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NN* networks for content-based image retrieval

Daniel Heesch and Stefan Riiger

Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, England
{daniel.heesch,s.rueger }@imperial.ac.uk

Abstract. This paper describes a novel interaction technique to sup-
port content-based image search in large image collections. The idea is
to represent each image as a vertex in a directed graph. Given a set of
image features, an arc is established between two images if there exists
at least one combination of features for which one image is retrieved as
the nearest neighbour of the other. Each arc is weighted by the propor-
tion of feature combinations for which the nearest neighour relationship
holds. By thus integrating the retrieval results over all possible feature
combinations, the resulting network helps expose the semantic richness
of images and thus provides an elegant solution to the problem of feature
weighting in content-based image retrieval. We give details of the method
used for network generation and describe the ways a user can interact
with the structure. We also provide an analysis of the network’s topology
and provide quantitative evidence for the usefulness of the technique.

1 Introduction

The problem of retrieving images based not on associated text but on visual
similarity to some query image has received considerable attention throughout
the last decade. With its origins in computer vision, early approaches to content-
based image retrieval (CBIR) tended to allow for little user interaction but it
has by now become clear that CBIR faces a unique set of problems which will
remain insurmountable unless the user is granted a more active role. The image
collections that are the concern of CBIR are typically too heterogenous for object
modelling to be a viable approach. Instead, images are represented by a set of
low-level features that are a long way off the actual image meanings. In addition
to bridging this semantic gap, CBIR faces the additional problem of determining
which of the multiple meaning an image admits to is the one the user is inter-
ested in. This ultimately translates into the question of which features should be
used and how they should be weighted relative to each other. Relevance feedback
has long been hailed as the cure to the problem of image polysemy. Although
the performance benefits achieved through relevance feedback are appreciable,
there remain clear limitations. One of these is the fast convergence of perfor-
mance during the first few iterations (e.g. [15], [12]), typically halfway before
reaching the global optimum. Also, positive feedback, which turns out to be the
most efficient feedback method when the collection contains a sufficiently large



number of relevant objects, becomes ineffective if the first set of results does
not contain any relevant items. Not surprisingly, few papers that report perfor-
mance gains through relevance feedback use collections of sizes much larger than
1000. Possibly as a response to this limitation, research into the role of negative
examples has recently intensified (eg [11], [15]). The general conclusion is that
negative examples can be important as they allow the user to move through a
collection. [15] concludes that negative feedback ”offers many more options to
move in feature space and find target images. [...] This flexibility to navigate
in feature space is perhaps the most important aspect of a content-based image
retrieval system.”

We would like to take this conclusion further and claim that in the case
of large image collections, it becomes absolutely vital to endow a system with
the most efficient structures for browsing as well as retrieval. Relevance feed-
back on negative examples is arguably one possibility but is relatively inefficient
if browsing is a main objective. Motivated by these shortcomings of the tradi-
tional query-by-example paradigm and of relevance feedback, this paper proposes
a novel network structure that is designed to support image retrieval through
browsing. The key idea is to attack polysemy by exposing it. Instead of comput-
ing at runtime the set of most similar images under a particular feature regime,
we seek to determine the set of images that could potentially be retrieved using
any combination of features. We essentially determine the union over all feature
combinations of the sets of top ranked images. This is done taking each image
of the collection in turn as a query. For each image we store the set of images
that were retrieved top under some feature regime and the number of times this
happened. The latter number provides us with a measure of similarity between
two images. Because nearest neighbourhood need not be reciprocated, the sim-
ilarity measure is asymmetric and the resulting network a directed graph. We
refer to the resulting structure as an NN* network (NN for nearest neighbour
and k for the number of different feature types). As it is entirely precomputed,
the network allows interaction to take place in real time regardless of the size of
the collection. This is in contrast to query-by-example systems, where the time
complexity for retrieval is typically linear in the size of the image collection.
The storage requirements for the network increase linearly with the number of
images. The time complexity of the network generation algorithm is linear in the
number of images and at most quadratic in the number of features. In practice,
however, the number of features is constant and, as we will show, does not need
to be very large to give respectable results.

Using collections of varying size (238, 6129, 32318), we found that the result-
ing networks have some interesting properties which suggest that the structures
constitute ’small-world’ networks [21] at the boundary between randomness and
high regularity that should make them ideal for organizing and accessing image
collections.

