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introduction

Many scientific software projects intended for a 
broad scientific community succeed in that they 
make a significant contribution to the science. 
Many, however, fail. Some of these fail for sci-

entific reasons (the underlying science was im-
perfectly understood), or because of coding 
problems (for example, an inappropriate choice 
of implementation language). Another less obvi-
ous cause of failure is the differences in the be-
haviour, knowledge, values, assumptions and 
goals between three different groups of people 
involved in such projects. These three groups are 
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The Open University, UK

Chris Morris
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Developing Software for a 
Scientific Community:

Some Challenges and Solutions

AbStrAct

There are significant challenges in developing scientific software for a broad community. In this chapter, 
we discuss how these challenges are somewhat different both from those encountered when a scientist 
end-user developer develops software to address a very specific scientific problem of his/her own, and 
from those encountered in many commercial developments. However, many developers of scientific com-
munity software are steeped in the culture of either scientific end-user or commercial development. As 
we shall discuss herein, neither background provides sufficient experience so as to meet the challenges 
of developing software for a scientific community. We make various proposals as to which development 
approaches, methods, techniques and tools might be useful in this context, and just as importantly, 
which might not.
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scientists; scientific end-user developers, that is 
to say, scientists who are developing software for 
their own use or for that of their close colleagues; 
and professional software developers, to whom 
the science is just another user domain.

In writing this chapter, we draw heavily on 
the field studies conducted by the first author, an 
academic, in a variety of scientific settings, and 
on the many years’ experience developing scien-
tific software of the second author, a professional 
software developer.

Our aims in writing this chapter are:

• To articulate some specific challenges fac-
ing scientific software developers. These 
challenges have their origins either in the 
culture of scientific end-user development 
or in the nature of science itself.

• To suggest ways in which these challenges 
might be addressed.

In what follows, we shall firstly articulate the 
behaviour, knowledge, values, assumptions and 
goals that characterize much scientific end-user 
development and then discuss the challenges 
which these characteristics pose when the context 
of the development is broadened. We then go on to 
discuss which development approaches, methods/
techniques and tools might be useful in scientific 
software development, and, equally importantly, 
identify some which will not. Finally, we discuss 
how this identification of effective ways of sup-
porting scientific software development can be 
progressed.

Throughout this paper, we stress the importance 
of context. A couple of examples give a flavour 
of this importance:

• A particular tool which is useful in a com-
mercial development context might not be 
so useful in a scientific;

• Assumptions which are perfectly justified 
in a setting where a scientist is developing 
software for himself/herself to explore a 
particular scientific question might not be 
justified in other development settings.

This emphasis on the importance of context 
means that it is difficult to set any hard-and-fast 
rules along the lines of ‘scientific software devel-
opers should apply this testing technique to their 
software’. We hope rather that this chapter might 
provide the means by which you might recognise 
the challenges in your particular development 
context, and suggest some ways by which you 
might address such challenges.

There is a caveat which we should stress here. 
One chapter cannot possibly say all there is to say 
about the challenges facing developers of software 
for a scientific community. We focus here on 
the challenges posed by the culture of scientific 
end-user development, as revealed by our field 
studies. These studies did not include FLOSS 
developments (free libre open source software), 
see the later section on future research directions. 
We also took little cognisance of CSCW (computer 
supported cooperative work) literature. We com-
ment further on this literature in the additional 
reading section.

Table 1. Two snapshots from the first author’s field studies: 

Scientist: Anyone can develop software. Why should we listen to 
the advice of a professional software developer?

(Professional software developer is deeply offended)

Professional software developer: We need to start off with a clear 
document of your requirements, and then we’ll draw up a require-
ments specification document which you can check.

Scientist: But that simply isn’t how we work.
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A Pervasive culture of Scientific 
Software end-user development

Scientists have been engaging in end-user develop-
ment, that is, in writing software in order to address 
their own scientific problems, for sixty years or 
more. Over these decades, a pervasive culture of 
scientific software development has emerged. 
‘Culture’ is an overloaded term meaning different 
things to different people. What we mean here by 
‘culture’ is the habits and normal behaviours, the 
accepted (though perhaps not articulated) values, 
assumptions and goals of a group of people, in 
this case, scientific end-user developers working 
in a traditional setting. Later we shall discuss 
those scientific end-user developers who work 
on codes which evolve over years often in a high 
performance computing (HPC) setting, but in this 
section we focus on scientists who write software, 
typically on a PC, in order to address a particular 
scientific problem of their own and/or of their 
close colleagues sitting round them. Their focus 
is entirely on the scientific problem. They have 
little or no interest in the software once the prob-
lem has been solved. Typically, these scientists’ 
formal education in software development has 
been limited to a few Fortran lectures at Univer-
sity. Other than this, their knowledge of software 
development has been garnered informally from 
popular books on the subject, from the Web, from 
their colleagues, and often from the working codes 
they have encountered.

Field studies have been published of such sci-
entific software end-user development activities 
among financial mathematicians, Segal, 2001, 
earth and planetary scientists, Segal, 2005, and 
structural biologists, Segal, 2009a. Despite the 
differences between the scientific domains and the 
fact that the financial mathematicians operated in 
a commercial environment and the other scientists 
in a variety of academic environments, the field 
studies reveal a common model of development 
practice and common values and assumptions in 

all the studies (Segal, 2007). Figure 1 is of this 
common model of development practice.

This model evokes instant recognition when 
shown to scientific end-user developers or anyone 
who has worked with them. Given that it has 
emerged over decades of scientific end-user de-
velopment, it is not surprising that it is a very 
successful model in this context. But its success 
is entirely dependent on the characteristics of the 
context as we shall now discuss.

