
Open Research Online
The Open University’s repository of research publications
and other research outputs

Developing software for a scientific community: some
challenges and solutions
Book Section

How to cite:

Segal, Judith A. and Morris, Chris (2011). Developing software for a scientific community: some challenges
and solutions. In: Leng, Joanna and Sharrock, Wes eds. Handbook of Research on Computational Science and
Engineering: Theory and Practice, Volume 1. USA: IGI Global, pp. 177–196.

For guidance on citations see FAQs.

c© 2012 IGI Global

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.4018/978-1-61350-116-0.ch008

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82971718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.4018/978-1-61350-116-0.ch008
http://oro.open.ac.uk/policies.html

Joanna Leng
Consultant, UK

Wes Sharrock
University of Manchester, UK

Handbook of Research on
Computational Science
and Engineering:
Theory and Practice

Volume I

Handbook of research on computational science and engineering: theory and practice / Joanna Leng and Wes Sharrock,
editors.
 p. cm.
 Summary: “This book offers a timely introduction to the possibilities in computational science and engineering to advance
the ongoing research and applications leading to the discovery of new resources and cutting edge developments”-- Provided
by publisher.
 Includes bibliographical references and index.
 ISBN 978-1-61350-116-0 (hardcover) -- ISBN 978-1-61350-117-7 (ebook) -- ISBN 978-1-61350-118-4 (print & perpetual
access) 1. Science--Data processing. 2. Engineering mathematics--Data processing. 3. Numerical analysis--Data process-
ing. 4. Mathematical models. 5. Computer simulation. I. Leng, Joanna, 1965- II. Sharrock, W. W. (Wes W.)
 Q183.9.H36 2012
 501’.13--dc23
 2011032075

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Managing Director: Lindsay Johnston
Senior Editorial Director: Heather Probst
Book Production Manager: Sean Woznicki
Development Manager: Joel Gamon
Development Editor: Chris Wozniak
Acquisitions Editor: Erika Carter
Typesetters: Brittany Metzel, Lisandro Gonzalez
Print Coordinator: Jamie Snavely
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2012 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

177

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

DOI: 10.4018/978-1-61350-116-0.ch008

introduction

Many scientific software projects intended for a
broad scientific community succeed in that they
make a significant contribution to the science.
Many, however, fail. Some of these fail for sci-

entific reasons (the underlying science was im-
perfectly understood), or because of coding
problems (for example, an inappropriate choice
of implementation language). Another less obvi-
ous cause of failure is the differences in the be-
haviour, knowledge, values, assumptions and
goals between three different groups of people
involved in such projects. These three groups are

Judith Segal
The Open University, UK

Chris Morris
STFC Daresbury Laboratory, UK

Developing Software for a
Scientific Community:

Some Challenges and Solutions

AbStrAct

There are significant challenges in developing scientific software for a broad community. In this chapter,
we discuss how these challenges are somewhat different both from those encountered when a scientist
end-user developer develops software to address a very specific scientific problem of his/her own, and
from those encountered in many commercial developments. However, many developers of scientific com-
munity software are steeped in the culture of either scientific end-user or commercial development. As
we shall discuss herein, neither background provides sufficient experience so as to meet the challenges
of developing software for a scientific community. We make various proposals as to which development
approaches, methods, techniques and tools might be useful in this context, and just as importantly,
which might not.

178

Developing Software for a Scientific Community

scientists; scientific end-user developers, that is
to say, scientists who are developing software for
their own use or for that of their close colleagues;
and professional software developers, to whom
the science is just another user domain.

In writing this chapter, we draw heavily on
the field studies conducted by the first author, an
academic, in a variety of scientific settings, and
on the many years’ experience developing scien-
tific software of the second author, a professional
software developer.

Our aims in writing this chapter are:

• To articulate some specific challenges fac-
ing scientific software developers. These
challenges have their origins either in the
culture of scientific end-user development
or in the nature of science itself.

• To suggest ways in which these challenges
might be addressed.

In what follows, we shall firstly articulate the
behaviour, knowledge, values, assumptions and
goals that characterize much scientific end-user
development and then discuss the challenges
which these characteristics pose when the context
of the development is broadened. We then go on to
discuss which development approaches, methods/
techniques and tools might be useful in scientific
software development, and, equally importantly,
identify some which will not. Finally, we discuss
how this identification of effective ways of sup-
porting scientific software development can be
progressed.

Throughout this paper, we stress the importance
of context. A couple of examples give a flavour
of this importance:

• A particular tool which is useful in a com-
mercial development context might not be
so useful in a scientific;

• Assumptions which are perfectly justified
in a setting where a scientist is developing
software for himself/herself to explore a
particular scientific question might not be
justified in other development settings.

This emphasis on the importance of context
means that it is difficult to set any hard-and-fast
rules along the lines of ‘scientific software devel-
opers should apply this testing technique to their
software’. We hope rather that this chapter might
provide the means by which you might recognise
the challenges in your particular development
context, and suggest some ways by which you
might address such challenges.

There is a caveat which we should stress here.
One chapter cannot possibly say all there is to say
about the challenges facing developers of software
for a scientific community. We focus here on
the challenges posed by the culture of scientific
end-user development, as revealed by our field
studies. These studies did not include FLOSS
developments (free libre open source software),
see the later section on future research directions.
We also took little cognisance of CSCW (computer
supported cooperative work) literature. We com-
ment further on this literature in the additional
reading section.

Table 1. Two snapshots from the first author’s field studies:

Scientist: Anyone can develop software. Why should we listen to
the advice of a professional software developer?

(Professional software developer is deeply offended)

Professional software developer: We need to start off with a clear
document of your requirements, and then we’ll draw up a require-
ments specification document which you can check.

Scientist: But that simply isn’t how we work.

179

Developing Software for a Scientific Community

A Pervasive culture of Scientific
Software end-user development

Scientists have been engaging in end-user develop-
ment, that is, in writing software in order to address
their own scientific problems, for sixty years or
more. Over these decades, a pervasive culture of
scientific software development has emerged.
‘Culture’ is an overloaded term meaning different
things to different people. What we mean here by
‘culture’ is the habits and normal behaviours, the
accepted (though perhaps not articulated) values,
assumptions and goals of a group of people, in
this case, scientific end-user developers working
in a traditional setting. Later we shall discuss
those scientific end-user developers who work
on codes which evolve over years often in a high
performance computing (HPC) setting, but in this
section we focus on scientists who write software,
typically on a PC, in order to address a particular
scientific problem of their own and/or of their
close colleagues sitting round them. Their focus
is entirely on the scientific problem. They have
little or no interest in the software once the prob-
lem has been solved. Typically, these scientists’
formal education in software development has
been limited to a few Fortran lectures at Univer-
sity. Other than this, their knowledge of software
development has been garnered informally from
popular books on the subject, from the Web, from
their colleagues, and often from the working codes
they have encountered.

