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Abstract. We classify the real and strongly real conjugacy classes in PGLnðqÞ, PSLnðqÞ, and all
quasi-simple covers of PSLnðqÞ. In each case we give a formula for the number of real, and the
number of strongly real, conjugacy classes.
This is a companion paper to [4] in which we classified the real and strongly real conjugacy

classes in GLnðqÞ and SLnðqÞ.

1 Introduction

Let G be a group. An element g of G is called real if there exists h A G such that
hgh�1 ¼ g�1. If h can be chosen to be an involution (i.e. h2 ¼ 1) then we say that g
is strongly real. In all cases we say that h is a reversing element for g. If g is real (resp.
strongly real) then all conjugates of g are real (resp. strongly real), hence we talk
about real classes and strongly real classes in G.

In [4] we classified the real and strongly real conjugacy classes in GLnðqÞ and
SLnðqÞ. In this paper we extend this classification to cover the groups PGLnðqÞ,
PSLnðqÞ and the quasi-simple covers of PSLnðqÞ. We use the notation and methods
established in [4]. In particular we do not repeat definitions from [4].

The analysis in this paper is of a slightly di¤erent flavour to that of [4] as the
groups of interest are no longer subgroups of GLnðqÞ, but quotients of subgroups.
In particular, to understand reality in PGLnðqÞ and PSLnðqÞ we need to understand
the z-real elements in GLnðqÞ and SLnðqÞ; these elements were introduced in [4, §2],
and were studied in parallel with real elements throughout the rest of [4]. Their sig-
nificance is explained by Lemma 2.4.

An understanding of reality in PGLnðqÞ;PSLnðqÞ and the remaining quasi-simple
covers of PSLnðqÞ requires that we understand how conjugacy is a¤ected when we
factor out the centre of a group. This is discussed in the first half of Section 2; that
discussion sets the scene for what follows in Sections 2 to 6, each of which includes a
theorem near the end summarizing its main results.

Section 7 covers some exceptional quasi-simple covers of PSLnðqÞ that require dif-
ferent techniques, and thereby completes our analysis of real and strongly real classes
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in the quasi-simple covers of PSLnðqÞ. Section 8 outlines possible areas of future
research.
As far as we know a complete classification of the real and strongly elements for

any of the families PGLnðqÞ, PSLnðqÞ, and the quasi-simple covers of PSLnðqÞ does
not exist in the literature. However Gow has communicated with us concerning work
on real classes in PGLnðqÞ; so, although this has not been published, some of the
results are already known.
The preprint version of this paper [3] contains explicit calculations for small rank

groups (cf. Section 13). Formulae are given there for the number of real and strongly
real classes in all relevant groups with rank at most 6.

2 PGLn(q)

First, some notation: consider two groups, X and Y , such that Y cZðXÞ. We say
that an element h A X=Y lifts to an element g in X (or, equivalently, g projects onto

h) if h ¼ gY . Now suppose that W < X . We say that g projects into W=Y if there
exists y A Y such that gy A W . We continue the practice established in [4] so that,
for g A GLnðqÞ and h A F�

q , we will abuse notation and write hg for gðhIÞ.

2.1 Conjugacy in PGLn(q). Set Z ¼ ZðGLnðqÞÞ; then PGLnðqÞ ¼ GLnðqÞ=Z. Our
first job is to understand how conjugacy in PGLnðqÞ works. Let g be an element of
C, a conjugacy class of GLnðqÞ, represented by u ¼ ðu1ðtÞ; u2ðtÞ; . . .Þ corresponding to
a partition n ¼ 1n12n2 . . . . Macdonald’s result asserts that the conjugacy class of hg is
represented by ðu1ðhtÞ; u2ðhtÞ; . . .Þ; see [12, p. 30]. Thus all elements in GLnðqÞ which
project onto an element gZ A PGLnðqÞ are of type n; we therefore refer to gZ as
being of type n.
Suppose that g projects onto gZ which is real in PGLnðqÞ. Then we want to

calculate how many real and z-real elements in GLnðqÞ project onto gZ. We call
two sequences of self-reciprocal polynomials (resp. z-self-reciprocal polynomials),
u ¼ ðu1ðtÞ; u2ðtÞ; . . .Þ and v ¼ ðv1ðtÞ; v2ðtÞ; . . .Þ equivalent if, for some h A F�

q ,
viðtÞ ¼ uiðhtÞ for all i.
To understand what this means for reality in PGLnðqÞ we need to return to the

study of self-reciprocal and z-self-reciprocal polynomials that was started in [4, §2].

2.2 An action of F*
q on polynomials. We define an action of F�

q on the set of degree
n polynomials by h: f ðtÞ ¼ f ðhtÞ for h A F�

q . Recall the definition of sets Tn and Sn

given in [4, §2]. We are interested in classifying the orbits of F�
q intersected with Tn

and Sn. That is to say, we wish to determine the size of the sets

½ f �T ¼ f f ðhtÞ A Tn j h A F�
qg and ½ f �S ¼ f f ðhtÞ A Sn j h A F�

qg;

for a degree n polynomial f in Fq½t�.
In what follows we write jkj2 for the largest power of 2 which divides an integer k.

We begin with a lemma from [4]:
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Lemma 2.1 ([4, Lemma 4.3]). Let Fq be a finite field with q odd. Then there exists

a A F�
q with an ¼ �1 if and only if jnj2 < jq� 1j2.

Lemma 2.2. If q is even then ½ f �T and ½ f �S contain at most one element. If q is odd then

½ f �T and ½ f �S contain at most two elements.

Proof. Write X to mean either T or S. Take f ðtÞ A Xn such that f ðhtÞ A Xn;
then hn ¼G1. Since f ðhtÞ A Xn, for any coe‰cient ak 0 0 of f ðtÞ, we must have
akh

n�k ¼Gakh
k. Thus, if the order of h is denoted by e, then e j 2k.

If q is even this implies that ejk and f ðtÞ A Fq½te�; thus f ðhtÞ ¼ f ðtÞ as required.
Suppose that q is odd. If e is odd then ejk and, again, f ðhtÞ ¼ f ðtÞ. So assume that
e is even. We must have f ðtÞ A Fq½te=2� and so f ðh2tÞ ¼ f ðtÞ.

Now suppose that f ðetÞ A Xn for some e A F�
q . To avoid redundancy, let us

assume that f ðhtÞ0 f ðtÞ0 f ðetÞ. Clearly jdj2 ¼ jej2, where d is the order of e, and
f ðtÞ A Fq½te=2�nFq½te�. But then e and h are doing the same thing to coe‰cients of
f ðtÞ, namely swapping the sign of coe‰cients of tae=2 for odd a. Thus f ðhtÞ ¼ f ðetÞ
as required. r

Note that, when q is odd, we have e¤ectively shown that if f A Xn and ½ f �X has
two elements then ½ f �X ¼ f f ðtÞ; f ðhtÞg and the order of h is a power of 2. We con-
tinue our analysis for q odd.

Lemma 2.3. Let q be odd.

(1) If n is odd then Sn is empty and, for f ðtÞ A Tn, we have j½ f �T j ¼ 2.

(2) Suppose that n is even.
(a) If f ðtÞ B Fq½tjq�1j2 � and f ðtÞ A Tn (resp. f ðtÞ A Sn) we have j½ f �T j ¼ 2 (resp.

j½ f �Sj ¼ 2). Moreover if ½ f �T is non-empty (resp. ½ f �S is non-empty), then ½ f �S
is empty (resp. ½ f �T is empty).

(b) If f ðtÞ A Fq½tjq�1j2 � and f ðtÞ A Tn (or f ðtÞ A Sn) then j½ f �Sj ¼ j½ f �T j ¼ 1.

Proof. First let n be odd. There are no z-self-reciprocal polynomials in this case,
hence Sn is empty. Moreover, Tn ¼ Fn UGn, and we have a bijection from Fn to Gn

given by f ðtÞ 7! f ð�tÞ. Thus, for f A Tn, ½ f �T ¼ f f ðtÞ; f ð�tÞg as required.
Now let n be even, so jnj2 d 2. Again write X for either T or S and suppose that

f ðtÞ A Xn. We know that ½ f �X ¼ f f ðtÞ; f ðhtÞg where h has order a power of 2. If
f ðtÞ A Fq½tjq�1j2 � this implies that f ðhtÞ ¼ f ðtÞ and so j½ f �X j ¼ 1. On the other hand
if f ðtÞ B Fq½tjq�1j2 � let e be the smallest power of 2 such that f ðtÞ B Fq½te�. Taking h

of order e we check easily that f ðhtÞ A Xn and f ðhtÞ0 f ðtÞ.
Suppose that f ðtÞ A Sn (i.e. f ðtÞ is z-self-reciprocal) and f ðtÞ B Fq½tjq�1j2 �. We check

if f ðltÞ is self-reciprocal for some l A Fq. Then this implies that, whenever ak 0 0,

ak
ln�k

zn=2�k
¼Gakl

k:
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This implies that ln�k ¼Gzn=2: Setting k ¼ 0 we find that jq� 1j2 divides jnj2 and so
l2k ¼Gzk for k > 0. Since z is a non-square this is impossible. Thus, if ½ f �S is non-
empty, then ½ f �T is empty. A similar argument shows that, if ½ f �T is non-empty, then
½ f �S is empty.
Finally consider the case when f ðtÞ A Fq½tjq�1j2 �VTn. Let h be a non-square of

order jq� 1j2. Set k to be an element in F�
q which satisfies k2 ¼ h=z. Then one can

check that

f ðktÞ ¼GðktÞn þ ajq�1j2ðktÞ
n�jq�1j2 G a2jq�1j2ðktÞ

n�2jq�1j2 þ � � �Gajq�1j2ðktÞ
jq�1j2 þ 1

lies in Sn. Similarly if f ðtÞ A Fq½tjq�1j2 �VSn then f ðytÞ A Tn where y is an element of
F�

q which satisfies y2 ¼ hz. Thus, in both cases, j½ f �Sj ¼ j½ f �T j ¼ 1. r

2.3 Real classes in PGLn(q). We wish to use our results concerning reality in GLnðqÞ
to classify reality in PGLnðqÞ. In general, when converting our results from a group
X to X=Y where Y cZðX Þ, we are faced with the following problem: if g is real
(resp. strongly real) in X then gY is real (resp. strongly real) in X=Y , however the
converse does not hold.
When X ¼ GLnðqÞ we are able to give a partial converse. Write Z for the centre of

GLnðqÞ and recall that z is a fixed non-square in Fq.

