
Open Research Online
The Open University’s repository of research publications
and other research outputs

Real and strongly real classes in SLn(q)
Journal Item
How to cite:

Gill, Nick and Singh, Anupam (2011). Real and strongly real classes in SLn(q). Journal of Group Theory,
14(3) pp. 437–459.

For guidance on citations see FAQs.

c© 2011 de Gruyter

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1515/JGT.2010.054

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82971781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1515/JGT.2010.054
http://oro.open.ac.uk/policies.html


J. Group Theory a (2010), 1–23
DOI 10.1515/JGT.2010.054

Journal of Group Theory
( de Gruyter 2010
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Abstract. We classify the real and strongly real conjugacy classes in GLnðqÞ and SLnðqÞ. In
each case we give a formula for the number of real, and the number of strongly real, conjugacy
classes.
This paper is the first of two that together classify the real and strongly real classes in

GLnðqÞ, SLnðqÞ, PGLnðqÞ, PSLnðqÞ, and all quasi-simple covers of PSLnðqÞ.

1 Introduction

Let G be a group. An element g of G is called real if there exists h A G such that
hgh�1 ¼ g�1. If h can be chosen to be an involution (i.e. h2 ¼ 1) then we say that g
is strongly real. In all cases we say that h is a reversing element for g. If g is real (resp.
strongly real) then all conjugates of g are real (resp. strongly real), hence we talk
about real classes and strongly real classes in G.

Tiep and Zalesski [9] have listed all quasi-simple groups of Lie type for which every
element is real. In this paper we generalize one part of the work of Tiep and Zalesski
by identifying exactly which conjugacy classes are (strongly) real in the quasi-simple
groups which cover PSLnðqÞ; furthermore we count these classes.

This paper is structured as follows: in Section 2 we outline results concerning a spe-
cial class of polynomials. In Section 3 we use information from Section 2 to classify
the real and strongly real classes in GLnðqÞ. While this work is not new, the theory
that we develop in the process of studying GLnðqÞ forms the foundation for the
rest of the paper. In Sections 4 to 6 we classify the real and strongly real classes in
SLnðqÞ.

In a companion paper to this one [1] we classify the real and strongly real elements
in PGLnðqÞ, PSLnðqÞ and those quasi-simple groups which cover PSLnðqÞ. To under-
stand reality in PGLnðqÞ and PSLnðqÞ we need to study the z-real elements in GLnðqÞ
and SLnðqÞ; the z-real elements are defined in Section 2 of this paper, and we will
study them in parallel with real elements throughout Sections 3 to 5.

Sections 4 to 6 all include a theorem at the end, which summarizes the main results
of the section. An interesting consequence of this paper and [1] is the following state-
ment, the proof of which is scattered throughout the two papers.
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Theorem 1.1. Let G be isomorphic to GLnðqÞ, PGLnðqÞ, or a cover of PSLnðqÞ. Then
all real elements are strongly real if and only if G is in the following list:

(1) GLnðqÞ;

(2) PGLnðqÞ;

(3) SLnðqÞ=Y with n2 2 ðmod4Þ or q even; here Y is any central subgroup in SLnðqÞ;

(4) SLnðqÞ=Y with n1 2 ðmod 4Þ and q1 1 ðmod 4Þ, here Y is any even order central

subgroup in SLnðqÞ;

(5) PSL2ðqÞ;

(6) 3:PSL2ð9Þ.

As we have mentioned, the work on GLnðqÞ is not new: Gow has already enumer-
ated the real classes for GLnðqÞ and given a generating function for this count [2]. The
work on SLnðqÞ is partially new; a version of Proposition 4.4, which deals with the
case when n2 2 ðmod 4Þ or q2 3 ðmod 4Þ, was first proved by Wonenburger [10]. Re-
sults concerning the remaining case, when n1 2 ðmod 4Þ and q1 3 ðmod 4Þ, are new.

2 Self-reciprocal and z-self-reciprocal polynomials

As we shall see, real elements in GLnðqÞ will turn out to correspond to sequences of
self-reciprocal polynomials. In this section we define what a self-reciprocal polyno-
mial is and we gather together some basic facts about such polynomials.
We also introduce the notion of a z-real element in H, a subgroup of GLnðqÞ, as

follows: fix z, a non-square in Fq. We say that g is z-real in H if tgt�1 ¼ g�1ðzIÞ for
some t A H; we say that g is strongly z-real if t can be taken to be an involution. Once
again we say that t is a reversing element for g. The z-real elements of GLnðqÞ will
turn out to be of vital importance when we come to examine the real elements of
PGLnðqÞ and PSLnðqÞ in [1]. Note that we will sometimes abuse notation and, for
an element g A GLnðqÞ, write zg when we mean ðzIÞg.
It turns out that z-real elements will correspond to sequences of z-self-reciprocal

polynomials. Thus in this section we also examine these polynomials. Throughout
what follows z is a fixed non-square of Fq.

2.1 Definitions. Consider a polynomial f ðtÞ A Fq½t� of degree d with roots
½a1; . . . ; ad � in Fq, the algebraic closure of Fq. We say that f ðtÞ is self-reciprocal if

½a1; . . . ; ad � ¼ ½a�1
1 ; . . . ; a�1

d �:

We say that f ðtÞ is z-self-reciprocal if

½a1; . . . ; ad � ¼ ½za�1
1 ; . . . ; za�1

d �:

For both definitions, by ½ ; . . . ; � we mean an unordered list of roots, taken with mul-
tiplicity. Note that, since z is a non-square in Fq, when we talk about z-self-reciprocal
polynomials we assume that q is odd.

2 N. Gill and A. Singh
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2.2 Self-reciprocal polynomials. We are interested in Td , the set of self-reciprocal
degree d polynomials in Fq½t� with constant term equal to 1.

It is easy enough to prove that Td ¼ Fd UGd where

Fd ¼ f f ðtÞ ¼ td þ a1t
d�1 þ a2t

d�2 þ � � � þ a2t
2 þ a1tþ 1g;

Gd ¼ fgðtÞ ¼ �td þ a1t
d�1 � a2t

d�2 þ � � � þ a2t
2 � a1tþ 1g;

and the ai vary over Fq. Note that if q is even then Fd and Gd coincide. We define nq;d
to be the number of self-reciprocal polynomials f in Fq½t� of degree d which satisfy
f ð0Þ ¼ 1.

Lemma 2.1. The number nq;d is given in the following table:

q is odd q is even

d is odd 2qðd�1Þ=2 qðd�1Þ=2

d is even ðqþ 1Þqd=2�1 qd=2

Before we leave self-reciprocal polynomials we make one more definition.
Let pðtÞ ¼ tn þ a1t

n�1 þ � � � þ an be a monic polynomial over k. We define
~ppðtÞ ¼ a�1

n tnpðt�1Þ; this is the monic polynomial whose roots are precisely the inverse
of the roots of pðtÞ. Thus a monic polynomial pðtÞ is self reciprocal if and only if
pðtÞ ¼ ~ppðtÞ. Note too that pðtÞ is irreducible in k½t� if and only if ~ppðtÞ is irreducible
in k½t�.

2.3 z-self-reciprocal polynomials. Let q be odd and let f be a z-self-reciprocal poly-
nomial with roots in ½a1; . . . ; ad � A Fq. Suppose that

ai ¼ za�1
j ; aj ¼ za�1

k :

Clearly ai ¼ ak. Thus the roots of f can be partitioned into subclasses of size at most
2. Observe that, within these subclasses, aiaj ¼ z. Now if the subclass is of size 1 then
a2i ¼ z and so does not lie in Fq. We conclude that d must be even.

Now, for d even, define the set Sd to be the union of the following two sets:

f ðtÞ ¼ 1

zd=2
td þ a1

1

zd=2�1
td�1 þ a2

1

zd=2�2
td�2 þ � � � þ a2t

2 þ a1tþ 1

� �
;

gðtÞ ¼ � 1

zd=2
td þ a1

1

zd=2�1
td�1 � a2

1

zd=�2
td�2 þ � � � þ a2t

2 � a1tþ 1

� �
;

where the ai vary over Fq. For d odd, define Sd to be empty.

Real and strongly real classes in SLnðqÞ 3
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Lemma 2.2. The set Sd is precisely the set of z-self-reciprocal polynomials of degree d

with constant term equal to 1. Moreover, jSd j ¼ nq;dsd where sd equals 1 if d is even

and 0 otherwise.