A professional software developer, knowing 
about the many models of software develop-
ment in the software engineering literature (the 
waterfall model; the spiral model; the joint ap-
plication development model; etcetera, etcetera, 
etcetera), would be taken aback by the model of 
Figure 1. Where are the activities for establishing 
requirements? Where does software design fit in? 
How can the question ‘does it seem to do what I 
expect?’ possibly act as a basis for testing? How 
can ‘deciding that it’ll do’ be a viable acceptance 
criterion? How about issues of usability? The 
answers to all these questions lie in the context.

• The establishment of requirements. The 
establishment of requirements is an infor-
mal activity which pervades the whole of 
the development. The developer, as a po-
tential user of the software, has a deep un-
derstanding of the scientific problem and 
certain ideas about how the software might 
address it, although these ideas are not 
necessarily articulated. He/she develops a 
piece of software to explore them. Then 
he/she reflects: does this piece of software 
address the scientific problem? Wouldn’t it 
be nice if the software did this? The soft-
ware should not do that. If there are other 
people around working on the same or sim-
ilar issues, then it’s easy for the developer 
to involve them in these reflections (‘Come 
and have a look at what I’ve been working 
on’).
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• Software design. Design isn’t an issue for a 
relatively small piece of software intended 
to address a particular scientific problem 
with the (perhaps tacit) expectation that 
it will be discarded when the problem has 
been successfully addressed.

• Testing. As with requirements activities 
and as described above, informal evalu-
ation pervades the whole of the develop-
ment. This evaluation is grounded in the 
developer’s scientific intuition and judge-
ment: the questions asked by the developer 
of the software are ‘Does it seem to do 
what I expect?’ and ‘Does it seem to ad-
equately address the scientific problem?’ 
If the answer to either of these questions 
is ‘no’, then the software is modified and/
or extended. The field studies referred to 
above provide no evidence of any formal 
testing activities.

• Usability. One reason frequently put for-
ward for the lack of usability of many soft-
ware products is that the developers have 
implemented the product as if they were 
the users. But in the case of scientific end-

user software development, the developer 
is the user, or one of the potential users. 
Usability, like the establishment of require-
ments, and testing, is simply not a big issue

We now turn our attention to the values and 
assumptions commonly held by scientific end 
user developers working in the context above. We 
have seen that such developers have no reason 
to value the knowledge, skill and effort required 
to establish requirements or to design software 
or to test software or to ensure usability of the 
software. The implication is that they tend to see 
software development in terms merely of cod-
ing, a simple matter of translation of scientific 
ideas into a programming language. And given 
that scientists are, to a greater or lesser extent, 
used to the manipulation of abstract concepts and 
formal languages, coding does not pose them a 
major problem. Given all this, we should not have 
been as surprised as we were at the evidence from 
the cited field studies of the low value placed on 
software development knowledge and skill. The 
following quotes are from Segal, 2007:-

Figure 1. A model of scientific end-user software development, adapted from Segal and Morris (2008)



181

Developing Software for a Scientific Community

‘I think the attitude towards computing.. [is] it’s 
something you do in your spare time. I don’t think 
people have any idea how long it actually takes 
to sit down and write a program. I think we quite 
happily imagine that you just … spin it off in half 
an hour over your lunch time.’ [planetary scientist]

‘everybody in theory knows how to do [software 
development]…. It’s assumed that everybody 
knows what to do’ [financial mathematician]

This low value is reflected in appointment poli-
cies. Two examples from the first author’s field 
studies are:

• A man was appointed to a post called 
‘project programmer’ when his experience 
of developing software was limited to the 
Fortran course he had done at University 
(Segal, 2007);

• A leading scientist commented that it was 
common to appoint people to software 
development projects in situations where 
they had proved themselves as scientists 
and their current funding was running out, 
regardless of their software development 
skills and experience (Segal, 2009a).

The low value afforded to software devel-
opment knowledge and skill is also indirectly 
reflected in reward structures. The evidence 
of the field studies is that rewards, recognition 
and promotions in science are based primarily 
on publications of scientific results and not on 
developing the software which enabled those 
results. The second author, working as a software 
project manager in a research establishment, was 
once told that further promotion would be con-
ditional on publishing six papers. Yet publishing 
is rarely seen as part of the remit of a software 
project manager. This emphasis on publications 
promotes the development of software directed 
only at producing such publications with little heed 

given to the wider issues of software engineering 
(such as testing) discussed above.

We should stress that in the context in which 
it originated, this model of development with its 
attendant values and assumptions, works on the 
whole. The biggest risk is that such a develop-
ment, with its lack of emphasis on testing, might 
produce software which does not correctly reflect 
the known science and thus produces erroneous 
results, see, for example, Miller, 2006 and Hat-
ton, 1997. This risk is exacerbated by the fact that 
whereas the scientific results as published are 
subject to peer scrutiny, the software by which the 
results are obtained is often not. So, provided the 
results are consistent with scientists’ intuitions, the 
errors in them arising from errors in the software 
are not easily identifiable. In the case reported 
by Miller, the results were credible to biologists 
who might want to use them but less so to expert 
crystallographers whose role involves producing 
such results, Jeffrey 2007.

Despite this risk, because of the immediacy of 
such development and the deep domain knowledge 
of the developer, we are convinced that this type 
of scientific end-user development has contributed 
greatly, and will continue to contribute greatly, to 
the advancement of science (Morris and Segal, 
2009).