Lemma 2.4. Suppose that gZ is real in PGLnðqÞ. Then gZ lifts to a real or a z-real

element in GLnðqÞ.

Proof. Clearly gZ lifts to an element g which is conjugate in GLnðqÞ to g�1ðh�1IÞ
for some h A F�

q , i.e. there exists h A GLnðqÞ such that hgh�1 ¼ h�1g�1. If h is a

square, h ¼ l2 say, we get hðlgÞh�1 ¼ l�1g�1. That is, gZ lifts to a real ele-
ment lg in GLnðqÞ. When h is not a square, we write h ¼ z�1l2 and we have

hðlgÞh�1 ¼ zðlgÞ�1. In this case gZ lifts to a z-real element lg in GLnðqÞ. r

Recall that we write gln for the number of real conjugacy classes of type n in
GLnðqÞ. Then [4, Theorem 3.8] states that gln ¼

Q
ni>0 nq;ni where nq;ni is defined in

[4, Lemma 2.1]. Now the number of real classes in PGLnðqÞ is equal to
P

jnj¼n pgln,
where pgln is the number of real conjugacy classes in PGLnðqÞ of type n. Lemma 2.4
implies that pgln is equal to the number of equivalence classes in the set of sequences
of self-reciprocal and z-self-reciprocal polynomials associated with n (or, equiva-
lently, the number of equivalence classes of real and z-real conjugacy classes in
GLnðqÞ of type n).
For the rest of this section we calculate pgln for various values of n, n and q.

2.3.1 q is even. There are no z-real conjugacy classes in GLnðqÞ in this case. What is
more, Lemma 2.2 implies that all equivalence classes of real conjugacy classes in
GLnðqÞ are of size 1; hence pgln ¼ gln ¼

Q
ni>0 nq;ni .

4 N. Gill and A. Singh

(AutoPDF V7 31/8/10 11:14) WDG (170�240mm) Tmath J-2340 JGT, : (idp) PMU:(idp[KN]/A)31/8/2010 pp. 1–29 2340_055 (p. 4)



2.3.2 q is odd.

Lemma 2.5. If C is a real (resp. z-real) class in GLnðqÞ then C is equivalent to at most

one other real (resp. z-real) class in GLnðqÞ.

Proof. The proof is very similar to the proof of Lemma 2.2. Suppose that C is real
(resp. z-real) and corresponds to the sequence u ¼ ðu1ðtÞ; u2ðtÞ; . . .Þ. Consider conju-
gacy classes Ch corresponding to u ¼ ðu1ðhtÞ; u2ðhtÞ; . . .Þ, for some h A F�

q , and as-
sume that Ch is real.

Let e be the largest power of 2 such that all elements ui are in Fq½te=2�. Let f be the
order of h. If j f j2 < e then Ch ¼ C. If j f j2 ¼ e then Ch is the conjugacy class corre-
sponding to v ¼ ðv1ðtÞ; v2ðtÞ; . . .Þ, where viðtÞ is the same as uiðtÞ except that the coef-
ficient of tae has reversed sign for odd a. If j f j2 > e then Ch is not real (resp. z-real)
which is a contradiction.

Thus there is at most one other real (resp. z-real) conjugacy class in GLnðqÞ which
is equivalent to C. r

Lemma 2.6. Let C be a conjugacy class in GLnðqÞ of type n with corresponding se-

quence u ¼ ðu1ðtÞ; u2ðtÞ; . . .Þ. Let d ¼ jðn1; n2; . . .Þj2.

(1) If d ¼ 1, then the set of real conjugacy classes in GLnðqÞ is partitioned into equiv-

alence classes of size 2, and there are no z-real classes.

(2) Suppose that dd 2.
(a) If C is a real (resp. z-real) class then C is equivalent to one other real (resp.

z-real) class provided that at least one ui is not in Fq½tjq�1j2 �. Moreover, if C
is a real class such that not all ui lie in Fq½tjq�1j2 � then C is not equivalent to

any z-real class.
(b) If C is a real (resp. z-real) class, and all ui lie in Fq½tjq�1j2 �, then C is equivalent

to exactly one z-real (resp. real) class; moreover C is not equivalent to any

other real (resp. z-real) class.

Proof. Suppose first that d ¼ 1. Then ni is odd for some i and, in particular, there are
no z-real classes of type n. Now suppose that C is real. Then, since ni is odd, we have
two distinct equivalent sequences which both correspond to a real class in GLnðqÞ:

ðu1ðtÞ; u2ðtÞ; . . .Þ and ðu1ð�tÞ; u2ð�tÞ; . . .Þ:

Thus C is equivalent to a distinct real class in GLnðqÞ as required.
Now suppose that dd 2, so that ni is even for all i. Let C be a real (resp. z-real)

class such that at least one ui is not in Fq½tjq�1j2 �. Let e be the largest power of 2
such that all of the ui are contained in Fq½te=2� and take h A F�

q of order e. Then,
once again, we have two distinct equivalent sequences which both correspond to a
real (resp. z-real) class in GLnðqÞ:

ðu1ðtÞ; u2ðtÞ; . . .Þ and ðu1ðhtÞ; u2ðhtÞ; . . .Þ:
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Thus C is equivalent to one other real (resp. z-real) class as required. Lemma 2.3
implies that C cannot be equivalent to a real (resp. z-real) class.
Now suppose that dd 2 that all of the ui lie in Fq½tjq�1j2 �. If C is real (resp. z-real)

then Lemma 2.3 implies that C is not equivalent to any other real (resp. z-real) class.
If C is real (resp. z-real) then define k (resp. y) just as in the proof of Lemma 2.3; the
class corresponding to ku (resp. yu) is z-real (resp. real). r

This lemma allows us to write down a formula for pgln valid whenever q is odd.

Corollary 2.7. Let n ¼ 1n12n2 . . . be a partition of n. If d ¼ 1 then pgln ¼ 1
2 gln. If d > 1

then pgln ¼ gln.

2.3.3 Conclusion. We summarize our results for both odd and even characteristic in
the following theorem:

Theorem 2.8. The number of real conjugacy classes in PGLnðqÞ is given by

X
jnj¼n

1

2sn

Y
ni>0

nq;ni :

Here we set d ¼ jðn1; n2; . . .Þj2 and define sn to equal 0 if jdqj2 > 1 and to equal 1
otherwise. All real conjugacy classes in PGLnðqÞ are strongly real.

We have not proved the statement about strong reality, however this follows from
the work of Vinroot [17, Theorem 3]. Note too that, for q even or n odd, the number
of GLnðqÞ-classes of SLnðqÞ-real elements in SLnðqÞ is the same as the number of
PGLnðqÞ-real classes. This is reminiscent of an observation of Lehrer [11] that the
total number of conjugacy classes in PGLnðqÞ is the same as the total number of
GLnðqÞ-classes in SLnðqÞ.

3 PSLn(q), q is even or SnS2 0 SqC 1S2

In this section we begin work on a classification of the real conjugacy classes
in PSLnðqÞ. We think of PSLnðqÞ as the image of SLnðqÞ under the quotient map
GLnðqÞ ! PGLnðqÞ ¼ GLnðqÞ=Z, hence the elements of PSLnðqÞ will be written as
gZ where g A SLnðqÞ.
Recall that we may describe gZ as being of type n, for some partition n, since all

elements in GLnðqÞ to which gZ lifts are of the same type n. Our first result holds for
any q and for any cover of PSLnðqÞ.

Proposition 3.1. Let Y cZðGLnðqÞÞ and set G to equal GLnðqÞ=Y and H to equal

SLnðqÞ=ðSLnðqÞVY Þ. Let C be a G-conjugacy class in H which is associated with

a partition n ¼ ðn1; n2; . . .Þ. Then C splits into hn ¼ ðq� 1; n1; n2; . . .Þ H-conjugacy

classes.

6 N. Gill and A. Singh
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Proof. We use the methods of [18]. Let C ¼ C1 U � � �UCh, where C1; . . . ;Ch are H-
conjugacy classes; to prove the proposition we must calculate the value of h. Suppose
that g projects into C1 and let

X ¼ fh A GLnðqÞ : hgh�1 ¼ yg for some y A Yg:

Set DY to be the group detX which lies in F�
q :

The class C1 is stabilized in G by XH. Now there is an isomorphism
G=ðXHÞGF�

q=DY . Thus h ¼ ðq� 1Þ=jDY j:
We must now calculate jDY j. Suppose that Y1 cY2 cZðGLnðqÞÞ. It is clear that

DY1
cDY2

if and only if Y1 cY2. But now [18, Theorem 4] states that DY1
¼ DY2

for
Y1 ¼ f1g and Y ¼ ZðGLnðqÞÞ. Hence DY1

¼ DY2
.