The paper is structured as follows: In section 2, we review work that is related
to, or has inspired, the technique here introduced. In section 3, we provide details
of how the network structure is generated. Section 4 describes the ways a user



can interact with the browsing structure. Section 5 presents an analysis of the
topological properties of the network and section 6 reports on a quantitative
performance evaluation of the network. We conclude the paper in section 7.

2 Related work

The idea of representing text documents in a nearest neighbour network first
surfaced in [7]. The network was, however, strictly conceived as an internal rep-
resentation of the relationships between documents and terms. The idea was
taken up in a seminal paper by Cox ([5] and in greater detail in [6]) in which
the nearest neighbour network was identified as an ideal structure for interactive
browsing. Cox is concerned with structured databases and envisages one nearest
neighbour network for each field of the database with individual records allowing
for interconnections between the sets of networks.

Notable attempts to introduce the idea of browsing into CBIR include Camp-
bell’s work [3]. His ostensive model retains the basic mode of query based re-
trieval but in addition allows browsing through a dynamically created local tree
structure. The query does not need to be formulated explicitly but emerges
through the interaction of the user with the image objects. When an image is
clicked upon, the system seeks to determine the optimal feature combination
given the current query and the query history, i.e. the sequence of past query
images. The results are displayed as nodes adjacent to the query image, which
can then be selected as the new query. The emphasis is on allowing the system to
adjust to changing information needs as the user crawls through the branching
tree.

Jain and Santini’s “El nifio” system [18] and [17] is an attempt to combine
query-based search with browsing. The system displays configurations of images
in feature space such that the mutual distances between images as computed
under the current feature regime are, to a large extent, preserved. Feedback
is given similar as in [11] by manually forming clusters of images that appear
similar to the user. This in turn results in an altered configuration with, possibly,
new images being displayed.

Network structures that have increasingly been used for information visual-
ization and browsing are Pathfinder networks (PFNETS) [8]. PFNETSs are con-
structed by removing redundant edges from a potentially much more complex
network. In [9] PENETSs are used to structure the relationships between terms
from document abstracts, between document terms and between entire docu-
ments. The user interface supports access to the browsing structure through
prominently marked high-connectivity nodes. An application of PFNETSs to
CBIR is found in [4] where PFNETSs are constructed and compared with three
different classes of image features (colour, layout and texture) using the similar-
ity between images as the edge weight. According to the authors, the principal
strength of the network is its ability to expose flaws in the underlying feature
extraction algorithm and the scope for interaction is negligible.



What distinguishes our approach from all previous approaches is the rationale
underlying and the method used for network generation, as well as a new notion
of similarity between images. In contrast to Cox’s networks [5], we determine
the nearest neighbour for every combination of features; it is this integration
over features that endows the structure with its interesting properties. Also,
unlike Pathfinder networks, we do not prune the resulting network but preserve
the complete information. This seems justified as we are not concerned with
visualizing the entire structure but with facilitating user interaction locally.

3 Network generation

Given two images X and Y, a set of features, and a vector of feature-specific sim-
ilarities F', we compute the overall similarity between X and Y as the weighted
sum over the feature-specific similarities, i.e.

S(X,Y) = wTF

with the convexity constraint [w|; = > w; = 1 and w; > 0. Each of the com-
ponents F; represent the similarity between X and Y under one specific feature
1 which itself can be a complex measure such as shape or colour similarity. Ac-
cording to our construction principle, an image X is connected to an image Y
by a directed edge XY if and only if Y is the nearest neighbour of X for at least
one combination of features, i.e. if and only if there is at least one instantiation
of the weight vector w such that it causes the image Y to have the highest sim-
ilarity S(X,Y) among all images of the collection (excluding X). Because the
overall similarity is a linear sum, small changes in any of the weights will induce
correspondingly small changes in the similarity value. Points that are close in
weight space should therefore produce a similar ranking and in particular, the
same nearest neighbour. We can think of the weight space as being partitioned
into a set of regions such that all weights from the same region are associated
with the same nearest neighbour. Figure 1 illustrates this idea in the case of a
three-dimensional weight space (for details see caption).