Field studies have been published of such sci-
entific software end-user development activities
among financial mathematicians, Segal, 2001,
earth and planetary scientists, Segal, 2005, and
structural biologists, Segal, 2009a. Despite the
differences between the scientific domains and the
fact that the financial mathematicians operated in
a commercial environment and the other scientists
in a variety of academic environments, the field
studies reveal a common model of development
practice and common values and assumptions in

all the studies (Segal, 2007). Figure 1 is of this
common model of development practice.

This model evokes instant recognition when
shown to scientific end-user developers or anyone
who has worked with them. Given that it has
emerged over decades of scientific end-user de-
velopment, it is not surprising that it is a very
successful model in this context. But its success
is entirely dependent on the characteristics of the
context as we shall now discuss.

A professional software developer, knowing
about the many models of software develop-
ment in the software engineering literature (the
waterfall model; the spiral model; the joint ap-
plication development model; etcetera, etcetera,
etcetera), would be taken aback by the model of
Figure 1. Where are the activities for establishing
requirements? Where does software design fit in?
How can the question ‘does it seem to do what I
expect?’ possibly act as a basis for testing? How
can ‘deciding that it’ll do’ be a viable acceptance
criterion? How about issues of usability? The
answers to all these questions lie in the context.

• The establishment of requirements. The
establishment of requirements is an infor-
mal activity which pervades the whole of
the development. The developer, as a po-
tential user of the software, has a deep un-
derstanding of the scientific problem and
certain ideas about how the software might
address it, although these ideas are not
necessarily articulated. He/she develops a
piece of software to explore them. Then
he/she reflects: does this piece of software
address the scientific problem? Wouldn’t it
be nice if the software did this? The soft-
ware should not do that. If there are other
people around working on the same or sim-
ilar issues, then it’s easy for the developer
to involve them in these reflections (‘Come
and have a look at what I’ve been working
on’).

180

Developing Software for a Scientific Community

• Software design. Design isn’t an issue for a
relatively small piece of software intended
to address a particular scientific problem
with the (perhaps tacit) expectation that
it will be discarded when the problem has
been successfully addressed.

• Testing. As with requirements activities
and as described above, informal evalu-
ation pervades the whole of the develop-
ment. This evaluation is grounded in the
developer’s scientific intuition and judge-
ment: the questions asked by the developer
of the software are ‘Does it seem to do
what I expect?’ and ‘Does it seem to ad-
equately address the scientific problem?’
If the answer to either of these questions
is ‘no’, then the software is modified and/
or extended. The field studies referred to
above provide no evidence of any formal
testing activities.

• Usability. One reason frequently put for-
ward for the lack of usability of many soft-
ware products is that the developers have
implemented the product as if they were
the users. But in the case of scientific end-

user software development, the developer
is the user, or one of the potential users.
Usability, like the establishment of require-
ments, and testing, is simply not a big issue

We now turn our attention to the values and
assumptions commonly held by scientific end
user developers working in the context above. We
have seen that such developers have no reason
to value the knowledge, skill and effort required
to establish requirements or to design software
or to test software or to ensure usability of the
software. The implication is that they tend to see
software development in terms merely of cod-
ing, a simple matter of translation of scientific
ideas into a programming language. And given
that scientists are, to a greater or lesser extent,
used to the manipulation of abstract concepts and
formal languages, coding does not pose them a
major problem. Given all this, we should not have
been as surprised as we were at the evidence from
the cited field studies of the low value placed on
software development knowledge and skill. The
following quotes are from Segal, 2007:-

Figure 1. A model of scientific end-user software development, adapted from Segal and Morris (2008)

181

Developing Software for a Scientific Community

‘I think the attitude towards computing.. [is] it’s
something you do in your spare time. I don’t think
people have any idea how long it actually takes
to sit down and write a program. I think we quite
happily imagine that you just … spin it off in half
an hour over your lunch time.’ [planetary scientist]

‘everybody in theory knows how to do [software
development]…. It’s assumed that everybody
knows what to do’ [financial mathematician]

This low value is reflected in appointment poli-
cies. Two examples from the first author’s field
studies are:

• A man was appointed to a post called
‘project programmer’ when his experience
of developing software was limited to the
Fortran course he had done at University
(Segal, 2007);

• A leading scientist commented that it was
common to appoint people to software
development projects in situations where
they had proved themselves as scientists
and their current funding was running out,
regardless of their software development
skills and experience (Segal, 2009a).

The low value afforded to software devel-
opment knowledge and skill is also indirectly
reflected in reward structures. The evidence
of the field studies is that rewards, recognition
and promotions in science are based primarily
on publications of scientific results and not on
developing the software which enabled those
results. The second author, working as a software
project manager in a research establishment, was
once told that further promotion would be con-
ditional on publishing six papers. Yet publishing
is rarely seen as part of the remit of a software
project manager. This emphasis on publications
promotes the development of software directed
only at producing such publications with little heed

given to the wider issues of software engineering
(such as testing) discussed above.

We should stress that in the context in which
it originated, this model of development with its
attendant values and assumptions, works on the
whole. The biggest risk is that such a develop-
ment, with its lack of emphasis on testing, might
produce software which does not correctly reflect
the known science and thus produces erroneous
results, see, for example, Miller, 2006 and Hat-
ton, 1997. This risk is exacerbated by the fact that
whereas the scientific results as published are
subject to peer scrutiny, the software by which the
results are obtained is often not. So, provided the
results are consistent with scientists’ intuitions, the
errors in them arising from errors in the software
are not easily identifiable. In the case reported
by Miller, the results were credible to biologists
who might want to use them but less so to expert
crystallographers whose role involves producing
such results, Jeffrey 2007.

Despite this risk, because of the immediacy of
such development and the deep domain knowledge
of the developer, we are convinced that this type
of scientific end-user development has contributed
greatly, and will continue to contribute greatly, to
the advancement of science (Morris and Segal,
2009).