When Y ¼ f1g, we can use [12, (3.1)] to calculate DY . Macdonald proved that
a GLnðqÞ conjugacy class of type n ¼ fn1; . . . ; nrg contained in SLnðqÞ is the union
of hn conjugacy classes for SLnðqÞ where hn ¼ ðq� 1; n1; . . . ; nrÞ. Thus, for any
Y cZðGLnðqÞÞ, DY is the subgroup of F�

q of index hn ¼ ðq� 1; n1; n2; . . .Þ; the result
follows. r

Write psln for the number of PGLnðqÞ-real PGLnðqÞ-conjugacy classes of type n

contained in PSLnðqÞ. Proposition 3.1, together with [4, Corollary 4.5] implies that,
for jnj2 0 jq� 1j2, the number of real conjugacy classes in PSLnðqÞ is equal to

X
jnj¼n

hn psln:

Thus, for the remainder of this section (and the next), we will calculate psln for di¤er-
ing n, q and n.

3.1 q is even. We know that all real elements in PGLnðqÞ lift to real elements in
GLnðqÞ. Since there are no equivalences for q even, there is a 1–1 correspondence of
real conjugacy classes between the two groups; indeed the same holds for GLnðqÞ=Y
where Y is any subgroup of ZðGLnðqÞÞ.

Now all real elements in GLnðqÞ are in SLnðqÞ. What is more, these elements
are real, in fact strongly real, in SLnðqÞ. Hence there is also a 1–1 correspon-
dence between real elements in SLnðqÞ and those in PSLnðqÞ. We conclude that
psln ¼ sln ¼

Q
ni>0 nq;ni .

3.2 q is odd and SnS2 HSqC 1S2.

Lemma 3.2. Suppose that 2c jnj2 < jq� 1j2. If g is z-real in GLnðqÞ then g does not

project into PSLnðqÞ.

Proof. Suppose that hgh�1 ¼ zg. Then det g ¼Gzn=2. Now take a A F�
q and observe

that det gðaIÞ ¼Gzn=2an. We may suppose without loss of generality that z gen-
erates F�

q and suppose that a ¼ za for some integer a. Then detðagÞ ¼ zn=2þan or

Real and strongly real classes in PGLnðqÞ and quasi-simple covers of PSLnðqÞ 7
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zn=2þanþðq�1Þ=2. If g projects down to PSLnðqÞ then we must have detðagÞ ¼ 1 for some
a A F�

q . But q� 1 divides
�
1
2 nþ an

�
or

�
1
2 nþ anþ 1

2 ðq� 1Þ
�
which is impossible. r

Lemma 3.3. If jnj2 < jq� 1j2 then all real elements in GLnðqÞ project into PSLnðqÞ.
These projections are strongly real in PSLnðqÞ.

Proof. Lemma 2.1 implies that there exists a A Fq such that an ¼ �1, thereby imply-
ing that detðaIÞ ¼ �1. Now take g real in GLnðqÞ so that, in particular, det g ¼G1.
If det g ¼ �1 then detðagÞ ¼ 1 and ag is conjugate to ag�1. Thus agZ lies in PSLnðqÞ
as required.
Take h A GLnðqÞ such that hgh�1 ¼ g�1. From [4, Corollary 4.5], all real elements

in GLnðqÞ are strongly real in h SLnðqÞ; ðaIÞi, hence we may assume that det h ¼G1
and h2 ¼ 1. If det h ¼ 1 then hZ A PSLnðqÞ and so gZ is strongly real in PSLnðqÞ. If
det h ¼ �1 then ahZ A PSLnðqÞ and, once more, gZ is strongly real in PSLnðqÞ. r

These two lemmas imply that the number of real classes in PSLnðqÞ is equal to the
number of equivalence classes of real elements in GLnðqÞ. We conclude that, in this
case, psln ¼ 1

2 gln ¼ 1
2

Q
ni>0 nq;ni .

3.3 q is odd and SnS2 ISqC 1S2.

Lemma 3.4. Suppose that q is odd and jnj2 d jq� 1j2. If g and hg are both real (resp.
both z-real) then det g ¼ detðhgÞ.

Proof. Observe that detðhgÞ ¼ hn det g. Now if g and hg are both real (or both z-real)
then detðhgÞ ¼Gdet g and so hn ¼G1. Since jnj2 d jq� 1j2, Lemma 2.1 implies that
det h ¼ det g. r

Lemma 3.5. Suppose that q is odd and jnj2 d jq� 1j2. A PGLnðqÞ-real conjugacy class

gZ A PGLnðqÞ is contained in PSLnðqÞ if and only if

(1) it lifts to a real element in GLnðqÞ which is contained in SLnðqÞ, or

(2) it lifts to a z-real element in GLnðqÞ of determinant zn=2 in the case where

jnj2 > jq� 1j2, and of determinant �zn=2 otherwise.

Proof. Suppose that gZ lies in PGLnðqÞ with g A GLnðqÞ. If g has determinant
�1 in GLnðqÞ then detðhgÞ ¼ hn det g ¼ �hn, for h A F�

q . Lemma 2.1 implies that
detðhgÞ0 1 and so g does not project into PSLnðqÞ. Thus if gZ is PGLnðqÞ-real and
contained in PSLnðqÞ then there are two possibilities:

(1) g is real in GLnðqÞ with det g ¼ 1;

(2) g is z-real in GLnðqÞ.

In the second case, we can take z to be any non-square in Fq; in particular we assume
that z is a generator of the cyclic group F�

q . Now g is conjugate to zg�1 and
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so ðdet gÞ2 ¼ zn. In particular det g ¼ zn=2 or zðnþq�1Þ=2. Now g projects into PSLnðqÞ
only if there exists a A F�

q such that ag A SLnðqÞ. Write a ¼ zb for some integer b.
Then such an a exists provided one of the following equations has a solution:

n

2
þ bn1 0 ðmod q� 1Þ; nþ q� 1

2
þ bn1 0 ðmod q� 1Þ:

These equations translate into two cases:

(2a) If jnj2 > jq� 1j2 then only the first solution is possible. This corresponds to the
situation where det g ¼ zn=2.

(2b) If jnj2 ¼ jq� 1j2 then only the second solution is possible. This corresponds to
the situation where det g ¼ �zn=2. r

For n ¼ 1n12n2 . . . , set d ¼ jðn1; n2; . . .Þj2 and, as before, define sn to equal 0 if
jdqj2 > 1 and to equal 1 otherwise.

If jnj2 > jq� 1j2 and d > 1 then the number of z-real classes which project into
PSLnðqÞ is the same as the number of real classes which project into PSLnðqÞ; hence
psln ¼ sln. If d ¼ 1 then there are no z-real classes in GLnðqÞ and so psln ¼ 1

2 sln.
Furthermore by [4, Corollary 4.5] we know that all of these conjugacy classes are
strongly real in PSLnðqÞ.

3.4 Conclusion. We summarize our findings in the following theorem:

Theorem 3.6. Suppose that q is even or jnj2 0 jq� 1j2. Let d ¼ jðn1; n2; . . .Þj2. Then the

number of real classes in PSLnðqÞ of type n is equal to hnpsln where

psln ¼

1
ð2;q�1Þ

Q
ni>0

nq;ni ; jnj2 < jq� 1j2 or q is even;

sln; jnj2 > jq� 1j2; d > 1 and q is odd:
1
2 sln; jnj2 > jq� 1j2; d ¼ 1 and q is odd:

8>><
>>:

What is more, all real classes in PSLnðqÞ are strongly real.

Note that, when q is even, Theorem 3.6 also holds for SLnðqÞ=ðSLnðqÞVY Þ where
Y is any subgroup of ZðGLnðqÞÞ.

4 PSLn(q), q is odd and SnS2 FSqC 1S2

As before psln denotes the number of PGLnðqÞ-real PGLnðqÞ-conjugacy classes of
type n contained in PSLnðqÞ. We start by calculating psln for various cases. Note
that both of the lemmas from Section 3.3 apply here.

First set n ¼ ð1n12n2 . . .Þ, d ¼ jðn1; n2; . . .Þj2. We will use the methods and no-
tation of [4, Proposition 4.1], and consider various cases. In particular suppose
that C is a real class (resp. a z-real class) of type n in GLnðqÞ. Then C is as-

Real and strongly real classes in PGLnðqÞ and quasi-simple covers of PSLnðqÞ 9
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sociated with a sequence of polynomials ðu1ðtÞ; u2ðtÞ; . . .Þ that are self-reciprocal
(resp. z-self-reciprocal). Let ai be the leading term in uiðtÞ; then, for g A C,
det g ¼ ð�1Þn

Q
ni>0 a

i
i ¼

Q
ni>0 a

i
i . We know that ai is equal to G1 (resp. Gz�ni=2Þ

when C is real (resp. C is z-real).
For this section it will help to choose z to be a non-square which satisfies

zn=2 ¼ �1; this means that a z-real element, like a real element, will have determinant
G1. Then, for g real or z-real, Lemma 2.1 implies that, if det g ¼ �1, then g does not
project into PSLnðqÞ.

(P1) Suppose that d ¼ 1; thus there are no z-real elements. We must have det g ¼ 1
and so Lemma 2.6 implies that C is equivalent to one other real class in GLnðqÞ;
Lemma 3.4 implies that this class consists of elements of determinant 1. Thus
psln ¼ 1

2 sln.

