
The Correlation between Halo Mass and Stellar Mass for the
Most Massive Galaxies in the Universe

Jeremy L. Tinker1, Joel R. Brownstein2, Hong Guo3, Alexie Leauthaud4, Claudia Maraston5, Karen Masters5,
Antonio D. Montero-Dorta2, Daniel Thomas5, Rita Tojeiro6, Benjamin Weiner7, Idit Zehavi8, and Matthew D. Olmstead9

1 Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10013, USA
2 Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA

3 Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Shanghai 200030, China
4 Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

5 ICG-University of Portsmouth, PO13FX Portsmouth, UK
6 School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK
7 Steward Observatory, 933 N. Cherry Street, University of Arizona, Tucson, AZ 85721, USA

8 Department of Astronomy & CERCA, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
9 Department of Chemistry and Physics, King’s College, 133 North River Street, Wilkes Barre, PA 18711, USA

Received 2016 July 15; revised 2017 March 15; accepted 2017 March 19; published 2017 April 24

Abstract

We present measurements of the clustering of galaxies as a function of their stellar mass in the Baryon Oscillation
Spectroscopic Survey. We compare the clustering of samples using 12 different methods for estimating stellar
mass, isolating the method that has the smallest scatter at fixed halo mass. In this test, the stellar mass estimate with
the smallest errors yields the highest amplitude of clustering at fixed number density. We find that the PCA stellar
masses of Chen et al. clearly have the tightest correlation with halo mass. The PCA masses use the full galaxy
spectrum, differentiating them from other estimates that only use optical photometric information. Using the PCA
masses, we measure the large-scale bias as a function of M* for galaxies with Mlog 11.4*  , correcting for
incompleteness at the low-mass end of our measurements. Using the abundance matching ansatz to connect dark
matter halo mass to stellar mass, we construct theoretical models of b M*( ) that match the same stellar mass
function but have different amounts of scatter in stellar mass at fixed halo mass, Mlog *s . Using this approach, we
find 0.18Mlog 0.02

0.01
*s = -

+ . This value includes both intrinsic scatter as well as random errors in the stellar masses. To
partially remove the latter, we use repeated spectra to estimate statistical errors on the stellar masses, yielding an
upper limit to the intrinsic scatter of 0.16 dex.

Key words: cosmology: observations – galaxies: abundances – galaxies: evolution – galaxies: halos – galaxies:
luminosity function, mass function

1. Introduction

Galaxies are born, live, and die within dark matter halos. We
have convincing evidence that the evolutionary history of
galaxies and halos is correlated to a strong degree: brighter,
bigger galaxies have higher clustering, indicative of being in
more massive dark matter halos (see, e.g., Norberg et al. 2002;
Zehavi et al. 2005, 2011 for analyses at z 0~ ; and Coil
et al. 2006; Zheng et al. 2007; Wake et al. 2011; Leauthaud
et al. 2012 at higher redshifts). Thus the growth of galaxies is
related to the growth of dark matter halos. But how correlated
are these two quantities? The purpose of this paper is to
quantify this correlation by constraining the scatter in stellar
mass at fixed halo mass for galaxies in the Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al. 2013). We will
use two-point clustering as our probe of this scatter, Mlog *s . For
massive galaxies, clustering is an especially sensitive diag-
nostic of the scatter, because it directly impacts their large-scale
bias (e.g., Reddick et al. 2013); more scatter means a sample of
galaxies will contain a more significant sample of low-mass
halos that will lower the overall clustering amplitude. BOSS
galaxies specifically represent an excellent sample of highly
biased objects, with previous small-scale measurements yield-
ing clustering amplitudes roughly four times higher than that of
dark matter (White et al. 2011; Guo et al. 2013; Saito
et al. 2016).

