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Real and strongly real classes in PGL,(q)
and quasi-simple covers of PSL,(¢q)

Nick Gill and Anupam Singh
(Communicated by W. M. Kantor)

Abstract. We classify the real and strongly real conjugacy classes in PGL,(g), PSL,(g), and all
quasi-simple covers of PSL,(g). In each case we give a formula for the number of real, and the
number of strongly real, conjugacy classes.

This is a companion paper to [4] in which we classified the real and strongly real conjugacy
classes in GL,(¢) and SL,(q).

1 Introduction

Let G be a group. An element g of G is called real if there exists 1 € G such that
hgh~' = g~'. If h can be chosen to be an involution (i.e. /> = 1) then we say that g
is strongly real. In all cases we say that / is a reversing element for g. If g is real (resp.
strongly real) then all conjugates of g are real (resp. strongly real), hence we talk
about real classes and strongly real classes in G.

In [4] we classified the real and strongly real conjugacy classes in GL,(¢) and
SL,(q). In this paper we extend this classification to cover the groups PGL,(q),
PSL,(g) and the quasi-simple covers of PSL,(q). We use the notation and methods
established in [4]. In particular we do not repeat definitions from [4].

The analysis in this paper is of a slightly different flavour to that of [4] as the
groups of interest are no longer subgroups of GL,(g), but quotients of subgroups.
In particular, to understand reality in PGL,(g) and PSL,(¢) we need to understand
the (-real elements in GL,(q) and SL,(q); these elements were introduced in [4, §2],
and were studied in parallel with real elements throughout the rest of [4]. Their sig-
nificance is explained by Lemma 2.4.

An understanding of reality in PGL,(g), PSL,(¢) and the remaining quasi-simple
covers of PSL,(q) requires that we understand how conjugacy is affected when we
factor out the centre of a group. This is discussed in the first half of Section 2; that
discussion sets the scene for what follows in Sections 2 to 6, each of which includes a
theorem near the end summarizing its main results.

Section 7 covers some exceptional quasi-simple covers of PSL,(¢) that require dif-
ferent techniques, and thereby completes our analysis of real and strongly real classes
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2 N. Gill and A. Singh

in the quasi-simple covers of PSL,(g). Section 8 outlines possible areas of future
research.

As far as we know a complete classification of the real and strongly elements for
any of the families PGL,(¢q), PSL,(g), and the quasi-simple covers of PSL,(¢) does
not exist in the literature. However Gow has communicated with us concerning work
on real classes in PGL,(g); so, although this has not been published, some of the
results are already known.

The preprint version of this paper [3] contains explicit calculations for small rank
groups (cf. Section 13). Formulae are given there for the number of real and strongly
real classes in all relevant groups with rank at most 6.

2 PGL.(9)

First, some notation: consider two groups, X and Y, such that ¥ < Z(X). We say
that an element 2 € X/ Y lifts to an element g in X (or, equivalently, g projects onto
h) if h = gY. Now suppose that W < X. We say that g projects into W/Y if there
exists y € Y such that gy € W. We continue the practice established in [4] so that,
for g e GL,(q) and 57 € IF;, we will abuse notation and write ng for (/).

2.1 Conjugacy in PGL,(q). Set Z = Z(GL,(q)); then PGL,(q) = GL,(¢)/Z. Our
first job is to understand how conjugacy in PGL,(g) works. Let g be an element of
C, a conjugacy class of GL,(q), represented by u = (u1(t),u2(¢), . . .) corresponding to
a partition v = 1"2"2 ..., Macdonald’s result asserts that the conjugacy class of #g is
represented by (u; (1), u2(nt),...); see [12, p. 30]. Thus all elements in GL,(¢g) which
project onto an element gZ € PGL,(q) are of type v; we therefore refer to gZ as
being of type v.

Suppose that g projects onto gZ which is real in PGL,(g). Then we want to
calculate how many real and (-real elements in GL,(g) project onto gZ. We call
two sequences of self-reciprocal polynomials (resp. (-self-reciprocal polynomials),
u= (ui(t),u2(1),...) and v=(v1(2),v2(1),...) equivalent if, for some 5elF,
v;(t) = u;(nt) for all i.

To understand what this means for reality in PGL,(¢) we need to return to the
study of self-reciprocal and (-self-reciprocal polynomials that was started in [4, §2].

2.2 An action of IF;' on polynomials. We define an action of IF;‘ on the set of degree
n polynomials by 7./(¢) = f (1) for n € ;. Recall the definition of sets 7, and S,
given in [4, §2]. We are interested in classifying the orbits of IF intersected with 7,
and S,,. That is to say, we wish to determine the size of the sets

Sr={ft) e Tu|nely} and [flg={f(n)eSi[nel},

for a degree n polynomial f in IF,[¢].
In what follows we write |k|, for the largest power of 2 which divides an integer k.
We begin with a lemma from [4]:
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Real and strongly real classes in PGL,(¢) and quasi-simple covers of PSL,(g) 3

Lemma 2.1 ([4, Lemma 4.3)). Let IF, be a finite field with q odd. Then there exists
a e IF, with o = —1 if and only if |n|, < |q — 1|,.

Lemma 2.2. If q is even then [ and [f]g contain at most one element. If q is odd then
[f] and [f]g contain at most two elements.

Proof. Write X to mean either 7 or S. Take f(¢) € X, such that f(yt) € X,;
then #" = +1. Since f(5t) € X,,, for any coefficient a; # 0 of f(), we must have
arn" % = +a;n*. Thus, if the order of # is denoted by e, then e| 2k.

If ¢ is even this implies that e|k and f(¢) € IF,[¢¢]; thus f(yt) = f(¢) as required.
Suppose that ¢ is odd. If e is odd then e|k and, again, f(nt) = f(¢). So assume that
e is even. We must have f(¢) € IF,[t*/?] and so f(n%t) = f(1).

Now suppose that f(ef) € X, for some ¢eIF;. To avoid redundancy, let us
assume that f(nz) # f(¢) # f(et). Clearly |d|, = |e|,, where d is the order of ¢, and
f(t) e F,[t¢?]\IF,[¢¢]. But then ¢ and # are doing the same thing to coefficients of
£(£), namely swapping the sign of coefficients of #%/? for odd a. Thus f(5t) = f'(et)
as required. []

Note that, when ¢ is odd, we have effectively shown that if f € X,, and [f], has
two elements then [f], = {f(¢), f ()} and the order of # is a power of 2. We con-
tinue our analysis for ¢ odd.

Lemma 2.3. Let g be odd.
(1) If nis odd then S, is empty and, for f(t) € T,, we have |[f];] = 2.

(2) Suppose that n is even.

() If f(t) ¢ F,[d97':] and f(f) € T, (resp. f(t) € S,) we have |[f];]| =2 (resp.
I[f]s| = 2). Moreover if [f] is non-empty (resp. [f]g is non-empty), then [f]
is empty (resp. [f]y is empty).

(b) 1f /(1) € F, (17 5] and £(1) € Ty (or £(1) € S,) then |[]g] = |[f)] = 1.

Proof. First let n be odd. There are no (-self-reciprocal polynomials in this case,
hence S, is empty. Moreover, 7, = F,, U G,,, and we have a bijection from F, to G,
given by f(#) — f(—1). Thus, for f € T,, [f]; = {f(?), f(—1)} as required.

Now let n be even, so |n|, = 2. Again write X for either T or S and suppose that
f(t) € X,. We know that [f], = {f(¢), f(5t)} where n has order a power of 2. If
f(t) € F,[t4=1] this implies that f(5¢) = f(¢) and so |[f]y| = 1. On the other hand
if £(¢) ¢ F,[t4=12] let e be the smallest power of 2 such that f(z) ¢ IF,[t]. Taking
of order e we check easily that f(nt) € X, and f(nt) # f(¢).

Suppose that f () € S, (i.e. f(¢) is {-self-reciprocal) and f(f) ¢ IF,[/l/=112]. We check
if f(4t) is self-reciprocal for some A € IF,. Then this implies that, whenever a; # 0,

= iakik.
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4 N. Gill and A. Singh

This implies that A"~* = +¢"/?. Setting k = 0 we find that |¢ — 1|, divides |1|, and so
22 = +¢¥ for k > 0. Since { is a non-square this is impossible. Thus, if [f]s is non-
empty, then [f], is empty. A similar argument shows that, if [f]; is non-empty, then
[f]g is empty.