(P2) Suppose that d > 1 and that ni ¼ 0 for all odd i; in particular, d < jnj2. If C is
real then Lemma 2.6 implies that C is equivalent to one other real class in GLnðqÞ;
Lemma 3.4 implies that this class consists of elements of determinant 1.
If C is z-real then we must have d > 1 and

det g ¼
Y
ni>0

ai
i ¼

Y
ni>0

G
1

zni=2

� �i

¼ 1

zn=2
:

Thanks to our choice of z we have det g ¼ zn=2 ¼ �1 and so, as we have already
observed, g does not project into PSLnðqÞ. Hence once again we have psln ¼ 1

2 sln:

(P3) Suppose that d > 1 and that there exists i odd for which ni > 0. The number of
real classes which lie in SLnðqÞ is given by [4, Proposition 4.1] and is equal to

fnðqÞ
� Y

i odd;ni>0

qni=2�1

�� Y
i even;ni>0

nq;ni

�
:

We also need to count the number of z-real classes for which the determinant
is equal to �z�n=2 ¼ 1. The same methods as in [4, Proposition 4.1] yield that the
number of such classes is equal to

gnðqÞ
� Y

i odd;ni>0

qni=2�1

�� Y
i even;ni>0

nq;ni

�

where gnðqÞ ¼ 1
2 ððqþ 1Þr � ðq� 1ÞrÞ with r the number of odd values of i for which

ni > 0.
The total number of these two types of conjugacy class is

Q
ni>0 nq;ni . Lemma 2.6

implies that these conjugacy classes partition into psln ¼ 1
2

Q
ni>0 nq;ni equivalence

classes.
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Note that if 4jn then [4, Proposition 4.4] implies that all of the above classes are
strongly real in PSLnðqÞ. Hence, using Proposition 3.1, we have the following:

Proposition 4.1. Suppose that jnj2 ¼ jq� 1j2 and 4jn. Then the total number of real

conjugacy classes in PSLnðqÞ is the same as the total number of strongly real conjugacy

classes and is given by

X
jnj¼n

hn psln

where the values for psln are as given above.

4.1 n1 2 (mod 4) and q1 3 (mod 4). This is the only case left to consider for
PSLnðqÞ. In the five points above we have calculated the number of PGLnðqÞ-classes
of PGLnðqÞ-classes lying in PSLnðqÞ. But in this case we do not know if all of these
classes will remain real in PSLnðqÞ.

Proposition 4.2. Suppose that n1 2 ðmod 4Þ and q1 3 ðmod 4Þ. Then the total num-

ber of real conjugacy classes in PSLnðqÞ is given by

X
jnj¼n

hn psln

where psln is non-zero exactly when ni > 0 for some odd i. In this case the values for

psln are given by (P1), (P2) and (P3).

Proof. If ni > 0 for some odd i, then [4, Proposition 5.5] implies that a real (or z-real)
conjugacy class of GLnðqÞ contained in SLnðqÞ is real (or z-real) within SLnðqÞ.
Hence we only need to deal with the situations of (P1) and (P2) where ni ¼ 0 for all
odd i. In fact (P2) cannot occur for n1 2 ðmod 4Þ.

Thus we are left with the case (P1) only and there are no z-real elements. Further-
more, for a real element, [4, Lemma 5.1 and Proposition 5.5] imply that all revers-
ing elements have non-square determinant in Fq. But such elements do not project
into PSLnðqÞ (see Lemma 2.1), hence this situation does not yield real elements in
PSLnðqÞ. r

4.2 Conclusion. We summarize our results in the following theorem.

Theorem 4.3. Suppose that jnj2 ¼ jq� 1j2 and let d ¼ jðn1; n2; . . .Þj2. Then the number

of real classes in PSLnðqÞ is given by

X
n

hnpsln:
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If 4jn then

psln ¼
1
2

Q
ni>0 nq;ni ; if d > 1 and ni > 0 for some odd i;

1
2 sln; otherwise:

(

If 4F n then

psln ¼
1
2

Q
ni>0 nq;ni ; if d > 1 and ni > 0 for some odd i;

1
2 sln; if d ¼ 1 and ni > 0 for some odd i;

0; otherwise:

8><
>:

5 Strongly real classes in PSLn(q)

We have shown that if n2 2 ðmod 4Þ or q2 3 ðmod 4Þ then reality and strong reality
coincide in PSLnðqÞ. Throughout this section we examine the strongly real classes in
PSLnðqÞ when n1 2 ðmod 4Þ and q1 3 ðmod4Þ.

Lemma 5.1. Suppose that n1 2 ðmod 4Þ and q1 3 ðmod 4Þ. An element gZ is strongly

real in PSLnðqÞ if and only if gZ lifts to an element g in GLnðqÞ for which there is an

element h satisfying

(1) hgh�1 ¼ g�1 (or zg�1Þ;

(2) h2 A ZðGLnðqÞÞ;

(3) det h is a square.

Proof. Suppose that such an element h exists. Then hc has determinant 1 for some
odd integer c. Furthermore ðhcÞ2 A ZðGLnðqÞÞ and ðhcÞgðhcÞ�1 ¼ g�1 (or zg�1).
Thus gZ is strongly real in PSLnðqÞ.
On the other hand if gZ is strongly real in PSLnðqÞ then, by definition, an element

h exists in GLnðqÞ satisfying the first two criteria given. What is more h projects into
PSLnðqÞ; in other words hh has determinant 1 for some scalar h. This means that
det h ¼ h�n which is a square since n is even. r

Take gZ real in PSLnðqÞ. Then g is of type n where ni > 0 for some odd i. Let g be
a real or z-real element in GLnðqÞ and let V be the module associated with g. Let h be
a reversing element for g in GLnðqÞ which satisfies h2 A ZðGLnðqÞÞ.
Now h permutes the minimal cyclic submodules of V with orbits of size 2 (in the

proof of [4, Proposition 5.5] we called these orbits h-minimal submodules of V ). This
fact allows us to break the general situation into smaller subcases which we deal with
in the next two lemmas.

Lemma 5.2. Suppose that V ¼ Wp lWq where Wp and Wq are cyclic modules with

irreducible characteristic polynomials pðtÞa and ~ppðtÞa (resp. �ppðtÞa). Furthermore as-

sume that h swaps Wp and Wq. Set the degree of pðtÞ (and qðtÞ) to be d. Then det h
can be a square or a non-square if ad is odd; otherwise det h is a square.
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Proof. We proceed as per the proof of [4, Lemma 5.4]; in particular, we can take g to
equal

B 0

0 B�1

� �
or

B 0

0 zB�1

� �

for some B A GLadðqÞ. This means that

h ¼ 0 X

Y 0

� �

where X and Y centralize B in GLadðqÞ. Then

det h ¼ ð�1ÞadðdetXÞðdetY Þ ¼ ð�1ÞadðdetXY Þ:

Since h2 A ZðGLnðqÞÞ we must have XY A ZðGLadðqÞÞ and so

det h ¼ ð�1Þadaad ¼ ð�aÞad

where a A Fq. Thus if ad is even this determinant is a square. On the other hand if ad
is odd then we can let X ¼ Y ¼ I and det h is a non-square, or take X ¼ I ¼ �Y and
det h is a square. r

Lemma 5.3. Suppose that V is a cyclic module Wp with irreducible characteristic poly-

nomial pðtÞa; suppose furthermore that pðtÞ is self-reciprocal (resp. z-self-reciprocal).
Set d ¼ degðpðtÞÞ.

(1) If d is odd then det h can be chosen to be a square or a non-square if a is

odd; otherwise det h is a square for a1 0 ðmod 4Þ and det h is a non-square for

a1 2 ðmod4Þ.

(2) If d is even and a is even, then det h is a square.

(3) If d is even and a is odd, then det h can be chosen to be a square or a non-square if

d1 2 ðmod 4Þ; otherwise det h is a square for d1 0 ðmod 4Þ.

Proof. Let us examine the relevant cases. We will use [4, Lemmas 5.2 and 5.3]; these
give conditions for det h to be a square, but they do not assume that h2 A ZðGLnðqÞÞ.
In the cases where these lemmas allow for det h to be a square or a non-square we
need to check the situation under this extra assumption.

Suppose that d is odd. Then pðtÞ ¼ tG 1 and we refer to [4, Lemma 5.2] and
observe that the conclusions given there apply here also. The only thing we have to
check is that the element h satisfies h2 A ZðGLnðqÞÞ. But the h which we exhibit in the
proof is an involution so we are done.

Suppose that d is even and a is even. Then [4, Lemma 5.3] implies that det h is a
square.

Real and strongly real classes in PGLnðqÞ and quasi-simple covers of PSLnðqÞ 13
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Suppose that d is even and a is odd. Let g ¼ gsgu be the Jordan decomposition of g
in GLadðqÞ. Then gs is centralized by GLaðqdÞ and so the centralizer of g must lie in
GLaðqdÞ. Furthermore a reversing element for g must be a reversing element for gs
and hence must normalize CGðgsÞ. Thus this element must act as a field involution of
GLaðqdÞ.
Suppose that d1 2 ðmod4Þ. Then [4, Corollary 4.5] implies that there exists a

reversing involution h0. Since a is odd, we can choose z A ZðGLaðqdÞÞ ¼ ZðCGðgsÞÞ
such that det z is a non-square. Now h0 acts as a field automorphism on CGðgsÞ hence

ðzh0Þ2 ¼ zzh0h20 ¼ zq
d=2þ1:

Clearly h0 and zh0 are reversing elements with di¤erent determinant. Now write
ðzh0Þ2 as an element of GLaðqdÞ: ðzh0Þ2 ¼ bI for some b A Fqd . For this to lie in

ZðGLadðqÞÞ we must have bðq
d=2þ1Þðq�1Þ ¼ 1.