Scientific SoftwAre
develoPMent outSide
thiS context

In this section, we consider contexts where sci-
entific software is used to address a variety of
scientific problems and/or a variety of users over
a period of time. We have identified five such
contexts, but allow that there might be more,
and that there might be overlap between the five.
These contexts are where software developed in
the scientific end-user context as described above
escapes (uncontrolled) or migrates (controlled)
into a wider context; where scientific end-user

182

Developing Software for a Scientific Community

developers work on high performance comput-
ing systems (HPCS); where scientific end-user
developers work in partnership with professional
software developers; and where software devel-
oped in a research environment is re-engineered
to provide tools for practitioners.

the Software escapes

Here, the software is developed within a scientific
end-user development context as described above.
It is recognised as being useful, and appropriated
(and perhaps modified in an ad-hoc manner) by
other scientists in slightly different contexts, and
hence escapes (as it were) from the local context
for which it was developed into the wider context
of the lab and thence into the community. But the
software might not be sufficiently robust, reli-
able, efficient, maintainable or usable, to meet
its change of goals.

the Software Migrates

Here, software may be developed originally in
the scientific end-user context described above
but then made available perhaps via an open
source model for the scientific community to
scrutinise, modify and extend. The problem here
is that there is very unlikely to be the expertise
within the scientific community to optimise
the software with respect to its change of goals
given the broader context of its use, and achieve
the necessary robustness, reliability, efficiency,
maintainability and usability.

high Performance
computing Systems

A further context of scientific software de-
velopment is that of the development of high
performance computing systems, HPCS, for the
purposes of (say) complex simulations. Although
the authors themselves have not conducted any
field studies of this practice, others have. For

example, Easterbrook and Johns, 2009, acting
as participant observers, studied the practice of
a group of climatologists. Here the context was
one in which climatologists worked together over
a period of decades maintaining and extending
a set of climate models. An interesting insight
from this work is that, like the scientific end-user
developers described earlier, the climatologists
have over the years evolved a software develop-
ment model which, while appearing very strange
to a conventional software engineer, nevertheless
completely fits the context in which they work.

Another group of field studies has emerged
from the recent DARPA initiative, http://www.
highproductivity.org/, which is concerned with
improving the productivity of HPC systems (Basili
et al., 2008). These field studies are concerned
with the development of simulation software in
academic contexts and government agencies, and
focus on how software engineers might best sup-
port such developments. We shall discuss these
studies further in a later section of this chapter.

Scientific end-user developers
and Professional Software
developers working together

Here, it is recognised that the software is too
complex for scientists to develop alone, and
hence scientists and software engineers develop
the software together in partnership. There are
several examples of this in the literature, (De
Roure and Goble, 2009, Macaulay et al., 2009,
Segal, 2009a, Thew et al., 2009). We shall focus
on this partnership in a later section in this chapter.

re-engineering research Software
into tools for Practitioners

This is a common situation about which, we
believe, very little is known. An example is
“translational medicine”, see for example http://
www.translational-medicine.com/, which aims to
apply cutting-edge research in the life-sciences to

183

Developing Software for a Scientific Community

clinical practice. But the goals which should be
met by software intended to support research in
the life-sciences (chief among which, we think, is
that the software should be flexible so as to enable
the exploration of research questions) are differ-
ent from the goals that should be met by software
intended to support clinical practice (chief among
which, we think, are correctness and robustness.
For example, one shouldn’t be told that one’s
blood pressure is 250/30, nor should the software
embedded in a clinical instrument crash).

We believe that the most common development
approach for transitioning software from research
to tool is that of scientific end-user developers and
professional software developers working together
on software originally developed by the former.
Given the risks associated with such transitioning,
we also believe that far more research is needed
in this area.

We shall now consider a context about which
we, the authors, do know quite a lot: scientist
end-user developers working in partnership with
professional software developers.

Scientific end-uSer
develoPerS And ProfeSSionAl
SoftwAre develoPerS
working in PArtnerShiP

Figure 2 and Figure 3, based on the first author’s
field studies, illustrate the clashes that can occur
when professional software developers work to-
gether with scientific end-user developers. Before
we explore the nature of these clashes further,
we shall discuss the role of scientific end-user
developers in such a partnership.

the essential role of Scientific
end-user developers in the
Partnership

Whereas professional software developers are
likely to have strong intuitions as to what is

required of (say) payroll or hotel reservation
software, they are very unlikely to have any
intuition as to what is required from software
aimed at (for example) computational chemists or
protein crystallographers. It therefore goes almost
without saying that, because of the complexity of
the scientific domain, it is essential that scientists
be effectively involved in scientific software de-
velopment. However, involving scientists in the
development purely as end-users is problematic,
as discussed in Segal, 2009a, and Segal and Mor-
ris (submitted). For example, scientists are very
reluctant to interrupt their scientific endeavours in
order to contribute to the development of software
that they may never use given the shortness of
many research contracts.

Formally involving scientific end-user devel-
opers as members of the development team can
go some way towards alleviating this problem. As
argued in Segal and Morris (ibid), the scientific
end-user developer knows enough both about the
scientific domain and about the particular software
development to act as an effective bridge between
the development team and the potential users,
informing the development team of the users’
requirements and the users of both the potential
and limitations of the software.

Another less immediately obvious role for
scientific end-user developers is that of growing
the community of users. In these cash-strapped
days, growing the user community beyond that
for which the software was developed is essential
for securing funding for continuing maintenance
and development.

Everett Rogers, 2003, in his influential book
synthesising current knowledge about technology
diffusion, comments:-

‘Most individuals evaluate an innovation not on the
basis of scientific research by experts but through
the subjective evaluations of near peers who have
adopted the innovation’ (Rogers, 2003, p.36)

184

Developing Software for a Scientific Community

In other words, scientists are most likely to be
persuaded to adopt some software if other scien-
tists in their community convey to them how the
software has supported their scientific endeavours.
And this is what scientific end-user developers,
conversant with both the software and the potential
user community, can do very effectively.

challenges to the Partnership
Posed by the Pervasive culture of
Scientific end-user development

‘When Chris disagreed with us, he wasn’t always
wrong’ (a remark made by a senior scientist with
scientific end-user development experience refer-
ring to the second author, a professional software
developer, after some years of their working
together).

To a greater or lesser extent, there are always prob-
lems of collaboration and communication when
a software development team works together. In
this section, drawing heavily on Segal, 2009a, and
Segal, 2009b, we shall argue that these problems
are greatly exacerbated by the influence of the
pervasive culture of scientific end-user develop-
ment. The challenges we shall discuss include
those which impact on the composition of the
development team, time estimates for achieving
particular development tasks, challenges to the
authority of the professional software developers
in technical matters, and the length of time that
users have to wait for the software.

The ultimate purse-holders of a particular
software development for a scientific research
community are scientists at the top of their field:
they commission the software; they appoint the
development team; they keep some sort of check

Figure 2. An example of a clash between a scientist used to requesting software from scientific end-user
developers and a professional software developer, from Segal, 2008, inspired by the field study described
in Segal, 2009a.