However, unlike magnitude and color, galaxy stellar mass is
not an observable. Different methods for deriving M* produce
different results. The scatter we constrain through clustering is
the quadrature sum of the intrinsic scatter of stellar mass at
fixed halos, ints , and measurement error, errs . Different methods
of deriving stellar mass will have different errs but have the
same intrinsic scatter, since they are all estimates of the same
physical quantity. Thus we can also use clustering to determine
which method of obtaining stellar mass has the least variance.
In this context, systematic offsets between codes or choices
within codes, such as switching stellar initial mass functions,
are immaterial. What we care about here is the rank-ordering of
galaxies from most massive to least massive. Using clustering,
we cannot probe systematic offsets between stellar mass
estimates.
In addition to comparing different methods for determining

stellar mass, we compare stellar mass with other physical
properties of the galaxy. Specifically, Wake et al. (2012) used
clustering to claim that stellar velocity dispersion, vels ,
correlates better with halo mass than M*. We will compare
the clustering of galaxies ranked by 12 different variations of
three different stellar mass codes, all of which are available in
the public SDSS data releases, as well as two estimates of vels
and multiple galaxy luminosities.
For converting redshift to distance, as well as calculating M*,

we assume a flat ΛCDM cosmology with 0.3mW = and h=0.7.
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2. Data

We use results from Data Release Ten of the Sloan Digital
Sky Survey (Ahn et al. 2014). The spectroscopic footprint
covers 6895 deg2 combined in the North Galactic Cap and
South Galactic Cap regions, roughly 70% of the full BOSS
footprint.

2.1. The CMASS Sample

The CMASS target sample is the workhorse of the BOSS
large-scale structure analysis. Further details can be found in
Dawson et al. (2013). These color cuts are meant to isolate
massive galaxies at z 0.4 , but are somewhat more inclusive
of blue galaxies than the traditional luminous red galaxy (LRG)
sample from SDSS-II (Eisenstein et al. 2001). To limit the
effects of the color cuts and flux limit of the survey, our fiducial
results are restricted to the range z 0.45, 0.60= [ ], which
surrounds the peak in the redshift distribution around
4 10 4´ - (h Mpc1- )3.

The magnitudes used here are standard SDSS cmodel
magnitudes, so-called because they are a composite of
exponential and de Vaucouleurs profiles. In the SDSS pipeline,
the profiles are truncated at three and seven times the scale radii
for exponential and de Vaucouleurs profiles, respectively,
smoothing going to zero at four and eight scale radii. See
details in Abazajian et al. (2004). Due to the faintness of
these targets, intracluster light (ICL) is typically below the
surface brightness limits of observations. Also, as we will
demonstrate in Section 4, the typical dark matter halo that
houses a CMASS galaxy is M1013~ , significantly below the
cluster mass regime. Behroozi et al. (2013a) estimate that, at
z 0.5~ , the ICL in 1013 M halos is 1 10~ that of
1014 M halos. The details of light profile fitting can have a
significant impact on the inferred stellar masses of CMASS
galaxies, however. Bernardi et al. (2016) demonstrate that the
Sérsic profile fits increase the magnitudes of the brightest end
of the CMASS galaxy distribution, increasing the abundance of
galaxies at M M1011.7

*   relative to that derived using
cmodel magnitudes. This would change our constraints on the
stellar-to-halo mass relation (SHMR) at the very massive end—
halo masses above M1014~ —but would not significantly
change our constraints on Mlog *s , because most of the
constraining power on that quantity is at smaller galaxy
masses. Additionally, the details of different light profile fitting
does not impact the results we present in Section 4.1, where we
investigate the relative clustering amplitudes of various stellar
mass estimates.

Figure 1 shows the mass versus g−i color distribution for
CMASS galaxies. We will describe the mass estimate used in
this figure (PCA) in Section 2.4. We use g−i because it more
naturally separates blue and red galaxies at these masses and
redshifts than other colors. Masters et al. (2011) demonstrates
that a simple g i 2.35- > color cut best separates early type
and late type CMASS galaxies. At these redshifts,
g i 2.35- = is similar to u r 2.22- = at z=0, used by
Strateva et al. (2001) to describe bimodality in the local
universe. Unlike samples that probe galaxies near the knee in
the stellar mass function (e.g., Blanton et al. 2003), the CMASS
sample is not bimodal in its colors. Although the color cuts are
specifically designed to be more efficient at selecting passive
objects than actively star-forming objects, the dominant factor
in the lack of bimodality is simply that the CMASS selection is

targeting the very massive end of the galaxy distribution, with a
median stellar mass of M M1011.5

* ~ . At these masses, even
the SDSS Main sample exhibits no bimodality, but rather has a
tail to bluer colors composed of the few star-forming objects at
these mass scales. The CMASS selection is not devoid of any
star-forming objects; Chen et al. (2012) find roughly 3% of
CMASS objects at the median stellar mass have formed 10% of
their stellar mass in the last Gyr.