Proof. Let hðtÞ be a polynomial of degree d and write the list of roots for hðtÞ as
½a1; . . . ; ad �. Clearly tdhðz=tÞ is a polynomial of degree d and its list of roots is
½za�1

1 ; . . . ; za�1
d �. Thus hðtÞ will be z-self-reciprocal if and only if hðtÞ is equal to a

scalar multiple of tdhðz=tÞ.
Examining f ðtÞ and gðtÞ given in the form above in Sd we observe that

f ðtÞ ¼ ðtd=zd=2Þ f ðz=tÞ, while gðtÞ ¼ �ðtd=zd=2gðz=tÞ; hence all elements of Sd are
indeed z-self-reciprocal.
We must now show that Sd contains all z-self-reciprocal polynomials. Let hðtÞ be

a z-self-reciprocal polynomial and consider the roots ½a1; . . . ; ad � of hðtÞ split into sub-
classes of size at most 2 as described above.
Let us consider the subclasses of size 1; these have form fag where a2 ¼ z. There

are an even number of these. What is more, since a is a root of f ðtÞ, so is aq. As
aq2 ¼ a A Fq2 this yields a pairing on the set of subclasses of size 1. Thus we can
join subclasses of form fag and faqg together, so that all subclasses have size 2.
Note, moreover, that if a2 ¼ z, then

aq ¼ ða2Þðq�1Þ=2a ¼ zðq�1Þ=2a ¼ �a;

thus in this case our subclass has form fa;�ag.
In general then our subclasses satisfy either aiaj ¼ z or aiaj ¼ �z, and in the latter

case ai ¼ �aj . Let us consider these two cases. Firstly if aiaj ¼ z then we can multiply
the corresponding linear factors, t� ai and t� aj , to obtain an Fq-scalar multiple
of

1

z
t2 þ atþ 1

where a A Fq. Alternatively, if ai ¼ �a�1
j and aiaj ¼ �z, then multiplying the corre-

sponding linear factors yields an Fq-scalar multiple of

� 1

z
t2 þ 1:

If we multiply such pairs together we generate polynomials of the following forms:

f ðtÞ ¼ 1

zd=2
td þ a1

1

zd=2�1
td�1 þ a2

1

zd=2�2
td�2 þ � � � þ a2t

2 þ a1tþ 1;

gðtÞ ¼ � 1

zd=2
td þ a1

1

zd=2�1
td�1 � a2

1

zd=2�2
td�2 þ � � � þ a2t

2 � a1tþ 1;

4 N. Gill and A. Singh
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for some ai A Fq. Now hðtÞ is of this form and lies in Fq½t�; in other words, for hðtÞ,
the coe‰cients ai lie in Fq and we have the required form.

The formula for the size of Sd is an easy consequence of its definition. r

We make one more definition: for pðtÞ a monic polynomial of degree d in k½t�, de-
fine �ppðtÞ to be the monic polynomial which is a scalar multiple of tdpðz=tÞ: Clearly
pðtÞ will be z-self-reciprocal if and only if pðtÞ ¼ �ppðtÞ.

3 Background information and GLn(q)

We start by collecting some basic facts which we will need in the sequel. Recall that,
for g an element of a group G, we denote the centralizer of g by CGðgÞ. We define the
reversing group of g,

RGðgÞ ¼ fh A G j hgh�1 ¼ g or hgh�1 ¼ g�1g:

When GcGLnðFÞ, for some field F, we define a related group: fix z to be a non-
square in k and let

RG; zðgÞ ¼ fh A G j hgh�1 ¼ g or hgh�1 ¼ zg�1g:

It is easy to check that RGðgÞ and RG; zðgÞ are indeed groups and that they contain
CGðgÞ, the centralizer of g in G, as a subgroup of index at most 2. In fact, if g2 0 1,
the index of CGðgÞ in RGðgÞ (resp. Rz;GðgÞ) is 2 if and only if g is real (resp. z-real) in
G; in this case RGðgÞnCGðgÞ (resp. RG; zðgÞnCGðgÞ) is the set of all reversing elements
for g.

When G is a subgroup of GLnðFÞ we can use the Jordan decomposition of elements
of GLnðFÞ. We need only a few basic facts about it (more details can be found in [8,
p. 20]). Any element g A GLnðFÞ can be written uniquely as g ¼ gsgu where gs is a
semi-simple element, gu is a unipotent element and gsgu ¼ gugs. We have the follow-
ing generalization of [7, Lemma 2.2.1]:

Lemma 3.1. Let g ¼ gsgu be the Jordan decomposition of g in GLnðFÞ. Let G be a sub-

group of GLnðFÞ which contains g. Then g is real (resp. z-real) in G if and only if gs is

real (resp. z-real) in G and g�1
u is conjugate to xgux

�1 in CGðgsÞ where xgsx
�1 ¼ g�1

s

(resp. xgsx
�1 ¼ zg�1

s Þ.

Proof. We prove this statement for the situation when g is z-real; for the case where g
is real we simply remove all instances of z.

Suppose that g is z-real. Then

hgh�1 ¼ hgsguh
�1 ¼ ðhgsh�1Þðhguh�1Þ ¼ zg�1 ð1Þ

for some h A G. Now the Jordan decomposition of zg�1 gives ðzg�1Þs ¼ zg�1
s and

ðzg�1Þu ¼ g�1
u . But, since hgsh

�1 is semi-simple and hguh
�1 is unipotent and they

Real and strongly real classes in SLnðqÞ 5
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commute, we have already given a Jordan decomposition of zg�1 in (1). Since this
decomposition is unique we must have

hgsh
�1 ¼ zg�1

s and hguh
�1 ¼ g�1

u :

This implies that gs is z-real, and that g�1
u is conjugate to hguh

�1 in CGðgsÞ (in fact, in
this case, the two are equal).
Now for the converse: suppose that h A CGðgsÞ satisfies hg�1

u h�1 ¼ xgux
�1. Then

ðh�1xÞgðh�1xÞ�1 ¼ h�1xgx�1h ¼ h�1xgsx
�1xgux

�1h ¼ zg�1
s g�1

u ¼ zg�1: r

In the next subsection we will discuss the real conjugacy classes in GLnðFÞ, and
we will need an understanding of Jordan canonical forms. We mention one last
fact closely related to Jordan canonical forms, but of a slightly di¤erent nature. Let
g A GLnðqÞ where q is a prime power. Write g ¼ gsgu, the Jordan decomposition of g.
To apply Lemma 3.1 we need to understand the structure of CGðgsÞ for G ¼ GLnðqÞ.
We describe its structure in a particular case.

Lemma 3.2. Take g A G ¼ GLnðqÞ and suppose that the characteristic polynomial of g

and the minimal polynomial of g coincide and are equal to f ðtÞr where f ðtÞ is an irre-

ducible polynomial of degree d and n ¼ dr. Then

GLrðqdÞGCGðgÞcRGðgÞcGLrðqdÞ:hsi

where s is a field automorphism of order d.