185

Developing Software for a Scientific Community

on the development to ensure that it is delivering
what they need. Although such scientists are not
likely to be developing their own software cur-
rently, it is very likely that they have done so in
the early stages of their career and very probable
that they are steeped in the pervasive culture of
scientific end-user development. The implications
of this, as described in an earlier section of this
chapter, are that such scientists tend not to value
sufficiently the skill and knowledge required to
develop software for a community. They tend not
to appreciate the importance of the establishment
of requirements, a sustainable design, testing,
and usability in contexts outside that of scientific
end-user development. It follows that they do not
appreciate the need to make resources available
for these activities.

One consequence of this is on the composi-
tion of the development team. We have already
described how scientific end-user developers may
be appointed to the team not on the basis of their
software development expertise but because they
need funding. As to the professional software de-
velopers on the team, the purse-holder scientists

might not recognise that such developers need
expertise in aspects of software engineering (such
as requirements management and testing) which
are not relevant in the pervasive scientific end-user
development context and thus might not recognise
the need to look for such expertise in potential ap-
pointees. Indeed, having no practical experience of
such aspects of software engineering themselves,
the scientists might not be in a position to judge
such expertise. In addition, lack of appreciation
of the necessity of this expertise might lead to
insufficient funding being made available to lure
suitably talented developers away from business.

Another consequence is the tendency of purse-
holder scientists to be wildly optimistic about
the time that software development tasks take.
The experience of the second author is that such
scientists habitually estimate the time taken to
achieve a particular task as being about a third
of his estimation.

Within the software development team, the
lack of value ascribed to software development
knowledge and skill might lead to the scientific
end-user developers being loath to accept the tech-

Figure 3. Another example of a clash between professional software developers and scientists, from
Segal, 2008, inspired by the field study described in Segal, 2005.

186

Developing Software for a Scientific Community

nical suggestions and leadership of a professional
software developer. In the field study described in
2009a, this led to some potential collaborations
between scientists and professional software de-
velopers becoming completely unviable.

A further problem is caused by the immediate
gratification afforded by the pervasive scientific
end-user development context where a perceived
software need is almost immediately met. In more
complex software developments, this is not the
case. Before such software is released to the users,
requirements have to be established and negoti-
ated; sustainable designs have to be established;
and testing has to be done. Any gratification af-
forded to the users by the delivery of the software
is thus deferred. This might lead to frustration both
on the part of the users with their experience of
almost instant fixes, and on the part of the scientific
end-user developers in the development team with
their experience of providing almost instant fixes
and of being rewarded by ‘getting smiles on users’
faces’ (as said by a scientific end-user developer
in one of the first author’s field studies).

Addressing these challenges

Challenges posed by ingrained behaviours, values
and assumptions such as those described above
can be very difficult to recognise. Such recogni-
tion depends on articulating one’s own (often
deeply hidden) values, assumptions and habits,
inferring those of one’s collaborator, and seeing
where mismatches occur. Segal, 2009a, describes
situations where cultural mismatches led to either
the collaboration failing completely or to one or
both of the parties in the collaboration shifting
their values, assumptions or behaviours so as to
reach a compromise. It has to be noted, however,
that such shifts are very difficult and not achieved
without considerable open-mindedness on the part
of the collaborators and a considerable amount of
pain. However, as the quote at the beginning of
this section illustrates, they do happen.

In the next section, we consider how scientific
software developers might best be supported by the
various current development approaches, methods
and techniques, and tools. We should make two
important points here. The first is that the choice
of ‘best’ development approach or method or
technique or tool depends very heavily on a deep
understanding of the context in which the devel-
opment takes place. As Basili et al., 2008 say:

‘To understand why certain software engineering
technologies are a poor fit for computational
scientists, it is important to first understand their
world and the constraints it places on them’ [Basili
et al., 2008, p.30]

Presumably, lack of such understanding is the
reason for the following:-

‘…the history of HPC is littered with new tech-
nologies that promised to increase scientific
productivity but which are no longer available’
[ibid., p.32]

The second point is that finding (or construct-
ing) candidates for the ‘best’ approaches, methods,
techniques and tools is currently an active topic
of research, see, for example, the DARPA proj-
ect, http://www.highproductivity.org/, and later
discussion in this paper.

develoPMent APProAcheS,
MethodS And techniqueS,
And toolS

one Size does not fit All

The first point we want to make very strongly is
that tools, techniques and methods which have
been found generally useful within professional
software development practice and thus form part
of the Software Engineering Body of Knowl-
edge (SWEBOK) are not necessarily useful in

187

Developing Software for a Scientific Community

a scientific software development context. This
is hardly surprising since such tools, techniques
and methods have largely arisen from commer-
cial developments and it is well documented that
scientific software development has many aspects
which distinguish it from commercial (Carver et
al. 2007). For example:

• As befits the essential nature of research,
requirements in scientific software devel-
opment are largely emergent, whereas in
commercial developments, most require-
ments are generally specified a priori.

• In scientific software development, as op-
posed to in commercial developments,
there is often no test oracle, that is, no
physical data against which to test the out-
put of the software. For example, consider
software which enables complex simula-
tions of a nuclear explosion: physical data
from an actual nuclear explosion might be
hard to come by.

• Even where experimental data exists, it may
be an unrealistic goal to simulate it exactly.
Computational scientists are sometimes
satisfied with models that match trends in
values without matching the exact values.
In these cases, what is meant by a “correct”
program is unclear.

• The aim of scientific software develop-
ment is to enable its users to advance sci-
ence rather than to make a profit, as in
commercial developments.

The inappropriate application of approaches,
methods, techniques and tools to scientific soft-
ware developments can lead to great frustration.
Those frustrations illustrated in Figure 3 above
and Figure 4 below are inspired by the field study
described in Segal, 2005. Here, professional
software developers worked in partnership with
space scientists in order to develop embedded
software for an instrument that was going to be
sent up into space. The development model was

that suggested by the European Space Agency
for small software developments. This model
was a waterfall-like linear model with discrete
phases – specification of requirements; design;
implementation; testing – and with a heavy reli-
ance on the role of documents for both commu-
nication between the partners and for managing
the development. The space scientists, however,
were steeped in the traditional culture of scientific
end-user development and used to requirements
emerging (rather than being specified upfront)
and to communication being informal and face-to-
face (rather than being dependent on documents).
(Despite the difficulties that ensued due to the
inappropriateness of this development model, it
must be said that the development appears to have
been ultimately successful.)

