5 μg/ml AlPcS2, and the various inhibitors. Each plate was 

illuminated, as detailed above, (or maintained in the dark) and the DCF fluorescence was 



 
 

 

measured immediately using a plate reader (BMG labtech, FLUOstar optima; Ex 485 nm, Em 

520 nm, gain 300). 

 

Results 

Initially, we identified a range of doses for each antioxidant inhibitor, in the absence of 

photosensitizer, that did not cause significant MCF-7 cell death or morphological change 

during 24 hr, but were nevertheless within the accepted working range for inhibition (17, 18, 

19, 20, 21). In half of these initial experiments, cells were illuminated 30 minutes after 

adding the antioxidant inhibitor in order to determine if any inhibitor had an intrinsic 

photosensitizing activity (Fig. 2 and Fig. S1). Neither 3-AT nor BSO were found to be toxic 

or phototoxic at any of the doses used (Fig. 2C,D). By contrast, 2-ME led to the dose-

dependent appearance of many rounded and floating cells, both in the dark and in photo-

irradiated samples (Fig. S1). However, cell viability analysis demonstrated this was not due 

to cell death (Fig. 2A), suggesting that 2-ME affected cell adhesion, as has been proposed 

before (22). 

DDC demonstrated a concentration dependent increase in cell death that, at the highest dose 

(30 μM), was more pronounced when samples were illuminated (Fig. 2B and Fig. S1), 

suggesting that DDC may have some innate photosensitizing activity and/or it interferes with 

the antioxidant systems that normally counteract ROS produced during light exposure by 

endogenous chromophores, such as riboflavin and porphyrin. 

As a result of these dose-toxicity tests, we chose three concentrations of each inhibitor that 

were minimally toxic (in the absence or presence of light) for further analysis in combination 

with 5 μg/ml AlPcS2 photosensitizer. These concentrations were: 2-ME (0.3, 1 and 3 μM), 

DDC (1, 3 and 10 μM), 3-AT (1, 3 and 10 mM), and BSO (30, 100 and 300 μM).   

 



 

 

Dark and photo toxicity studies of single antioxidant inhibitors with photosensitizer. 

MCF-7 cells were co-incubated with antioxidant inhibitor and AlPcS2 photosensitizer for 30 

min prior to PDT and then maintained in the dark with antioxidant inhibitor for a further 24hr 

prior to analysis of cell viability and cell number per well (Table 1: 0.5 hr and Fig. 3).  

The combination of AlPcS2 with the different concentrations of DDC, or 3-AT or BSO for 30 

minutes in the dark demonstrated no altered cytotoxicity after 24 hr, although there was a 

non-significant trend towards fewer cells with increasing antioxidant inhibitor concentration 

(Table 1: dark 0.5 hr and Fig. 3B-D). Morphologically, there were very few rounded and 

floating cells even at the highest concentrations of these three antioxidant inhibitors (Fig. 3B-

D). By contrast, the combination of AlPcS2 and 2-ME in the dark showed a dose-dependent 

increase in the number of rounded floating cells (Fig. 3A), as had been seen in the 2-ME-only 

experiments (Fig. S1). However, unlike the 2-ME-only experiments, the combination of 2-

ME and photosensitizer in the dark reduced the percentage cell viability in a dose dependent 

manner, with 3 µM 2-ME achieving a small but highly significant (P<0.001) decrease in cell 

viability when compared to  AlPcS2 only (Table 1: dark 0.5 hr, cell viability). 

Unlike the situation in the dark, the combination of AlPcS2 with any of the antioxidant 

inhibitors for 30 minutes, followed by PDT, caused an increase in the number of floating 

cells (Fig. 3), a dose-dependent trend of decreasing total cell number (Table 1: light 0.5 hr, 

cell number) and, for 2-ME, a dose-dependent trend of decreasing cell viability (Table 1: 

light 0.5 hr, cell viability). 

The numbers of viable cells per well in the dark and after PDT treatment were calculated 

from their respective percentage cell survival and total cell number per well (Table 1). 

Dividing the values for the total viable cells after PDT treatment by total viable cells in the 

dark, a viability ratio was obtained (Table 1: viability ratio). This ratio normalised any 



 
 

 

differences due to antioxidant inhibitors alone and allowed any specific PDT potentiating 

effect to be determined. 

Cells treated with AlPcS2 alone or in combination with the different antioxidant inhibitors 

always produced a significant (P<0.001) reduction in viability ratio compared to the control 

samples without photosensitizer or inhibitor.  