Since jqd=2 � 1j2 ¼ jq� 1j2 we can take an odd power of z, zc say, such that
ðzch0Þ2 A ZðGLadðqÞÞ. Clearly zch0 is a reversing element for g and detðzch0Þ is a
square if and only if detðzh0Þ is a square. We conclude that, in this situation, we can
take h to have determinant a square or a non-square.
Suppose that d1 0 ðmod 4Þ. By [4, Corollary 4.5], a reversing involution h0 exists

which acts as a field automorphism on GLaðqdÞ and has determinant a square. Then
any other reversing element must have form zh0 where z centralizes g. The form of z
is given (as an element in GLaðqdÞ) by

z ¼

b1 b2

..
.

. .
. . .

.

. .
.

b2
b1

0
BBBBB@

1
CCCCCA:

Then

ðzh0Þ2 ¼ zzh0h20 ¼ zzh0 ¼
b
qd=2þ1
1

..
.

. .
.

b
qd=2þ1
1

0
BB@

1
CCA:

For ðzh0Þ2 to lie in ZðGLadðqÞÞ, we must have b
ðqd=2þ1Þðq�1Þ
1 ¼ 1. But this means that

b1 must be a square in Fqd . Thus det zh0 is a square in all cases. r

It is now just a matter of summing up what we have proved so far, and converting
our result into the language of Macdonald.

Theorem 5.4. Let n1 2 ðmod 4Þ and q1 3 ðmod 4Þ. Let gZ be real in PSLnðqÞ of

type n ¼ 1n12n2 . . . , and suppose that g can be taken to be self-reciprocal (resp. z-self-
reciprocal). Then gZ fails to be strongly real in PSLnðqÞ if and only if the following

conditions hold for all odd i such that ni > 0:
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(1) all factors of uiðtÞ have even degree;

(2) all self-reciprocal (resp. z-self-reciprocal) factors of uiðtÞ have degree equivalent to
0 ðmod 4Þ.

Note that Theorem 4.3 implies that an odd i exists for which ni > 0.

Proof. Let V be the module associated with g. By Lemma 5.1 we need to show that
any reversing element h, which satisfies h2 A ZðGLnðqÞÞ, has det h a non-square.

Break V up into h-minimal submodules, W , as in the proof of [4, Proposition 5.5].
Suppose that gjW is reversible by an element h0 which satisfies h2 A ZðGLðWÞÞ and
for which we can choose det h0 to be square or non-square. Then clearly we can
choose h to be a square or a non-square; Lemmas 5.2 and 5.3 give the conditions
under which this is possible. These conditions are precisely the ones excluded by the
statement of the theorem.

Thus the conditions given in the theorem ensure that, for every h-minimal submod-
ule W , the reversing elements of gjW in GLðWÞ either all have determinant a square
or all have determinant a non-square; in fact Lemmas 5.2 and 5.3 imply that the
determinant will be a square if and only if the dimension of W is divisible by 4.
Since n1 2 ðmod 4Þ we conclude that det h must have determinant a non-square as
required. r

6 Quotients of SLn(q)

We examine the real and strongly-real classes in SLnðqÞ=Y where Y is some subgroup
of ZðSLnðqÞÞ. We have noted already that Theorem 3.6 holds for SLnðqÞ=Y where
q is even. In fact, if jY j is odd, then the number of real (resp. strongly real) classes
will equal the number of real (resp. strongly real) classes in SLnðqÞ. Similarly if
jY j2 ¼ jðn; q� 1Þj2 then the number of such classes will be the same as in PSLnðqÞ.
Hence, in this section, we assume that 1 < jY j2 < jðn; q� 1Þj2; in particular we as-
sume that

q1 1 ðmod 4Þ; and n1 0 ðmod4Þ:

In what follows we will think of Y as being a subgroup of SLnðqÞ, GLnðqÞ or F�
q

depending on the context. We need two new concepts that mirror our treatment
of projective groups from Section 2.

Firstly we say that elements g1 and g2 of GLnðqÞ are Y-equivalent if they project
onto the same element of GLnðqÞ=Y ; so g2 ¼ g1y for some y A Y . This notion can
be extended to conjugacy classes of GLnðqÞ and GLnðqÞ=Y .

Secondly we generalize the idea of a z-real element. Let zY be an element of Y such
that zY 0 a2 for all a A Y (zY is a non-square in Y ); we say that g is zY -real in GLnðqÞ
if there exists h A GLnðqÞ such that hgh�1 ¼ zYg

�1. It is easy to see that all real ele-
ments in SLnðqÞ=Y will lift to a real element or a zY -real element in GLnðqÞ (cf.
Lemma 2.4).

Real and strongly real classes in PGLnðqÞ and quasi-simple covers of PSLnðqÞ 15

(AutoPDF V7 31/8/10 11:14) WDG (170�240mm) Tmath J-2340 JGT, : (idp) PMU:(idp[KN]/A)31/8/2010 pp. 1–29 2340_055 (p. 15)



For ease of calculation we will set zY to be an element which satisfies z
jY j2
Y ¼ 1.

In particular this means that all zY -real elements, like all real elements, have determi-
nantG1. Since jY j2 < jnj2, we know that only elements of determinant 1 project into
SLnðqÞ=Y (cf. Lemma 2.1).
Now [4, Proposition 4.4] states that all GLnðqÞ-real elements in SLnðqÞ are strongly

real in SLnðqÞ. It is easy enough to modify the proof to show that all GLnðqÞ-zY -real
elements in SLnðqÞ are strongly zY -real in SLnðqÞ (where strongly zY -real has the ob-
vious definition).
Finally Proposition 3.1 implies that if a GLnðqÞ=Y -class is of type n then the class

will split into hn classes in SLnðqÞ=Y . This combines to give the following proposi-
tion:

Proposition 6.1. Let Y be a subset of ZðSLnðqÞÞ such that 1 < jY j2 < jðn; q� 1Þj2. The
total number of real classes in SLnðqÞ=Y is the same as the number of strongly real

classes in SLnðqÞ=Y and is equal to

X
jnj¼n

hnslyn:

Here slyn is the number of Y-equivalence classes in the set of all real and zY -real con-

jugacy classes of type n and determinant 1 in GLnðqÞ.

It remains to calculate the value of slyn for di¤ering n, Y , q and n. Recall that we
defined sln to be the total number of GLnðqÞ-real GLnðqÞ-conjugacy classes of type n
contained in SLnðqÞ. Now [4, Proposition 4.1] established that

sln ¼

Q
ni>0

nq;ni ; if q is even or ni is zero for i odd;

1
2

Q
ni>0

nq;ni ; if q is odd and ini is odd for some i;

fnðqÞ
Q

i odd;ni>0

qni=2�1
Q

i even;ni>0

nq;ni ; otherwise:

8>>>>><
>>>>>:

From here things are easy. The number of real classes and the number of zY -real
conjugacy classes will be the same (cf. [4, Lemma 2.2] and note that zY -self-reciprocal
polynomials exist with odd degree). These will be partitioned into sets of size 2 as
described in Lemma 2.6. Hence slyn ¼ sln. We summarize our results as follows.

Theorem 6.2. Let Y be a subset of ZðSLnðqÞÞ such that 1 < jY j2 < jðn; q� 1Þj2. The
number of real classes in SLnðqÞ=Y is equal to the number of strongly real classes, and
is given by

X
jnj¼n

hnsln:

This is the same as the number of real classes in SLnðqÞ (see [4, Theorem 4.6]).
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7 Some exceptional cases

In order to complete our classification of real classes in all quasi-simple covers of
PSLnðqÞ we must deal with some exceptional situations, namely quasi-simple covers
of PSLnðqÞ which are not quotients of SLnðqÞ. There are five situations where this
may occur: PSL2ð4Þ, PSL3ð2Þ, PSL2ð9Þ, PSL3ð4Þ and PSL4ð2Þ; see [10, Theorem
5.1.4].

Write MðGÞ for the Schur multiplier of a simple group G. If G ¼ PSL2ð4Þ (resp.
PSL3ð2Þ) then jMðGÞj ¼ 2 and the double cover of G is isomorphic to SL2ð5Þ (resp.
SL2ð7Þ). We have already analysed the real classes in these groups. The remaining
three groups need to be analysed in turn; we start by recording some information
about each (see [10, Proposition 2.9.1 and Theorem 5.1.4]):

G isomorphism MðGÞ

PSL2ð9Þ A6 C6

PSL4ð2Þ A8 C2

PSL3ð4Þ C4 � C12

Here Cn is the cyclic group of order n, and the middle column lists groups to which G

is isomorphic. Information about real conjugacy classes can, for quasi-simple groups
with cyclic centre, be found in [2]; we will need to do extra work to understand those
groups that do not have cyclic centre, and to classify the strongly real conjugacy
classes.

Our approach in this section is, in some sense, the reverse of that in the rest of the
paper. We have complete information about (strongly) real classes in G, and we wish
to deduce information about (strongly) real classes in quasi-simple covers of G. We
start with a lemma which applies to this situation in some generality.

Lemma 7.1. Let G, H be groups such that H=ZGG where Z is an odd-order central

subgroup of H. Let C be a real class in G containing elements of order n; then C lifts to

a unique real class CH in H and this class consists of elements of order n. What is more

if C is strongly real than CH is strongly real.