Proof. Let Vq be the vector space of dimension n over Fq on which GLnðqÞ acts
naturally, and let Vqd be an r-dimensional vector space over Fqd . There is a natural
Fq-vector space isomorphism j : Vq ! Vqd which induces an embedding of F�

qd into
G (as the centre of GLðVqd ÞcGLðVqÞ) such that g lies in F�

qd .
Now suppose that h A GLðVqÞ centralizes g, i.e. hgh�1 ¼ g. We demonstrate that

h lies in GLðVqd Þ. It is clear, first of all, that hðv1 þ v2Þ ¼ hðv1Þ þ hðv2Þ for all
v1; v2 A Vqd ; this follows from the linearity of the action of h on Vq. We need to dem-
onstrate that h preserves scalar multiplication, for scalars in Fqd .
Observe that hgi has a well-defined action on V1 where V1 is any 1-dimensional

subspace of Vqd . Again we can think of V1 as a vector space over Fq or Fqd ; the ele-
ment gjV1

acts as an Fq-vector space endomorphism with minimal polynomial f ðtÞ,
and as an element of Fqd by multiplication.
Suppose that gjV1

fixes a proper subspace W of V1. Let v be a non-zero vector in W

and consider the elements v; gv; g2v; . . . : Since these all lie in W and dimW ¼ c < d,
there exist scalars ai A Fq such that

0 ¼ a0vþ a1gvþ a2g
2vþ � � � þ acg

cv ¼ ða0 þ a1gþ � � � þ acg
cÞv:

6 N. Gill and A. Singh
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Since v0 0 this implies that a0 þ a1gþ � � � þ acg
c ¼ 0 which contradicts the fact that

f ðtÞ is the minimal polynomial of gjV1
. Thus, for any v A V1, there is an Fq-basis for

V1 of form fv; gv; g2v; . . . ; gd�1vg.
Now take v A W and a A Fqd . Note that a commutes with g since they both lie in

Fqd . Then

av ¼ ðb0vþ b1gvþ b2g
2vþ � � � þ bd�1g

d�1vÞ;

for some b0; . . . ; bn�1 A Fq. This implies that, for i ¼ 1; . . . ; d � 1,

agiv ¼ giav ¼ giðb0vþ b1gvþ b2g
2vþ � � � þ bd�1g

d�1vÞ

¼ ðb0I þ b1gþ b2g
2 þ � � � þ bd�1g

d�1Þgiv:

Thus a ¼ b0I þ b1gþ b2g
2 þ � � � bn�1g

d�1: Now observe that, for h A CGðgÞ, v A V ,

hðavÞ ¼ hðb0I þ b1gþ b2g
2 þ � � � þ bd�1g

d�1Þv

¼ ðb0I þ b1gþ b2g
2 þ � � � þ bd�1g

d�1ÞhðvÞ ¼ ahðvÞ:

We conclude that CGðgÞcGLðVqd Þ. It follows immediately that

CGðgÞ ¼ GLðVqd ÞGGLrðqdÞ:

Now we wish to study the normalizer of CGðgÞ. Write d ¼ d1 . . . dl where d1; . . . ; dl
are primes. Then GLðVqd Þ:hdi is a maximal subgroup of GLðVqd=d1 Þhd1i where d

(resp. d1) is a field automorphism of GLðVqd Þ (resp. GLðVqd=d1 Þ) of order d (resp.
d=d1). (Details can be found in [4, §4.3]; see, in particular, [4, p. 116].) Similarly
GLðVqd=d1 Þhd1i is a maximal subgroup of GLðVqd=ðd1d2Þ Þhd2i where d2 is a field auto-
morphism of GLðVqd Þ of order d=ðd1d2Þ, and so on. We conclude that CGðgÞ is nor-
mal in GLrðqdÞ:hsi where s is a field automorphism of GLðVqd Þ of order d.

Therefore NGLnðqÞðCGðgÞÞ must contain GLrðqdÞ:hsi where s is a field auto-
morphism of GLrðqdÞ of order d logp q. Now any element of GLrðqdÞ which
normalizes CGðgÞ must normalize F�

qd ¼ ZðCGðgÞÞ and so must induce a field

automorphism on Fqd ; these are all accounted for and so we conclude that
NGLnðqÞðCGðgÞÞ ¼ GLrðqdÞ:hsi. Therefore NGðCGðgÞÞ ¼ GLrðqdÞ:hsi, as required.

r

Note that, in the language of Jordan canonical forms, g is semi-simple and conju-
gate to a Jordan block matrix. Note too that we could replace RGðgÞ with RG; zðgÞ
in the statement of the lemma and it would remain true. Finally observe that, for
g to be real (resp. z-real) in GLnðqÞ, we must have d even and xðgÞ ¼ g�1 (resp.
xðgÞ ¼ ðzIÞg�1) where x is a field automorphism of GLrðqdÞ of order 2.

3.1 Real conjugacy classes in GLn(F). Let F be a field. The conjugacy classes in
GLnðFÞ are determined using the theory of Jordan canonical forms. We will assume

Real and strongly real classes in SLnðqÞ 7
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a basic understanding of this theory (more details can be found in [3]). The theory
is based upon the idea that, given an element g of GLnðFÞ, we can create an n-
dimensional F½t�-module V by defining a scalar multiplication,

t:v ¼ gv; for v A V ;

and extending linearly. The isomorphism classes of V constructed in this way are in
one-to-one correspondence with the conjugacy classes of GLnðFÞ. They are also in
one-to-one correspondence with the set of all multi-sets of form

f f1ðtÞa1 ; . . . ; frðtÞarg

where, for i ¼ 1; . . . ; r, fiðtÞ is a monic irreducible polynomial in F½t� which is not
equal to t, ai is a positive integer, and

Pr
i¼1 degð fiÞai ¼ n. These correspondences

allow us to classify conjugacy in GLnðqÞ.
Before we state the main result that we shall need, we introduce some notation. A

partition n of n is a finite multi-set of positive integers n ¼ fn1; . . . ; nrg that sums to n;
we say jnj ¼ n. Write n ¼ 1n12n23n3 . . . to mean that

n ¼ 1þ � � � þ 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n1

þ 2þ � � � þ 2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n2

þ � � � :

The following theorem is classical.

Theorem 3.3. Let g be an element of GLnðFÞ. The GLnðFÞ-conjugacy class of g is the

GLnðFÞ-conjugacy class of the matrix 0
p
Jnp;p where the sum is over all irreducible

factors p of the minimal (or characteristic) polynomial. Here np ¼ fr1; . . . ; rkg is a par-

tition, and
P

p jnpj degðpÞ ¼ n; the matrix Jn;p is Jr1;p l � � �l Jrk ;p where each Jri ;p is a

Jordan block matrix involving a companion matrix corresponding to p.

This theorem allows us to construct the multi-set which corresponds to the conju-
gacy class of g. It is simply 6

pðtÞfpðtÞ
r1 ; . . . ; pðtÞrkg where the union is taken over all

irreducible factors of the characteristic polynomial of g.
To classify real conjugacy classes of GLnðFÞ, first we need to look at a Jordan

block. Recall that, for a monic irreducible polynomial pðtÞ, ~ppðtÞ is the monic irreduc-
ible polynomial whose roots are the inverses of the roots of pðtÞ.

Lemma 3.4. Let pðtÞ be an irreducible polynomial of degree d. Then J�1
r;p is conjugate in

GLrdðFÞ to Jr; ~pp, while zJ
�1
r;p is conjugate in GLrdðFÞ to Jr; �pp.

Proof. The theory of Jordan canonical forms tells us that J�1
r;p and zJ�1

r;p must be con-
jugate in GLdrðFÞ to Jordan block matrices. Now the characteristic polynomial of
Jr;p is pðtÞr and so, by considering roots, the characteristic polynomial of J�1

r;p must
be ~ppðtÞr. Thus J�1

r;p is conjugate to Jr; ~pp as required. Similarly, the characteristic poly-
nomial of zJ�1

r;p must be �ppðtÞr. Thus zJ�1
r;p is conjugate to Jr; �pp as required. r
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Proposition 3.5. A matrix g A GLnðFÞ is real if and only if g is conjugate in GLnðFÞ to
�
0
p0~pp

ðJn;p l Jn; ~ppÞ
�
l

�
0
p¼ ~pp

Jm;p

�
:

A matrix g in GLnðFÞ is z-real if and only if g is conjugate in GLnðFÞ to
�
0
p0�pp

ðJn;p l Jn; �ppÞ
�
l

�
0
p¼�pp

Jm;p

�
:

Here m and n are partitions which vary with p.

Proof. Let g, g�1 be conjugate to Jg ¼ 0
p
Jn;p and Jg�1 ¼ 0

q
Jn;q respectively.

Lemma 3.4 implies that there is a matching between the Jordan blocks of Jg and
Jg�1 which takes Jr;p to Jr;q ¼ Jr; ~pp. Similarly there is a matching between the Jordan
blocks of Jg and zJg�1 which takes Jr;p to Jr;q ¼ Jr; �pp. This yields the given formulae.

r

Proposition 3.5 asserts that a matrix g A GLnðFÞ is real (resp. z-real) if, for any
invariant factor i of g and for p irreducible in k½t�, p and ~pp (resp. �pp) occur as factors
of i with the same multiplicity.

3.2 Real conjugacy classes in GLn(q). We follow the notation of Macdonald in [6]
where he gives another way to classify conjugacy classes; we will use Macdonald’s
method to give a criterion for an element of GLnðqÞ to be real. We begin by stating
Macdonald’s result regarding GLnðqÞ.