Finally consider the case when f(¢) € IF,[t4"'2]N T,. Let 5 be a non-square of
order |g — 1|,. Set x to be an element in IF,; which satisfies x> =n/{. Then one can
check that

f(Kl) _ i(KZ)n + a\q71|2(’c1)’77‘q71‘2 + a2|q71‘2(Kt)n72\‘I*1|z N '_"a\q71|2 (Kl)‘qil‘z +1

lies in . Similarly if f(¢) € F,[£4~'2] N S, then f(0f) € T, where 0 is an element of
IF; which satisfies 0% = n{. Thus, in both cases, |[f]s| = |[f];] =1. O

2.3 Real classes in PGL,(¢). We wish to use our results concerning reality in GL,(g)
to classify reality in PGL,(q). In general, when converting our results from a group
X to X/Y where Y < Z(X), we are faced with the following problem: if ¢ is real
(resp. strongly real) in X then gY is real (resp. strongly real) in X /Y, however the
converse does not hold.

When X = GL,(g) we are able to give a partial converse. Write Z for the centre of
GL,(g) and recall that { is a fixed non-square in IF,.

Lemma 2.4. Suppose that gZ is real in PGL,(q). Then gZ lifts to a real or a {-real
element in GL,(q).

Proof. Clearly gZ lifts to an element g which is conjugate in GL,(q) to g~!(y~'1)
for some 7 € IF;, i.e. there exists 1 e GL,(g) such that hgh™' =»~'g~'. If 5 is a
square, 7 = % say, we get h(Ag)h~! =/, 'g7'. That is, ¢gZ lifts to a real ele-
ment Ag in GL,(g). When 7 is not a square, we write = ¢7'2? and we have
h(2g)h™" = ¢(4g)~". In this case gZ lifts to a {-real element Ag in GL,(g). [

Recall that we write g/, for the number of real conjugacy classes of type v in
GL,(g). Then [4, Theorem 3.8] states that g/, =[], . 7g.n, Where ng ,, is defined in
[4, Lemma 2.1]. Now the number of real classes in PGL,(g) is equal to Z\v\:n pal,,
where pgl, is the number of real conjugacy classes in PGL,(¢) of type v. Lemma 2.4
implies that pgl, is equal to the number of equivalence classes in the set of sequences
of self-reciprocal and (-self-reciprocal polynomials associated with v (or, equiva-
lently, the number of equivalence classes of real and {-real conjugacy classes in
GL,(g) of type v).

For the rest of this section we calculate pgl, for various values of v, n and ¢.

2.3.1 gqis even. There are no {-real conjugacy classes in GL,(¢) in this case. What is
more, Lemma 2.2 implies that all equivalence classes of real conjugacy classes in
GL,(q) are of size 1; hence pgl, = gl, =[], -0 1g.n-
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Real and strongly real classes in PGL,(¢) and quasi-simple covers of PSL,(g) 5

2.3.2 gqis odd.

Lemma 2.5. If C is a real (resp. (-real) class in GL,(q) then C is equivalent to at most
one other real (resp. {-real) class in GL,(q).

Proof. The proof is very similar to the proof of Lemma 2.2. Suppose that C is real
(resp. {-real) and corresponds to the sequence u = (u(¢),u(¢),...). Consider conju-
gacy classes C, corresponding to u = (u1(nt),u2(n?),...), for some n € F;, and as-
sume that C, is real.

Let e be the largest power of 2 such that all elements ; are in IF,[¢¢/?]. Let f be the
order of . If | f], < e then C, = C. If | f|, = e then C, is the conjugacy class corre-
sponding to v = (v;(f),v2(), .. .), where v;(¢) is the same as u;(¢) except that the coef-
ficient of #* has reversed sign for odd a. If |f|, > e then C, is not real (resp. {-real)
which is a contradiction.

Thus there is at most one other real (resp. {-real) conjugacy class in GL,(g) which
is equivalent to C. []

Lemma 2.6. Let C be a conjugacy class in GL,(q) of type v with corresponding se-
quence u = (u1(t),us(t),...). Let d = |(ny,na,...)|,.

(1) If d = 1, then the set of real conjugacy classes in GL,(q) is partitioned into equiv-
alence classes of size 2, and there are no {-real classes.

(2) Suppose that d = 2.

(@) If C is a real (resp. (-real) class then C is equivalent to one other real (resp.
{-real) class provided that at least one u; is not in T, [t4=12]. Moreover, if C
is a real class such that not all u; lie in F,[{97 '] then C is not equivalent to
any (-real class.

(b) If Cis a real (resp. (-real) class, and all u; lie in T[], then C is equivalent
to exactly one (-real (resp. real) class; moreover C is not equivalent to any
other real (resp. {-real) class.

Proof. Suppose first that d = 1. Then n; is odd for some i and, in particular, there are
no {-real classes of type v. Now suppose that C is real. Then, since #; is odd, we have
two distinct equivalent sequences which both correspond to a real class in GL,(g):

(1), u2(0),...) and (w1 (~1), (1), ...).

Thus C is equivalent to a distinct real class in GL,(g) as required.

Now suppose that d > 2, so that n; is even for all i. Let C be a real (resp. {-real)
class such that at least one  is not in IF,[f97':]. Let e be the largest power of 2
such that all of the u; are contained in IF,[t*/%] and take 7 € IF; of order e. Then,
once again, we have two distinct equivalent sequences which both correspond to a
real (resp. {-real) class in GL,(q):

(w1 (8),un(t),...) and (ui(nt),uz(nt),...).
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6 N. Gill and A. Singh

Thus C is equivalent to one other real (resp. (-real) class as required. Lemma 2.3
implies that C cannot be equivalent to a real (resp. {-real) class.

Now suppose that d > 2 that all of the ; lie in IF,[#97':]. If C is real (resp. {-real)
then Lemma 2.3 implies that C is not equivalent to any other real (resp. {-real) class.
If C is real (resp. {-real) then define x (resp. 6) just as in the proof of Lemma 2.3; the
class corresponding to wcu (resp. Ou) is (-real (resp. real). []

This lemma allows us to write down a formula for pgl/, valid whenever ¢ is odd.

Corollary 2.7. Let v = 1M2" ... be a partition of n. If d = 1 then pgl, = %gl‘,. Ifd > 1
then pgl, = gl,.

2.3.3 Conclusion. We summarize our results for both odd and even characteristic in
the following theorem:

Theorem 2.8. The number of real conjugacy classes in PGL,(q) is given by

1
> 20y 11 70n-
[v|=n

n;>0

Here we set d = |(n1,na,...)|, and define o, to equal 0 if |dg|, > 1 and to equal 1
otherwise. All real conjugacy classes in PGL,(q) are strongly real.

We have not proved the statement about strong reality, however this follows from
the work of Vinroot [17, Theorem 3]. Note too that, for ¢ even or n odd, the number
of GL,(g)-classes of SL,(g)-real elements in SL,(g) is the same as the number of
PGL, (q)-real classes. This is reminiscent of an observation of Lehrer [11] that the
total number of conjugacy classes in PGL,(¢) is the same as the total number of
GL,(g)-classes in SL,(q).

3 PSL.(9), q is even or |n|, # |qg — 1],

In this section we begin work on a classification of the real conjugacy classes
in PSL,(¢). We think of PSL,(¢) as the image of SL,(¢) under the quotient map
GL,(¢q) — PGL,(q9) = GL,(g¢)/Z, hence the elements of PSL,(q) will be written as
gZ where g € SL,(q).

Recall that we may describe gZ as being of type v, for some partition v, since all
elements in GL,(g) to which gZ lifts are of the same type v. Our first result holds for
any ¢ and for any cover of PSL,(g).

Proposition 3.1. Let Y < Z(GL,(q)) and set G to equal GL,(q)/Y and H to equal
SL,(q)/(SL,(¢)NY). Let C be a G-conjugacy class in H which is associated with
a partition v= (vi,va,...). Then C splits into h, = (q — 1,vi,v2,...) H-conjugacy
classes.
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Real and strongly real classes in PGL,(¢) and quasi-simple covers of PSL,(g) 7

Proof. We use the methods of [18]. Let C = C;U---U Gy, where Cy,...,Cj, are H-
conjugacy classes; to prove the proposition we must calculate the value of /. Suppose
that ¢ projects into C) and let

X = {he GL,(q) : hgh™' = yg for some y e Y}.