Importantly, however, three inhibitor treatment conditions significantly potentiated (P<0.05) 

the photo toxicity of AlPcS2 following 30 minutes pre-incubation (Table 1: viability ratio 0.5 

hr). These were 1 µM 2-ME, 100 µM and 300 µM BSO. DDC and 3-AT both demonstrated a 

non-significant trend to potentiate photo toxicity at the highest concentrations used (10 µM 

DDC or 10 mM 3-AT). 

 

Optimising the pre-incubation time with single antioxidant inhibitors. 

The short-term incubation (30 minutes) of cells with antioxidant inhibitors helped to establish 

a single concentration for each antioxidant inhibitor that was not significantly dark toxic, but 

produced a reduction in the viability ratio, compared to AlPcS2 alone. These concentrations 

were 1 µM 2-ME, 10 µM DDC, 10 mM 3-AT and 300 µM BSO and were chosen for studies 

of longer-term (1 hr and 24 hr) pre-incubation before PDT treatment. AlPcS2 photosensitizer 

was pulse-loaded into cells 30 minutes prior to PDT and cells were then maintained in the 

dark for a further 24hr before assessing cell viability, cell number, and viability ratio (Table 

1: 1 hr and 24 hr, and Fig. 4). 

In dark toxicity studies, the combination of AlPcS2 with any of the specified antioxidant 

inhibitors resulted in very few rounded floating cells and did not significantly affect the 

percentage cell viability compared to no-drug/no-photosensitizer control, after either 1 hr 

(Fig. 4A and Table 1: dark 1 hr, cell viability) or 24 hr (Fig. 4B and Table 1: dark 24 hr, cell 



 

 

viability) pre-incubation. However, there was a non-significant trend towards fewer cells 

compared to AlPcS2 alone after 1 hr pre-incubation (Table 1: dark 1 hr, cell number) or 24 hr 

pre-incubation (Table 1: dark 24 hr, cell number). For either pre-incubation time, the greatest 

decrease in total cell number per well in the dark was achieved using a combination of 

AlPcS2 and 10 mM 3-AT (Table 1: dark). 

Upon photo-illumination, the combination of AlPcS2 with any of the antioxidant inhibitors 

led to an increase in floating cells in 1 hr (Fig. 4A) and 24 hr (Fig. 4B) pre-incubated 

samples, compared to corresponding dark controls. 

The combination of AlPcS2 with almost all of the specified antioxidant inhibitors showed a 

non-significant trend of decreased cell number and decreased percentage cell viability 

following PDT when compared to AlPcS2-PDT alone, both in 1 hr and 24 hr (Table 1: light) 

pre-incubated samples. The exception was with 300 μM BSO, which showed a significant 

(P<0.05) decrease in cell viability in 24 hr pre-incubated samples (Table 1: light 24 hr, cell 

viability).  

For 1 hr and 24 hrs pre-incubated samples, each of the antioxidant inhibitors demonstrated a 

trend to potentiate AlPcS2-PDT, (Table 1: viability ratio). However, it was only 300 μM BSO 

after 24 hr pre-incubation that achieved a statistically significant reduction (P<0.05) in 

viability ratio compared to AlPcS2 alone (Table 1: viability ratio 24 hr, and Fig. 5C left side 

graph). 

 

Combinations of antioxidant inhibitors 

We selected four combinations of inhibitors, motivated by the antioxidant systems they are 

known to target (Fig. 9): 1 μM 2-ME plus 10 μM DDC target Mn-SOD and Cu/Zn-SOD 

respectively, thereby inhibiting the breakdown of singlet oxygen to hydroperoxides. 10 mM 

3-AT plus 300 μM BSO target both catalase and glutathione synthesis, thereby preventing the 



 
 

 

breakdown of hydroperoxides. 1 μM 2-ME plus 300 μM BSO target both Mn-SOD and 

glutathione synthesis (and this particular pairing was chosen since, as individual inhibitors 

they showed the greatest potentiation of cytotoxicity). Finally, a cocktail of all 4 inhibitors 

was used to target all the major antioxidant systems. Each combination of inhibitors was 

added to cells 30 minutes, or 1 hr, or 24 hrs before PDT and then analysed 24 hrs after PDT. 

Dark toxicity studies showed that the combination of AlPcS2 plus 30 minutes or 1 hr pre-

incubation with the antioxidant inhibitor mixtures were not toxic to the cells in the dark 

(Table 2: dark 0.5 hr and 1 hr). By contrast, with 24 hrs pre-incubation, the combination of 

AlPcS2 with either 10 mM 3-AT plus 300 μM BSO, or the four inhibitor cocktail showed a 

small but significant decrease (P<0.05) in percentage cell viability compared to AlPcS2 alone 

(Table 2: dark 24 hr, cell viability). 