Theorem 3.6 ([6, (1.8), (1.9)]). Let C be a conjugacy class in GLnðqÞ. Then we can

associate C with a sequence of polynomials u ¼ ðu1; u2; . . .Þ satisfying the following

properties:

(1) uiðtÞ ¼ ani t
ni þ � � � þ a1tþ 1 A Fq½t� for all i with ani 0 0;

(2)
P

i ini ¼ n.

This gives a one-to-one correspondence between conjugacy classes in GLnðqÞ and se-

quences of polynomials with the given properties.

Note that the sequence ðn1; n2; . . .Þ is equivalent to a partition, n ¼ 1n12n2 . . . , of n;
the conjugacy class C described in the theorem is said to be associated with the parti-
tion n and an element g in C is said to be of type n.

We need to describe how the correspondence given in Theorem 3.6 works. Let us
start with a conjugacy class C in GLnðqÞ. As we described above, this can be associ-
ated with a multi-set of polynomials,

f f1ðtÞa1 ; . . . ; frðtÞarg

Real and strongly real classes in SLnðqÞ 9
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where, for each i, fiðtÞ is a monic irreducible polynomial in Fq½t� which is not equal
to t, ai is a positive integer, and

Pr
i¼1 degð fiÞai ¼ n.

Now define

uiðtÞ ¼ k
Y

f fjðtÞ:aj¼ig
fjðtÞ:

Here k A Fq is chosen so that uiðtÞ has constant term 1. So uiðtÞ is simply the product
of all irreducible polynomials in the multi-set which have associated exponent equal
to i. That this construction gives a one-to-one correspondence with the conjugacy
classes of GLnðqÞ is the content of Theorem 3.6.

Proposition 3.7. An element g A GLnðqÞ is real (resp. z-real) if and only if each of the

polynomials ui in the sequence u ¼ ðu1; u2; . . .Þ (associated uniquely to the conjugacy

class of g) are self-reciprocal (resp. z-self-reciprocal).

Proof. Suppose that all of the uiðtÞ are self-reciprocal. This means that if pðtÞ is
a monic irreducible polynomial dividing uiðtÞ, then either pðtÞ ¼ ~ppðtÞ or ~ppðtÞ also
divides uiðtÞ (with the same multiplicity). Each monic irreducible divisor of uiðtÞ
corresponds to a Jordan block within the Jordan canonical form for g. Referring to
Proposition 3.5 this means that g is self-reciprocal.
The converse works the same way: if g is self-reciprocal then we can apply Propo-

sition 3.5; thus if pðtÞ divides uiðtÞ then either pðtÞ ¼ ~ppðtÞ or else ~ppðtÞ also divides
uiðtÞ (with the same multiplicity). This means that the uiðtÞ are self-reciprocal.
The same argument applies for the z-real case except that we replace ~ppðtÞ in our

argument with �ppðtÞ. r

Hence to count the number of real conjugacy classes in GLnðqÞ we need to count
sequences of polynomials

u ¼ ðu1ðtÞ; . . . ; uiðtÞ; . . .Þ such that uiðtÞ ¼ ait
ni þ � � � þ a1tþ 1

are self-reciprocal polynomials over Fq with constant term 1 satisfying
P

i ini ¼ n.
Thus for a given partition n we write gln ¼

Q
ni>0 nq;ni for the number of real GLnðqÞ-

conjugacy classes of type n in GLnðqÞ. Then we have

Theorem 3.8. The total number of real conjugacy classes in GLnðqÞ is

X
fn:jnj¼ng

gln ¼
X

fn:jnj¼ng

Y
ni>0

nq;ni :

Furthermore all real classes in GLnðqÞ are, in fact, strongly real.

We have not proved the statement about strong reality; however this follows
from Corollary 4.5 which we prove later. In fact Wonenburger [10] has proved that
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reality is equivalent to strong reality in GLnðFÞ for all fields F of characteristic
not 2.

Gow (who e¤ectively proved Theorem 3.8 in [2]) makes in [2, Lemma 2.2] the in-
teresting observation that the number of equivalence classes of non-degenerate bilin-
ear forms of rank n over Fq is equal to the number of real classes in GLnðqÞ; hence
Theorem 3.8 also provides a formula for the number of these equivalence classes.

Note that the function ð1þ tÞð2;q�1Þ=ð1� qt2Þ is a generating function for nq;d , and
so the function

Yy
r¼1

ð1þ trÞð2;q�1Þ

1� qt2r

is a generating function for the number of real conjugacy classes in GLnðqÞ.
Finally, for q odd we can also write a formula for the total number of z-real con-

jugacy classes in GLnðqÞ:

X
fn:jnj¼ng

Y
ni>0

nq;nisni :

4 SLn(q), n2 2 (mod 4) or q2 3 (mod 4)

We count the real conjugacy classes of SLnðqÞ using the correspondence given
by Macdonald, who proves that a GLnðqÞ-conjugacy class of type n ¼ fn1; . . . ; nrg
contained in SLnðqÞ is the union of hn conjugacy classes for SLnðqÞ where
hn ¼ ðq� 1; n1; . . . ; nrÞ; see [6, (3.1)].

Proposition 4.1. Let n be a partition of n. Then the total number of GLnðqÞ-real
GLnðqÞ-conjugacy classes of type n contained in SLnðqÞ is

sln ¼

Q
ni>0

nq;ni ; if q is even or ni is zero for i odd;

1
2

Q
ni>0

nq;ni ; if q is odd and there exists i with ini odd;

fnðqÞ
Q

i odd;ni>0

qni=2�1
Q

i even;ni>0

nq;ni ; otherwise:

8>>>>><
>>>>>:

Here fnðqÞ ¼ 1
2 ððqþ 1Þr þ ðq� 1ÞrÞ where r is the number of odd values of i for which

ni > 0.

Proof. As outlined in Section 3.2 we write n ¼ 1n12n2 . . . with jnj ¼ n. Let c be
a conjugacy class of GLnðqÞ of type n given by u ¼ ðu1ðtÞ; u2ðtÞ; . . .Þ where
uiðtÞ ¼ ait

ni þ � � � þ 1. Suppose that c is real and so uiðtÞ is self reciprocal for all i;
this means, in particular, that ai ¼G1 for all i. Now detð1� tgÞ is that scalar multi-
ple of the characteristic polynomial of g for which the constant term equals 1. Thus

Real and strongly real classes in SLnðqÞ 11
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detð1� tgÞ ¼
Q

id1 uiðtÞ
i and so det g ¼ ð�1Þn

Q
ni>0 a

i
i ; see [6, (1.7)]. Thus a real ele-

ment of GLnðqÞ must have determinantG1. If p ¼ 2 this means that all real GLnðqÞ-
conjugacy classes lie in SLnðqÞ.
If q is odd and ni is zero for i odd then n is even, and det g ¼

Q
ni>0 a

i
i ¼ 1; hence,

again, all real GLnðqÞ-conjugacy classes lie in SLnðqÞ.
Now suppose that q is odd and that there exists i such that ini is odd. Lemma 2.1

implies that there are 2qðni�1Þ=2 possibilities for uiðtÞ; half of these will have ai ¼ 1, the
other half will have ai ¼ �1. Then it is easy to see that exactly half of the sequences
associated to n correspond to elements with determinant 1.
Finally suppose that q is odd and that ni is even whenever i is odd, with at least

one such ni > 0. Clearly n is even, so we require that
Q

ni>0 a
i
i ¼ 1. When i is

even, ai
i ¼ 1 so we must ensure that

Q
i odd;ni>0 a

i
i ¼ 1. So let us suppose, for the mo-

ment, that we are dealing with a sequence of length r of self-reciprocal polynomials
ðui1ðtÞ; . . . ; uirðtÞÞ where ij is odd for all j and deg uij ðtÞ is positive and even for all j.
Lemma 2.1 implies that the number of such sequences is ðqþ 1Þr

Q
i odd;ni>0 q

ni=2�1.
Those sequences which correspond to a matrix with determinant 1 will have an even
number of leading coe‰cients �1. Counting such sequences is equivalent to counting
terms in the expansion of ðqþ 1Þr in which 1 turns up an even number of times; thus
the number of such sequences is fnðqÞ

Q
i odd;ni>0 q

ni=2�1; here

fnðqÞ ¼ arq
r þ ar�2q

r�2 þ ar�4q
r�4 þ � � �

where ðqþ 1Þr ¼ arq
r þ ar�1q

r�1 þ � � � þ a1qþ a0. It is an easy matter to see that
fnðqÞ ¼ 1

2 ððqþ 1Þr þ ðq� 1ÞrÞ.
Now, if we return to the case where ni may be non-zero for even i, it is clear that

there are
Q

i even;ni>0 nq;ni polynomials corresponding to even i; these make no di¤er-
ence to the determinant of our element, hence we obtain the given formula. r

Next we need to know how a real (resp. z-real) conjugacy class of GLnðqÞ splits in
SLnðqÞ.