Set Dy to be the group det X" which lies in IF .

The class C; is stabilized in G by XH. Now there is an isomorphism
G/(XH) =T, /Dy. Thus h = (¢ —1)/|Dy|.

We must now calculate |Dy|. Suppose that ¥} < ¥, < Z(GL,(g)). It is clear that
Dy, < Dy, if and only if ¥} < Y,. But now [18, Theorem 4] states that Dy, = Dy, for
Y1 ={1} and Y = Z(GL,(q)). Hence Dy, = Dy,.

When Y = {1}, we can use [12, (3.1)] to calculate Dy. Macdonald proved that
a GL,(q) conjugacy class of type v = {vi,...,v,} contained in SL,(g) is the union
of h, conjugacy classes for SL,(¢) where h, = (¢ —1,vi,...,v,). Thus, for any
Y < Z(GL,(q)), Dy is the subgroup of ]F;‘ of index /1, = (¢ — 1, vy, v2,...); the result
follows. [

Write psl, for the number of PGL,(g)-real PGL,(q)-conjugacy classes of type v
contained in PSL,(g). Proposition 3.1, together with [4, Corollary 4.5] implies that,
for |n|, # |g — 1],, the number of real conjugacy classes in PSL,(¢) is equal to

> hypsi,.

|v|=n

Thus, for the remainder of this section (and the next), we will calculate psi, for differ-
ing v, ¢ and n.

3.1 ¢ is even. We know that all real elements in PGL,(g) lift to real elements in
GL,(q). Since there are no equivalences for ¢ even, there is a 1-1 correspondence of
real conjugacy classes between the two groups; indeed the same holds for GL,(¢)/Y
where Y is any subgroup of Z(GL,(q)).

Now all real elements in GL,(g) are in SL,(¢). What is more, these elements
are real, in fact strongly real, in SL,(¢). Hence there is also a 1-1 correspon-
dence between real elements in SL,(¢) and those in PSL,(¢). We conclude that

pst, = sl, = Hn,>0 g, n;-
3.2 gisoddand |n|, <|g — 1],.

Lemma 3.2. Suppose that 2 < |n|, < |q — 1|, If g is {-real in GL,(q) then g does not
project into PSL,(q).

Proof. Suppose that hgh~! = {g. Then detg = +("/*. Now take o e IF; and observe

that det g(af) = +("/*a". We may suppose without loss of generality that { gen-
erates IF, and suppose that o = (“ for some integer a. Then det(ag) = g o
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8 N. Gill and A. Singh
g/Frant@=1/2 1f g projects down to PSL,(¢) then we must have det(xg) = 1 for some
aelF;. But ¢ — 1 divides (37 + an) or (31 + an + (g — 1)) which is impossible. [

Lemma 3.3. If |n|, < |q — 1|, then all real elements in GL,(q) project into PSL,(q).
These projections are strongly real in PSL,(q).

Proof. Lemma 2.1 implies that there exists « € IF, such that o” = —1, thereby imply-
ing that det(af) = —1. Now take ¢ real in GL,(q) so that, in particular, detg = +1.
If detg = —1 then det(ag) = 1 and ag is conjugate to g ~'. Thus agZ lies in PSL,(q)
as required.

Take h € GL,(q) such that high—' = g~'. From [4, Corollary 4.5], all real elements
in GL,(g) are strongly real in < SL,(g), («/)), hence we may assume that deth = +1
and h*> = 1. If deth = 1 then hZ € PSL,(q) and so gZ is strongly real in PSL,(g). If
deth = —1 then ahZ € PSL,(q) and, once more, gZ is strongly real in PSL,(¢). [

These two lemmas imply that the number of real classes in PSL,(¢) is equal to the
number of equivalence classes of real elements in GL,(¢). We conclude that, in this

case, pSlV = %glv = %Hn,->0 Ng,n;-
3.3 gisodd and |n|, > |g — 1],.

Lemma 3.4. Suppose that q is odd and |n|, = |q — 1|,. If g and ng are both real (resp.
both {-real) then det g = det(ng).

Proof. Observe that det(g) = " detg. Now if g and 7g are both real (or both (-real)
then det(ng) = +detg and so #” = +1. Since |n|, > |¢ — 1|,, Lemma 2.1 implies that
deth =detg. O

Lemma 3.5. Suppose that q is odd and |n|, > |q — 1|,. A PGL,(q)-real conjugacy class
gZ € PGL,(q) is contained in PSL,(q) if and only if
(1) it lifts to a real element in GL,(q) which is contained in SL,(q), or

(2) it lifts to a (-real element in GL,(q) of determinant ("* in the case where
|nl, > g — 1|,, and of determinant —{"2 otherwise.

Proof. Suppose that gZ lies in PGL,(g) with g e GL,(g). If g has determinant
—1 in GL,(q) then det(ng) = n"detg = —", for n e [F;. Lemma 2.1 implies that
det(ng) # 1 and so g does not project into PSL,,(¢). Thus if gZ is PGL,(g)-real and
contained in PSL,(¢) then there are two possibilities:

(1) g is real in GL,(gq) with detg = 1;
(2) g is {-real in GL,(q).

In the second case, we can take { to be any non-square in IF;; in particular we assume
that { is a generator of the cyclic group IF;. Now g is conjugate to {g~! and
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Real and strongly real classes in PGL,(¢) and quasi-simple covers of PSL,(g) 9

so (det g)? = ¢". In particular detg = "/ or {"*9"V/2_ Now g projects into PSL,(q)
only if there exists a € IF) such that ag € SL,(g). Write o = ( b for some integer b.
Then such an « exists provided one of the following equations has a solution:

—1
%—i—bnzo (modg —1).

n
§+bn=0(m0dq—1), >

These equations translate into two cases:

(2a) If |n|, > |g — 1|, then only the first solution is possible. This corresponds to the
situation where det g = (/.

(2b) If |n|, = |¢ — 1|, then only the second solution is possible. This corresponds to
the situation where detg = —( "2 0

For v=1M2"__. set d =|(n,n2,...)|, and, as before, define 5, to equal 0 if
|dg|, > 1 and to equal 1 otherwise.

If |n|, > |g— 1], and d > 1 then the number of {-real classes which project into
PSL,(g) is the same as the number of real classes which project into PSL,(¢); hence
psl, = sl,. If d =1 then there are no (-real classes in GL,(g) and so ps/, = %sl‘,.
Furthermore by [4, Corollary 4.5] we know that all of these conjugacy classes are
strongly real in PSL,,(g).

3.4 Conclusion. We summarize our findings in the following theorem:

Theorem 3.6. Suppose that q is even or |n|, # |q — 1|,. Let d = |(n1,n2,...)|,. Then the
number of real classes in PSL,(q) of type v is equal to hypsl, where

m ]_[an:ni7 |nl, < |g — 1|, or q is even;
i >

n
psly =4 g1, nly > |g — 1|y, d > 1 and q is odd.
Lsi,, Inly > |qg—1|,, d = land q is odd.

What is more, all real classes in PSL,(q) are strongly real.

Note that, when ¢ is even, Theorem 3.6 also holds for SL,(¢)/(SL,(¢) N Y) where
Y is any subgroup of Z(GL,(q)).

4 PSL,(q), ¢ is odd and |n}, = |g — 1],

As before psl, denotes the number of PGL,(g)-real PGL,(g)-conjugacy classes of
type v contained in PSL,(¢). We start by calculating ps/, for various cases. Note
that both of the lemmas from Section 3.3 apply here.

First set v = (1"2"...), d =|(n;,ny,...)|,. We will use the methods and no-
tation of [4, Proposition 4.1], and consider various cases. In particular suppose
that C is a real class (resp. a (-real class) of type v in GL,(¢). Then C is as-
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10 N. Gill and A. Singh

sociated with a sequence of polynomials (u(#),ux(z),...) that are self-reciprocal
(resp. (-self-reciprocal). Let a; be the leading term in wu;(¢); then, for ge C,
detg = (=1)"TI,~0a = I1,-0a. We know that ; is equal to +1 (resp. +{"/?)
when C is real (resp. C is {-real).

For this section it will help to choose { to be a non-square which satisfies
{"? = —1; this means that a {-real element, like a real element, will have determinant
+1. Then, for g real or {-real, Lemma 2.1 implies that, if detg = —1, then g does not
project into PSL,(¢).