Scientific SoftwAre 
develoPMent outSide 
thiS context

In this section, we consider contexts where sci-
entific software is used to address a variety of 
scientific problems and/or a variety of users over 
a period of time. We have identified five such 
contexts, but allow that there might be more, 
and that there might be overlap between the five. 
These contexts are where software developed in 
the scientific end-user context as described above 
escapes (uncontrolled) or migrates (controlled) 
into a wider context; where scientific end-user 
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developers work on high performance comput-
ing systems (HPCS); where scientific end-user 
developers work in partnership with professional 
software developers; and where software devel-
oped in a research environment is re-engineered 
to provide tools for practitioners.

the Software escapes

Here, the software is developed within a scientific 
end-user development context as described above. 
It is recognised as being useful, and appropriated 
(and perhaps modified in an ad-hoc manner) by 
other scientists in slightly different contexts, and 
hence escapes (as it were) from the local context 
for which it was developed into the wider context 
of the lab and thence into the community. But the 
software might not be sufficiently robust, reli-
able, efficient, maintainable or usable, to meet 
its change of goals.

the Software Migrates

Here, software may be developed originally in 
the scientific end-user context described above 
but then made available perhaps via an open 
source model for the scientific community to 
scrutinise, modify and extend. The problem here 
is that there is very unlikely to be the expertise 
within the scientific community to optimise 
the software with respect to its change of goals 
given the broader context of its use, and achieve 
the necessary robustness, reliability, efficiency, 
maintainability and usability.

high Performance 
computing Systems

A further context of scientific software de-
velopment is that of the development of high 
performance computing systems, HPCS, for the 
purposes of (say) complex simulations. Although 
the authors themselves have not conducted any 
field studies of this practice, others have. For 

example, Easterbrook and Johns, 2009, acting 
as participant observers, studied the practice of 
a group of climatologists. Here the context was 
one in which climatologists worked together over 
a period of decades maintaining and extending 
a set of climate models. An interesting insight 
from this work is that, like the scientific end-user 
developers described earlier, the climatologists 
have over the years evolved a software develop-
ment model which, while appearing very strange 
to a conventional software engineer, nevertheless 
completely fits the context in which they work.

Another group of field studies has emerged 
from the recent DARPA initiative, http://www.
highproductivity.org/, which is concerned with 
improving the productivity of HPC systems (Basili 
et al., 2008). These field studies are concerned 
with the development of simulation software in 
academic contexts and government agencies, and 
focus on how software engineers might best sup-
port such developments. We shall discuss these 
studies further in a later section of this chapter.

Scientific end-user developers 
and Professional Software 
developers working together

Here, it is recognised that the software is too 
complex for scientists to develop alone, and 
hence scientists and software engineers develop 
the software together in partnership. There are 
several examples of this in the literature, (De 
Roure and Goble, 2009, Macaulay et al., 2009, 
Segal, 2009a, Thew et al., 2009). We shall focus 
on this partnership in a later section in this chapter.

re-engineering research Software 
into tools for Practitioners

This is a common situation about which, we 
believe, very little is known. An example is 
“translational medicine”, see for example http://
www.translational-medicine.com/, which aims to 
apply cutting-edge research in the life-sciences to 
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clinical practice. But the goals which should be 
met by software intended to support research in 
the life-sciences (chief among which, we think, is 
that the software should be flexible so as to enable 
the exploration of research questions) are differ-
ent from the goals that should be met by software 
intended to support clinical practice (chief among 
which, we think, are correctness and robustness. 
For example, one shouldn’t be told that one’s 
blood pressure is 250/30, nor should the software 
embedded in a clinical instrument crash).

We believe that the most common development 
approach for transitioning software from research 
to tool is that of scientific end-user developers and 
professional software developers working together 
on software originally developed by the former. 
Given the risks associated with such transitioning, 
we also believe that far more research is needed 
in this area.

We shall now consider a context about which 
we, the authors, do know quite a lot: scientist 
end-user developers working in partnership with 
professional software developers.

Scientific end-uSer 
develoPerS And ProfeSSionAl 
SoftwAre develoPerS 
working in PArtnerShiP

Figure 2 and Figure 3, based on the first author’s 
field studies, illustrate the clashes that can occur 
when professional software developers work to-
gether with scientific end-user developers. Before 
we explore the nature of these clashes further, 
we shall discuss the role of scientific end-user 
developers in such a partnership.

the essential role of Scientific 
end-user developers in the 
Partnership

Whereas professional software developers are 
likely to have strong intuitions as to what is 

required of (say) payroll or hotel reservation 
software, they are very unlikely to have any 
intuition as to what is required from software 
aimed at (for example) computational chemists or 
protein crystallographers. It therefore goes almost 
without saying that, because of the complexity of 
the scientific domain, it is essential that scientists 
be effectively involved in scientific software de-
velopment. However, involving scientists in the 
development purely as end-users is problematic, 
as discussed in Segal, 2009a, and Segal and Mor-
ris (submitted). For example, scientists are very 
reluctant to interrupt their scientific endeavours in 
order to contribute to the development of software 
that they may never use given the shortness of 
many research contracts.

Formally involving scientific end-user devel-
opers as members of the development team can 
go some way towards alleviating this problem. As 
argued in Segal and Morris (ibid), the scientific 
end-user developer knows enough both about the 
scientific domain and about the particular software 
development to act as an effective bridge between 
the development team and the potential users, 
informing the development team of the users’ 
requirements and the users of both the potential 
and limitations of the software.

Another less immediately obvious role for 
scientific end-user developers is that of growing 
the community of users. In these cash-strapped 
days, growing the user community beyond that 
for which the software was developed is essential 
for securing funding for continuing maintenance 
and development.

Everett Rogers, 2003, in his influential book 
synthesising current knowledge about technology 
diffusion, comments:-

‘Most individuals evaluate an innovation not on the 
basis of scientific research by experts but through 
the subjective evaluations of near peers who have 
adopted the innovation’ (Rogers, 2003, p.36)
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In other words, scientists are most likely to be 
persuaded to adopt some software if other scien-
tists in their community convey to them how the 
software has supported their scientific endeavours. 
And this is what scientific end-user developers, 
conversant with both the software and the potential 
user community, can do very effectively.

challenges to the Partnership 
Posed by the Pervasive culture of 
Scientific end-user development

‘When Chris disagreed with us, he wasn’t always 
wrong’ (a remark made by a senior scientist with 
scientific end-user development experience refer-
ring to the second author, a professional software 
developer, after some years of their working 
together).