Based on the evidence of her field studies, the
first author of this chapter has argued strongly
that software engineers should not regard them-
selves as the sole repository of software develop-
ment good practice, Singer et al, 2009. Similarly,
given the evidence of their field studies of the
development of HPC systems, Basili et al., 2008,
comment:-

‘Several software engineering practices gener-
ally considered good ideas in other development
environments are quite mismatched to the needs
of the HPC community. We found that keys to suc-
cessful interactions [between software engineers
and computational scientists] include a healthy
sense of humility on the part of software engineer-
ing researchers and the avoidance of assumptions
that software engineering expertise applies equally
in all contexts’ (Basili et al. p.29).

development Approaches

‘I say that I’m adhering to ‘agile’ methods when
all I’m really doing is fighting against formal plan-
ning/reporting requirements imposed externally’
(an experienced scientific developer, speaking to
the second author).

188

Developing Software for a Scientific Community

We have discussed above several issues that are
relevant to the choice of an overall development
approach in the context of scientific software
development:

• In typical scientific software develop-
ments, requirements emerge rather than
being fully specified up-front;

• Discrete phased development models, such
as waterfall-type models, are not appropri-
ate in this context;

• The model of software development
evolved over years of practice in the scien-
tific end-user developer context is an itera-
tive feedback model with small iterations;

• The effective engagement of the intended
users in the development is vital.

All these issues point to some sort of agile and
user-centred development approach.

Proponents of agile approaches ascribe to the
agile manifesto (http://www.agilemanifesto.org),
in which:

• Individuals and interactions are valued
over processes and tools.

• Working software is valued over compre-
hensive documentation.

• Customer collaboration is valued over con-
tract negotiation.

• Responding to change is valued over fol-
lowing a plan.

There are various approaches by which these
values can be embedded in software development.
The most well-known of these are arguably eX-
treme Programming (XP) (Beck, 2000), Scrum
which focusses on project management, http://
www.scrumalliance.org/, and DSDM (http://
www.dsdm.org/).

There has been interest in the application of
agile approaches to scientific software develop-
ment since the early years of the millennium,
see, for example, Wood and Kleb, 2002, Bache,
2003, and Segal, 2005. However, in the authors’
experience, it is frequently the case that scientific
software developers claim erroneously that their

Figure 4. Different attitudes towards documents (Segal, 2005). The quote is taken directly from the field
study. The evidence is that neither the requirements nor the requirements specification documents were
read by the scientists.

189

Developing Software for a Scientific Community

development follows an agile model. Often, all
such developers mean is that the development mir-
rors that of the usual scientific end-user developer
model in being an iterative feedback model. The
quote at the top of the section illustrates the fact
that what people do, and what they say they do,
is not always the same thing.

There are some exceptions to this: Ackroyd
et al., 2008, describe the writers’ experience of
applying XP practices to the development of ex-
perimental control and data acquisition software,
and Pitt-Francis et al., 2008, do the same in the
context of computational biology. In both cases,
the practices as articulated by Beck, op.cit., had
to be tailored to the particular context of use. This
is not surprising: development methodologies in
general can rarely be used ‘out of the box’ but
have to be tailored to practice, see, for example,
Glass, 2002.

As to user-centred design, Macaulay et al.,
2009, describe their experience of applying user-
centred methods in the context of extending imag-
ing software in the life sciences so that it can be
used in a wider context than that for which it was
originally developed. However, as we have pointed
out earlier, achieving the effective engagement of
scientists in a scientific software development can
be problematic.

Melding together agile approaches with user
centred design (UCD) is not straightforward
(McInerney and Maurer, 2005). Agile philoso-
phy is to develop production code as soon as
possible in order to obtain quick feedback from
the customer; UCD, on the other hand, requires
a deep understanding of the users, the activities
which the software is intended to support, and the
context in which the activities take place. Often,
this understanding is obtained by the use of pro-
totypes before any production implementation
takes place. How UCD and Agile activities may
be integrated effectively is currently the subject
of active research.

Maintenance or development?

‘He was spending a lot of time on maintenance
so I sent him on a time management course’, the
line manager of a scientific software developer
talking to the second author.

Maintenance does not form part of most scien-
tific end-user development since the (perhaps
tacit) assumption here is that the software will be
discarded once the particular scientific problem
for which it was developed has been addressed.
And in general, maintenance is not considered a
development activity: the software is developed;
the development is finished according to some
criteria; the software is then handed over to the
users; it then enters a maintenance phase. Given
the fact that each delivery of a piece of scientific
software might raise some new scientific ques-
tions which can only be addressed by an extension
or modification to that software, we argue that
maintenance and development of scientific soft-
ware is inextricably linked. De Roure and Goble,
2009, describe this situation in the context of the
development of Taverna and MyExperiment as:

‘…[leading to] a perpetual beta software develop-
ment methodology’ (De Roure and Goble, p.93)

And Carver et al., 2006, commenting on their
field studies of HPC developments, say:

‘.. rather than being released and maintained like
long-standing IT projects, these projects are under
constant development’ [Carver et al., 2006, p. 37]

This necessary interlinking of development and
maintenance is often not recognised, as illustrated
by the quote at the top of this section. Up until
recently, it appeared that the UK research councils
representing the scientific communities took the
same view as most scientific end-user develop-
ers, that is, that software could be discarded once

190

Developing Software for a Scientific Community

it had addressed a specific scientific question.
This view is reflected in the fact that software
funding from these councils was made only for a
limited period of development, see, for example,
Macaulay et al., 2009. Recently, the situation has
changed, with scientists becoming very aware of
the importance of developing sustainable software,
that is, software that has a useful life beyond the
original users and the original science it was
intended to support. We shall discuss this further
in a later section.

testing

‘If my program provided some output, I assumed
that it was correct. In hindsight, that is incredibly
naïve.’ (scientific end-user developer talking to
the authors).

Hook and Kelly, 2009, present a nice model (in
our opinion) of computational science software
development showing that at any point, errors can
creep in. They start right at the beginning:

• Measurements of the real world lead to the
formation of a theory (but are there errors
in the measurements?)

• The formation of a theory/model is based
on approximations of the real world mea-
surements (but are the approximations
valid?)

• The theory is represented by algorithms
(but do the algorithms correctly represent
the theory? And do they converge to a so-
lution for all possible inputs?)

• The algorithms are translated into source
code (but are there faults in the code?)

• The source code is compiled and the com-
piled code optimised (but does this lead
to inappropriate rounding or concurrency
errors?)