(P1) Suppose that d = 1; thus there are no {-real elements. We must have detg = 1
and so Lemma 2.6 implies that C is equivalent to one other real class in GL,(q);
Lemma 3.4 implies that this class consists of elements of determinant 1. Thus
psl, = %slv.

(P2) Suppose that d > 1 and that n; = 0 for all odd ; in particular, d < |n|,. If C'is
real then Lemma 2.6 implies that C is equivalent to one other real class in GL,(g);
Lemma 3.4 implies that this class consists of elements of determinant 1.

If C is {-real then we must have d > 1 and

; 1Y 1

}’l,‘>0 n,~>0

Thanks to our choice of { we have detg = ¢"? = -1 and so, as we have already
observed, g does not project into PSL, (¢). Hence once again we have psl, = %si,.

(P3) Suppose that d > 1 and that there exists i odd for which n; > 0. The number of
real classes which lie in SL,(g) is given by [4, Proposition 4.1] and is equal to

s T ) (T ).

i odd,n;>0 ieven,n;>0

We also need to count the number of (-real classes for which the determinant
is equal to —¢ ~/2 = 1. The same methods as in [4, Proposition 4.1] yield that the
number of such classes is equal to

gv(q)< 11 q”"/“>< 11 nq,n,)

i odd,n;>0 i even,n;>0

where g,(q) =1((¢+1)" = (g —1)") with r the number of odd values of i for which
n; > 0.

The total number of these two types of conjugacy class is [[,, . 7.n- Lemma 2.6
implies that these conjugacy classes partition into psi, :%ano g, €quivalence
classes.
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Real and strongly real classes in PGL,(¢) and quasi-simple covers of PSL,(g) 11

Note that if 4|n then [4, Proposition 4.4] implies that all of the above classes are
strongly real in PSL,(g). Hence, using Proposition 3.1, we have the following:

Proposition 4.1. Suppose that |n|, = |q — 1|, and 4|n. Then the total number of real
conjugacy classes in PSL,(q) is the same as the total number of strongly real conjugacy
classes and is given by

Z h, psi,
[v|=n

where the values for psl, are as given above.

41 n=2(mod4) and ¢ =3 (mod4). This is the only case left to consider for
PSL,(g). In the five points above we have calculated the number of PGL,(g)-classes
of PGL,(q)-classes lying in PSL,(g). But in this case we do not know if all of these
classes will remain real in PSL,(g).

Proposition 4.2. Suppose that n =2 (mod4) and ¢ = 3 (mod4). Then the total num-
ber of real conjugacy classes in PSL,(q) is given by

Z hy psl,

[v|=n

where psl, is non-zero exactly when n; > 0 for some odd i. In this case the values for
psl, are given by (P1), (P2) and (P3).

Proof. If n; > 0 for some odd i, then [4, Proposition 5.5] implies that a real (or {-real)
conjugacy class of GL,(g) contained in SL,(q) is real (or {-real) within SL,(q).
Hence we only need to deal with the situations of (P1) and (P2) where n; = 0 for all
odd i. In fact (P2) cannot occur for n = 2 (mod4).

Thus we are left with the case (P1) only and there are no {-real elements. Further-
more, for a real element, [4, Lemma 5.1 and Proposition 5.5] imply that all revers-
ing elements have non-square determinant in IF,. But such elements do not project
into PSL,(g) (see Lemma 2.1), hence this situation does not yield real elements in
PSL,(¢). O

4.2 Conclusion. We summarize our results in the following theorem.

Theorem 4.3. Suppose that |n|, = |q — 1|, and let d = |(n1,na,...)|,. Then the number
of real classes in PSL,(q) is given by

Z hy psl,.
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If 4|n then
; ML.songn, if d>1and n; >0 for some odd i,
sl, = !
p %slv, otherwise.
If 4 ¥ n then
%ano Ry, If d > 1 and n; > 0 for some odd i,
psly = ¢ sl if d =1 and n; > 0 for some odd i,

(=]

, otherwise.

5 Strongly real classes in PSL,(¢q)

We have shown that if n # 2 (mod 4) or ¢ # 3 (mod 4) then reality and strong reality
coincide in PSL,(g). Throughout this section we examine the strongly real classes in
PSL,(¢) when n =2 (mod4) and ¢ = 3 (mod4).

Lemma 5.1. Suppose that n = 2 (mod 4) and ¢ = 3 (mod 4). An element gZ is strongly
real in PSL,,(q) if and only if gZ lifts to an element g in GL,(q) for which there is an
element h satisfying

(1) hgh™t =g~ (or Lg™");
(2) h* € Z(GLu(9));
(3) deth is a square.

Proof. Suppose that such an element /i exists. Then /¢ has determinant 1 for some
odd integer ¢. Furthermore (h°)* e Z(GL,(q)) and (h¢)g(h¢) ™ =g~ (or {g™h).
Thus gZ is strongly real in PSL,(g).

On the other hand if ¢gZ is strongly real in PSL,,(¢) then, by definition, an element
h exists in GL,(¢) satisfying the first two criteria given. What is more /4 projects into
PSL,(g); in other words nh has determinant 1 for some scalar #. This means that
deth = =" which is a square since n is even. []

Take gZ real in PSL,(¢). Then g is of type v where n; > 0 for some odd i. Let g be
a real or {-real element in GL,(¢) and let ' be the module associated with g. Let & be
a reversing element for g in GL,(¢) which satisfies 7> € Z(GL,(q)).

Now £ permutes the minimal cyclic submodules of V" with orbits of size 2 (in the
proof of [4, Proposition 5.5] we called these orbits /s-minimal submodules of V). This
fact allows us to break the general situation into smaller subcases which we deal with
in the next two lemmas.

Lemma 5.2. Suppose that V = W, ® W, where W, and W, are cyclic modules with
irreducible characteristic polynomials p(t)* and p(t) (resp. p(t)“). Furthermore as-
sume that h swaps W, and W,. Set the degree of p(t) (and q(t)) to be d. Then deth
can be a square or a non-square if ad is odd; otherwise deth is a square.
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Proof. We proceed as per the proof of [4, Lemma 5.4]; in particular, we can take g to

equal
B 0 B 0
o 81) ° \o ¢!

for some B e GL,4(g). This means that

(v o)

where X and Y centralize B in GL,;(g). Then
deth = (—1)“(det X)(det Y) = (—1)“/(det XY).
Since 7% € Z(GL,(q)) we must have XY € Z(GL,(q)) and so
deth = (—1)“0 = (—a)*

where o € IF,. Thus if ad is even this determinant is a square. On the other hand if ad
is odd then we can let X = Y = I and det /2 is a non-square, or take X =1 = —Y and
det is a square. []

Lemma 5.3. Suppose that V is a cyclic module W, with irreducible characteristic poly-
nomial p(t)“; suppose furthermore that p(t) is self-reciprocal (resp. (-self-reciprocal).
Set d = deg(p(1)).

(1) If d is odd then deth can be chosen to be a square or a non-square if a is
odd; otherwise deth is a square for a =0 (mod4) and deth is a non-square for
a =2 (mod4).

(2) If d is even and a is even, then deth is a square.

(3) If d is even and a is odd, then deth can be chosen to be a square or a non-square if
d =2 (mod4); otherwise deth is a square for d = 0 (mod 4).

Proof. Let us examine the relevant cases. We will use [4, Lemmas 5.2 and 5.3]; these
give conditions for det/ to be a square, but they do not assume that 4% € Z(GL,(q)).
In the cases where these lemmas allow for det/ to be a square or a non-square we
need to check the situation under this extra assumption.

Suppose that d is odd. Then p(f) = ¢+ 1 and we refer to [4, Lemma 5.2] and
observe that the conclusions given there apply here also. The only thing we have to
check is that the element /4 satisfies h> € Z(GL,(q)). But the # which we exhibit in the
proof is an involution so we are done.

Suppose that d is even and « is even. Then [4, Lemma 5.3] implies that det/ is a
square.
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14 N. Gill and A. Singh

Suppose that d is even and « is odd. Let g = g,g, be the Jordan decomposition of g
in GL,4(q). Then g, is centralized by GL,(g“) and so the centralizer of g must lie in
GL,(¢%). Furthermore a reversing element for g must be a reversing element for g;
and hence must normalize Cg(g;). Thus this element must act as a field involution of
GL,(¢%).