Proof. Let w be a real-valued irreducible complex character (or rvicc) of H. Let g A Z;
then wðgÞ ¼ 1 for g0 1. This implies that w is an rvicc of G. Since every rvicc of G is
an rvicc of H, we conclude that G and H have the same number of rvicc’s. Thus G
and H have the same number of real classes.

Now suppose that h and gh lie in di¤erent conjugacy classes of H, with g A Z,
g0 1. Since h and hg are not conjugate in H, there exists an irreducible complex
representation F with character w such that wðghÞ0 wðhÞ. Now FðgÞ ¼ hI and so
wðghÞ ¼ hwðhÞ; in particular, h0 1 and wðhÞ0 0. Since g has odd order it follows
that h is not real. Thus gh and h cannot be both real, and we conclude that every
real class of G lifts to a unique real class in H.

Real and strongly real classes in PGLnðqÞ and quasi-simple covers of PSLnðqÞ 17

(AutoPDF V7 31/8/10 11:14) WDG (170�240mm) Tmath J-2340 JGT, : (idp) PMU:(idp[KN]/A)31/8/2010 pp. 1–29 2340_055 (p. 17)



Suppose next that h is real in H and hZ is real in G of order m. Then hm A Z, and
the only element in Z that is real in H is the identity. Thus hm ¼ 1 as required.
Finally suppose that CH is a real class in H such that h A CH and hZ lies in C, a

strongly real class in G. Then there exists fZ A G such that

ð fZÞðhZÞð fZÞ�1 ¼ h�1Z and ð fZÞ2 ¼ Z A G:

Since Z has odd order we can assume that f 2 ¼ 1 A H. Then fhf �1 ¼ h�1g for some
g A Z. Since Z has odd order, g ¼ g�2

1 for some g1 A Z. Then f ðhg1Þ f �1 ¼ ðhg1Þ�1:
Thus hg�1 is strongly real in H and projects onto hZ in G. Since CH is the unique real
class to which C lifts, we conclude that CH is strongly real. r

A consequence of this lemma is that G and H have the same number of real (resp.
strongly real) classes. If GG PSL2ð9Þ or GG PSL2ð4Þ, then MðGÞ contains a unique
involution; thus G has a unique double cover, 2:G. Lemma 7.1 reduces the study of
real and strongly real classes in the covers of G to the study of real and strongly real
classes in G and 2:G. The case of PSL3ð4Þ is more di‰cult.
Throughout what follows, G is a simple group, and H a quasi-simple group with

centre Z ¼ ZðHÞ such that GGH=Z.

7.1 Covers of PSL2(9). The group PSL2ð9ÞGA6 has seven conjugacy classes (with
elements of order 1, 2, 3, 3, 4, 5 and 5), all of which are real (see Theorem 3.6 or [16]).
Lemma 7.1 implies that 3:PSL2ð9Þ has seven real conjugacy classes with elements
of the same orders. Theorem 3.6 implies that all conjugacy classes in PSL2ð9Þ are
strongly real, hence the same is true of 3:PSL2ð9Þ.

Similarly SL2ð9ÞG 2:PSL2ð9Þ has 13 conjugacy classes (with elements of orders 1,
2, 3, 3, 4, 5, 5, 6, 6, 8, 8, 10, and 10) all of which are real. Lemma 7.1 implies that
6:PSL2ð9Þ has 13 real conjugacy classes with elements of the same orders.

Table 1. Real and strongly real classes in J8.

Line gZ A A8 g A J8 order in J8 real strongly real

1 (1) G1 1; 2 yes yes
2 (12)(34) Gs1s3 4 yes no
3 (123) Gs1s2 3; 6 yes no
4 (123)(456) Gs1s2s4s5 3; 6 yes yes
5 (1234)(56) Gs1s2s3s5 8 yes no
6 (12345) Gs1s2s3s4 5; 10 yes no
7 (12)(34)(56)(78) Gs1s3s5s7 2 yes yes
8 (1234)(5678) Gs1s2s3s5s6s7 4 yes yes
9 (123)(45)(67) Gs1s2s4s6 12 yes no
10 (123456)(78) Gs1s2s3s4s5s7 6; 6 no no
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The groups SL2ð9ÞG 2:PSL2ð9Þ and 6:PSL2ð9Þ contain a single involution (in the
centre); thus both groups contain precisely two strongly real classes.

7.2 Covers of PSL4(2). Consider the group H2n given by the presentation

H2n ¼ hs1; . . . ; s2n�1 j s2k ;�ðskskþ1Þ3;�ðsksjÞ2i;

where j; k ¼ 1; . . . ; 2n� 1, j j � kj > 1, and �1 is defined to be a central element. The
group H2n is a double cover of S2n with center Z ¼ f1;�1g; see [1, p. 175]; the pro-
jection map is given by

p : H2n 7! S2n; sk 7! ðk k þ 1Þ:

Then H2n has a subgroup J2n of index 2 which is the double cover of A2n; this is the
group of interest here. Clearly J2n consists of all elementsGx where x is the product
of an even number of the elements si.

Now let g be a real element of J2n; then gZ is a real element of A2n. What is more,
if g is (strongly) real in J2n then �g is also (strongly) real (since hgh�1 ¼ g�1 implies
that hð�gÞh�1 ¼ �g�1 ¼ ð�gÞ�1).

With this in mind we list the real and strongly real classes in J8 G 2:PSL4ð2Þ in
Table 1. We need to explain the columns of this table: The first column records the
line number. The second column lists representatives from all real classes in A8. The
third column lists the two elements in J8 that project onto the given representative in
A8. The fourth column gives the order of elements in J8 which project onto gZ in A8;
the presence of two numbers in this column means that there are two di¤erent conju-
gacy classes of elements in J8 that project onto the same conjugacy class in A8. The
final two columns state whether or not the elementsGg are (strongly) real.

Proposition 7.2. Table 1 is correct.

Proof. The first five columns follow immediately from [2] (see also the explicit calcu-
lations given in [3]).

Now consider the final column. Obviously involutions and the identity are strongly
real. Recall also that, since g is strongly real if and only if �g is strongly real, we need
only prove the result for any h projecting onto gZ.

The only non-central involutions in J8 correspond to 4-transpositions in A8 (line 7
of the table). We can use this to rule out some cases: observe that

RA8
ðð123ÞÞG ðhð123Þi� A5Þ : hð12Þð45Þi;

hence RA8
ðð123ÞÞ contains no 4-transpositions. We conclude that lines 3 and 9 do not

correspond to strongly real classes. Similarly

RA8
ðð12345ÞÞG ðhð12345Þi� hð678ÞiÞ : hð25Þð34Þi;
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and, again, this contains no 4-transpositions. Hence line 6 does not correspond to
strongly real classes.
Now the group RA8

ðð123Þð456ÞÞ contains a 4-transposition, ð16Þð25Þð34Þð78Þ,
which reverses ð123Þð456Þ. Since ð123Þð456Þ lifts to elements of di¤erent orders,
we conclude that they must be strongly real. In other words, line 4 corresponds to
strongly real classes.
Next consider line 2 and take g A J8 which projects onto gZ ¼ ð12Þð34Þ. Let H be

the group of even permutations of f5; 6; 7; 8g (so HGA4). Then

CJ8ðgÞ=Z ¼ fð1Þ; ð12Þð34Þ; ð13Þð24Þ; ð14Þð23Þg �H;

CA8
ðgZÞ ¼ CJ8ðgÞ=Z:hð12Þð56Þi:

Any element that reverses g must centralize gZ. However all 4-transpositions in
CA8

ðgZÞ are contained in CJ8ðgÞ=Z; hence g is not strongly real.
We move on to line 5 and take g A J8 which projects onto gZ ¼ ð1234Þð56Þ. Then

CJ8ðgÞ=Z ¼ hð1234Þð56Þi; CA8
ðgZÞ ¼ hð1234Þð56Þ; ð1234Þð78Þi;

RA8
ðgZÞ ¼ hð1234Þð56Þ; ð1234Þð78Þ; ð14Þð23Þi:

There are four cosets of CJ8ðgÞ=Z in RA8
ðgZÞ, two of which reverse g. Only one of

these cosets contains a 4-transposition. Now observe that

ðs1s5s2s1s2s3s2s1Þðs1s2s3s5Þðs1s5s2s1s2s3s2s1Þ�1 ¼ �ðs1s2s3s5Þ�1:

Thus the coset containing a 4-transposition does not reverse g, and we conclude that
line 5 does not correspond to a real class in J8.
Finally consider line 8 and take g A J8 which projects onto gZ ¼ ð1234Þð5678Þ in

A8. Observe that

CJ8ðgÞ=Z ¼ hð1234Þð5678Þi;

CA8
ðgZÞ ¼ hð1234Þð5678Þ; ð1234Þð8765Þi : hð15Þð26Þð37Þð48Þi;

RA8
ðgZÞ ¼ ðCA8

ðgZÞÞ : hð15Þð26Þð37Þð48Þi:

Set H ¼ hð1234Þð5678Þi; then H has four cosets in RA8
ðgZÞ, all containing 4-

transpositions. One coset must lift to the set fh : hgh�1 ¼ g�1g, and we conclude
that line 8 does correspond to a strongly real class in J8. r

7.3 Covers of PSL3(4). Let G ¼ PSL3ð4Þ, and let H be a quasi-simple cover of G.
Observe that G has a single conjugacy class of involutions; also [5, Proposition
6.4.1] implies that an involution g A G lifts to an involution h A H.
Using our work above, we calculate that G contains eight real classes (with ele-

ments of order 1, 2, 3, 4, 4, 4, 5 and 5) and they are all strongly real. Furthermore
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ZðHÞcC4 � C12 and Lemma 7.1 allows us to assume that ZðHÞ is a non-trivial
subgroup of C4 � C4. Thus there are seven covers of L3ð4Þ to be discussed:

PSL3ð4Þ; 2:PSL3ð4Þ; E4:PSL3ð4Þ; 41:PSL3ð4Þ; 42:PSL3ð4Þ;

ðE441Þ:PSL3ð4Þ; ðC4 � C4Þ:PSL3ð4Þ:

By E4 we mean an elementary abelian group of order 4; by 41 and 42 we mean
quotients of MðGÞ by cyclic groups of order 4 that lie in MðGÞ and are not in the
same orbit of OutðPSL3ð4ÞÞ. That this list of covers is comprehensive follows easily
from [5, Theorem 6.3.1] and [6, Lemma 2.3 (i), p. 463].