Lemma 4.2. Let g A SLnðqÞ and suppose that the conjugacy class of g in GLnðqÞ is

C ¼ C1 U � � �UCr where the Ci are SLnðqÞ-conjugacy classes. Take xi A GLnðqÞ such

that gxi A Ci for i ¼ 1; . . . ; r. Then g is real (resp. z-real) in SLnðqÞ if and only if gxi is

real (resp. z-real) in SLnðqÞ for all i.

Proof. Suppose that tgt�1 ¼ g�1 for t A SLnðqÞ. Then txgxðtxÞ�1 ¼ ðgxÞ�1 for
x A GLnðqÞ. Suppose tgt�1 ¼ zg�1 for t A SLnðqÞ. Then txgxðtxÞ�1 ¼ zðgxÞ�1 for
x A GLnðqÞ. (Recall that, for g A GLnðqÞ, we write zg when we mean ðzIÞg.)
In both cases tx is in SLnðqÞ since SLnðqÞ is normal in GLnðqÞ. Hence we obtain

our result. r

For our analysis of the real classes in SLnðqÞ, we need an easy arithmetical lemma.
We write jkj2 for the largest power of 2 which divides an integer k. That is, jkj2 ¼ 2r

where 2r divides k, but 2rþ1 does not.
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Lemma 4.3. Let Fq be a finite field with q odd. Then there exists a A F�
q with an ¼ �1

if and only if jnj2 < jq� 1j2.

Proof. Recall that F�
q is a cyclic group of order q� 1. Consider the homo-

morphism F�
q ! F�

q , x 7! xn. Its kernel is fx A F�
q j xðn;q�1Þ ¼ 1g, hence its image

fx A F�
q j xr ¼ 1g has r ¼ ðq� 1Þ=ðn; q� 1Þ elements. Now �1 is contained in this

image if and only if r is even or, equivalently, if and only if jnj2 < jq� 1j2. r

Proposition 4.4. Suppose that n2 2 ðmod4Þ or that q2 3 ðmod 4Þ. Then a real (resp.
z-real) conjugacy class of GLnðqÞ which is contained in SLnðqÞ is again a union of real

(resp. z-real) conjugacy classes in SLnðqÞ.

Proof. We generalize the proof of Wonenburger [10].
First consider the even characteristic situation. Let g be a real element in

G ¼ GLnðqÞ (remember that, for even characteristic, z-real elements do not exist)
and consider the group RGðgÞ, as defined in Section 3. If g is not real in SLnðqÞ then
RGðgÞV SLnðqÞcCGðgÞ. This implies that RGðgÞ SLnðqÞ is a group which contains
SLnðqÞ with even index. But this is impossible since RGðgÞ SLnðqÞ is contained in
GLnðqÞ which contains SLnðqÞ as a subgroup with odd index. We conclude that g is
indeed real in SLnðqÞ.

From here on we assume that the characteristic is odd. Let d1ðtÞ; . . . ; dnðtÞ be the
invariant factors of g in Fq½t�. Suppose that g is real (resp. z-real), so each diðtÞ is
self-reciprocal (resp. z-self-reciprocal). The Fq½t�-module V which we discussed in
Section 3 decomposes as V ¼ 0n

i¼1
Vi, where each Vi is a cyclic submodule of V .

Write gi ¼ gjVi
; then g ¼ 0

i
gi and the characteristic polynomial of gi is the polyno-

mial diðtÞ.

Step 1. We shall construct involutions in GLðViÞ, conjugating gi to g�1
i (resp.

zg�1
i ). If dimVi ¼ 2m then this involution will have determinant ð�1Þm, while if

dimVi ¼ 2mþ 1 then we will construct two such involutions, one of determinant 1
and the other of determinant �1. This construction is enough to prove the proposi-
tion except when q1 1 ðmod 4Þ and n1 2 ðmod 4Þ; we deal with this exception in
Step 2.

When g is real we can write the characteristic polynomial of gi as
wgiðtÞ ¼ ðt� 1Þrðtþ 1Þsf ðtÞ where f ðG1Þ0 0 and Vi ¼ W�1 lW1 lW0, where
W�1, W1 and W0 are the kernels of ðgi � 1Þr, ðgi þ 1Þs and f ðgiÞ respectively. To
produce the involution hi on Vi as above, it su‰ces to do so on each of W�1, W1

and W0.
When g is z-real we can write wgiðtÞ ¼ ðt2 � zÞrf ðtÞ where the degð f Þ ¼ 2m and

f ð0Þ ¼ zm; then Vi ¼ Wz lW0, where Wz and W0 are the kernels of t2 � z and
f ðtÞ respectively. To produce the involution hi on Vi as above, it su‰ces to do so
on each of Wz and W0.

It is su‰cient to find a reversing involution in the following situations. Let k be
a cyclic linear transformation on a vector space W with characteristic polynomial
wkðtÞ, one of the following three types:

Real and strongly real classes in SLnðqÞ 13
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(1) wkðtÞ is self-reciprocal (resp. z-self-reciprocal) and the degree of wkðtÞ is even, say
2m. In this case we deal with the z-real, and real, situations simultaneously. We
will write the proof for the z-real situation; the proof for the real situation is
obtained by replacing z with 1. We assume that wkð0Þ ¼ zm.

(2) wkðtÞ ¼ ðt� 1Þ2mþ1 or ðtþ 1Þ2mþ1.

(3) wkðtÞ ¼ ðt2 � zÞm with m odd.

We claim that in Case 1, k is reversed by an involution with determinant ð�1Þm; in
Case 2 there are reversing involutions with determinant �1, and with determinant 1;
in Case 3 there is an involution with determinant �1.

Case 1. Since wkðtÞ is z-self-reciprocal, our assumptions imply that

wkðtÞ ¼ t2m þ a1zt
2m�1 þ a2z

2t2m�2 þ � � � þ amz
mtm þ � � � þ a2z

mt2 þ a1z
mtþ zm:

Since W is cyclic, there is a vector u A W such that E ¼ fu; ku; . . . ; k2m�1ug is a basis
of W . By substituting kmu ¼ y we get E ¼ fk�my; . . . ; y; . . . ; km�1yg. Let

B ¼ fy; ðk þ zk�1Þy; . . . ; ðkm�1 þ zm�1k�mþ1Þy; ðk � zk�1Þy; . . . ; ðkm � zmk�mÞyg:

We claim that B is a basis of W . To see this observe first that, for i ¼ 1; . . . ;m� 1,
ðk i þ z ik�iÞy and ðki � z ik�iÞy span the same 2-dimensional subspace as kiy and
k�iy. Also y is independent of kiy and k�iy, hence we need only demonstrate that
ðkm � zmk�mÞy is linearly independent from the rest. Were this not the case, how-
ever, we would have

kmðyÞ ¼ zmk�mðyÞ þ f ðk�mþ1; k�mþ2; . . . ; km�1ÞðyÞ

and hence

ðk2m � f ðk; k2; . . . ; k2m�1Þ � zmÞy ¼ 0;

where f is some linear function. But this implies that

wkðtÞ ¼ t2m � f ðt2m�1; t2m�2; . . . ; tÞ � zm

which contradicts the form of wkðtÞ given above.
We denote the subspace generated by the first m vectors of B by P and that by the

latter m vectors by Q. Now observe some facts:

(1) ðk þ zk�1Þðki þ z ik�iÞ ¼ ðkiþ1 þ z iþ1k�ðiþ1ÞÞ þ zðki�1 þ z i�1k�ði�1ÞÞ;

(2) ðk � zk�1Þðki þ z ik�iÞ ¼ ðkiþ1 � z iþ1k�ðiþ1ÞÞ � zðki�1 � z i�1k�ði�1ÞÞ;

(3) ðk � zk�1Þðki � z ik�iÞ ¼ ðkiþ1 þ z iþ1k�ðiþ1ÞÞ � zðki�1 þ z i�1k�ði�1ÞÞ;

(4) km þ zmk�m ¼ �a1ðkm�1 þ zm�1k�mþ1Þ � a2ðkm�2 þ zm�2k�mþ2Þ � � � � .
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Now (1), (2) and (4) imply that ðk þ zk�1ÞðPÞJP and that ðk � zk�1ÞðPÞJQ. If

we apply k � zk�1 to both sides of (4) we find that ðkmþ1 � zmþ1k�m�1ÞðyÞ A Q. This,
along with (2), implies that ðk þ zk�1ÞðQÞJQ. Similarly, applying k þ zk�1 to both
sides of (4) we obtain ðkmþ1 þ zmþ1k�m�1ÞðyÞ A P. This, along with (3), implies that
ðk � zk�1ÞðQÞJP.