To a greater or lesser extent, there are always prob-
lems of collaboration and communication when 
a software development team works together. In 
this section, drawing heavily on Segal, 2009a, and 
Segal, 2009b, we shall argue that these problems 
are greatly exacerbated by the influence of the 
pervasive culture of scientific end-user develop-
ment. The challenges we shall discuss include 
those which impact on the composition of the 
development team, time estimates for achieving 
particular development tasks, challenges to the 
authority of the professional software developers 
in technical matters, and the length of time that 
users have to wait for the software.

The ultimate purse-holders of a particular 
software development for a scientific research 
community are scientists at the top of their field: 
they commission the software; they appoint the 
development team; they keep some sort of check 

Figure 2. An example of a clash between a scientist used to requesting software from scientific end-user 
developers and a professional software developer, from Segal, 2008, inspired by the field study described 
in Segal, 2009a. 



185

Developing Software for a Scientific Community

on the development to ensure that it is delivering 
what they need. Although such scientists are not 
likely to be developing their own software cur-
rently, it is very likely that they have done so in 
the early stages of their career and very probable 
that they are steeped in the pervasive culture of 
scientific end-user development. The implications 
of this, as described in an earlier section of this 
chapter, are that such scientists tend not to value 
sufficiently the skill and knowledge required to 
develop software for a community. They tend not 
to appreciate the importance of the establishment 
of requirements, a sustainable design, testing, 
and usability in contexts outside that of scientific 
end-user development. It follows that they do not 
appreciate the need to make resources available 
for these activities.

One consequence of this is on the composi-
tion of the development team. We have already 
described how scientific end-user developers may 
be appointed to the team not on the basis of their 
software development expertise but because they 
need funding. As to the professional software de-
velopers on the team, the purse-holder scientists 

might not recognise that such developers need 
expertise in aspects of software engineering (such 
as requirements management and testing) which 
are not relevant in the pervasive scientific end-user 
development context and thus might not recognise 
the need to look for such expertise in potential ap-
pointees. Indeed, having no practical experience of 
such aspects of software engineering themselves, 
the scientists might not be in a position to judge 
such expertise. In addition, lack of appreciation 
of the necessity of this expertise might lead to 
insufficient funding being made available to lure 
suitably talented developers away from business.

Another consequence is the tendency of purse-
holder scientists to be wildly optimistic about 
the time that software development tasks take. 
The experience of the second author is that such 
scientists habitually estimate the time taken to 
achieve a particular task as being about a third 
of his estimation.

Within the software development team, the 
lack of value ascribed to software development 
knowledge and skill might lead to the scientific 
end-user developers being loath to accept the tech-

Figure 3. Another example of a clash between professional software developers and scientists, from 
Segal, 2008, inspired by the field study described in Segal, 2005. 
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nical suggestions and leadership of a professional 
software developer. In the field study described in 
2009a, this led to some potential collaborations 
between scientists and professional software de-
velopers becoming completely unviable.

A further problem is caused by the immediate 
gratification afforded by the pervasive scientific 
end-user development context where a perceived 
software need is almost immediately met. In more 
complex software developments, this is not the 
case. Before such software is released to the users, 
requirements have to be established and negoti-
ated; sustainable designs have to be established; 
and testing has to be done. Any gratification af-
forded to the users by the delivery of the software 
is thus deferred. This might lead to frustration both 
on the part of the users with their experience of 
almost instant fixes, and on the part of the scientific 
end-user developers in the development team with 
their experience of providing almost instant fixes 
and of being rewarded by ‘getting smiles on users’ 
faces’ (as said by a scientific end-user developer 
in one of the first author’s field studies).

Addressing these challenges

Challenges posed by ingrained behaviours, values 
and assumptions such as those described above 
can be very difficult to recognise. Such recogni-
tion depends on articulating one’s own (often 
deeply hidden) values, assumptions and habits, 
inferring those of one’s collaborator, and seeing 
where mismatches occur. Segal, 2009a, describes 
situations where cultural mismatches led to either 
the collaboration failing completely or to one or 
both of the parties in the collaboration shifting 
their values, assumptions or behaviours so as to 
reach a compromise. It has to be noted, however, 
that such shifts are very difficult and not achieved 
without considerable open-mindedness on the part 
of the collaborators and a considerable amount of 
pain. However, as the quote at the beginning of 
this section illustrates, they do happen.

In the next section, we consider how scientific 
software developers might best be supported by the 
various current development approaches, methods 
and techniques, and tools. We should make two 
important points here. The first is that the choice 
of ‘best’ development approach or method or 
technique or tool depends very heavily on a deep 
understanding of the context in which the devel-
opment takes place. As Basili et al., 2008 say:

‘To understand why certain software engineering 
technologies are a poor fit for computational 
scientists, it is important to first understand their 
world and the constraints it places on them’ [Basili 
et al., 2008, p.30]

Presumably, lack of such understanding is the 
reason for the following:-

‘…the history of HPC is littered with new tech-
nologies that promised to increase scientific 
productivity but which are no longer available’ 
[ibid., p.32]

The second point is that finding (or construct-
ing) candidates for the ‘best’ approaches, methods, 
techniques and tools is currently an active topic 
of research, see, for example, the DARPA proj-
ect, http://www.highproductivity.org/, and later 
discussion in this paper.

develoPMent APProAcheS, 
MethodS And techniqueS, 
And toolS

one Size does not fit All

The first point we want to make very strongly is 
that tools, techniques and methods which have 
been found generally useful within professional 
software development practice and thus form part 
of the Software Engineering Body of Knowl-
edge (SWEBOK) are not necessarily useful in 
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a scientific software development context. This 
is hardly surprising since such tools, techniques 
and methods have largely arisen from commer-
cial developments and it is well documented that 
scientific software development has many aspects 
which distinguish it from commercial (Carver et 
al. 2007). For example:

• As befits the essential nature of research, 
requirements in scientific software devel-
opment are largely emergent, whereas in 
commercial developments, most require-
ments are generally specified a priori.