Before we proceed with our analysis we establish some notation. Let P be a Sylow
2-subgroup of PSL3ð4Þ; observe that P is isomorphic to

P1 G
1 a b

0 1 c

0 0 1

0
B@

1
CA
������� a; b; c A F4

8><
>:

9>=
>;:

We will identify P with P1, allowing us to write elements of P as matrices. Write PH

for the Sylow 2-subgroup of H that projects onto P. For h A H, define

Zh ¼ fz A Z j h1hh�1
1 ¼ hz for some h1 A PHg:

Observe that this is a subgroup of Z and, that jZhj ¼ jCPðgÞ : CPH ðhÞ=Zj.

Proposition 7.3. Let H be a quasi-simple cover of G ¼ PSL3ð4Þ with centre Z, a 2-
group. Suppose that g ¼ hZ A G ¼ H=Z, with g real in G of order d.

(1) If d is odd, then h is real if and only if the order of h is d or 2d. What is more h is

strongly real if and only if h is real.

(2) If d ¼ 2, then h is strongly real.

Note that we are not dealing with the case when d ¼ 4. We address this situation in
the next proposition.

Proof. Case 1. Suppose that d is odd. Then the set hZ generates a cyclic subgroup of
H, and we may take the order of h to equal d. If d ¼ 1 then h is central and is
(strongly) real if and only if h2 ¼ 1.

Now suppose that d > 1. Let g1 A G satisfy g1gg
�1
1 ¼ g�1 and g1 ¼ h1Z for

h A H. Then h1hh
�1
1 ¼ h�1z for some z A Z. Since h has odd order, we conclude

that z ¼ 1. In other words h1hh
�1
1 ¼ h�1 and h is real. More generally this implies

that

h1ðhzÞh�1
1 ¼ h�1z:
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Thus hz is real if and only if z2 ¼ 1. Furthermore, since g is strongly real we may take
g1 to be an involution. By [5, Proposition 6.4.1] we may therefore take h1 to be an
involution. Thus if hz is real then hz is strongly real; we have proved (1).

Case 2. Suppose that d ¼ 2. We take h to have order 2, which we may do by [5, Prop-
osition 6.4.1]. We take

g ¼
1 0 x

0 1 0

0 0 1

0
B@

1
CA A ZðPÞ;

where x A F�
4 .

We may assume that HG ðC4 � C4Þ:PSL3ð4Þ and that ZðHÞ ¼ hz1; z2i, so z1
and z2 are elements of order 4. Now [6, Lemma 2.3 (c), p. 463] implies that
jCPðgÞ : CPH ðhÞ=Zj ¼ 4 and so jZhj ¼ 4. Since h has order 2, this implies that
Zh ¼ f1; z21 ; z22 ; z21z22g. The elements of hZ can therefore be written in subsets of con-
jugate elements as follows:

fh; hz21 ; hz22 ; hz21z22g; fhz1; hz31 ; hz1z22 ; hz31z22g;

fhz2; hz21z2; hz32 ; hz21z32g; fhz1z2; hz31z2; hz1z32 ; hz31z32g:

In particular these elements are all real. We need to establish that they are, in fact,
strongly real. Observe first that if h21 ¼ hz, with h of order 2 and z central, then

hh1 ¼ h�1
1 z ¼ h1h:

In other words, an element h1 satisfying h21 ¼ hz commutes with h. This, along with
[6, Lemma 2.3 (c), p. 463], implies that CPH ðhÞ=Z is isomorphic to the group

C ¼
1 a b

0 1 c

0 0 1

0
B@

1
CA
������� a; b; c A F4; ac ¼ x

* +

¼
1 a b

0 1 c

0 0 1

0
B@

1
CA
������� a; b; c A F4; ac ¼ x or a ¼ c ¼ 0

8><
>:

9>=
>;GC2 �Q8:

Now let g1 be some element of P such that hC; g1i is a degree 2 extension of
CPH ðhÞ=Z. Then

g1 ¼
1 a b

0 1 c

0 0 1

0
B@

1
CA; for some a; b; c A F4; with ða; cÞ0 ð0; 0Þ:
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If a or c is equal to 0 then g21 ¼ 1 and this extension is split. If a0 00 c, then there
exists g0 A C such that

g0 ¼
1 a 0

0 1 a�1x

0 0 1

0
B@

1
CA;

and g0g1 is an involution; thus, again, the extension is split. Thus any degree 2 exten-
sion of CPH ðhÞ=Z in P is split.

Since CPH ðhzÞ=Z ¼ CPH ðhÞ=Z for any z A Z, [5, Proposition 6.4.1] implies that
RPðhzÞ is a split extension of CPðhzÞ. In other words, hz is strongly real, as required.

r

We must now examine those elements h A H for which g ¼ hZ is an element of
order 4 in PSL3ð4Þ. There are three conjugacy classes of elements of order 4 in
PSL3ð4Þ. They are fused by an outer automorphism of PSL3ð4Þ and intersect P in
the following sets:

Ck ¼
1 a b

0 1 c

0 0 1

0
B@

1
CA
������� a; b; c A F4; ac

�1 ¼ k

8><
>:

9>=
>; with k A F�

4 :

If ZðHÞ ¼ E4 or ZðHÞ ¼ C4 � C4 then the set of conjugacy classes in H that project
onto Ck is mapped, via an outer automorphism of H, to the set of conjugacy classes
in H that project onto Ck 0 for k 0 0 k; see [5, Table 6.3.1].

Proposition 7.4. Let H be a quasi-simple cover of G ¼ PSL3ð4Þ with centre Z, a 2-
group. Suppose that g ¼ hZ A G ¼ H=Z, with g real in G of order 4. Suppose that g

lies in the set Ck for some k A F�
4 .

(1) If ZðHÞ ¼ C2 or ZðHÞ ¼ 41, then all elements in hZ are real.

(2) If ZðHÞ ¼ 42, then the number of real elements in hZ depends on k. For two values

of k, every element in hZ is real; for the third, precisely half of the elements in hZ

are real.

(3) If ZðHÞ ¼ C4 � C4, then precisely half of the elements in hZ are real.

(4) If ZðHÞ ¼ E441, then the number of real elements in hZ depends on k. For two

values of k, every element in hZ is real; for the third, precisely half of the elements

in hZ are real.

(5) If ZðHÞ ¼ E4, then all elements in hZ are real.

(6) If ZðHÞ is non-cyclic, then no elements in hZ are strongly real.
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(7) If ZðHÞ ¼ C4, then the number of real elements in hZ depends on k. For two values

of k, no elements in hZ are strongly real; for the third, precisely half of the elements

in hZ are strongly real.

(8) If ZðHÞ ¼ C2, then the number of real elements in hZ depends on k. For two values

of k, no elements in hZ are strongly real; for the third, all elements in hZ are

strongly real.

Proof. Statements (1) and (2) follow immediately from [2, p. 28]; we therefore
start with (3). Throughout the proof we will refer to the universal 2-cover as
HU G ðC4 � C4Þ:PSL3ð4Þ. To begin we take H ¼ HU , x A F�

4 , and set

g ¼
1 1 0

0 1 x

0 0 1

0
B@

1
CA; thus g2 ¼

1 0 x

0 1 0

0 0 1

0
B@

1
CA:

This implies that

CPðgÞ ¼
1 a b

0 1 c

0 0 1

0
B@

1
CA
������� a; b; c A F4; c ¼ ax

8><
>:

9>=
>;GC4 � C4:

Clearly CPH ðhÞd hhiZðHÞ and so CPH ðhÞ:Z has index at most 4 in CPðgÞ. Now
one of the classes of order 4 in PSL3ð4Þ lifts to four separate conjugacy classes in
42:PSL3ð4Þ; see [2, p. 28]. We conclude that CPH ðhÞ has index at least 4 in CPðgÞ;
thus CPH ðhÞ=Z ¼ hhiZ=Z, and jCPðgÞ : CPH ðhÞ=Zj ¼ 4 ¼ jZhj:
Now write Z ¼ hz1i� hz2i. Suppose that Zh is elementary abelian; then

Zh ¼ f1; z21 ; z22 ; z21z22g:

Now there is an element in CPH ðh2Þ=Z that conjugates g to g�1; hence it must map h

to an element of h�1Zh (since h�1Zh contains all elements of h�1Z whose square is
equal to h2). Since Zh�1 contains h�1 we conclude that h is real; indeed, all elements
in hZ are real. Since covers with cyclic centre are epimorphic images of covers with
non-cyclic centre, the same conclusion will follow if ZðHÞ is cyclic. This contradicts
statements (1) and (2).
We conclude that Zh is cyclic; write Zh ¼ f1; z1; z21 ; z31g. Now there is an element

h1 A CPH ðh2Þ=Z that conjugates g to g�1; hence Zh ¼ Zh�1 . We have several cases to
consider:

(1) If h1 conjugates hZh to h�1z32Zh, then relabel so that z32 becomes z2; then we lie in
the next case.