2.2. The SPARSE Sample

The CMASS_SPARSE sample (hereafter SPARSE for
brevity) targets the same luminosity range, but with a slightly
expanded color range. The density of target galaxies is
sensitive to the exact value of the color–magnitude intercept;
thus the SPARSE sample is meant to expand the color range of
the CMASS in order to test any biases in the selection and to
probe to lower stellar masses. The median redshift of the
SPARSE sample is notably lower than CMASS, due to the
wider color cuts. Although the color shift is only 0.28
magnitudes, there are nearly as many objects that pass the
SPARSE selection (and are not included in the CMASS
sample) as in the CMASS sample itself. The name SPARSE is
derived from the fact that these galaxies are randomly
subsampled by a factor of 5 (to 5 targets deg−2) in order to
minimize the number of fibers allocated to this sample (see
Dawson et al. 2013 for more details on the target class as well).
Figure 1 shows the color–mass distribution of these targets

in comparison with the CMASS sample. After trimming the
SPARSE catalog to objects within z 0.45, 0.60= [ ], the stellar
masses probed by the SPARSE selection shifts the median
stellar mass lower by ∼0.2 dex, and the mode of the g−i
color distribution also shifts blueward by ∼0.2 magnitudes.
However, as with CMASS, the SPARSE sample is dominated
by passive red galaxies and does not exhibit any bimodality,

Figure 1. g−i color–mass distributions of the three different target classes
utilized in this paper. The color contours represent the CMASS galaxy sample,
with color representing density of points in each cell. The black curves
represent the density contours of SPARSE targets. The WISE targets are sparse
enough that they can be shown individually, represented by the filled circles.
All results are shown in the redshift range of z 0.45, 0.60= [ ].
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although the blue tail extends lower in g−i than the CMASS
sample.

The definition of the SPARSE sample has fluctuated
somewhat over the course of the survey. In the first few
months of observations, the color range was somewhat broader.
We exclude these areas from consideration in the statistics,
removing ∼140 deg2 of the overall footprint (delineated
“chunk2” in the BOSS order of observations; see Dawson
et al. 2013).

2.3. The WISE_COMPLETE Sample

Relaxing the color cuts even further than the SPARSE
sample would dramatically reduce the efficiency of finding
z 0.4 galaxies. To efficiently locate galaxies in our desired
redshift range, but outside the BOSS color cuts, ancillary data
must be brought in. To this end, a series of 26 plates covering
59.8 deg2 were dedicated to observing three sets of ancillary
targets, one of which was the WISE_COMPLETE target set.
These targets incorporate data from the Wide-field Infrared
Survey Explorer (WISE; Wright et al. 2010). These targets have
the same magnitude range as CMASS and SPARSE, but
employ a single color cut,

r W1 4.165, 1- > ( )

to select galaxies in our desired stellar mass and redshift range
that are outside the standard BOSS color cuts.10 Here,W1 is the
WISE3.4 micron band. Using WISE near-IR photometry is
promising because the IR bands are on the far side of the peak
of stellar emission, so an optical–IR color is sensitive to
redshift. We will refer to the WISE_COMPLETE sample as
WISE for brevity.

There are 7368 objects within the WISE target catalog that
received fibers and recovered accurate redshifts, 2200 of which
are within the redshift range of interest. The g−i color
distribution is broad and flat, with a median stellar mass
of M M1011.06
* = .