Suppose that d =2 (mod4). Then [4, Corollary 4.5] implies that there exists a
reversing involution /. Since @ is odd, we can choose z € Z(GL,(¢%)) = Z(Cqs(gs))
such that det z is a non-square. Now /g acts as a field automorphism on Cg(gy) hence

b d/2
(zho)® = zz"0h3 = 47"+,

Clearly &y and zhy are reversing elements with different determinant. Now write
(zho)? as an element of GL,(q%): (zho)* = I for some fi e IF,a. For this to lie in

Z(GLya(q)) we must have ¢+ = 1.

Since |¢%> — 1|, = |¢ — 1|, we can take an odd power of z, z¢ say, such that
(z¢hy)? € Z(GLya(q)). Clearly z¢hy is a reversing element for g and det(z%h) is a
square if and only if det(z/y) is a square. We conclude that, in this situation, we can
take /4 to have determinant a square or a non-square.

Suppose that d = 0 (mod4). By [4, Corollary 4.5], a reversing involution /¢ exists
which acts as a field automorphism on GL,(¢?) and has determinant a square. Then
any other reversing element must have form z/, where z centralizes g. The form of z
is given (as an element in GL,(¢¢)) by

By b

P
B

Then
ﬁqd/2+l
1
(Zho)z _ Zzhohé — zzh —

241
Bl

For (zh)* to lie in Z(GLa(g)), we must have ﬂquﬁﬂ)(gil) = 1. But this means that
B, must be a square in IF «. Thus detzh is a square in all cases. []

It is now just a matter of summing up what we have proved so far, and converting
our result into the language of Macdonald.

Theorem 5.4. Let n =2 (mod4) and ¢ =3 (mod4). Let gZ be real in PSL,(q) of
type v =1M2" __ _ and suppose that g can be taken to be self-reciprocal (resp. {-self-
reciprocal). Then gZ fails to be strongly real in PSL,(q) if and only if the following
conditions hold for all odd i such that n; > 0:
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(1) all factors of u;(t) have even degree;

(2) all self-reciprocal (resp. {-self-reciprocal) factors of u;(t) have degree equivalent to
0 (mod 4).

Note that Theorem 4.3 implies that an odd i exists for which n; > 0.

Proof. Let V' be the module associated with g. By Lemma 5.1 we need to show that
any reversing element /, which satisfies 4> € Z(GL,(q)), has det/ a non-square.

Break V' up into #-minimal submodules, W, as in the proof of [4, Proposition 5.5].
Suppose that gl is reversible by an element 4y which satisfies #*> € Z(GL(W)) and
for which we can choose det/, to be square or non-square. Then clearly we can
choose £ to be a square or a non-square; Lemmas 5.2 and 5.3 give the conditions
under which this is possible. These conditions are precisely the ones excluded by the
statement of the theorem.

Thus the conditions given in the theorem ensure that, for every A-minimal submod-
ule W, the reversing elements of g|,, in GL(W) either all have determinant a square
or all have determinant a non-square; in fact Lemmas 5.2 and 5.3 imply that the
determinant will be a square if and only if the dimension of W is divisible by 4.
Since n = 2 (mod4) we conclude that det/ must have determinant a non-square as
required. []

6 Quotients of SL,(g)

We examine the real and strongly-real classes in SL,,(¢)/Y where Y is some subgroup
of Z(SL,(¢)). We have noted already that Theorem 3.6 holds for SL,(g)/Y where
¢q is even. In fact, if | Y| is odd, then the number of real (resp. strongly real) classes
will equal the number of real (resp. strongly real) classes in SL,(g). Similarly if
|Y], = |(n,q — 1)], then the number of such classes will be the same as in PSL,(q).
Hence, in this section, we assume that 1 < |Y|, < |(n,q — 1)|,; in particular we as-
sume that

g=1(mod4), and »n =0 (mod4).

In what follows we will think of Y as being a subgroup of SL,(¢q), GLx(¢) or I,
depending on the context. We need two new concepts that mirror our treatment
of projective groups from Section 2.

Firstly we say that elements g; and g of GL,(gq) are Y-equivalent if they project
onto the same element of GL,(¢)/Y; so g» = g1y for some y € Y. This notion can
be extended to conjugacy classes of GL,(¢) and GL,(¢)/Y.

Secondly we generalize the idea of a {-real element. Let {y be an element of Y such
that {y # o? forall o € Y ({y is a non-square in Y); we say that g is { y-real in GL,(q)
if there exists 7 € GL,(g) such that igh™! = {yg~!. It is easy to see that all real ele-
ments in SL,(q)/Y will lift to a real element or a {y-real element in GL,(¢q) (cf.
Lemma 2.4).
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For ease of calculation we will set {y to be an element which satisfies g‘f b1,
In particular this means that all {y-real elements, like all real elements, have determi-
nant +1. Since | Y|, < |n|,, we know that only elements of determinant 1 project into
SL,(¢)/ Y (cf. Lemma 2.1).

Now [4, Proposition 4.4] states that all GL,(g)-real elements in SL,(g) are strongly
real in SL,(g). It is easy enough to modify the proof to show that all GL,(¢)-{y-real
elements in SL,(¢) are strongly {y-real in SL,(g) (Where strongly {y-real has the ob-
vious definition).

Finally Proposition 3.1 implies that if a GL,(gq)/Y-class is of type v then the class
will split into /, classes in SL,(¢)/Y. This combines to give the following proposi-
tion:

Proposition 6.1. Let Y be a subset of Z(SL,(q)) such that 1 < |Y|, < |(n,q — 1)|,. The
total number of real classes in SL,(q)/Y is the same as the number of strongly real
classes in SL,(q)/ Y and is equal to

> hysly,.
[v|=n

Here sly, is the number of Y -equivalence classes in the set of all real and { y-real con-
Jugacy classes of type v and determinant 1 in GL,(q).

It remains to calculate the value of sly, for differing v, Y, ¢ and n. Recall that we
defined s/, to be the total number of GL,(q)-real GL,(g)-conjugacy classes of type v
contained in SL,(g). Now [4, Proposition 4.1] established that

[T 7g.n;, if ¢ is even or n; is zero for i odd;
n;>0
1 o L .
sl, =42 1T 7g.n,, if ¢ is odd and in; is odd for some i;
n;>0
) TI ¢"*' 11 ngn, otherwise.
i odd,n;>0 i even,n;>0

From here things are easy. The number of real classes and the number of {y-real
conjugacy classes will be the same (cf. [4, Lemma 2.2] and note that { y-self-reciprocal
polynomials exist with odd degree). These will be partitioned into sets of size 2 as
described in Lemma 2.6. Hence sly, = s/,. We summarize our results as follows.

Theorem 6.2. Let Y be a subset of Z(SL,(q)) such that 1 < |Y|, < |(n,q — 1)|,. The
number of real classes in SL,,(q)/ Y is equal to the number of strongly real classes, and
is given by

Z hysl,.

[v|=n

This is the same as the number of real classes in SL,(g) (see [4, Theorem 4.6]).
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7 Some exceptional cases

In order to complete our classification of real classes in all quasi-simple covers of
PSL,(g) we must deal with some exceptional situations, namely quasi-simple covers
of PSL,(¢) which are not quotients of SL,(g). There are five situations where this
may occur: PSL,(4), PSL3(2), PSL,(9), PSL3(4) and PSL4(2); see [10, Theorem
5.1.4].

Write M (G) for the Schur multiplier of a simple group G. If G = PSL,(4) (resp.
PSL3(2)) then |M(G)| = 2 and the double cover of G is isomorphic to SLy(5) (resp.
SL,(7)). We have already analysed the real classes in these groups. The remaining
three groups need to be analysed in turn; we start by recording some information
about each (see [10, Proposition 2.9.1 and Theorem 5.1.4]):

G isomorphism | M(G)

PSL2(9) Ag Cs
PSL4(2) Ag G
PSL3 (4) C4 X C12

Here C, is the cyclic group of order 7, and the middle column lists groups to which G
is isomorphic. Information about real conjugacy classes can, for quasi-simple groups
with cyclic centre, be found in [2]; we will need to do extra work to understand those
groups that do not have cyclic centre, and to classify the strongly real conjugacy
classes.