The most systematic way of sampling is to impose a grid on the weight space
with a fixed number of grid points along each dimension. Using a recursive
algorithm with the following recurrence scheme

T(1,9)=g
g
T(kag) = T(k - 179 - 7/)
i=0
and setting k and g initially to the number of dimensions and the number of
gridpoints along each axis, respectively, we include all permissible gridpoints.
According to this sampling scheme, an image could have more than one

thousand nearest neighbours using five features and a grid size of 0.1. In practice,

however, the number of distinct neighbours is much smaller and rarely exceeds
50.
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Fig. 1. Simplex showing the partitioning of the weight space into distinct regions for
one particular query image. The weights of each of the three features F'1, F2 and F'3
increase with distance to the corresponding base of the triangle. Each of the bounded
regions comprise all those weight sets for which the query has the same nearest neigh-
bour. The points denote the weight combination for each region for which the nearest
neighbour had minimum distance to the query.

The resolution of the grid that is required to capture all nearest neighbours,
therefore, is relatively low. Moreover, lacking any additional information, a near-
est neighbour that corresponds to a large volume in weight space may reasonably
be considered more important than one the grid search misses. Figure 2 shows
how the number of nearest neighbours rapidly approaches the exact number as
the grid size becomes smaller.

It is important to stress, that although, technically, the number of sampled
grid points grows exponentially with the dimensionality of the weight space,
i.e. the number of features, in practice this number is fixed and limited. Few
CBIR applications use more than 10 features. As an illustration, using 7 features
and a grid size of 5 per axis, we have a total of 210 grid points to sample.
Using a collection of 32000 images, this can be done in around 50 hours on a
standard home computer. With more sophisticated sampling algorithms (such
as hierarchical refinement sampling) and parallelization, network construction
should be no performance bottleneck even for high-dimensional feature spaces.

For each image we store the set of its nearest neighbours. For each nearest
neighbour we also store the proportion of feature combinations in the grid for
which that image was ranked top. This number becomes our measure of similarity
between two images.

4 Accessing the network

In order to allow searches without without formulating any query, we provide
the user with a representative set of images from the collection by clustering
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Fig. 2. The proportion of nearest neighbours found for a given grid size averaged
over fifty queries (dotted lines: one standard deviation). The exact number of nearest
neighbours (100%) for a given query is estimated using 100 gridpoints along each
dimension.

high-connectivity nodes and their neighbours up to a certain depth. Cluster-
ing is achieved using the Markov chain clustering (MCL) algorithm [20]. The
algorithm reduces the adjacency matrix of the directed graph to a stochastic
matrix whose entries can be interpreted as the transition probabilities of moving
from one image to another. These probabilities are iteratively updated through
an alternating sequence of matrix multiplications and matrix expansions, which
have the effect of strengthening frequently used edges. The algorithm has robust
convergence properties and allows one to specify the granularity of the cluster-
ing. The clustering can be performed offline and may therefore involve the entire
image collection. The high sparsity of the adjacency matrix makes the MCL
algorithm suitable for even very large networks using sparse matrix techniques.

The interface with the clustering result is shown in Figure 3. We aim to
minimize overlap between images while at the same time preserving the cluster
structure. The user may select any of the images as a query or as the entry point
into the network. Clicking on an image moves it into the center and results in a
display of its nearest neighbours. If the size of the set is above a certain threshold
the actual number of images displayed is reduced. This threshold 7" depends on
the current size of the window and is updated upon resizing the window. This
adjustment is desirable in order to be able to accommodate different screen sizes
and makes the system work gracefully with networks that have large variability
in the connectivity of its constituent nodes. The criterion for removing images
from the set of nearest neighbours is the weight of the arc by which it is con-
nected to the central image (i.e. the area in weight space for which this image
is top ranked), only the T images with the highest edge weights are displayed.
The neighbours are displayed such that their distances to the central node is a
measure of the strength of the connecting edges. The arrangement is found by
simulating the evolution of a physical network with elastic springs connecting
adjacent nodes.
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Fig. 3. Initial interface in browsing mode. Displayed are the clusters as determined
by the Markov Chain Clustering algorithm. Images become larger when moving the
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Through the set of buttons at the bottom of each image, the user can either
add images to a query panel (Q) positioned on the left hand side of the display
(these images can then be used to start a traditional query-by-example run on
the collection), or collect interesting images on a separate panel (A).