In phototoxicity studies, each of the different antioxidant inhibitor combinations, at every 

pre-incubation time, demonstrated a trend of decreased cell number, which in several cases 

was statistically significant (Table 2: light, cell number). For each inhibitor combination, 

longer pre-incubation times gave a greater decrease in cell number and decrease in cell 

viability (Table 2). 

Similarly, for each antioxidant inhibitor combination, increases in pre-incubation time gave 

progressively significant decreases in viability ratios, compared to AlPcS2 alone (Table 2: 

viability ratio, and Fig. 5 right side graphs). Thus, 30 min pre-incubation provided no 

statistically significant decrease in viability ratio. 1 hr pre-incubation yielded a significantly 

decreased (P<0.05) viability ratio for the inhibitor cocktail (1.27-fold decrease compared to 

AlPcS2 alone) (Table 2: viability ratio, and Fig. 5B right side graph). Finally, in samples pre-

incubated for 24 hrs, any of the inhibitor combinations significantly decreased the viability 

ratio compared to AlPcS2 alone: by 1.35-fold for 1 μM 2-ME plus 10 μM DDC (P<0.05), by 

1.62-fold for 10 mM 3-AT plus 300 μM BSO (P<0.001), by 1.52-fold 1 μM 2-ME plus 300 



 

 

μM BSO (P<0.01), and by 1.4-fold for the cocktail (P<0.01) (Table 2: viability ratio, and Fig. 

5C right side graph). 

 

Understanding the mechanisms of antioxidant inhibitor potentiated PDT 

I. Apoptosis  

Next, it was assessed whether AlPcS2 plus the antioxidant inhibitors, either singly or in 

combination, led to apoptosis as assessed by annexin V-FITC flow cytometry 24 hrs after 

PDT (or dark control). 

In the dark, none of the treatment conditions significantly increased the proportion of annexin 

V-positive cells when compared to no photosensitizer control (Fig. 6 left side graphs). 

All AlPcS2-PDT treatments produced an increase in annexin V-positive cells over light-

exposed no photosensitizer controls (Fig. 6 right side graphs). However, only two antioxidant 

inhibitor combinations significantly increased the proportion of annexin V-positive cells 

compared to AlPcS2-PDT alone, and both of these occurred following 24 hr pre-incubation. 

They were: 10 mM 3-AT plus 300 μM BSO (P<0.05), and the inhibitor cocktail (P<0.05) 

(Fig. 6C right side graph). In future experiments, it will be interesting to examine both earlier 

and later patterns of apoptosis in order to better understand the mechanisms and kinetics of 

cell death with each of the antioxidant inhibitors. 

 

II. Analysis of ROS levels 

At the end of each pre-incubation period, the intracellular ROS levels were assayed during 

illumination (or in the dark) using dichlorofluorescein (DCF) to detect general ROS (Fig. 7), 

or dihydroethidium to detect superoxide anions (Fig. 8). For each type of analysis, ROS 

values were expressed relative to the light treated AlPcS2 sample of that pre-incubation time. 



 
 

 

In the dark, none of the antioxidant inhibitors, singly or in combination, significantly 

increased ROS (Fig. 7 left side graphs) or superoxide levels (Fig. 8 left side graphs) 

compared to AlPcS2 alone. 

During illumination, the presence of BSO either singly (Fig. 7C right side graph) or in 

combination with 3-AT or 2-ME, but not the cocktail (Fig. 7A,C right side graphs), produced 

higher levels of ROS (using DCF) compared to the other inhibitors analysed. Conversely, the 

presence of 2-ME, or especially DDC, resulted in photo-induced ROS levels that were often 

lower than in samples treated with AlPcS2 alone (Fig. 7 right side graphs). This was 

unexpected since the SOD inhibitors 2-ME or DDC would be predicted to raise intracellular 

ROS, notably superoxides.  

Although DCF is commonly used as a general indicator of ROS, and is thought to reflect the 

overall oxidative status of the cell (23, 24), some studies have suggested that it is relatively 

insensitive to superoxides and hence not the appropriate probe for detecting superoxide 

radicals, as reviewed by Gomes et al. (25). To address whether this limitation might explain 

the apparent reduction in ROS observed with the two SOD inhibitors, dihydroethidium 

(DHE), a fluorescent probe that has relative specificity for superoxide anion radicals (O2˙¯) 

(25) was used (Fig. 8). 