• In scientific software development, as op-
posed to in commercial developments, 
there is often no test oracle, that is, no 
physical data against which to test the out-
put of the software. For example, consider 
software which enables complex simula-
tions of a nuclear explosion: physical data 
from an actual nuclear explosion might be 
hard to come by.

• Even where experimental data exists, it may 
be an unrealistic goal to simulate it exactly. 
Computational scientists are sometimes 
satisfied with models that match trends in 
values without matching the exact values. 
In these cases, what is meant by a “correct” 
program is unclear.

• The aim of scientific software develop-
ment is to enable its users to advance sci-
ence rather than to make a profit, as in 
commercial developments.

The inappropriate application of approaches, 
methods, techniques and tools to scientific soft-
ware developments can lead to great frustration. 
Those frustrations illustrated in Figure 3 above 
and Figure 4 below are inspired by the field study 
described in Segal, 2005. Here, professional 
software developers worked in partnership with 
space scientists in order to develop embedded 
software for an instrument that was going to be 
sent up into space. The development model was 

that suggested by the European Space Agency 
for small software developments. This model 
was a waterfall-like linear model with discrete 
phases – specification of requirements; design; 
implementation; testing – and with a heavy reli-
ance on the role of documents for both commu-
nication between the partners and for managing 
the development. The space scientists, however, 
were steeped in the traditional culture of scientific 
end-user development and used to requirements 
emerging (rather than being specified upfront) 
and to communication being informal and face-to-
face (rather than being dependent on documents). 
(Despite the difficulties that ensued due to the 
inappropriateness of this development model, it 
must be said that the development appears to have 
been ultimately successful.)

Based on the evidence of her field studies, the 
first author of this chapter has argued strongly 
that software engineers should not regard them-
selves as the sole repository of software develop-
ment good practice, Singer et al, 2009. Similarly, 
given the evidence of their field studies of the 
development of HPC systems, Basili et al., 2008, 
comment:-

‘Several software engineering practices gener-
ally considered good ideas in other development 
environments are quite mismatched to the needs 
of the HPC community. We found that keys to suc-
cessful interactions [between software engineers 
and computational scientists] include a healthy 
sense of humility on the part of software engineer-
ing researchers and the avoidance of assumptions 
that software engineering expertise applies equally 
in all contexts’ (Basili et al. p.29).

development Approaches

‘I say that I’m adhering to ‘agile’ methods when 
all I’m really doing is fighting against formal plan-
ning/reporting requirements imposed externally’ 
(an experienced scientific developer, speaking to 
the second author).
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We have discussed above several issues that are 
relevant to the choice of an overall development 
approach in the context of scientific software 
development:

• In typical scientific software develop-
ments, requirements emerge rather than 
being fully specified up-front;

• Discrete phased development models, such 
as waterfall-type models, are not appropri-
ate in this context;

• The model of software development 
evolved over years of practice in the scien-
tific end-user developer context is an itera-
tive feedback model with small iterations;

• The effective engagement of the intended 
users in the development is vital.

All these issues point to some sort of agile and 
user-centred development approach.

Proponents of agile approaches ascribe to the 
agile manifesto (http://www.agilemanifesto.org), 
in which:

• Individuals and interactions are valued 
over processes and tools.

• Working software is valued over compre-
hensive documentation.

• Customer collaboration is valued over con-
tract negotiation.

• Responding to change is valued over fol-
lowing a plan.

There are various approaches by which these 
values can be embedded in software development. 
The most well-known of these are arguably eX-
treme Programming (XP) (Beck, 2000), Scrum 
which focusses on project management, http://
www.scrumalliance.org/, and DSDM (http://
www.dsdm.org/).

There has been interest in the application of 
agile approaches to scientific software develop-
ment since the early years of the millennium, 
see, for example, Wood and Kleb, 2002, Bache, 
2003, and Segal, 2005. However, in the authors’ 
experience, it is frequently the case that scientific 
software developers claim erroneously that their 

Figure 4. Different attitudes towards documents (Segal, 2005). The quote is taken directly from the field 
study. The evidence is that neither the requirements nor the requirements specification documents were 
read by the scientists. 
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development follows an agile model. Often, all 
such developers mean is that the development mir-
rors that of the usual scientific end-user developer 
model in being an iterative feedback model. The 
quote at the top of the section illustrates the fact 
that what people do, and what they say they do, 
is not always the same thing.

There are some exceptions to this: Ackroyd 
et al., 2008, describe the writers’ experience of 
applying XP practices to the development of ex-
perimental control and data acquisition software, 
and Pitt-Francis et al., 2008, do the same in the 
context of computational biology. In both cases, 
the practices as articulated by Beck, op.cit., had 
to be tailored to the particular context of use. This 
is not surprising: development methodologies in 
general can rarely be used ‘out of the box’ but 
have to be tailored to practice, see, for example, 
Glass, 2002.

As to user-centred design, Macaulay et al., 
2009, describe their experience of applying user-
centred methods in the context of extending imag-
ing software in the life sciences so that it can be 
used in a wider context than that for which it was 
originally developed. However, as we have pointed 
out earlier, achieving the effective engagement of 
scientists in a scientific software development can 
be problematic.