5 Topological Analysis

5.1 Small-world properties

An interesting and significant feature of the resulting structure is the presence
of so-called small-world properties [21]. Small-world graphs are characterized by
two topological properties, both of which are relevant in the context of informa-
tion retrieval: (i) the clustering coefficient and (ii) the average distance between
nodes.

Following Watts and Strogatz [21], one of the basic properties of graphs is
the clustering coefficient C'. It measures the extent to which a vertex’ neighbours
are themselves neighbours. More formally, given a graph G without loops and
multiple edges and a vertex v, the local clustering coefficient at v is given by
the ratio of the number of edges between neighbours of v and the maximum
number of such edges (given by (?¢{")) where dg(v) is the vertex outdegree
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Fig. 4. Local network around the chosen butterfly image depicted in the centre

of v in G). The clustering coefficient is then obtained by averaging the local
clustering coefficient over all vertices. We can think of the clustering coefficient
as a measure of the randomness of the graph. It attains a maximum in regular
lattice graphs and decreases as we replace edges in the regular graph by randomly
positioned edges ([21], [13]). A high clustering coeflicient seems, prima facie, to
be best suited for the task of information retrieval. However, the more organized
the structure the more difficult it becomes to efficiently move to different areas
of the network. Moreover, the simple organization principle that underlies a
lattice graph seems inadequate to capture the semantic richness and ambiguity of
images. For the purpose of information retrieval, therefore, it appears desirable to
have the information organized in structures that are inbetween the two extremes
of regularity and randomness.

We have evaluated the clustering coefficients and average distances for three
different collections with different feature sets and sizes varying from 238 to
32,318 images (= number of vertices in the network). The clustering coefficient
can easily be compared to what would be expected for a random graph. For the
classic Erdds-Rényi graph, the expected clustering coefficient is given by z/n
where z is the average vertex degree of a graph with n vertices [16]. Likewise, the
average distance in a random graph can be approximated by [ = log(n)/log(z)
with n and z as before [2]. For all the three collections examined, the path length
is very close to the result of the random graph model while the clustering coef-



ficient exceeds the predicted value by magnitudes, suggesting that the network
has indeed a high degree of local structure. The results are summarized in Table
5.1.

Collection |
Corel Sketches Video
Features 5.0 4.0 7.0
Vertices (n) 6,192.0 238.0 32,318.0
Edges (e) 150,776.0 1,822.0 1,253,076.0
Avg Vertex Degree (z) 24.35 7.69 38.77
Cc(G) 0.047  0.134 0.14
Crana(G) 0.004  0.03 0.0012
Avg Dist 3.22 3.29 3.33
Avg Dist (rand) 2.73 2.68 2.83
Diameter 6.0 7.0 6.0

Table 1. Analysis of network structure for three different collections. C(G) and
Crand(G) denote the clustering coefficients for, respectively, the actual network and
a random network with the same number of vertices and edges. The diameter is the
largest distance between any two vertices and thus provides an additional measure of
the graph’s connectivity.

5.2 Degree distribution

It is of particular interest to see whether the vertex degree sequence is scale-
invariant. A large number of distributed systems from social over communica-
tion to biological networks display a power-law distribution in their node degree,
reflecting the existence of a few nodes with very high degree and many nodes
with low degree, a feature which is absent in random graphs. While initial work
on scale-free graphs was concerned with investigating their properties and de-
veloping generative models, an issue which has only very recently been looked
at and which is of relevance to CBIR is the problem of search in these networks
when little information is available about the location of the target [1]. Analysis
of the degree distributions of the directed graphs constructed thus far suggests
that they are, across a broad range of node degrees, scale-free. Figure 5 depicts
the frequency distribution of the in-degrees for the network of the video key
frame collection (32,318 images). Note that we use the log-scale along the y-
axis. If the relationship were of the form y = e~2*+? and thus corresponded to a
power-law distribution, the logarithmic plot would reveal this as a straight line
Iny = —az +0b. It is typical for such distributions that their boundedness on one
or both sides cause the power-law relationship to break down at the boundaries.
So in this case, where the number of nodes with exceedingly few neighbours
is in fact very small. For a large range of node degrees, however, the relative
frequencies seem fairly well described by a power-law distribution.
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Fig. 5. In-degree distribution for the NN* network constructed for the video key frame
collection