Our approach in this section is, in some sense, the reverse of that in the rest of the
paper. We have complete information about (strongly) real classes in G, and we wish
to deduce information about (strongly) real classes in quasi-simple covers of G. We
start with a lemma which applies to this situation in some generality.

Lemma 7.1. Let G, H be groups such that H/Z ~ G where Z is an odd-order central
subgroup of H. Let C be a real class in G containing elements of order n; then C lifts to
a unique real class Cy in H and this class consists of elements of order n. What is more
if C is strongly real than Cy is strongly real.

Proof. Let y be a real-valued irreducible complex character (or rvicc) of H. Let g € Z;
then y(g) = 1 for g # 1. This implies that y is an rvicc of G. Since every rvicc of G is
an rvicc of H, we conclude that G and H have the same number of rvicc’s. Thus G
and H have the same number of real classes.

Now suppose that /i and gk lie in different conjugacy classes of H, with g € Z,
g # 1. Since h and hg are not conjugate in H, there exists an irreducible complex
representation @ with character y such that y(gh) # y(h). Now ®(g) = #I and so
x(gh) = ny(h); in particular, # # 1 and y(h) # 0. Since g has odd order it follows
that # is not real. Thus gh and & cannot be both real, and we conclude that every
real class of G lifts to a unique real class in H.
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Suppose next that / is real in H and 47 is real in G of order m. Then A" € Z, and
the only element in Z that is real in H is the identity. Thus 4" = 1 as required.

Finally suppose that Cy is a real class in H such that 7€ Cy and hZ liesin C, a
strongly real class in G. Then there exists fZ € G such that

(fZ)(hZ)(fZ)" ' =h~'Z and (fZ)*=Z€G.

Since Z has odd order we can assume that f> =1 e H. Then fhf ~! = h~'g for some
g € Z. Since Z has odd order, g = g;? for some g; € Z. Then f(hg))f ! = (hgl)fl.
Thus g~ is strongly real in H and projects onto 4Z in G. Since Cy is the unique real
class to which C lifts, we conclude that Cy is strongly real. []

A consequence of this lemma is that G and H have the same number of real (resp.
strongly real) classes. If G = PSL,(9) or G = PSL,(4), then M (G) contains a unique
involution; thus G has a unique double cover, 2.G. Lemma 7.1 reduces the study of
real and strongly real classes in the covers of G to the study of real and strongly real
classes in G and 2.G. The case of PSL3(4) is more difficult.

Throughout what follows, G is a simple group, and H a quasi-simple group with
centre Z = Z(H) such that G @ H/Z.

7.1 Covers of PSL,(9). The group PSL,(9) =~ A has seven conjugacy classes (with
elements of order 1, 2, 3, 3, 4, 5 and 5), all of which are real (see Theorem 3.6 or [16]).
Lemma 7.1 implies that 3.PSL,(9) has seven real conjugacy classes with elements
of the same orders. Theorem 3.6 implies that all conjugacy classes in PSLy(9) are
strongly real, hence the same is true of 3.PSL,(9).

Table 1. Real and strongly real classes in Jg.

Line gZ € Ag geJs order in Jg | real | strongly real
1 () +1 1,2 yes yes
2 (12)(34) +51583 4 yes no
3 (123) +5152 3,6 yes no
4 (123)(456) 151525455 3,6 yes yes
5 (1234)(56) 151528355 8 yes no
6 (12345) +51525354 5,10 yes no
7 (12)(34)(56)(78) +51535557 2 yes yes
8 (1234)(5678) 1515253855657 yes yes
9 (123)(45)(67) +51525456 12 yes no
10 (123456)(78) 1515253545587 67 6 no no

Similarly SL,(9) =~ 2.PSL,(9) has 13 conjugacy classes (with elements of orders 1,
2,3,3,4,5,5,6, 6, 8, 8, 10, and 10) all of which are real. Lemma 7.1 implies that
6.PSL,(9) has 13 real conjugacy classes with elements of the same orders.
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The groups SL,(9) =~ 2.PSL,(9) and 6.PSL,(9) contain a single involution (in the
centre); thus both groups contain precisely two strongly real classes.

7.2 Covers of PSL4(2). Consider the group H», given by the presentation
2 3 2
Hyy = 815008t | S —(SkSkes1) ™, —(8%87) 7,

where j,k=1,...,2n—1,|j — k| > 1, and —1 is defined to be a central element. The
group Hy, is a double cover of S,, with center Z = {1, —1}; see [1, p. 175]; the pro-
jection map is given by

w:Hyy— Sy, sip— (kK k+1).

Then H,, has a subgroup Jy, of index 2 which is the double cover of A4,,; this is the
group of interest here. Clearly J;, consists of all elements +x where x is the product
of an even number of the elements s;.

Now let g be a real element of J,,; then gZ is a real element of 4,,. What is more,
if g is (strongly) real in J,, then —g is also (strongly) real (since igh~' = g~! implies
that h(—g)h~" = —g~! = (=) 7).

With this in mind we list the real and strongly real classes in Jg = 2.PSL4(2) in
Table 1. We need to explain the columns of this table: The first column records the
line number. The second column lists representatives from all real classes in Ag. The
third column lists the two elements in Jg that project onto the given representative in
Ag. The fourth column gives the order of elements in Jg which project onto gZ in Ag;
the presence of two numbers in this column means that there are two different conju-
gacy classes of elements in Jg that project onto the same conjugacy class in 4s. The
final two columns state whether or not the elements +¢ are (strongly) real.

Proposition 7.2. Table 1 is correct.

Proof. The first five columns follow immediately from [2] (see also the explicit calcu-
lations given in [3]).

Now consider the final column. Obviously involutions and the identity are strongly
real. Recall also that, since g is strongly real if and only if —g is strongly real, we need
only prove the result for any /4 projecting onto gZ.

The only non-central involutions in Jg correspond to 4-transpositions in Ag (line 7
of the table). We can use this to rule out some cases: observe that

R4 ((123)) = (<(123)) x 4s) : {(12)(45)),

hence R, ((123)) contains no 4-transpositions. We conclude that lines 3 and 9 do not
correspond to strongly real classes. Similarly

R4;((12345)) = (<(12345)) x <(678)) : <(25)(34)>,
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and, again, this contains no 4-transpositions. Hence line 6 does not correspond to
strongly real classes.

Now the group R, ((123)(456)) contains a 4-transposition, (16)(25)(34)(78),
which reverses (123)(456). Since (123)(456) lifts to elements of different orders,
we conclude that they must be strongly real. In other words, line 4 corresponds to
strongly real classes.

Next consider line 2 and take g € Jg which projects onto gZ = (12)(34). Let H be
the group of even permutations of {5,6,7,8} (so H =~ A4). Then

Cr(9)/Z ={(1),(12)(34),(13)(24), (14)(23)} x H,
Any element that reverses g must centralize gZ. However all 4-transpositions in
C4,(gZ) are contained in Cy,(g)/Z; hence ¢ is not strongly real.
We move on to line 5 and take g € Jg which projects onto gZ = (1234)(56). Then
Ci(9)/Z = {(1234)(56)),  Cuy(9Z) = <(1234)(56), (1234)(78),
R4s(9Z) = {(1234)(56), (1234)(78), (14)(23).

There are four cosets of Cy,(9)/Z in Ry, (9Z), two of which reverse g. Only one of
these cosets contains a 4-transposition. Now observe that

(S1S5S2S1S2S3S2S1)(S1S2S3S5)(S1S5S2S1S2S3S2S1)71 = —(S1S2S3S5)71.

Thus the coset containing a 4-transposition does not reverse g, and we conclude that
line 5 does not correspond to a real class in Jg.

Finally consider line 8 and take g € Jg which projects onto gZ = (1234)(5678) in
Ag. Observe that

Ci(9)/Z = <(1234)(5678)),

Cay(9Z) = <(1234)(5678), (1234)(8765)) : {(15)(26)(37)(48)>,
Riy(97) = (Cay(92)) : <(15)(26)(37)(48)).

Set H = <(1234)(5678)); then H has four cosets in Ry, (gZ), all containing 4-
transpositions. One coset must lift to the set {h: hgh~! = g~!}, and we conclude
that line 8 does correspond to a strongly real class in Jg. [

7.3 Covers of PSL3(4). Let G = PSL3(4), and let H be a quasi-simple cover of G.
Observe that G has a single conjugacy class of involutions; also [5, Proposition
6.4.1] implies that an involution g € G lifts to an involution s € H.