Melding together agile approaches with user 
centred design (UCD) is not straightforward 
(McInerney and Maurer, 2005). Agile philoso-
phy is to develop production code as soon as 
possible in order to obtain quick feedback from 
the customer; UCD, on the other hand, requires 
a deep understanding of the users, the activities 
which the software is intended to support, and the 
context in which the activities take place. Often, 
this understanding is obtained by the use of pro-
totypes before any production implementation 
takes place. How UCD and Agile activities may 
be integrated effectively is currently the subject 
of active research.

Maintenance or development?

‘He was spending a lot of time on maintenance 
so I sent him on a time management course’, the 
line manager of a scientific software developer 
talking to the second author.

Maintenance does not form part of most scien-
tific end-user development since the (perhaps 
tacit) assumption here is that the software will be 
discarded once the particular scientific problem 
for which it was developed has been addressed. 
And in general, maintenance is not considered a 
development activity: the software is developed; 
the development is finished according to some 
criteria; the software is then handed over to the 
users; it then enters a maintenance phase. Given 
the fact that each delivery of a piece of scientific 
software might raise some new scientific ques-
tions which can only be addressed by an extension 
or modification to that software, we argue that 
maintenance and development of scientific soft-
ware is inextricably linked. De Roure and Goble, 
2009, describe this situation in the context of the 
development of Taverna and MyExperiment as:

‘…[leading to] a perpetual beta software develop-
ment methodology’ (De Roure and Goble, p.93)

And Carver et al., 2006, commenting on their 
field studies of HPC developments, say:

‘.. rather than being released and maintained like 
long-standing IT projects, these projects are under 
constant development’ [Carver et al., 2006, p. 37]

This necessary interlinking of development and 
maintenance is often not recognised, as illustrated 
by the quote at the top of this section. Up until 
recently, it appeared that the UK research councils 
representing the scientific communities took the 
same view as most scientific end-user develop-
ers, that is, that software could be discarded once 
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it had addressed a specific scientific question. 
This view is reflected in the fact that software 
funding from these councils was made only for a 
limited period of development, see, for example, 
Macaulay et al., 2009. Recently, the situation has 
changed, with scientists becoming very aware of 
the importance of developing sustainable software, 
that is, software that has a useful life beyond the 
original users and the original science it was 
intended to support. We shall discuss this further 
in a later section.

testing

‘If my program provided some output, I assumed 
that it was correct. In hindsight, that is incredibly 
naïve.’ (scientific end-user developer talking to 
the authors).

Hook and Kelly, 2009, present a nice model (in 
our opinion) of computational science software 
development showing that at any point, errors can 
creep in. They start right at the beginning:

• Measurements of the real world lead to the 
formation of a theory (but are there errors 
in the measurements?)

• The formation of a theory/model is based 
on approximations of the real world mea-
surements (but are the approximations 
valid?)

• The theory is represented by algorithms 
(but do the algorithms correctly represent 
the theory? And do they converge to a so-
lution for all possible inputs?)

• The algorithms are translated into source 
code (but are there faults in the code?)

• The source code is compiled and the com-
piled code optimised (but does this lead 
to inappropriate rounding or concurrency 
errors?)

This articulation of the myriad opportunities 
for errors demonstrates the importance of test-

ing. It is not clear that this importance is always 
recognised by scientific software developers, as 
illustrated by the quote at the top of this section. 
We have seen how, in many scientific end-user 
development contexts, testing is treated relatively 
lightly. Sanders and Kelly, 2008, on the basis of 
their interviews of computational scientists, make 
the interesting observation that when the output of 
scientific software is not what the scientist expects, 
then he/she looks for faults in the theory or the 
algorithms rather than faults in the code. This is 
consistent with the comments made in Segal, 2008, 
that the scientists’ trust in their software is akin to 
their trust in their scientific instruments. Software, 
in common with, for example, telescopes, is pre-
sumed to be correct/working properly unless it is 
absolutely palpably obvious that it is not.

How to test effectively in a scientific context 
remains an active topic of research. It is clear that 
testing methods cannot be adopted wholesale from 
the software industry. For example, in discussing 
scientific end-user development at the beginning 
of this chapter, we noted that testing in this context 
depends heavily, if not entirely, on the judgement 
of the scientist-developers that the output of the 
software is reasonable in the scientific context. 
We also noted that testing is not a separate activity 
but is entwined with the establishments of require-
ments. These facts imply that the situation where 
testing is the province of a testing department 
separate from the developers, as is common in 
the software industry, is not appropriate for sci-
entific software development. It is also clear that 
the effectiveness of testing methods depends on 
the development context. For example, we have 
noted that one of the problems of testing scien-
tific software is that there may not be an oracle. 
However, in HPC settings, algorithms might be 
prototyped in Matlab or some other high level 
language and then implemented in Fortran so as 
to optimise the performance (Sanders and Kelly, 
2008). The earlier versions of the code offer a 
partial solution to the Oracle problem in that the 
final program should produce the same results. 
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However, when further modifications are needed, 
there is the extra cost involved in modifying the 
oracles as well as the final code.

As to other recent work on scientific software 
testing, Hook and Kelly, 2009, discuss a procedure 
for choosing appropriate tests using mutation 
sensitivity testing. In addition, the second author 
of this chapter has had positive experiences of 
swapping codes with other development teams for 
review, and is also convinced of the importance of 
unit testing in scientific software development. He 
is aware of the caveat, however, that older dialects 
of Fortran encourage programmers to keep a lot 
of data in a COMMON block, which makes the 
code less modular and hence less amenable to 
unit testing.

tools

‘My fixes are not in the release. I will have to make 
a special build for my users.’ (scientific developer 
working on a distributed development project for 
a distributed community of users).