6 TRECVID 2003 evaluation

TRECVID (previously the video track of TREC) provides a rare opportunity for
research groups in content-based video retrieval to obtain quantitative perfor-
mance results for realistic search tasks and large image collections. The search
task in 2003 involved 24 topics, each exemplified by a set of images and a short
text. For each topic, the task was to find the most similar shots and to submit a
list with the top ranked 1000 images. Any type of user interaction was allowed
after the first retrieval but time for the search was limited to 15 minutes for each
topic.

6.1 Features

The NN¥ network for the search collection was constructed using seven low-level
colour and texture features as well as text from the video transcripts. For the
simple texture features, we decided to partition the images into tiles and obtain
features from each tile individually with the aim of better capturing local infor-
mation. The final feature vector for these features consisted of a concatenation
of the feature vector of the individual tiles. What follows is a detailed description
of each of the features.

HSV Global Colour Histograms: HSV is a cylindrical colour space with
H (hue) being the angular, S (saturation) the radial and V (brightness) the
height component. This brings about the mathematical disadvantage that hue
is discontinuous with respect to RGB coordinates and that hue is singular at
the achromatic axis r = g = b or s = 0. As a consequence we merge, for each
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brightness subdivision separately, all pie-shaped 3-d HSV bins which contain or
border s = 0. The merged cylindrical bins around the achromatic axis describe
the grey values which appear in a colour image and take care of the hue singu-
larity at s = 0. Saturation is essentially singular at the black point in the HSV
model. Hence, a small RGB ball around black should be mapped into the bin
corresponding to hsv = (0,0,0), to avoid jumps in the saturation from 0 to its
maximum of 1 when varying the singular RGB point infinitesimally. There are
several possibilities for a natural subdivision of the hue, saturation and bright-
ness axes; they can be subdivided i) linearly, ii) so that the geometric volumes
are constant in the cylinder and iii) so that the volumes of the nonlinear trans-
formed RGB colour space are nearly constant. The latter refers to the property
that few RGB pixels map onto a small dark V band but many more to a bright
V interval of the same size; this is sometimes called the HSV cone in the litera-
ture. We use the HSV model with a linear subdivision into 10 hues, 5 saturation
values and 5 V values yielding a 205-dimensional feature vector. The HSV colour
histogram is normalised so that the components add up to 1.

Colour Structure Descriptor: This feature is based on the HMMD (hue,
min, max, diff) colour space and is part of the MPEG-7 standard [14]. The
HMMD space is derived from the HSV and RGB spaces. The hue component
is the same as in the HSV space, and max and min denote the maximum and
minimum among the R, G, and B values, respectively. The diff component is
defined as the difference between max and min. Following the MPEG-7 standard,
we quantise the HMMD non-uniformly into 184 bins with the three dimensions
being hue, sum and diff (sum being defined as (maz + min)/2) and use a global
histogram.

In order to capture local image structure, we slide a 8 x 8 structuring window
over the image. Each of the 184 bins of the colour structure histogram contains
the number of window positions for which there is at least one pixel falling
into the corresponding HMMD bin. This descriptor is capable of discriminating
between images that have the same global colour distribution but different local
colour structures. Although the number of samples in the 8 x 8 structuring
window is kept constant (64), the spatial extent of the window differs depending
on the size of the image. Thus, for larger images appropriate sub-sampling is
employed to keep the total number of samples per image roughly constant. The
184 bin values are normalised by dividing by the number of locations of the
structuring window; each of the bin values falls thus in the range [0, 1], but the
sum of the bin values can take any value up to 64 (see [14] for details).