This articulation of the myriad opportunities
for errors demonstrates the importance of test-

ing. It is not clear that this importance is always
recognised by scientific software developers, as
illustrated by the quote at the top of this section.
We have seen how, in many scientific end-user
development contexts, testing is treated relatively
lightly. Sanders and Kelly, 2008, on the basis of
their interviews of computational scientists, make
the interesting observation that when the output of
scientific software is not what the scientist expects,
then he/she looks for faults in the theory or the
algorithms rather than faults in the code. This is
consistent with the comments made in Segal, 2008,
that the scientists’ trust in their software is akin to
their trust in their scientific instruments. Software,
in common with, for example, telescopes, is pre-
sumed to be correct/working properly unless it is
absolutely palpably obvious that it is not.

How to test effectively in a scientific context
remains an active topic of research. It is clear that
testing methods cannot be adopted wholesale from
the software industry. For example, in discussing
scientific end-user development at the beginning
of this chapter, we noted that testing in this context
depends heavily, if not entirely, on the judgement
of the scientist-developers that the output of the
software is reasonable in the scientific context.
We also noted that testing is not a separate activity
but is entwined with the establishments of require-
ments. These facts imply that the situation where
testing is the province of a testing department
separate from the developers, as is common in
the software industry, is not appropriate for sci-
entific software development. It is also clear that
the effectiveness of testing methods depends on
the development context. For example, we have
noted that one of the problems of testing scien-
tific software is that there may not be an oracle.
However, in HPC settings, algorithms might be
prototyped in Matlab or some other high level
language and then implemented in Fortran so as
to optimise the performance (Sanders and Kelly,
2008). The earlier versions of the code offer a
partial solution to the Oracle problem in that the
final program should produce the same results.

191

Developing Software for a Scientific Community

However, when further modifications are needed,
there is the extra cost involved in modifying the
oracles as well as the final code.

As to other recent work on scientific software
testing, Hook and Kelly, 2009, discuss a procedure
for choosing appropriate tests using mutation
sensitivity testing. In addition, the second author
of this chapter has had positive experiences of
swapping codes with other development teams for
review, and is also convinced of the importance of
unit testing in scientific software development. He
is aware of the caveat, however, that older dialects
of Fortran encourage programmers to keep a lot
of data in a COMMON block, which makes the
code less modular and hence less amenable to
unit testing.

tools

‘My fixes are not in the release. I will have to make
a special build for my users.’ (scientific developer
working on a distributed development project for
a distributed community of users).

In our experience, the sum total of the tools used
by many scientific end-user developers are Emacs
(a command based text editor), a Fortran compiler,
and Make. In contrast, many, if not most, profes-
sional software developers make use of integrated
development environments (IDEs), which com-
prise a set of integrated software development
tools, including, normally, a source code editor,
a compiler/interpreter, automated build tools and
a debugger. Other tools, such as a version control
system and support for object-orientation software
development, may also be included.

With respect to the choice of programming lan-
guages, Basili et al., 2008, note that C and Fortran
dominate the HPC community. This is consistent
with our own experiences of computational sci-
entists implementing complex algorithms though
not of scientists whose focus is on managing large
data sets, such as structural biologists. One reason
for this choice of language is the longevity of

much computational code. Many computational
scientists work on codes which were originally
developed many years ago in Fortran. Although the
codes might be improved by being re-implemented
in other languages, Sanders and Kelly, 2008, point
out the risk inherent in doing so and the feeling of
the computational scientists that “if it aint broke,
don’t fix it”. Or as Sanders and Kelly put it:-

‘Scientists generally want to do science, not
write software, and certainly not introduce risk
by changing software that worked.’ (Sanders and
Kelly, 2008, p.24)

Another reason for choosing Fortran is that
users might have to modify code to fit their own
contexts (Carver et al. 2007). The code thus has
to be written in a language that it can be assumed
that users will know, and Fortran fits the bill,
having arguably become the lingua franca of
computational scientists.

There are several reasons why IDEs in general
fail to support scientific software development.
First and foremost among these is that few IDEs
claim to support Fortran, and where they do, the
support is basic compared to their support of, for
example, Java. Fortran has a long history, and the
changes have been backwards compatible, so it is
now a very large language, the design of which
began before the modern understanding of pars-
ers. So sophisticated support for editing Fortran is
hard to do. For example, alias recognition is hard.
Older program suites make heavy use of COM-
MON blocks, and over time may come to map
them inconsistently. In addition, older programs
made up for the lack of storage management in the
language by allocating a large array, and mapping
it in a way that is not type safe.

A further reason is that the tools in IDEs
generally do not have special features to support
floating point calculations. For example, test
cases for floating point applications rarely test for
equality but rather use an error bar, and this is not
generally supported in IDEs. In addition, Basili

192

Developing Software for a Scientific Community

et al., 2008, point out that many HPC systems are
shared, and HPC developers have to submit batch
jobs. For these developers, an IDE which does not
support the submission of jobs to batch queues
or debugging on parallel machines, is going to
be useless. Finally, the field studies of Carver et
al., 2007, reveal that HPC developers prefer what
they perceive to be the flexibility of the UNIX
command line to the rigidity afforded by an IDE.

There is somewhat of a chicken-and-egg
situation here: scientific software developers are
reluctant to use commercial IDEs and other com-
mercial software development tools because they
tend not to support scientific software develop-
ment, and commercial tool makers are reluctant
to put effort into making tools more supportive of
scientific software development since the potential
market is small. It seems clear that any improve-
ment in development and maintenance tools aimed
specifically at scientific software development is
going to have to emerge from the community of
scientific software developers themselves.

Notwithstanding the comments made above,
there are certain generic software development
tools which are very useful in supporting the
maintenance/iterative development of scien-
tific software developments. These include issue
trackers, used to keep track of new or changing
requirements, and version control software/code
repositories, such as CVS or Subversion. The
omission of certain fixes in the release referred
to in the quote at the beginning of this section
would not have happened if the version control
system had been used properly. Wilson, 2006,
was shocked to find that scientific end-user de-
velopers shared their source code files with their
collaborators by means of email rather than by
means of repositories. He ascribed this behaviour
to the scientists’ lack of knowledge of such re-
positories. But there is another plausible reason:
it may be that the collaboration entails evolving a
common code base in more than one direction to
solve more than one problem, rather than evolving
it in a more linear fashion as supported by most

version control systems. However, some modern
systems including Git (http://git-scm.com/) are
specifically designed for this sort of collabora-
tion, and so are a better match to the practice of
scientific programming collaborations.