In our experience, the sum total of the tools used 
by many scientific end-user developers are Emacs 
(a command based text editor), a Fortran compiler, 
and Make. In contrast, many, if not most, profes-
sional software developers make use of integrated 
development environments (IDEs), which com-
prise a set of integrated software development 
tools, including, normally, a source code editor, 
a compiler/interpreter, automated build tools and 
a debugger. Other tools, such as a version control 
system and support for object-orientation software 
development, may also be included.

With respect to the choice of programming lan-
guages, Basili et al., 2008, note that C and Fortran 
dominate the HPC community. This is consistent 
with our own experiences of computational sci-
entists implementing complex algorithms though 
not of scientists whose focus is on managing large 
data sets, such as structural biologists. One reason 
for this choice of language is the longevity of 

much computational code. Many computational 
scientists work on codes which were originally 
developed many years ago in Fortran. Although the 
codes might be improved by being re-implemented 
in other languages, Sanders and Kelly, 2008, point 
out the risk inherent in doing so and the feeling of 
the computational scientists that “if it aint broke, 
don’t fix it”. Or as Sanders and Kelly put it:-

‘Scientists generally want to do science, not 
write software, and certainly not introduce risk 
by changing software that worked.’ (Sanders and 
Kelly, 2008, p.24)

Another reason for choosing Fortran is that 
users might have to modify code to fit their own 
contexts (Carver et al. 2007). The code thus has 
to be written in a language that it can be assumed 
that users will know, and Fortran fits the bill, 
having arguably become the lingua franca of 
computational scientists.

There are several reasons why IDEs in general 
fail to support scientific software development. 
First and foremost among these is that few IDEs 
claim to support Fortran, and where they do, the 
support is basic compared to their support of, for 
example, Java. Fortran has a long history, and the 
changes have been backwards compatible, so it is 
now a very large language, the design of which 
began before the modern understanding of pars-
ers. So sophisticated support for editing Fortran is 
hard to do. For example, alias recognition is hard. 
Older program suites make heavy use of COM-
MON blocks, and over time may come to map 
them inconsistently. In addition, older programs 
made up for the lack of storage management in the 
language by allocating a large array, and mapping 
it in a way that is not type safe.

A further reason is that the tools in IDEs 
generally do not have special features to support 
floating point calculations. For example, test 
cases for floating point applications rarely test for 
equality but rather use an error bar, and this is not 
generally supported in IDEs. In addition, Basili 
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et al., 2008, point out that many HPC systems are 
shared, and HPC developers have to submit batch 
jobs. For these developers, an IDE which does not 
support the submission of jobs to batch queues 
or debugging on parallel machines, is going to 
be useless. Finally, the field studies of Carver et 
al., 2007, reveal that HPC developers prefer what 
they perceive to be the flexibility of the UNIX 
command line to the rigidity afforded by an IDE.

There is somewhat of a chicken-and-egg 
situation here: scientific software developers are 
reluctant to use commercial IDEs and other com-
mercial software development tools because they 
tend not to support scientific software develop-
ment, and commercial tool makers are reluctant 
to put effort into making tools more supportive of 
scientific software development since the potential 
market is small. It seems clear that any improve-
ment in development and maintenance tools aimed 
specifically at scientific software development is 
going to have to emerge from the community of 
scientific software developers themselves.

Notwithstanding the comments made above, 
there are certain generic software development 
tools which are very useful in supporting the 
maintenance/iterative development of scien-
tific software developments. These include issue 
trackers, used to keep track of new or changing 
requirements, and version control software/code 
repositories, such as CVS or Subversion. The 
omission of certain fixes in the release referred 
to in the quote at the beginning of this section 
would not have happened if the version control 
system had been used properly. Wilson, 2006, 
was shocked to find that scientific end-user de-
velopers shared their source code files with their 
collaborators by means of email rather than by 
means of repositories. He ascribed this behaviour 
to the scientists’ lack of knowledge of such re-
positories. But there is another plausible reason: 
it may be that the collaboration entails evolving a 
common code base in more than one direction to 
solve more than one problem, rather than evolving 
it in a more linear fashion as supported by most 

version control systems. However, some modern 
systems including Git (http://git-scm.com/) are 
specifically designed for this sort of collabora-
tion, and so are a better match to the practice of 
scientific programming collaborations.

The essential problem according to Wilson 
(ibid) is that scientific end-user developers do 
not know about the tools – or indeed the software 
engineering techniques – which might be useful 
to them. Wilson has attempted to address this 
problem by means of a web-site, http://software-
carpentry.org/.

future reSeArch directionS

In our opinion, there are several important direc-
tions for future research:-

• There should be a better understanding of 
the different contexts and cultures of scien-
tific software development. The first author 
of this paper has conducted several in-depth 
field studies of the context of scientific end-
user development as described in an earlier 
section of this chapter, and Basili, Carver 
and colleagues have considered the HPC 
context of running simulations. We are also 
impressed by Easterbrook and Johns’ field 
study of climatologists. However, there are 
gaps in our collective understanding. For 
example, we are not aware of any similar 
field studies of scientific software develop-
ments which follow an Open Source model 
or of those in which research software is 
re-engineered into tools for practitioners, 
as in the translational medicine context for 
example. If you know of any, we would be 
very grateful if you could pass the informa-
tion on to us.

• This paper focuses on some challenges in 
scientific software developments. But it 
would also be useful to investigate suc-
cessful scientific software developments in 
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an attempt to articulate the factors which 
make them successful. There are a few such 
in the literature (for example, De Roure et 
al., 2009, and Macaulay et al., 2009) but it 
would be helpful to have more.