The combination of AlPcS2 and 1 µM 2-ME increased the photo-induced O2˙¯ levels in all the 

pre-incubation times (Fig. 8 right side graphs), with the maximum increase of 1.41-fold 

above AlPcS2 alone after 24 hrs pre-incubation (Fig. 8C right side graph). Surprisingly, 10 

µM DDC did not demonstrate any increase in O2˙¯ levels (Fig. 8). 

In cell-free media, 3-AT (alone or in combination with other inhibitors) resulted in a light-

dependent increase in ROS, as measured by DCF fluorescence (Fig. S2). There are many 

differences between the cellular and cell-free systems, making direct comparisons 



 

 

inappropriate. Nevertheless, this observation does imply that our DCF fluorescence results 

with 3-AT should be treated with caution. 

 

Discussion 

The success of PDT as an anti-tumour treatment is determined by the balance between photo-

oxidative damage to cells by ROS (26), versus elimination of ROS by the scavenging activity 

of the cellular antioxidant systems (2, 27). In addition, there is increasing evidence that 

tumour cells initiate rescue mechanisms following PDT damage that include up-regulation of 

antioxidant systems (4, 6, 8, 28, 29). In this study, we demonstrate potentiation of AlPcS2 

PDT in MCF-7 cancer cells by inhibiting cellular antioxidant defences. This was achieved at 

antioxidant inhibitor concentrations that did not significantly increase cytotoxicity by 

themselves, making this work of interest for future pre-clinical studies. 

The main cellular antioxidant defences that act against PDT are summarised in Fig. 9 and can 

be divided into two pathways. Initially, short-lived superoxides are converted to 

hydroperoxides by the superoxide dismutases, Cu/Zn-SOD and Mn-SOD. Subsequently, 

these hydroperoxides are broken down by glutathione and catalase.  

Previous published results, using different cell lines, showed improved PDT cytotoxicity 

following single inhibition of glutathione (30), or catalase (31, 32), or Mn-SOD (8), or 

Cu/Zn-SOD (32), or HO-1 (33) which can itself upregulate SOD and catalase (34). However, 

unlike these previous studies, which had focussed on the effect of one or two antioxidants on 

PDT, our study directly compared inhibition of all these ROS scavenging systems, and then 

took this one step further by examining combinations of inhibitors. 

Thus, using singe antioxidant inhibitors at their optimum concentrations, we found that, in 

terms of protecting MCF-7 cancer cells against PDT: glutathione > Mn-SOD > catalase > 



 
 

 

Cu/Zn-SOD (Table 3), consistent with data demonstrating that tumour cells up-regulate Mn-

SOD(8) and glutathione (35, 36) following PDT induced damage. 

We summarise our data for the 24hr pre-incubation period in Table 3, ranking antioxidants 

from most effective to least effective, in terms of augmentation of AlPcS2-PDT cytotoxicity. 

Decreased viability ratio, increased ROS and increased annexin V staining all rank in the 

same order for the first three inhibitor combinations (BSO plus 3-AT, BSO plus 2-ME, and 

cocktail). This not only suggests a causal relationship between increased ROS levels and cell 

death, but indicates that hydroperoxide degradation, normally occurring jointly via catalase 

(inhibited by 3-AT) and glutathione (inhibited by BSO), is of greater importance in 

protecting MCF-7 cells against AlPcS2-PDT than superoxide degradation, occurring jointly 

via Cu/Zn-SOD and Mn-SOD. 

However, a disparity occurs between cell kill and ROS levels for some single inhibitors. For 

instance (in Table 3), BSO alone gives the 3rd highest ROS increase, but only the 5th highest 

PDT-specific cell kill. Conversely, inhibition of catalase with 3-AT gives the 5th highest 

ROS increase but only the 7th highest PDT-specific cell kill. In cell-free experiments, 3-AT 

caused a light-dependent increase in DCF fluorescence. If this occurred via a non-ROS-

mediated photochemical reaction then this could explain the disparity between apparent ROS 

levels and PDT cytotoxicity due to 3-AT. Alternatively, it is likely that a threshold level of 

ROS needs to be crossed before cytotoxic effects are obtained, as suggested by Trachootham 

et al (2). Thus, whilst we observed several significant increases in ROS, these may be below 

a level that is sufficient to cause cell death. In addition, the disruption of the redox balance by 

depletion of one antioxidant enzyme often results in compensatory changes in other enzyme 

activities, as well as in low-molecular weight antioxidants (37, 38). 