Now let h ¼ 1jP l�1jQ and note that

hðk þ zk�1Þh ¼ k þ zk�1; hðk � zk�1Þh ¼ �ðk � zk�1Þ:

This implies that h is an involution which conjugates k to zk�1 and has determinant
ð�1Þm.

Case 2. In this case, we have the characteristic polynomial wkðtÞ ¼ ðt� eÞ2mþ1 where
e ¼G1. Since W is cyclic, there is a vector u A W such that E ¼ fu; ku; . . . ; k2mug is a
basis. By substituting kmu ¼ y we get

E ¼ fk�my; . . . ; y; . . . ; kmyg:

We consider the basis

B ¼ fy; ðk þ k�1Þy; . . . ; ðkm þ k�mÞy; ðk � k�1Þy; . . . ; ðkm � k�mÞyg:

We denote the subspace generated by the first mþ 1 vectors of B by P and the latter
m vectors by Q. Examining the equation ðk � eIÞ2mþ1 ¼ 0 and applying kG eI

to both sides yields the following facts: k þ k�1 leaves P as well as Q invariant;
also ðk � k�1ÞðPÞJQ and ðk � k�1ÞðQÞHP. We consider h ¼ 1jP l�1jQ and

h 0 ¼ �1jP l 1jQ. Then h and h 0 are both involutions which conjugate k to k�1 and
they have determinants ð�1Þm and ð�1Þmþ1 respectively.

Case 3. In this case, we have the characteristic polynomial wkðtÞ ¼ ðt2 � zÞm where m
is odd. Since W is cyclic, there is a vector u A W such that E ¼ fu; ku; . . . ; k2m�1ug is
a basis. By substituting kmu ¼ y we get

E ¼ fk�my; . . . ; y; . . . ; km�1yg:

We consider the basis

B ¼ fy; ðk � zk�1Þy; ðk2 þ z2k�2Þy; ðk3 � z3k�3Þy; . . . ; ðkm�1 þ zm�1k�mþ1Þy;

ðk þ zk�1Þy; ðk2 � z2k�2Þy; ðk3 þ z3k�3Þy; . . . ; ðkm þ zmk�mÞyg:

We denote the subspace generated by the first m vectors of B by P and the
latter m vectors by Q. This time k � zk�1 leaves P as well as Q invariant. Also
ðk þ zk�1ÞðPÞJQ and ðk þ zk�1ÞðQÞJP. Define h ¼ 1jP l�1jQ and observe that
h is an involution which conjugates k to zk�1 and which has determinant ð�1Þm.
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Step 2. Write g ¼ 0
i
gi, as above; the construction outlined in Step 1 yields a

reversing involution, h ¼ 0
i
hi, where hi is a reversing involution for gi. Whenever

n2 2 ðmod 4Þ or q is even, it is easy to see that the construction in Step 1 yields an
involution h which has determinant 1. We must deal with the remaining situation:
when n1 2 ðmod 4Þ and q1 1 ðmod 4Þ.
Suppose that one of the submodules Vi has odd dimension. Then we can choose hi

to have determinant 1 or �1; this ensures that we can choose h to have determinant 1
and we are done.
Suppose that all submodules Vi have even dimension, and that the reversing invo-

lution h ¼ 0
i
hi constructed in Step 1 has determinant �1. Clearly one of the sub-

modules, Vj say, must have dimension nj 1 2 ðmod 4Þ. Now Lemma 4.3 implies that
there is an a A Fq such that anj ¼ �1. Then we can define

h 0 ¼
�

0
n

i¼1; i0j

hi

�
l hjðaIÞ:

Clearly h 0 is a reversing element for g and det h 0 ¼ 1 as required. r

Corollary 4.5. If g is real (resp. z-real) in GLnðqÞ then g is strongly real (resp. strongly
z-real) in hSLnðqÞ; ki for k an element of determinant �1. If, furthermore,
n2 2 ðmod 4Þ or q is even, then an involution h exists in SLnðqÞ such that hgh ¼ g�1.

Proof. Take g real (resp. z-real) in GLnðqÞ. Note that in the proof of Proposition 4.4,
we did not use the fact that g is contained in SLnðqÞ and, in all cases, we found a
reversing element of determinant 1 or �1. In fact, in the odd characteristic case, we
always found a reversing element which was an involution; this proves the first state-
ment when the characteristic is odd.
For n2 2 ðmod 4Þ and q odd, we were able to do better: we found an involution

in SLnðqÞ which reverses g; this proves the second statement when the characteristic
is odd. The only thing left to prove is the following: if g is real in GLnðqÞ with q

even, then g is strongly real in GLnðqÞ. (This statement is strong enough because,
when q is even, there are no z-real elements, and all involutions of GLnðqÞ lie in
SLnðqÞ.)
Take g real in GLnðqÞ with q even. We refer to Proposition 3.5 and write g as a

block matrix as follows:

�
0
p0~pp

ðJl;p l Jl; ~ppÞ
�
l

�
0
p¼ ~pp

Jl;p

�
:

We will consider two cases:

(1) g ¼ Jr;p l Jr; ~pp;

(2) g ¼ Jr;p and p ¼ ~pp.
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In both cases p is an irreducible polynomial. Clearly if we can find an involution
which reverses g in both of these cases, then we can build an involution which re-
verses g in general.

Consider the first case. Then g is conjugate to a matrix of form

g1 ¼
B 0

0 B�1

� �
;

where B is a square d � d matrix with d ¼ degðpÞ. Thus hg1h�1 ¼ g�1
1 where

h ¼ 0 I

I 0

� �
:

Since h2 ¼ 1, we conclude that g1 is strongly reversible and thus so is g.
Now consider the second case. If p ¼ tþ 1 then g is an involution and we are done.

Thus we assume that p has even degree, d. Let g ¼ gsgu be the Jordan decomposition.
Since g is real, Lemma 3.1 implies that gs is real. Now CGLnðqÞðgsÞGGLrðqdÞ. We
denote by x the element which reverses g; it acts as an involutory field automorphism
on GLrðqdÞ.

We can think of g as lying inside GLrðqdÞ; then g is conjugate to an element g1
where

g1 ¼

a 1

. .
. . .

.

. .
.

1

a

0
BBBB@

1
CCCCA; g�1

1 ¼

a�1 �a�2 a�3

. .
. . .

. . .
.

. .
. . .

.
a�3

. .
.

�a�2

a�1

0
BBBBBBB@

1
CCCCCCCA
;

where a is an element of Fqd which satisfies aqd=2 ¼ a�1. Then g1 is reversed by an
element hs where

h ¼

1 0 0 � � �
�a2 a3 �a4 � � �

a4 �2a5 3a6 � � �
�a6 3a7 � � �

. .
.