• When working in partnership to produce 
software for a community of scientists, nei-
ther scientific end-user developers nor pro-
fessional software developers have strong 
intuitions as to which approaches, methods, 
techniques or tools will be useful. In the 
case of the scientific end-user developers, 
this is because they tend to be steeped in 
a development culture which has evolved 
within a very restricted context. In the case 
of the professional software developers, it 
is because their experience of commercial 
development, garnered either directly by 
practice or indirectly by reading standard 
texts on software engineering, might well 
not transfer to scientific software develop-
ment contexts. The intuitions as to which 
approaches, methods, techniques or tools 
are best (or might be best adapted) can 
only come from practical experience. For 
example, professional software develop-
ers who habitually work within a particular 
scientific domain build up an intuitive un-
derstanding of what methods etcetera are 
useful in that domain. But such intuition 
is mostly tacit and rarely articulated and 
shared.

We believe that it is important to establish a 
community of practice whereby scientific software 
developers from a variety of backgrounds and 
working in a variety of scientific domains, can 
come together so as to share their experiences. 
If you believe this too, and would like to be part 
of building up such a community, then please 
contact the authors.

The knowledge shared by such a community 
could also inform the content of efforts to inform 
scientists of software engineering such as, for 

example, by the software carpentry site referred 
to above. It is widely agreed that many standard 
university software engineering courses are too 
free of context to be useful to scientists (Kelly, 
2007).

• We have alluded in a previous section to a 
change in the attitude of the scientific com-
munity (at least in the UK) to the sustain-
ability of scientific software. Before this 
change, scientific software development in 
research communities was funded only to 
the extent that it addressed a specific sci-
entific problem, with the implication that 
the software would be discarded once it 
had produced the requisite scientific re-
sults. There is now some recognition of 
the importance of the sustainability of sci-
entific software so that it is useful in con-
texts beyond that in which it was originally 
developed. The UK research council, the 
EPSRC, in 2010 made a grant of £4.3 mil-
lions to establish a software sustainability 
institute, see http://software.ac.uk/. The 
aim of this institute is to establish partner-
ships between domain-specific software 
engineers and scientists in which either 
both partners work directly together or the 
former provide a consultancy role. Field 
studies of these partnerships should pro-
vide essential information as to how they 
can best be made to work.

concluSion

In our previous discussion, we have stressed the 
following point:-

One size does not fit all. The ‘best’ develop-
ment approach to take, method or technique to 
use, tool to adopt, depends on the context.

We have pointed to several distinct contexts, 
among which are scientific end-user development, 
the High Performance Computing context, and 
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collaborations between professional software 
developers and scientific end-user developers. 
Each of these involves particular opportunities 
and challenges which we have discussed. It is 
clear, however, that there is still a long way to go 
in identifying the different contexts of scientific 
software development, and then either matching 
each context with suitable approaches, methods, 
techniques and tools, or constructing suitable 
methods, techniques and tools where no such exist.
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AdditionAl reAding

In our introduction, we noted that one chapter 
cannot possibly say all there is to say about the 
challenges facing the developers of software for 
a scienific community, and mentioned a body of 
CSCW literature regarding the social and political 
influences on community software development 
and adoption. We did not refer to this literature 
above because this chapter is grounded in our 
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field studies and experience, and the challenges 
we discuss in particular are those arising from 
the culture of scientific end-user development. 
Nevertheless, we should like to highly recommend 
Grudin, 1994, to the interested reader. Grudin 
discusses the following challenges (among others) 
relating to community software: 

Many of the references above were written so 
as to be accessible to practitioners and not merely 
to enhance the academic reputation of the authors. 
This is especially true of articles in the journals 
IEEE Software and Computing in Science and 
Engineering. We also recommend that you look 
at Greg Wilson’s software carpentry site, http://
software-carpentry.org/, which at the time of 
writing (2010) is being redeveloped in the light 
of an increased understanding of the matching 
of various methods, techniques and tools to the 
various scientific development contexts. 

• Cost and benefit might not apply equally 
among members of the group;

• An individual’s best interests might not 
match with that of the group; 

• Software cannot take cognisance of tacit 
group knowledge (for example, of the dif-
ferent strengths and weaknesses of mem-
bers of the group);

• Successful practice involves improvisation 
and software supporting processes must 
take heed of this; 

• Individual work often forms the backbone 
of community endeavour and community 
software should recognise this. 

Grudin, J. (1994). Groupware and social dynam-
ics: eight challenges for developers. Com-
munications of the ACM, 37(1), 92–105.
doi:10.1145/175222.175230

In addition, there is currently much interest in 
sharing and deploying scientific knowledge via 
ontology building. Although many of the related 
publications focus on tools for building ontologies, 
there are several which highlight how social and 
political challenges, including those articulated by 
Grudin, are played out in this context. Journals 
like IJHCS (the International Journal of Human 
Computer Studies) and conference series like 
those of e-social science are good places to look 
for these.

key terMS And definitionS

Culture: by the term ‘culture’, we mean here 
the normal behaviour, values and assumptions 
that distinguish one group of people from another.

High Performance Computing: This term 
is normally taken to describe computing systems 
with the substantial processing power needed to 
(for example) run complex scientific simulations.

Scientific End-User Developers: Scientists 
who develop software in order to address their 
own scientific problems.

Software Engineering: in this chapter, this 
refers to all the technical aspects of developing 
code including design and testing.

Software Engineer/Professional Software 
Developer: we have tried to avoid the use of the 
term ‘software engineer’ because of the various 
arguments currently raging as to what the term 
involves. Instead, we have used ‘professional 
software developer’. By this, we mean someone 
whose focus is on the software (rather than on the 
science) and who is aware that software devel-
opment involves rather more than mere coding.

Techniques: practices which support different 
aspects of software development such as testing.

Tools: software tools which support develop-
ment.