The assessment of ROS production using DCF demonstrated that BSO, either singly or in 

combination with other inhibitors, produced the largest increase in ROS levels compared to 



 

 

the other inhibitors. Glutathione is the major ROS-scavenging system in all cells (2) and its 

inhibition by BSO has previously been shown to be followed by an increase in ROS 

levels(39).  

2-ME and 3-AT have previously been shown to increase the ROS levels in different cell lines 

(40, 41) and our results demonstrated a slight increase in ROS levels in the presence of 3-AT 

(using DCF) and 2-ME (using DHE) when compared to AlPcS2 alone. DDC, on the other 

hand, consistently yielded reduced ROS levels compared to AlPcS2 alone with both ROS 

assays and this agreed with results obtained by Han et al. (20) and Kimoto-Kinoshita et al. 

(42) who also observed a decrease in ROS in the presence of DDC. DDC is known to have 

both antioxidant and pro-oxidant effects in different cell systems (42, 43). As an antioxidant, 

it can act directly by inhibiting superoxide production or by blocking oxidoreductase 

enzymes such as xanthine oxidase that are involved in free radical production (43, 44) and 

this might explain the decreased ROS levels in the presence of DDC, either singly or in 

combination with other inhibitors. It may also explain why the cocktail of inhibitors only 

showed a slight increase in ROS, compared with other inhibitor combinations that did not 

include DDC.    

In summary, the pre-treatment of MCF-7 cancer cells with antioxidant inhibitors prior to 

PDT (especially inhibitors of hydroperoxide degradation), causes ROS accumulation in the 

cells and enhances PDT cytotoxicity. It will be interesting to determine whether the elevated 

antioxidant capacity of many types of cancer cell results in a cancer-selective cell kill, 

compared to normal cells, when using antioxidant inhibitors together with PDT.  
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Supporting material 

Figure S1. Representative phase-contrast micrographs of MCF-7 cells in dark and photo 

toxicity studies, without AlPcS2 photosensitizer. (See “figures” for legend). 

 

Figure S2. The relative ROS levels in cell-free medium, determined by DCF fluorescence 

with various antioxidant inhibitors. (See “figures” for legend). 
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Table 1. Individual inhibitors. The dark and photo toxicity effects on MCF-7 cells of AlPcS2 

with 2-ME, or DDC, or 3-AT, or BSO on percentage cell viability, cell number, and viability 

ratio after 0.5, 1 or 24 hrs pre-incubation with antioxidant inhibitors. Cell viability was 

assessed by PI exclusion assay. For each treatment condition, results represent the mean of 

four independent experiments for 0.5 hr and 24 hrs, and five independent experiments for 1hr 

(mean±SEM). Within each time-point, data were analysed by one way ANOVA with Tukey's 

multiple comparison test. The emboldened values showed statistically significant decreases 

compared to AlPcS2 alone; *= P<0.05, ***= P<0.001. 

Dark Light  
Inhibitor 
concentration and 
pre-incubation 
time (hrs) 

 
5 µg/ml 
AlPcS2 

Cell 
Viability (%)

Cell 
Number 
(105) 

Cell 
Viability 
(%) 

Cell 
Number 
(105) 