The essential problem according to Wilson
(ibid) is that scientific end-user developers do
not know about the tools – or indeed the software
engineering techniques – which might be useful
to them. Wilson has attempted to address this
problem by means of a web-site, http://software-
carpentry.org/.

future reSeArch directionS

In our opinion, there are several important direc-
tions for future research:-

• There should be a better understanding of
the different contexts and cultures of scien-
tific software development. The first author
of this paper has conducted several in-depth
field studies of the context of scientific end-
user development as described in an earlier
section of this chapter, and Basili, Carver
and colleagues have considered the HPC
context of running simulations. We are also
impressed by Easterbrook and Johns’ field
study of climatologists. However, there are
gaps in our collective understanding. For
example, we are not aware of any similar
field studies of scientific software develop-
ments which follow an Open Source model
or of those in which research software is
re-engineered into tools for practitioners,
as in the translational medicine context for
example. If you know of any, we would be
very grateful if you could pass the informa-
tion on to us.

• This paper focuses on some challenges in
scientific software developments. But it
would also be useful to investigate suc-
cessful scientific software developments in

193

Developing Software for a Scientific Community

an attempt to articulate the factors which
make them successful. There are a few such
in the literature (for example, De Roure et
al., 2009, and Macaulay et al., 2009) but it
would be helpful to have more.

• When working in partnership to produce
software for a community of scientists, nei-
ther scientific end-user developers nor pro-
fessional software developers have strong
intuitions as to which approaches, methods,
techniques or tools will be useful. In the
case of the scientific end-user developers,
this is because they tend to be steeped in
a development culture which has evolved
within a very restricted context. In the case
of the professional software developers, it
is because their experience of commercial
development, garnered either directly by
practice or indirectly by reading standard
texts on software engineering, might well
not transfer to scientific software develop-
ment contexts. The intuitions as to which
approaches, methods, techniques or tools
are best (or might be best adapted) can
only come from practical experience. For
example, professional software develop-
ers who habitually work within a particular
scientific domain build up an intuitive un-
derstanding of what methods etcetera are
useful in that domain. But such intuition
is mostly tacit and rarely articulated and
shared.

We believe that it is important to establish a
community of practice whereby scientific software
developers from a variety of backgrounds and
working in a variety of scientific domains, can
come together so as to share their experiences.
If you believe this too, and would like to be part
of building up such a community, then please
contact the authors.

The knowledge shared by such a community
could also inform the content of efforts to inform
scientists of software engineering such as, for

example, by the software carpentry site referred
to above. It is widely agreed that many standard
university software engineering courses are too
free of context to be useful to scientists (Kelly,
2007).

• We have alluded in a previous section to a
change in the attitude of the scientific com-
munity (at least in the UK) to the sustain-
ability of scientific software. Before this
change, scientific software development in
research communities was funded only to
the extent that it addressed a specific sci-
entific problem, with the implication that
the software would be discarded once it
had produced the requisite scientific re-
sults. There is now some recognition of
the importance of the sustainability of sci-
entific software so that it is useful in con-
texts beyond that in which it was originally
developed. The UK research council, the
EPSRC, in 2010 made a grant of £4.3 mil-
lions to establish a software sustainability
institute, see http://software.ac.uk/. The
aim of this institute is to establish partner-
ships between domain-specific software
engineers and scientists in which either
both partners work directly together or the
former provide a consultancy role. Field
studies of these partnerships should pro-
vide essential information as to how they
can best be made to work.

concluSion

In our previous discussion, we have stressed the
following point:-

One size does not fit all. The ‘best’ develop-
ment approach to take, method or technique to
use, tool to adopt, depends on the context.

We have pointed to several distinct contexts,
among which are scientific end-user development,
the High Performance Computing context, and

194

Developing Software for a Scientific Community

collaborations between professional software
developers and scientific end-user developers.
Each of these involves particular opportunities
and challenges which we have discussed. It is
clear, however, that there is still a long way to go
in identifying the different contexts of scientific
software development, and then either matching
each context with suitable approaches, methods,
techniques and tools, or constructing suitable
methods, techniques and tools where no such exist.

referenceS

Ackroyd, K. S., Kinder, S. H., Mant, G. R.,
Miller, M. C., Ramsdale, C. A., & Stephenson,
P. C. (2008). Scientific software development at
a research facility. IEEE Software, 25(4), 44–51.
doi:10.1109/MS.2008.93

Bache, E. (2003). Building software for scientists –
A report about incremental adoption of XP. Poster
presented at XP2003, Genoa, Italy.

Basili, V. R., Carver, J., Cruzes, D., Hochstein, L.,
Hollingsworth, J. K., Shull, F., & Zelkowitz, M.
V. (2008). Understanding the high performance
computing community: A software engineers’
perspective. IEEE Software, 25(4), 29–36.
doi:10.1109/MS.2008.103

Beck, K. (2000). Extreme programming explained:
Embrace change. Boston, MA: Addison-Wesley.

Carver, J., Kendall, R., Squires, S., & Post, D.
(2007). Software development environments for
scientific and engineering software: A series of
case studies. Proceedings of the 29th Interna-
tional Conference on Software Engineering (pp.
550-559). Minneapolis, MN. May 23-25, 2007.

Carver, J. C., Hochstein, L. M., Kendall R. P.,
Nakamura, T., Zelkowitz, M. V., Basili, V. R., &
Post, D. E. (2006, November). Observations about
software development for high end computing.
CT Watch Quarterly, 33-38.

De Roure, D., & Goble, C. (2009). Software design
for empowering scientists. IEEE Software, 26(1),
88–95. doi:10.1109/MS.2009.22

Easterbrook, S. M., & Johns, T. C. (2009). Engi-
neering the software for understanding climate
change. Computing in Science & Engineering,
11(6), 65–74. doi:10.1109/MCSE.2009.193

Glass, R. (2002). Searching for the Holy Grail
of software engineering. Communications of the
ACM, 45(5), 15–16. doi:10.1145/506218.506231

Hatton, L. (1997). The T experiments: Errors in sci-
entific software. IEEE Computational Science &
Engineering, 4(2), 27–38. doi:10.1109/99.609829

Hook, D., & Kelly, D. (2009). Mutation sensitiv-
ity testing. Computing in Science & Engineering,
11(6), 40–47. doi:10.1109/MCSE.2009.200

Jeffrey, P. (2007). ABC Transporter debacle.
Retrieved April 18, 2010, from http://xray0.
princeton.edu/ ~phil/Facility/Guides/ ABCtrans-
porter.html

Kelly, D. F. (2007). A software chasm: Software
engineering and scientific computing. IEEE Soft-
ware, 24(6), 120, 199.