0
BBBBBB@

1
CCCCCCA
; i:e: hij ¼

ð�1Þ jþ1 j�2
i�2

� 	
a iþ j�2; jd i;

0; j < i:

�

Here we define k
0

� 	
¼ 1 and k

�1

� 	
¼ �1 for k a positive integer (of course, since

the characteristic is even, hij ¼ 0 for many i, j). Now ðhxÞ2 ¼ hhx acts trivially on
GLrðqdÞ. But this means that ðhxÞ2 A ZðGLrðqdÞÞ. Since ZðGLrðqdÞÞ has odd order

we conclude that hx can be chosen so that ðhxÞ2 ¼ 1. Hence g1 is strongly real and
thus so is g. r
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We summarize our results for real elements with the following theorem:

Theorem 4.6. Suppose that n2 2 ðmod 4Þ or q2 3 ðmod 4Þ. Then the total number

of real conjugacy classes in SLnðqÞ is equal to
P

jnj¼n hnsln where n ¼ fn1; . . . ; nrg,
hn ¼ ðq� 1; n1; . . . ; nrÞ and the value of sln is given in Proposition 4.1. Furthermore, if
n2 2 ðmod 4Þ or q is even, this is the same as the total number of strongly real conju-

gacy classes in SLnðqÞ.

5 SLn(q), n1 2 (mod 4) and q1 3 (mod 4)

In this section we assume that n1 2 ðmod4Þ and q1 3 ðmod 4Þ, and we take z ¼ �1,
a non-square. The formula given in Theorem 4.6 gives the number of conjugacy
classes in SLnðqÞ which are real in GLnðqÞ. Thus, in order to count the number
of real conjugacy classes in SLnðqÞ, we take this formula and count how many
GLnðqÞ-real conjugacy classes in SLnðqÞ fail to be real in SLnðqÞ. Our analysis is
based on the following:

Lemma 5.1. Let g A SLnðqÞ. Then g is real (resp. z-real) in SLnðqÞ if and only if there

exists a reversing element h A GLnðqÞ such that det h is a square in Fq.

Proof. Clearly if g is real (resp. z-real) in SLnðqÞ then there exists a reversing element
h in SLnðqÞ and det h is a square in Fq.
Now for the converse: suppose that there exists a reversing element h A GLnðqÞ

such that det h is a square. For a positive integer c we have det hc ¼ ðdet hÞc and, if
c is odd, then hcgh�c ¼ hgh�1 and so hc is a reversing element. Since det hc ¼ 1 for
some odd integer c, we are done. r

Now let g be a real (resp. z-real) element in GLnðqÞ with reversing element
h A GLnðqÞ. In view of Lemma 5.1 we will be interested in determining whether
det h is a square or a non-square in Fq. We will use two commutative diagrams:

GLaðFqÞ 


!i GLaðFqÞ

det

???y
???ydet

F�
q 


!

i
Fq

�

GLaðqdÞ 


!i GLadðqÞ

det

???y
???ydet

F�
qd 


!

N
F�

q :

The map i denotes a natural inclusion map. The map N is the norm map defined as
follows:

N : Cqd�1 ! Cq�1; x 7! xqd�1þ���þqþ1:

The commutativity of the first diagram is obvious. The commutativity of the second
is explained by the following fact: N � det : GLaðqdÞ ! F�

q , when viewed as a map
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from a subgroup of GLadðqÞ, is multilinear, alternating (on columns) and satisfies
ðN � detÞðIÞ ¼ 1; in other words it is a determinant and so must coincide with
det � i : GLaðqdÞ ! F�

q by [5, Proposition 4.6, p. 514].
Thanks to the given inclusion maps, there are several determinant maps applicable

to any given matrix. In what follows we write detjkj to specify the field k in which our
image lies. Note that the form of N implies that, for y A GLaðqdÞ, detqðyÞ is square if
and only if detqd ðyÞ is square.

We will build a reversing element for g, in a similar way to the proof of Corollary
4.5, by considering three basic cases. Let V be the Fq½t�-module associated with V

(see Section 3.1) and let wgðtÞ be the characteristic polynomial of g.

(1) V is a cyclic module for g with wgðtÞ ¼ pðtÞ ¼ ðtG 1Þa.

(2) V is a cyclic module for g with wgðtÞ ¼ pðtÞa, where pðtÞ is a self-reciprocal (or z-
self-reciprocal) irreducible polynomial of even degree d.

(3) V ¼ Wp lWq, a module for g, such that Wp and Wq are cyclic modules with
characteristic polynomials pðtÞa and ~ppðtÞa (or pðtÞa and �ppðtÞa) such that pðtÞ is
irreducible.

Lemma 5.2. Let V be a cyclic module associated with g such that wgðtÞ ¼ ðtG 1Þa.
Suppose that h reverses g.

(1) If a is odd, then det h may be a square or a non-square in GLaðqÞ.

(2) If a1 0 ðmod 4Þ, then det h is a square in GLaðqÞ.

(3) If a1 2 ðmod 4Þ, then det h is a non-square in GLaðqÞ.

Proof. Write g in upper triangular form. Take h such that h�1gh ¼ g�1; then h must
be upper triangular with diagonal ða;�a; a;�a; . . .Þ. The result follows by consider-
ing the determinant. r

Lemma 5.3. Let V be a cyclic module associated with g such that wgðtÞ ¼ pðtÞa where

pðtÞ is an irreducible polynomial of even degree d. Suppose that h reverses g. If a is odd,
then det h may be a square or non-square in GLadðqÞ while, if a is even, then det h is a

square in GLadðqÞ.

Proof. Write g ¼ gsgu for the Jordan decomposition of g. In GLdðqÞ, gs is centralized
by GLaðqdÞ and so gs can only be reversed by a field automorphism of GLaðqdÞ. Let
x be such a field automorphism; then h ¼ yx where y is an element of GLaðqdÞ which
satisfies ðguÞ�1 ¼ ðyxÞðguÞðyxÞ�1 (see Lemma 3.1).

If a is odd then there is a central element in GLaðqdÞ which has determinant a non-
square in Fd

q . Hence det h may be a square or a non-square in GLadðqÞ.
Assume that a is even. Proposition 4.4 implies that there exists a reversing element

h in GLadðqÞ such that det h is a square. Any other reversing element in GLadðqÞ must
equal hz where z A CGLad ðqÞðgÞ. If z centralizes g then it centralizes gs and we conclude
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that z must be an element in GLaðqdÞ which centralizes gu. We write gu as an element
of GLaðqdÞ:

g ¼

1 a

. .
. . .

.

. .
.

a

1

0
BBBB@

1
CCCCA;

where a A Fqd . Then z must have the form

z ¼

b1 b2

..
.

. .
. . .

.

. .
.

b2
b1

0
BBBBB@

1
CCCCCA:

Hence, since a is even, detqd z is a square. Thus any reversing element for g in
GLadðqÞ has determinant a square. r

Lemma 5.4. Let V ¼ Wp lWq be the module associated with g. Suppose that Wp and

Wq are cyclic modules with characteristic polynomials pðtÞa and ~ppðtÞa (or �ppðtÞaÞ. Sup-
pose that pðtÞ is irreducible of degree d, and that h reverses g. If a is odd then detðhÞ
may be square or non-square while, if a is even, then detðhÞ is square.

Proof. We know that g is conjugate in GL2adðqÞ to either

g1 ¼
B 0

0 B�1

� �
or g2 ¼

B 0

0 zB�1

� �
:

By Lemma 4.2 we can assume that g is equal to g1 or g2. If a is odd then GLaðqdÞ
contains a central element with non-square determinant in Fqd ; since g is central in a
group isomorphic to GLaðqdÞ �GLaðqdÞ we conclude that detðhÞ may be square or
non-square.
Suppose that a is even. If h preserves blocks then p ¼ ~pp (or p ¼ �pp) and Lemma 5.3

implies that detðhÞ is a square. Otherwise h reverses blocks and

h ¼ 0 X

Y 0

� �

for some X and Y in GLadðqÞ. Thus

0 X

Y 0

� �
B 0

0 C

� �
0 X

Y 0

� ��1

¼ C 0

0 B

� �
;
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where C ¼ B in the real case, and C ¼ zB�1 in the z-real case. This implies that
XCX �1 ¼ C and YBY �1 ¼ B; now CGLad ðqÞðBÞ ¼ CGLad ðqÞðCÞ, hence we need to ex-
amine the centralizer of B in GLadðqÞ.

Clearly detq h ¼ ð�1ÞadðdetX ÞðdetYÞ ¼ ðdetXÞðdetYÞ since a is even. Then X

must lie in the centralizer of gujWq
and we have seen the form of such a centralizer

in Lemma 5.3; we know that the determinant is always a square in Fqd hence is a
square in Fq. r

This concludes our treatment of the three specific cases. We use the lemmas to
build up the picture for general V .