 
Viability 
ratio 

0 0.5 - 92.5±0.5 2.99±0.15 93.1±0.7 2.87±0.14 0.97±0.02 
0 0.5 + 92.4±0.6 2.98±0.15 87.7±0.9 2.40±0.15 0.70±0.02 
2-ME 0.3 µM 0.5 + 92.7±0.2 3.08±0.43 86.5±1.8 1.97±0.28 0.60±0.03 
2-ME 1 µM 0.5 + 92.5±0.6 2.87±0.37 84.6±2.1 1.89±0.25 0.57±0.02* 
2-ME 3 µM 0.5 + 88.8±0.2*** 2.45±0.38 82.5±1.5 1.54±0.27 0.58±0.05 
DDC 1 µM 0.5 + 91.6±1.1 2.72±0.17 88.9±0.6 2.01±0.12 0.72±0.06 
DDC 3 µM 0.5 + 92.0±0.7 2.68±0.15 88.2±0.6 1.91±0.77 0.69±0.05 
DDC 10 µM 0.5 + 91.6±0.8 2.60±0.14 88.4±1.4 1.79±0.08 0.64±0.03 
3-AT 1 mM 0.5 + 93.1±1.2 2.77±0.11 87.7±1.7 1.85±0.12 0.63±0.05 
3-AT 3 mM 0.5 + 93.7±1.2 2.72±0.06 88.3±1.7 1.85±0.16 0.64±0.05 
3-AT 10 mM 0.5 + 94.1±0.7 2.65±0.11 88.9±1.7 1.70±0.11 0.59±0.04 
BSO 30 µM 0.5 + 91.5±1.97 3.00± 0.47 87.0±1.7 2.03±0.25 0.66±0.05 
BSO 100 µM 0.5 + 92.4±1.64 3.06±0.43 85.8±2.2 1.84±0.26 0.56±0.01* 
BSO 300 µM 0.5 + 93.6±1.22 2.99±0 .49 86.3±2.0 1.79±0.28 0.57±0.03* 
0 1 - 95.3±0.2 2.31±0.12 95.6±0.3 2.16±0.07 0.94±0.03 
0 1 + 94.8±0.4 2.22±0.09 93.6±0.9 1.70±0.18 0.79±0.03 
2-ME 1 µM 1 + 93.9±0.8 2.08±0.11 92.2±0.6 1.47±0.12 0.68±0.04 
DDC 3 µM 1 + 94.2±0.5 2.05±0.13 92.5±0.3 1.44±0.11 0.67±0.04 
3-AT 10 mM 1 + 93.7±0.8 1.76±0.21 91.2±1.2 1.36±0.19 0.72±0.04 
BSO 300 µM 1 + 92.6±1.3 1.95±0.18 92.7±0.5 1.47±0.17 0.70±0.01 
0 24 - 94.6±0.6 3.44±0.12 96.1±0.4 3.46±0.12 1.02±0.02 
0 24 + 95.0±0.7 3.37±0.13 89.2±0.8 2.57±0.19 0.74±0.03 
2-ME 1 µM 24 + 94.2±0.5 3.10±0.15 89.9±0.6 2.03±0.22 0.61±0.05 
DDC 3 µM 24 + 94.8±0.8 3.17±0.16 89.9±1.0 2.25±0.19 0.67±0.03 
3-AT 10 mM 24 + 93.3±0.7 2.96±0.15 87.4±0.8 2.04±0.14 0.65±0.05 
BSO 300 µM 24 + 95.3±0.4 3.37±0.15 85.5±0.8* 2.10±0.20 0.55±0.03* 
 
 
 



 
 

 

Table 2. Combinations of inhibitors. The dark and photo toxicity effects of AlPcS2 with 

combinations of inhibitors on the viability and cell number after 24 hrs pre-incubation. MCF-

7 cells were treated with AlPcS2 in the presence of the indicated concentrations of antioxidant 

inhibitors for up to 24 hrs. Cell viability was assessed by PI exclusion assay. Results 

represent the mean of four independent experiments (mean±SEM) for each treatment 

condition and were analysed by one way ANOVA with Tukey's multiple comparison test. 

The emboldened values showed statistically significant differences compared to AlPcS2 

alone; *= P<0.05, **= P<0.01, ***= P<0.001. 

Dark Light  
Inhibitors and 
pre-incubation 
time (hrs) 

 
5 µg/ml 
AlPcS2 

Cell 
Viability 
(%) 

Cell 
Number 
(105) 

Cell 
Viability 
(%) 

Cell 
Number 
(105) 

 
Viability 
ratio 

0 0.5 - 93.7±0.5 2.09±0.08 95.0±0.6 2.08±0.05 0.98±0.01 
0 0.5 + 94.0±0.7 2.02±0.05 91.0±1.1 1.64±0.06 0.72±0.02 
1 µM 2-ME  
3 µM DDC 

0.5 + 
93.4±0.6 2.04±0.07 90.0±1.0 1.46±0.09 0.69±0.03 

10 mM 3-AT  
300 µM BSO 

0.5 + 
93.5±0.5 2.00±0.08 91.0±0.8 1.40±0.08 0.68±0.03 

1 µM 2-ME 
300 µM BSO 

0.5 + 
94.0±0.5 2.03±0.07 90.2±0.5 1.37±0.11 0.65±0.04 

All 0.5 + 93.6±0.5 2.00±0.07 91.1±0.4 1.43±0.08 0.70±0.04 
0 1 - 93.7±1.5 2.16±0.04 89.2±4.7 2.16±0.06 0.96±0.03 
0 1 + 93.3±1.4 2.11±0.05 88.8±2.2 1.90±0.06 0.81±0.02 
1 µM 2-ME   
3 µM DDC 