Macaulay, C., Sloan, D., Jian, X., Forbes, P.,
Loynton, S., Swedlow, J. R., & Gregor, P. (2009).
Usability and user-centered design in scientific
development. IEEE Software, 26(1), 96–102.
doi:10.1109/MS.2009.27

McInerney, P., & Maurer, F. (2005, November-
December). UCD in agile projects: Dream
team or odd couple? Interaction, 19–23.
doi:10.1145/1096554.1096556

Miller, G. (2006). A scientist’s nightmare: Software
problem leads to five retractions. Science, 314,
1856–1857. doi:10.1126/science.314.5807.1856

Morris, C., & Segal, J. (2009). Some challenges
facing scientific software developers: The case of
molecular biology. 5th International IEEE Confer-
ence on E-Science.

195

Developing Software for a Scientific Community

Pitt-Francis, J., et al. (2008). Chaste: Using agile
programming techniques to develop computation-
al biology software. Philosophical Transactions
of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 366(1878), 3111-3136.

Rogers, E. M. (2003). Diffusion of innovations
(5th ed.). Free Press, Simon and Schuster.

Sanders, R., & Kelly, D. (2008). Scientific soft-
ware: Where’s the risk and how do scientists deal
with it? IEEE Software, 25(4), 21–28. doi:10.1109/
MS.2008.84

Segal, J. (2001). Organisational learning and
software process improvement: A case study.
In K.-D. Althoff, R. L. Feldmann, & W. Muller
(Eds.), Advances in learning software organiza-
tions, Lecture Notes in Computer Science, 2176,
68-82. Springer.

Segal, J. (2005). When software engineers met
research scientists: A case study. Empirical Soft-
ware Engineering, 10(4), 517–536. doi:10.1007/
s10664-005-3865-y

Segal, J. (2007). Some problems of professional
end user developers. VLHCC, IEEE Symposium
on Visual Languages and Human-Centric Comput-
ing, (pp. 111-118).

Segal, J. (2008). Scientists and software engi-
neers: A tale of two cultures. Proceedings of the
Psychology of Programming Interest Group,
PPIG 08. Retrieved from http://www.ppig.org/
papers/20th-segal.pdf

Segal, J. (2009a). Software development cultures
and cooperation problems: A field study of the
early stages of development of software for a
scientific community. Computer Supported Co-
operative Work, 18(5/6), 581–606. doi:10.1007/
s10606-009-9096-9

Segal, J. (2009b). Some challenges facing software
engineers developing software for scientists. 2nd
International Software Engineering for Com-
putational Scientists and Engineers Workshop
(SECSE ’09), ICSE 2009 Workshop, (pp. 9-14).
doi: 10.1109/SECSE.2009.5069156

Segal, J., & Morris, C. (2008). Developing sci-
entific software. IEEE Software, 25(4), 18–20.
doi:10.1109/MS.2008.85

Segal, J., & Morris, C. (in press). Scientific end-
user developers and barriers to user/customer
engagement. Journal of Organizational and End
User Computing.

Singer, J., Vigder, M., Segal, J., & Clarke, S.
(2009). Point/counterpoint. IEEE Software, 26(5),
54–56. doi:10.1109/MS.2009.135

Thew, S., Sutcliffe, A., & Procter, R., De Bruijn,
McNaught, J., Venters, C., & Buchan I. (2009).
Requirements engineering for e-science: Experi-
ences in epidemiology. IEEE Software, 26(1),
80–87. doi:10.1109/MS.2009.19

Wilson, G. V. (2006). Where’s the real bottleneck
in scientific computing? American Scientist,
94(1), 5–6.

Wood, W. A., & Kleb, W. L. (2002). Extreme
programming in a research environment. In D.
Wells & L. Williams (Eds.). XP/ Agile Universe
2002, Springer LNCS 2418, 89-99.

AdditionAl reAding

In our introduction, we noted that one chapter
cannot possibly say all there is to say about the
challenges facing the developers of software for
a scienific community, and mentioned a body of
CSCW literature regarding the social and political
influences on community software development
and adoption. We did not refer to this literature
above because this chapter is grounded in our

196

Developing Software for a Scientific Community

field studies and experience, and the challenges
we discuss in particular are those arising from
the culture of scientific end-user development.
Nevertheless, we should like to highly recommend
Grudin, 1994, to the interested reader. Grudin
discusses the following challenges (among others)
relating to community software:

Many of the references above were written so
as to be accessible to practitioners and not merely
to enhance the academic reputation of the authors.
This is especially true of articles in the journals
IEEE Software and Computing in Science and
Engineering. We also recommend that you look
at Greg Wilson’s software carpentry site, http://
software-carpentry.org/, which at the time of
writing (2010) is being redeveloped in the light
of an increased understanding of the matching
of various methods, techniques and tools to the
various scientific development contexts.

• Cost and benefit might not apply equally
among members of the group;

• An individual’s best interests might not
match with that of the group;

• Software cannot take cognisance of tacit
group knowledge (for example, of the dif-
ferent strengths and weaknesses of mem-
bers of the group);

• Successful practice involves improvisation
and software supporting processes must
take heed of this;

• Individual work often forms the backbone
of community endeavour and community
software should recognise this.

Grudin, J. (1994). Groupware and social dynam-
ics: eight challenges for developers. Com-
munications of the ACM, 37(1), 92–105.
doi:10.1145/175222.175230

In addition, there is currently much interest in
sharing and deploying scientific knowledge via
ontology building. Although many of the related
publications focus on tools for building ontologies,
there are several which highlight how social and
political challenges, including those articulated by
Grudin, are played out in this context. Journals
like IJHCS (the International Journal of Human
Computer Studies) and conference series like
those of e-social science are good places to look
for these.

key terMS And definitionS

Culture: by the term ‘culture’, we mean here
the normal behaviour, values and assumptions
that distinguish one group of people from another.

High Performance Computing: This term
is normally taken to describe computing systems
with the substantial processing power needed to
(for example) run complex scientific simulations.

Scientific End-User Developers: Scientists
who develop software in order to address their
own scientific problems.

Software Engineering: in this chapter, this
refers to all the technical aspects of developing
code including design and testing.

Software Engineer/Professional Software
Developer: we have tried to avoid the use of the
term ‘software engineer’ because of the various
arguments currently raging as to what the term
involves. Instead, we have used ‘professional
software developer’. By this, we mean someone
whose focus is on the software (rather than on the
science) and who is aware that software devel-
opment involves rather more than mere coding.

Techniques: practices which support different
aspects of software development such as testing.

Tools: software tools which support develop-
ment.