Using our work above, we calculate that G contains eight real classes (with ele-
ments of order 1, 2, 3, 4, 4, 4, 5 and 5) and they are all strongly real. Furthermore
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Z(H) < C4 x Cy3 and Lemma 7.1 allows us to assume that Z(H) is a non-trivial
subgroup of C4 x Cy4. Thus there are seven covers of L3(4) to be discussed:

PSL;(4), 2.PSL;(4), E,PSL;(4), 4,.PSL;(4), 4,.PSL;(4),
(E441).PSL3 (4), (C4 X C4)PSL3 (4)

By E4 we mean an elementary abelian group of order 4; by 4; and 4, we mean
quotients of M(G) by cyclic groups of order 4 that lie in M(G) and are not in the
same orbit of Out(PSL;(4)). That this list of covers is comprehensive follows easily
from [5, Theorem 6.3.1] and [6, Lemma 2.3 (i), p. 463].

Before we proceed with our analysis we establish some notation. Let P be a Sylow
2-subgroup of PSL;(4); observe that P is isomorphic to

Py a,b,ceTF,

114
oS O =
S =
—_— 0 &

We will identify P with P;, allowing us to write elements of P as matrices. Write Py
for the Sylow 2-subgroup of H that projects onto P. For & € H, define

Zy={zeZ| /11/1/11_1 = hz for some h; € Py}.
Observe that this is a subgroup of Z and, that |Z,| = |Cp(g) : Cp,(h)/Z|.

Proposition 7.3. Let H be a quasi-simple cover of G = PSL3(4) with centre Z, a 2-
group. Suppose that g = hZ € G = H/Z, with g real in G of order d.

(1) If d is odd, then h is real if and only if the order of h is d or 2d. What is more h is
strongly real if and only if h is real.

(2) If d =2, then h is strongly real.

Note that we are not dealing with the case when d = 4. We address this situation in
the next proposition.

Proof. Case 1. Suppose that d is odd. Then the set #Z generates a cyclic subgroup of
H, and we may take the order of 4 to equal d. If d =1 then & is central and is
(strongly) real if and only if 4> = 1.

Now suppose that d > 1. Let g; € G satisfy g1gg;' =¢~' and g; = hZ for
he H. Then hihhy' = h~'z for some z e Z. Since h has odd order, we conclude
that z = 1. In other words hjhh;! = h~! and h is real. More generally this implies
that

hy(hz)hy' = h7'z.
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Thus Az is real if and only if z2 = 1. Furthermore, since g is strongly real we may take
g1 to be an involution. By [5, Proposition 6.4.1] we may therefore take /; to be an
involution. Thus if 4z is real then Az is strongly real; we have proved (1).

Case 2. Suppose that d = 2. We take / to have order 2, which we may do by [5, Prop-
osition 6.4.1]. We take

<
Il
S O =
S = O
—_ O =
m
N
—
~
—

where x € I[F}.

We may assume that H =~ (C4 x C4).PSL3(4) and that Z(H) = {zy,22), so zj
and z, are elements of order 4. Now [6, Lemma 2.3(c), p. 463] implies that
|Cp(g) : Cp,(h)/Z] =4 and so |Z,| =4. Since h has order 2, this implies that
Zy ={1,z3,23,2z{z3}. The elements of hZ can therefore be written in subsets of con-
jugate elements as follows:

2.2 722 3 2 7.3.2
{h,hzi, hz5, hzizy},  {hz1,hzi, hziz5, hziz5 },

2 3 2.3 3 3 3.3
{hza, hziza, hzy  hziz3},  {hziz2,hziza, hzy 25, hziz3 }.

In particular these elements are all real. We need to establish that they are, in fact,
strongly real. Observe first that if #? = hz, with / of order 2 and z central, then

hhy = h{'z = hyh.

In other words, an element /; satisfying h? = hz commutes with 4. This, along with
[6, Lemma 2.3(c), p. 463], implies that Cp, (h)/Z is isomorphic to the group

1 a b
C:< 01 ¢ a,b,ce]F47ac:x>
0 0 1
1 a b
= 0 1 c¢|labcelFgyac=xora=c=0 p=Cyx Qs.
0 0 1

Now let g; be some element of P such that <C,g;) is a degree 2 extension of
Cp,(h)/Z. Then

, for some a, b, c € IF4, with (a,c) # (0,0).

S

\
R
S~ 2
— o o
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If a or ¢ is equal to 0 then g7 = 1 and this extension is split. If @ # 0 # ¢, then there
exists go € C such that

and gog; is an involution; thus, again, the extension is split. Thus any degree 2 exten-
sion of Cp,(h)/Z in P is split.

Since Cp,(hz)/Z = Cp,(h)/Z for any z e Z, [5, Proposition 6.4.1] implies that
Rp(hz) is a split extension of Cp(hz). In other words, Az is strongly real, as required.

O

We must now examine those elements 7 € H for which ¢ = AZ is an element of
order 4 in PSL3(4). There are three conjugacy classes of elements of order 4 in
PSL3(4). They are fused by an outer automorphism of PSL;(4) and intersect P in
the following sets:

Cp = a,b,ceFyac™' =k with k e IF;.

S O =
S = Q
— o O

If Z(H) = E4 or Z(H) = C4 x C4 then the set of conjugacy classes in H that project
onto Cy is mapped, via an outer automorphism of H, to the set of conjugacy classes
in H that project onto Cy for k' # k; see |5, Table 6.3.1].

Proposition 7.4. Let H be a quasi-simple cover of G = PSL3(4) with centre Z, a 2-
group. Suppose that g = hZ € G = H/Z, with g real in G of order 4. Suppose that g
lies in the set Cy for some k € IF}.

(1) If Z(H) = Cy or Z(H) = 44, then all elements in hZ are real.

(2) If Z(H) = 4., then the number of real elements in hZ depends on k. For two values
of k, every element in hZ is real; for the third, precisely half of the elements in hZ
are real.

(3) If Z(H) = C4 x Cu, then precisely half of the elements in hZ are real.

(4) If Z(H) = E44,, then the number of real elements in hZ depends on k. For two
values of k, every element in hZ is real; for the third, precisely half of the elements
in hZ are real.

(5) If Z(H) = Eu, then all elements in hZ are real.

(6) If Z(H) is non-cyclic, then no elements in hZ are strongly real.
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(7) If Z(H) = Cu, then the number of real elements in hZ depends on k. For two values
of k, no elements in hZ are strongly real; for the third, precisely half of the elements
in hZ are strongly real.

(8) If Z(H) = Cs, then the number of real elements in hZ depends on k. For two values
of k, no elements in hZ are strongly real; for the third, all elements in hZ are
strongly real.

Proof. Statements (1) and (2) follow immediately from [2, p. 28]; we therefore
start with (3). Throughout the proof we will refer to the wunmiversal 2-cover as
Hy =~ (C4 x C4).PSL3(4). To begin we take H = Hy, x € IF}, and set

1 10 1 0 x
g=|0 1 x|; thus ¢>=[0 1 0
0 0 1 0 0 1
This implies that
1 a b
Cp(g) = 0 1 c¢|lab,celFyc=ax = Cyx Cy.
0 0 1

Clearly Cp,(h) = <h>Z(H) and so Cp,(h).Z has index at most 4 in Cp(g). Now
one of the classes of order 4 in PSL;(4) lifts to four separate conjugacy classes in
4,.PSL3(4); see [2, p. 28]. We conclude that Cp, (k) has index at least 4 in Cp(g);
thus Cp,(h)/Z = <{hYZ/Z, and |Cp(g) : Cp,(h)/Z| = 4 = |Z|.

Now write Z = {z1) x {z3). Suppose that Z, is elementary abelian; then

2 2 2.2
Zy={1,z7,2z3,2125}.

Now there is an element in Cp, (h%)/Z that conjugates g to g~'; hence it must map /
to an element of 417, (since h='Z, contains all elements of #~'Z whose square is
equal to /?). Since Z, 1 contains 4~! we conclude that / is real; indeed, all elements
in hZ are real. Since covers with cyclic centre are epimorphic images of covers with
non-cyclic centre, the same conclusion will follow if Z(H) is cyclic. This contradicts
statements (1) and (2).