1 + 
91.2±2.3 2.06±0.07 86.7±4.1 1.53±0.10* 0.71±0.04 

10 mM 3-AT  
300 µM BSO 

1 + 
90.4±2.6 1.93±0.08 84.1±6.1 1.61±0.07 0.77±0.05 

1 µM 2-ME  
300 µM BSO 

1 + 
90.6±3.2 2.03±0.07 86.0±3.5 1.54±0.11* 0.72±0.04 

All 1 + 90.6±4.2 2.0±0.09 82.1±7.9 1.41±0.04** 0.64±0.04* 
0 24 - 95.5±0.2 3.39±0.32 96.5±0.4 3.24±0.24 1.01±0.02 
0 24 + 95.9±0.4 3.32±0.28 88.9±1.1 2.58±0.20 0.73±0.02 
1 µM 2-ME   
3 µM DDC 

24 + 
94.5±0.1 3.09±0.17 86.8±2.4 1.80±0.12 0.54±0.05* 

10 mM 3-AT  
300 µM BSO 

24 + 
92.7±1.0* 3.06±0.03 78.6±5.2 1.57±0.21** 0.45±0.09***

1 µM 2-ME  
300 µM BSO 

24 + 
95.0±0.5 2.89±0.17 80.3±2.8 1.63±0.11* 0.48±0.04** 

All 24 + 92.9±0.6* 2.59±0.11 79.8±3.4 1.57±0.07** 0.52±0.03** 
 



 

 

Table 3. Summary of experimental results with 24 hrs pre-incubation. Antioxidant inhibitors 

are ranked by the greatest decrease in PDT-specific cell kill (Δ viability ratio), and then by 

greatest increase in ROS (Δ ROS), and by greatest increase in apoptotic cells (Δ annexin V). 

Each value represents the difference compared to the corresponding light-treated AlPcS2 only 

control. Where this difference was statistically significant, it is indicated by asterisks; *= 

P<0.05, **= P<0.01, ***= P<0.001. 

 
inhibitor(s) antioxidant(s) 

inhibited 
Δ viability 

ratio  
Δ ROS Δ annexin V 

3-AT 10mM 
BSO 300 µM 

Catalase, 
glutathione 

0.28 *** 2.79 ** 15.37 * 

2-ME 1 µM BSO 
300 µM 

Mn-SOD, 
glutathione 

0.25 ** 2.11 ** 13.53 

Cocktail 
2-ME 1 µM 
DDC 3 µM 
3-AT 10 mM 
BSO 300 µM 

Cu/Zn-SOD,  
Mn-SOD,  
catalase,  
glutathione 

0.21 ** 0.38 13.53 * 

2-ME 1 µM DDC 
3 µM 

Cu/Zn-SOD, Mn-
SOD 

0.19 * -0.31 7.50 

BSO 100 µM Glutathione 0.14 * 1.30 ** 3.35 

2-ME 1 µM Mn-SOD 0.13 -0.30 
(1.41 DHE) 

2.86 

3-AT 10 mM Catalase 0.11 0.18 4.50 

DDC 10 µM Cu/Zn-SOD 0.06 -0.68 -1.42 

 
 
 

 

 

 

 



 
 

 

Figures 

Figure 1. Cartoon summary of the various experimental conditions. MCF-7 cells were pre-

treated with antioxidant inhibitors, loaded with photosensitizer, washed and illuminated, and 

then assayed immediately for ROS levels or after 24 hrs for cell viability.  

 

Figure 2. Cell viability in the presence of antioxidant inhibitors, but without AlPcS2 

photosensitizer. MCF-7 cells were treated with various concentrations of antioxidant 

inhibitors and exposed to 28.6 J/cm2 white light (dashed line) or kept in the dark (continuous 

line) and the percentage cell survival determined by propidium iodide exclusion assay. All 

conditions demonstrate minimal dark- or photo-toxicity, except (B) DDC at the highest 

concentrations. 

 

Figure 3. Representative phase-contrast micrographs of MCF-7 cells in dark and photo 

toxicity studies. The cells were treated with AlPcS2 and the different concentrations of 

antioxidant inhibitors for 30 min and then exposed to light or kept in the dark. The samples 

were incubated for a further 24 hrs under standard cell culture conditions in the presence of 

inhibitors, and the phase contrast micrographs acquired at the end of the incubation period. 

 

Figure 4.  Optimizing the pre-incubation time with antioxidant inhibitors. MCF-7 cells were 

treated with the specified concentrations of antioxidant inhibitors for A) 1 hr or B) 24 hrs, 

loaded with AlPcS2 photosensitizer for 30 min, and then illuminated (or kept in the dark for 

the dark toxicity studies). The representative images were a snapshot of the center of the well 

24 hr later, before analysis of the percentage cell viability. 