Thumbnail feature: This feature is obtained by scaling down the original
image to 44 x 27 pixels and then recording the gray value of each of the pixels
leaving us with a feature vector of size 1,188. It is suited to identify near-identical
copies of images, eg, key frames of repeated shots such as adverts.
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Convolution filters: For this feature we use Tieu and Viola’s method [19],
which relies on a large number of highly selective features. The feature generation
process is based on a set of 25 primitive filters, which are applied to the gray
level image to generate 25 different feature maps. Each of these feature maps is
rectified and downsampled and subsequently fed to each of the 25 filters again to
give 625 feature maps. The process is repeated a third time before each feature
map is summed to give 15,625 feature values. The idea behind the three stage
process is that each level ‘discovers’ arrangements of features in the previous level
and ultimately leads to a set of very selective features, each of which takes high
values only for a small fraction of the image collection. The feature generation
process is computationally quite costly, but only needs to be done once.

Variance Feature: The variance feature is a 20 bin histogram of gray value
standard deviations within a a sliding window of size 5 x 5 determined for each
window position. The histogram is computed for each of 9 non-overlapping image
tiles and the bin frequencies concatenated to give a feature vector of size 180.

Uniformity Feature: Uniformity is another statistical texture feature defined
as

U:= ipZ(Z)

where L = 100 is the number of gray levels and p(z) the frequency of pixels
of gray level z. For each of 8 x 8 image tiles, we obtain one uniformity value
resulting in a feature vector of size 64.

Bag of words: Using the textual annotation obtained from the video transcripts
provided, we compute a bag-of-words feature consisting for each image of the set
of accompanying stemmed words (Porter’s algorithm) and their weights. These
weights are determined using the standard tf-idf formula and normalised so that
they sum to one. As this is a sparse vector of considerable size (the number
of different words) we store this feature in the form of (weight, word-id) pairs,
sorted by word-id.

6.2 Distances and Normalisation

In order to compare two images in the collection we use distances of their corre-
sponding features. For these we use the L;-norm throughout (and the L; norm
raised to the power of 3 for the bag-of-stemmed-words). Some of the distances al-
ready exhibit a natural normalisation, for example when the underlying features
are normalised (eg the HSV colour histograms), others do not (eg the colour
structure descriptor). As the distances for different features are to be combined,
we normalise the distances empirically for each feature, such that their median
comes to lie around one.
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6.3 Results

Four interactive runs were carried out, in one of which the user was only allowed
to find relevant shots by browsing through the NN* network. For this run text
and images were only used to inform about the task. Although our best inter-
active runs were those that employ a mixture of search, relevance feedback and
browsing, the performance (as measured in mean average precision over all 24
topics) of the browsing-only run was considerably better than that of a manual
run in which images were retrieved with a fixed set of feature weights and no
subsequent user interaction. Performance also proved superior to more than 25%
of all the 36 interactive runs submitted by the participating groups, all of which
used some form of automatic search-by-exammple. Considering the number of
features and the size of the collection, these results are quite respectable and
demonstrate that browsing in general and the proposed structure in particular
have a potential for CBIR that should not be left unexploited. A summary of
the results is given in Table 2 and more details can be found in [10].

Mean Average Precision
TRECVID Median || 0.1939

TRECVID Mean 0.182 + 0.088

Search + Browsing || 0.257 + 0.219

Browsing only 0.132 + 0.187

Manual Run 0.076 £ 0.0937

Table 2. Performance of the browse-only run compared to our interactive search run
with browsing and our best manual run with no user interaction and the mean and
median of the 36 interactive runs from all groups.

7 Conclusions

The strengths of the proposed structure are twofold: (i) it provides a means to
expose the semantic richness of images and thus helps to alleviate the problem
of image polysemy which has been for many years a central research concern in
CBIR. Instead of displaying all objects that are similar under only one, possibly
suboptimal, feature regime, the user is given a choice between a diverse set
of images, each of which is highly similar under some interpretation, (i) the
structure is precomputed and thus circumvents the often inacceptable search
times encountered in traditional content-based retrieval systems. Interaction is
in real time, regardless of the collection size.

The NN technique presented here is of wider applicability. Its usefulness
naturally extends to any multimedia objects for which we can define a similarity
metric and a multidimenional feature space, such as text documents or pieces
of music. It is, however, in the area of image retrieval that it should find its
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most profitable application as relevance can be assessed quickly and objects can
be displayed at a relatively small scale without impeding object understanding.
Although the principal motivation behind the NN* network is to mitigate the
problems associated with category search in large collections, the topology should
make it an ideal structure for undirected browsing also.

Acknowledgements: This work was partially supported by the EPSRC, UK.
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