Proposition 5.5. Suppose that g lies in SLnðqÞ with n1 2 ðmod 4Þ and q1 3 ðmod 4Þ.
Suppose that the corresponding module V for g splits into r cyclic submodules with cor-

responding polynomials p1ðtÞa1 ; . . . ; prðtÞar . If g is real in GLnðqÞ, then g is real in

SLnðqÞ if and only if ai is odd for some i. If g is z-real in GLnðqÞ then g is z-real

in SLnðqÞ.

Proof. Suppose first that g is real in GLnðqÞ. Let h be any element of GLnðqÞ such
that hgh�1 ¼ g�1. We can break V up into submodules of the three types listed above
(call these h-minimal ). If ai is odd for some i then consider W , the h-minimal sub-
module corresponding to ai. Lemmas 5.2 to 5.4 imply that gjW is conjugate to its in-
verse by elements of determinant þ1 and �1 in GLðWÞ; this property will then hold
for g.

Conversely if all ai are even then our above calculations show that, restricted to any
h-minimal submodule W , gjW is conjugate to its inverse by an element of determi-
nant þ1 or �1 in GLðWÞ, but not both. In fact, of the three types listed above, this
determinant is �1 only when W is cyclic and ðpiðtÞÞai ¼ ðtG 1Þai with ai 1 2 ðmod 4Þ
(this is also the only time when dimW 2 0 ðmod 4Þ).

Since n1 2 ðmod 4Þ there will be an odd number of these �1 h-minimal submod-
ules, thereby ensuring that g is only conjugate to its inverse by an element of determi-
nant �1.

Now suppose that g is z-real and all ai are even. This implies that the dimension of
all h-minimal submodules is divisible by 4. Since n1 2 ðmod 4Þ this is a contradic-
tion. Thus ai is odd for some i. Let W be the h-minimal submodule correspond-
ing to ai. Once again, Lemmas 5.2 to 5.4 imply that gjW is conjugate to its inverse
by elements of determinant þ1 and �1 in GLðWÞ; this property will then hold
for g. r

Corollary 5.6. Suppose that g A SLnðqÞ is of type n ¼ 1n12n2 . . . and is real in GLnðqÞ.
Then g is real in SLnðqÞ if and only if ni > 0 for some odd i.

Proof. We simply need to convert the criterion given by Proposition 5.5 into the
language of Macdonald, as described in Section 3.2. r

We can use this corollary to count the real classes in SLnðqÞ as follows:
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Theorem 5.7. Suppose that n1 2 ðmod 4Þ and q1 3 ðmod 4Þ. Then the total number

of real conjugacy classes in SLnðqÞ is equal to

X
jnj¼n

hnsln �
X
jmj¼n

hmslm

where n ¼ ð1n12n2 . . .Þ, m ¼ ð2d24d4 . . .Þ and the values of sln and slm are given in Prop-

osition 4.1.

6 Strongly real conjugacy classes in SLnðqÞ

Theorem 6.1. Let g be an element of SLnðqÞ which is real in GLnðqÞ. Let g be of type

n ¼ 1n12n2 . . . , with associated self-reciprocal polynomials ui of degree ni.

(1) If n2 2 ðmod 4Þ or if q is even then g is real as well as strongly real in SLnðqÞ.

(2) If n1 2 ðmod 4Þ and q is odd then, g is strongly real in SLnðqÞ if and only if there is

an odd i for whichG1 appears as a root of uiðtÞ.

Proof. The first statement follows directly from Corollary 4.5. Now suppose that
n1 2 ðmod 4Þ and q is odd.
Take g a strongly real element in GLnðqÞ. We use the same notation as the previ-

ous section except that this time we require that h2 ¼ 1. Let W be a h-minimal sub-
module of V ; W will have one of the same three types as before.
Suppose that W ¼ Wp lWq where Wp and Wq are cyclic with corresponding

characteristic polynomials pðtÞa and ~ppðtÞa such that pðtÞ and ~ppðtÞ are distinct irre-
ducible polynomials of degree d. Then

hjW ¼ 0 X

Y 0

� �

for some X and Y in GLadðqÞ and det hjW ¼ ð�1ÞadðdetXÞðdetY Þ. But, since h2 ¼ 1,

we have X ¼ Y �1 and det hjW ¼ ð�1Þad .
Suppose that W is cyclic and d > 1. Write the corresponding characteristic polyno-

mial as pðtÞa where pðtÞ has even degree d. We can consider W nFq
Fq. Then gjW is

clearly real in GLðV nFq
FqÞ but is reducible. In fact there are pairings of blocks. As

we have already seen, this implies that we have determinant ð�1Þb over these pair-
ings, where b is the size of the block. Thus h must have determinant ð�1Þad=2.
Suppose that W is cyclic and pðtÞ ¼ tG 1. It is easy to check that

(1) if a is odd then det hjW may be 1 or �1,

(2) if a1 0 ðmod 4Þ then det hjW ¼ 1,

(3) if a1 2 ðmod 4Þ then det hjW ¼ �1.
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We have now treated the three types. If V does not have a cyclic submodule corre-
sponding to a polynomial ðtG 1Þa where a is odd, then det hjW ¼ ð�1ÞðdimW Þ=2 and
so det h ¼ ð�1Þn=2 ¼ �1; in particular g is not strongly real in SLnðqÞ. On the other
hand if V does have a cyclic submodule corresponding to a polynomial ðtG 1Þa
where a is odd, then we can choose h to have det h ¼ 1.

The proof is completed once we observe that V has a cyclic submodule corre-
sponding to a polynomial ðtG 1Þa where a is odd if and only if there is an odd i for
whichG1 is a root of uiðtÞ. r

Acknowledgement. Part of this work was completed when both authors were post-
doctoral fellows at IMSc, Chennai. The first author is grateful to Ian Short, and
others at the National University of Ireland, Maynooth, who took an interest in this
work. Both authors would like to thank Rod Gow, Bill Kantor, and Amritanshu Pra-
sad for helpful comments, and in addition the authors owe a large debt of gratitude
to the anonymous referee; their insight has been invaluable.

References

[1] N. Gill and A. Singh. Real and strongly real classes in PGLnðqÞ and quasi-simple covers
of PSLnðqÞ. J. Group Theory

[2] R. Gow. The number of equivalence classes of nondegenerate bilinear and sesquilinear
forms over a finite field. Linear Algebra Appl. 41 (1981), 175–181.

[3] N. Jacobson. Lectures in abstract algebra, vol. 2. Linear algebra (van Nostrand, 1953).
[4] P. Kleidman and M. Liebeck. The subgroup structure of the finite simple groups. London

Math. Soc. Lecture Note Ser. 129 (Cambridge University Press, 1990).
[5] S. Lang. Algebra, 3rd edn. Graduate Texts in Math. 211 (Springer-Verlag, 2002).
[6] I. G. Macdonald. Numbers of conjugacy classes in some finite classical groups. Bull.

Austral. Math. Soc. 23 (1981), 23–48.
[7] A Singh and M. Thakur. Reality properties of conjugacy classes in algebraic groups.

Israel J. Math. 145 (2005), 157–192.
[8] T. A. Springer. Linear algebraic groups. In Algebraic Geometry IV, Encyclopaedia of

Math. Sci. 55 (Springer-Verlag, 1994), pp. 1–121.
[9] P. H. Tiep and A. E. Zalesski. Real conjugacy classes in algebraic groups and finite

groups of Lie type. J. Group Theory 8 (2005), 291–315.
[10] M. J. Wonenburger. Transformations which are products of two involutions. J. Math.

Mech. 16 (1966), 327–338.

Received 20 January, 2009; revised 12 June, 2010

Nick Gill, Department of Mathematics, University Walk, Bristol, BS8 1TW, United Kingdom
E-mail: nickgill@cantab.net

Anupam Singh, IISER, Central Tower, Sai Trinity Building, near Garware Circle, Pashan,
Pune 411021, India
E-mail: anupamk18@gmail.com

Real and strongly real classes in SLnðqÞ 23

(AutoPDF V7 31/8/10 11:14) WDG (170�240mm) Tmath J-2340 JGT, : () PMU: C(C) 18/8/2010 pp. 1–23 2340_054 (p. 23)