 

 



 

 

Figure 5. The effect of pre-incubation time with antioxidant inhibitor(s) on the viability ratio 

of MCF-7 cells. Viability ratios were calculated from cell survival and cell number data from 

the dark and phototoxicity studies after A) 0.5 hr, B) 1 hr or C) 24 hrs pre-incubation with 

single antioxidant inhibitors (left side) or mixtures (right side). Results represent the mean of 

at least three independent experiments for each treatment condition (mean±SEM) and were 

analysed by one way ANOVA with Tukey's multiple comparison test. Statistically significant 

differences compared to the relevant AlPcS2-only control (second bar in each graph pair) are 

indicated by asterisks; * = P<0.05, **= P<0.01, ***= P<0.001. Line (ratio of 1) indicates no 

difference in cell viability between the dark and photo toxicity. 

 

Figure 6. The percentage of apoptotic MCF-7 cells, as determined by annexin V-FITC 

staining, following various pre-incubation times with antioxidant inhibitors, either maintained 

in the dark (left side) or after PDT (right side). MCF-7 cells were pre-incubated for A) 0.5 hr, 

B 1 hr or C) 24 hrs with the specified antioxidant inhibitors and analysed 24 hr later. Results 

represent the mean of at least three independent experiments for each treatment condition 

(mean±SEM) and were analysed by one way ANOVA with Tukey's multiple comparison test. 

Statistically significant differences compared to the relevant AlPcS2-only control (second bar 

in each graph pair) are indicated by asterisks; * = P<0.05. 

 

Figure 7. The relative ROS levels in MCF-7 cells, determined by DCF fluorescence, as a 

function of pre-incubation time with various antioxidant inhibitors. For each pre-incubation 

time the ROS levels are reported as a ratio, obtained by dividing the mean of each sample 

DCF fluorescence by the mean DCF fluorescence of the light treated AlPcS2 sample (second 

bar in each light-treated graph, right side). Results represent the mean of three independent 

experiments for each condition (mean±SEM), analysed by one way ANOVA with Dunnett's 



 
 

 

test. Statistically significant differences compared to the relevant AlPcS2-only control 

(second bar in each graph pair) are indicated by asterisks; * = P<0.05, **= P<0.01, ***= 

P<0.001. Dotted line (ratio of 1) indicates no difference in DCF fluorescence compared to 

light-treated AlPcS2–only samples. 

 

Figure 8. The relative superoxide levels in MCF-7 cells, determined by DHE fluorescence, 

as a function of pre-incubation time with various antioxidant inhibitors. For each pre-

incubation time the ROS levels are reported as a ratio, obtained by dividing the mean of each 

sample DHE fluorescence by the mean DHE fluorescence of the light treated AlPcS2 sample 

(second bar in each light-treated graph, right side). Results represent the mean of three 

independent experiments for each condition (mean±SEM), analysed by one way ANOVA 

compared to the relevant AlPcS2-only control (second bar in each graph pair). Dotted line 

(ratio of 1) indicates no difference in DHE fluorescence compared to light-treated AlPcS2–

only samples. 

 

Figure 9. Summary diagram of the main cellular antioxidant systems responsible for 

detoxifying PDT-produced superoxides (O2˙¯) and the inhibitors that affect them. 

 

Figure S1. Representative phase-contrast micrographs of MCF-7 cells in dark and photo 

toxicity studies, without AlPcS2 photosensitizer. The cells were treated with the different 

concentrations of antioxidant inhibitors for 30 min and then exposed to light or kept in the 

dark. The samples were incubated for a further 24 hrs under standard cell culture conditions 

in the presence of inhibitors, and the phase contrast micrographs acquired at the end of the 

incubation period. 



 

 

 

Figure S2. The relative ROS levels in cell-free medium, determined by DCF fluorescence 

with various antioxidant inhibitors. ROS levels are reported as a ratio, obtained by dividing 

the mean of each sample DCF fluorescence by the mean DCF fluorescence of the light 

treated AlPcS2 sample (second bar in each light-treated graph, right side). Results represent 

the mean of three independent experiments for each condition (mean±SEM), analysed by one 

way ANOVA with Dunnett's test. Statistically significant differences compared to the 

relevant AlPcS2-only control (second bar in each graph pair) are indicated by asterisks; **= 

P<0.01. 



 
 

 

 



 

 

 



 
 

 

 



 
 

 

 



 

 

 



 
 

 

 



 

 

 



 
 

 

 



 

 

 