(2) If h1 conjugates hZh to h�1z2Zh, then hZU h�1Z splits into four sets of conjugate
elements, with elements from distinct sets non-conjugate:

ðhZh U h�1z2ZhÞ; z2ðhZh U h�1z2ZhÞ; z22ðhZh U h�1z2ZhÞ; z32ðhZh U h�1z2ZhÞ:
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We conclude that none of these elements are real. Moreover, for h1 A hZ, we find
that h1hz1i is not real in H=hz1i. However H=hz1i is a cover of PSL3ð4Þ with
cyclic center. This contradicts statements (1) and (2).

(3) If h1 conjugates hZh to h�1z22Zh, then the set of conjugates of h in h�1Z is equal
to fh�1z22 ; h

�1z1z
2
2 ; h

�1z21z
2
2 ; h

�1z31z
2
2g. In this case relabel so that h becomes hz2;

then we lie in the next case.

(4) The set of conjugates of h in h�1Z is equal to fh�1; h�1z1; h
�1z21 ; h

�1z31g.

Thus, provided we label appropriately, the following elements are all conjugate:

hZh U h�1Zh ¼ fh; hz1; hz21 ; hz31 ; h�1; h�1z1; h
�1z21 ; h

�1z31g:

Similarly the following sets consist of conjugate elements:

z2ðhZh U h�1ZhÞ; z22ðhZh U h�1ZhÞ; z32ðhZh U h�1ZhÞ:

Thus, of all elements in hZ, precisely the elements in the sets hZh, z
2
2hZh are real in

H.
We have proved (3). To prove (4) and (5) we examine the following sets of conju-

gate elements in HU :

hZh U h�1Zh; z2ðhZh U h�1ZhÞ; z22ðhZh U h�1ZhÞ; z32ðhZh U h�1ZhÞ:

Consider H ¼ HU=Z1 where Z1 is a central subgroup of HU . The following table lists
those elements h1 A hZ for which h1Z1 is real in H:

Z1 H real elements

hz21i ðE441Þ:PSL3ð4Þ Zh; z
2
2Zh

hz22i ðE441Þ:PSL3ð4Þ Zh; z2Zh; z
2
2Zh; z

3
2Zh

hz21z
2
2i ðE441Þ:PSL3ð4Þ Zh; z2Zh; z

2
2Zh; z

3
2Zh

hz21 ; z
2
2i E4:PSL3ð4Þ Zh; z2Zh; z

2
2Zh; z

3
2Zh

This yields (4) and (5). We have three entries for H ¼ ðE441Þ:PSL3ð4Þ as the order
3 automorphisms of PSL3ð4Þ do not lift to this group.

To prove the remaining statements we must determine when h is strongly real.
Suppose first that Z is cyclic and non-trivial. We start by considering the 4-covers of
PSL3ð4Þ; let Z ¼ hzi and let Y be the pre-image of ZðPÞ in PH ; then [6, Lemma 2.2,
p. 463] implies that Y ¼ X � Z where X GC2 � C2. Furthermore [6, Lemma 2.3(e),
p. 463] implies that CPH ðYÞ=ZGC4 � C4 and so contains an element h such that hZ
is an element of order 4 in PSL3ð4Þ. In particular CPH ðhÞ > Y .

Now suppose that HG 41:PSL3ð4Þ; then CPH ðhÞ=Z is a proper subgroup of CPðgÞ
(otherwise, hZ intersects four distinct conjugacy classes of 41:PSL3ð4Þ, and Zh ¼ f1g;
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this is impossible by [2, p. 24]). Thus CPh
ðhÞ ¼ hhiY , which has index 2 in CPðgÞ.

This implies, firstly, that hZ intersects two conjugacy classes, call them C1 and C2,
in H. It implies, secondly, that Zh ¼ f1; z2g ¼ Zh�1 and, since h is real, the elements
h, h�1, hz2 and h�1z2 are all conjugate.
Now the set of elements in P that reverse g is equal to

R ¼
1 a b

0 1 ðaþ 1Þx
0 0 1

0
B@

1
CA
������� a; b A F4

8><
>:

9>=
>;:

In addition observe that C ¼ CPH ðhÞ=Z ¼ hg;ZðPÞi. Consider degree 2 extensions
of C of the form hC; ri for some r A R. There are two such extensions, one split
(when the element r has a ¼ 1 or a ¼ 0 in the matrix form given above) and the other
non-split.
Thus h is mapped by an involution to precisely one of either h�1 or h�1z2. This

implies that h is strongly real if and only if hz is not strongly real. Thus we conclude
that precisely two of the elements in hZ are strongly real in 41:PSL3ð4Þ. In particular
not all real elements are strongly real in 41:PSL3ð4Þ.
We return to the situation where H ¼ HU and write ZðHÞ ¼ hz1; z2i. As before

we choose h so that Zh ¼ f1; z1; z21 ; z31g. Again the following sets consist of conjugate
elements:

hZh U hZh�1 ; z2ðhZh U hZh�1Þ; z22ðhZh U hZh�1Þ; z32ðhZh U hZh�1Þ:

Thus, in H=hz1z22iG 41:PSL3ð4Þ, the set hZ splits into two conjugacy classes; then
[2, p. 24] implies that these conjugacy classes must coincide with C1 and C2 described
above.
Now define groups S < R < P as follows:

R ¼
1 a b

0 1 c

0 0 1

0
B@

1
CA
������� a; b; c A F4; a A f0; 1g c A f0; xg

8><
>:

9>=
>;GC4 � C4;

S ¼
1 a b

0 1 c

0 0 1

0
B@

1
CA
������� a; b; c A F4; ða; cÞ A fð0; 0Þ; ð1; xÞg

8><
>:

9>=
>;GC4 � C2:

Let RH (resp. SH ) be the pre-image of R (resp. S) in H; then RH is a degree 4 exten-
sion of CPH ðhÞ. In addition, firstly, all of the involutions that reverse g are contained
in R. Secondly, SH is a subgroup of RH of index 2, and SH=Z centralizes g. Thus

fz A Z j h1hh�1
1 ¼ hz for some h1 A SHg;

is a subgroup of Zh of size 2; it must equal f1; z21g.
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The R-conjugates of h have two possible forms; the first possibility is that the
R-conjugacy class of h is hR ¼ fh; hz21 ; h�1; h�1z21g: The strongly real elements of hZ
are then all elements hz such that the set zhR contains ðhzÞ�1. A quick calculation
demonstrates that the elements satisfying this requirement are precisely the real ele-
ments in hZ. Thus all real elements in H are strongly real. Clearly the same result
applies to all epimorphic images of H, which contradicts our earlier calculations in
41:PSL3ð4Þ.

The second possibility is that the R-conjugates of h are h, hz21 , h
�1z1, h

�1z31 . In this
case half of the elements in hZ are strongly real in H=hz1z22i, which is consistent with
our calculations above. It immediately follows that none of the elements in hZ are
strongly real in HU .

To complete our analysis we consider, as before, H ¼ HU=Z1, where Z1 is a cen-
tral subgroup of HU . The following table lists those choices of Z1 for which hZ con-
tains any strongly real elements; in each case the table lists those elements h1 A hZ for
which h1Z1 is strongly real in H; we write Yh for the set f1; z21g:

Z1 H strongly real elements

hz1z22i 41:PSL3ð4Þ hz2Yh; hz1z2Yh; hz
3
2Yh; hz1z

3
2Yh

hz1i 42:PSL3ð4Þ hYh; hz1Yh; hz2Yh; hz1z
2
2Yh

hz1; z22i 2:PSL3ð4Þ hZ

Statements (6), (7) and (8) follow immediately from the table. r

8 Further work

It is natural to ask if the real and strongly real classes can be counted in other families
of finite groups of Lie type. The work of Macdonald extends (as he explains in [12])
to the unitary groups, so this is the natural next step.

In counting real conjugacy classes for a finite group G we are also, of course,
counting real irreducible representations for G. The question arises whether we now
construct these representations. For the case of GLnðqÞ we hope to use Green’s clas-
sical method [9]. For other finite groups of Lie type this is likely to be very di‰cult,
and to require the Deligne–Lusztig theory.

Real irreducible characters come from two di¤erent kinds of irreducible repre-
sentation, the orthogonal and the symplectic ones. It is not clear whether there
is any such division for the number of real conjugacy classes; however we can
make some observations. For instance, note that for GLnðqÞ, and for SLnðqÞ with
n2 2 ðmod 4Þ, all real conjugacy classes are strongly real; it turns out that in
these cases the self-dual representations are orthogonal, i.e., the real characters
actually come from orthogonal representations (cf. [8], [13] where it is shown that
the Schur index for the complex characters of the above mentioned groups is
always 1).
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This correspondence between strongly real classes and orthogonal representations
has been studied from a variety of angles; see Gow’s work on 2-regular structure [7],
and Prasad’s work on groups of Lie type and p-adic groups [14], [15]. Nonetheless,
although the correspondence can be seen to hold in particular cases (and not in
others), it is unclear how general a phenomenon it really is.
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