We conclude that Z, is cyclic; write Z;, = {172172127213}. Now there is an element
hy € Cp,(h*)/Z that conjugates g to g~!; hence Z;, = Z, 1. We have several cases to
consider:

(1) If hy conjugates hZ, to h~'z3Z,, then relabel so that z3 becomes z,; then we lie in
the next case.

(2) If hy conjugates hZj, to h™'z,Z;, then hZ U h~'Z splits into four sets of conjugate
elements, with elements from distinct sets non-conjugate:

(hZyUh™'222Z)), 22(hZ Uh™ 222, 23 (hZ, Uh ™ 222y, 23 (hZ Uh ™' 22.Z),).
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We conclude that none of these elements are real. Moreover, for i, € hZ, we find
that s;<z;) is not real in H/{z;). However H/{z;) is a cover of PSL;(4) with
cyclic center. This contradicts statements (1) and (2).

(3) If hy conjugates hZ), to h='z2Z, then the set of conjugates of 4 in #~'Z is equal
to {h~'z3,h 12123, h~1z3z3,h~'z3z3}. In this case relabel so that & becomes /izy;
then we lie in the next case.

(4) The set of conjugates of 4 in h~'Z is equal to {1, A=z, h =122 A= 123}
Thus, provided we label appropriately, the following elements are all conjugate:
hZyUh=' Zy = {h, hzy, hz3 hzy b= h =tz btz k12
Similarly the following sets consist of conjugate elements:
(hZyUh™'7y), 23(hZyUh™'Z,), 23(hZyUh~'Z),).
Thus, of all elements in hZ, precisely the elements in the sets hZ), z3hZ), are real in
H

We have proved (3). To prove (4) and (5) we examine the following sets of conju-
gate elements in Hy:

hZhU/le;“ Zz(hZ/thilzh), Z%(hZ/thilz/l), Z%(hZhUhilzh).

Consider H = Hy/Z) where Z; is a central subgroup of Hy. The following table lists
those elements /sy € hZ for which /1 Z; is real in H:

Z H real elements

<le> (E441)PSL3(4) Zh, Z%Zh
<Z%> (E441)PSL3(4) Zh, ZQZh, Z%Zh, Z;Zh
)
)

(zz3) | (Es41).PSL3(4) | Zp, 22Zn, 2321, 232y,
<212,Z§> E4.PSL3(4

2 3
Ly, 222y, 2320, 2320

This yields (4) and (5). We have three entries for H = (E44;).PSL3(4) as the order
3 automorphisms of PSL;(4) do not lift to this group.

To prove the remaining statements we must determine when % is strongly real.
Suppose first that Z is cyclic and non-trivial. We start by considering the 4-covers of
PSL;(4); let Z = {z) and let Y be the pre-image of Z(P) in Py; then [6, Lemma 2.2,
p. 463] implies that ¥ = X x Z where X = C, x C,. Furthermore [6, Lemma 2.3(e),
p. 463] implies that Cp,(Y)/Z =~ C4 x C4 and so contains an element / such that 2Z
is an element of order 4 in PSL;(4). In particular Cp, (h) > Y.

Now suppose that H =~ 4,.PSL;(4); then Cp,(h)/Z is a proper subgroup of Cp(g)
(otherwise, hZ intersects four distinct conjugacy classes of 4;.PSL3;(4), and Z;, = {1};
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this is impossible by [2, p. 24]). Thus Cp,(h) = <h)Y, which has index 2 in Cp(g).
This implies, firstly, that 47 intersects two conjugacy classes, call them C; and G,
in H. It implies, secondly, that Z, = {1,z?} = Z, 1 and, since / is real, the elements
h, h=', hz? and h~'z? are all conjugate.

Now the set of elements in P that reverse g is equal to

1 a b
R= 0 1 (a+1Dx ||a,belFy
0 0 1

In addition observe that C = Cp, (h)/Z = {g,Z(P)). Consider degree 2 extensions
of C of the form {(C,r) for some r € R. There are two such extensions, one split
(when the element r has @ = 1 or ¢ = 0 in the matrix form given above) and the other
non-split.

Thus 4 is mapped by an involution to precisely one of either #~! or A~'z2. This
implies that £ is strongly real if and only if 4z is not strongly real. Thus we conclude
that precisely two of the elements in #Z are strongly real in 4;.PSL3(4). In particular
not all real elements are strongly real in 4,.PSL3(4).

We return to the situation where H = Hy and write Z(H) = {z1,z2). As before
we choose /4 so that Z, = {1,z,z?,z7}. Again the following sets consist of conjugate
elements:

hZyUhZy o, z(hZyUhZy ), z3(hZyUhZ,), z3(hZ,UhZ, ).

Thus, in H/ <zlz§> =~ 4,.PSL;(4), the set hZ splits into two conjugacy classes; then
[2, p. 24] implies that these conjugacy classes must coincide with C; and C, described
above.

Now define groups S < R < P as follows:

1 a b

R= 0 1 a,b,ceFy,ae{0,1} ce{0,x} p = Cy x Cy;
0 0 1
1 a b

S = 0 1 ¢ |lab,ceFq(ac)e{(0,0),(1,x)}p=Csx C.
0 0 1

Let Ry (resp. Sy) be the pre-image of R (resp. S) in H; then Ry is a degree 4 exten-

sion of Cp, (h). In addition, firstly, all of the involutions that reverse g are contained

in R. Secondly, Sy is a subgroup of Ry of index 2, and Sy /Z centralizes g. Thus
{zeZ] hlhhl’1 = hz for some h; € Sy},

is a subgroup of Z;, of size 2; it must equal {1,212}.
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The R-conjugates of /& have two possible forms; the first possibility is that the
R-conjugacy class of i is h® = {h,hz3, h=' h=1z3}. The strongly real elements of hZ
are then all elements 4z such that the set z4® contains (hz)~'. A quick calculation
demonstrates that the elements satisfying this requirement are precisely the real ele-
ments in 2Z. Thus all real elements in H are strongly real. Clearly the same result
applies to all epimorphic images of H, which contradicts our earlier calculations in
4,.PSL;(4).

The second possibility is that the R-conjugates of & are h, hz?, h='z|, h~'z3. In this
case half of the elements in 417 are strongly real in H /{z1z3), which is consistent with
our calculations above. It immediately follows that none of the elements in 4Z are
strongly real in Hy.

To complete our analysis we consider, as before, H = Hy/Z;, where Z; is a cen-
tral subgroup of Hy. The following table lists those choices of Z; for which 4#Z con-
tains any strongly real elements; in each case the table lists those elements /; € 1Z for
which 4, Z; is strongly real in H; we write Y, for the set {1,z7}:

Z H strongly real elements
<Z]Z§> 4]PSL3(4) hZz Yh, h2122 Yh, hZ% Yh, hZ]Z% Yh
(4

{z1) | 4,.PSL;3(4) hYp, hz1 Yy, hz2 Yy, hzy23 Yy,
(1,22 | 2.PSLs(4) hZz

Statements (6), (7) and (8) follow immediately from the table. []

8 Further work

It is natural to ask if the real and strongly real classes can be counted in other families
of finite groups of Lie type. The work of Macdonald extends (as he explains in [12])
to the unitary groups, so this is the natural next step.

In counting real conjugacy classes for a finite group G we are also, of course,
counting real irreducible representations for G. The question arises whether we now
construct these representations. For the case of GL,(g) we hope to use Green’s clas-
sical method [9]. For other finite groups of Lie type this is likely to be very difficult,
and to require the Deligne—Lusztig theory.

Real irreducible characters come from two different kinds of irreducible repre-
sentation, the orthogonal and the symplectic ones. It is not clear whether there
is any such division for the number of real conjugacy classes; however we can
make some observations. For instance, note that for GL,(g), and for SL,(g) with
n # 2 (mod4), all real conjugacy classes are strongly real; it turns out that in
these cases the self-dual representations are orthogonal, i.e., the real characters
actually come from orthogonal representations (cf. [8], [13] where it is shown that
the Schur index for the complex characters of the above mentioned groups is
always 1).
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This correspondence between strongly real classes and orthogonal representations
has been studied from a variety of angles; see Gow’s work on 2-regular structure [7],
and Prasad’s work on groups of Lie type and p-adic groups [14], [15]. Nonetheless,
although the correspondence can be seen to hold in particular cases (and not in
others), it is unclear how general a phenomenon it really is.
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