2.4. Physical Properties of the BOSS Galaxies

As discussed in the introduction, we are interested in finding
the physical property that correlates the closest with halo mass
via the clustering of the sample. We use stellar mass, galaxy
luminosity, and galaxy velocity dispersion. Our main focus is
stellar mass, but the question of whether stellar mass correlates
any better with halo mass than does luminosity is still open.
Table 1 shows all 16 variations of galaxy properties we use to
rank-order the CMASS galaxy sample. The first 12 are stellar
masses that are included in the standard BOSS pipeline. There
are three different codes for deriving stellar masses from BOSS
data, with each code producing variants based upon parameter
choices (i.e., stellar initial mass function, stellar population
synthesis code, etc.).
The Portsmouth masses (Maraston et al. 2013) use two

template star formation histories, one describes a passively
evolving, old stellar population meant to mimic an LRG-type
galaxy, and the other is an actively star-forming template.
These two templates are combined to make one catalog: each
galaxy is assigned a template based on its color, with a redshift-
dependent break point of g i z3.25 1.67 0.53- = + -( ).
Galaxies redder than this color are assigned the passive
template, with bluer galaxies assigned the star-forming
template. Thus, although we list 14 different stellar mass
definitions in Table 1, there are only 12 different stellar mass
catalogs, two of which are composed of the Portsmouth
masses. The Granada masses are an implementation of the
Flexible Stellar Population Synthesis (FSPS) mass modeling
described in Conroy et al. (2009). The PCA masses (“principal
component analysis”) are described in Chen et al. (2012). In
contrast to the first two methods, the PCA approach uses the
entire galaxy spectrum, decomposing it into principal compo-
nents which are then fit to a library of varying galaxy templates
to obtain the physical properties of the galaxies, including M/L
ratio, velocity dispersion, and star formation rate. We note that
theM/L derived in the PCA method is the M/L within the fiber
aperture, which for BOSS is 2 arcsec. To obtain a total stellar
mass, the M/L ratio is considered to be constant throughout the
galaxy.

Table 1
Quantities to Rank-order the CMASS Galaxies

Number Property Code IMF Comments

1 Stellar mass PCA Kroupa BC03 SPS
2 Stellar mass PCA Kroupa M11 SPS
3 Stellar mass Granada Salpeter wide formation times, no dust
4 Stellar mass Granada Salpeter wide formation times, dust
5 Stellar mass Granada Salpeter early formation times, no dust
6 Stellar mass Granada Salpeter early formation times, dust
7 Stellar mass Granada Kroupa wide formation times, no dust
8 Stellar mass Granada Kroupa wide formation times, dust
9 Stellar mass Granada Kroupa early formation times, no dust
10 Stellar mass Granada Kroupa early formation times, dust
11 Stellar mass Portsmouth Kroupa SF template
12 Stellar mass Portsmouth Salpeter SF template
13 Stellar mass Portsmouth Kroupa passive template
14 Stellar mass Portsmouth Salpeter passive template
15 Luminosity L L absolute, i-band
16 Luminosity L L absolute, i-band, k-corrected
17 Velocity dispersion PCA L L
18 Velocity dispersion Portsmouth L L

10 In the input catalog, we removed any galaxy that also passed the CMASS
cuts. In post-processing, we removed any target that also passed the SPARSE
selection. This latter cut encompassed 11% of the input WISE catalog.
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We use two different estimates of the stellar velocity
dispersion, one that is produced by the PCA analysis, the
other produced by the Portsmouth analysis code (see details for
the latter in Thomas et al. 2013). Lastly, we use absolute i-band
magnitude as our baselines rank-order by which to compare
all the methods. We also include a sample that has been
k-corrected to z=0.52 using the kcorrect code of Blanton
& Roweis (2007).

3. Measurements

3.1. The Completeness and Abundance of the BOSS Galaxy
Samples

Figure 2 shows the stellar mass function, Mlog *F( ), for each
of the three samples discussed previously. All results use the PCA
stellar masses. We estimate Mlog *F( ) using the V1 max method,
while noting that theVmax weighting really only effects the results
at stellar masses below the peak of each distribution. The main
source of incompleteness in these measurements is the color
selection imposed on each sample. The CMASS sample
dominates the statistics at high masses, but the combination of
the SPARSE and WISE samples becomes equivalent to the
CMASS abundance at Mlog 11.4* ~ .

We use the abundance of SPARSE and WISE galaxies to
quantify the completeness of the BOSS target selection.
Figure 3 shows the ratio of the CMASS SMF to that of the
total SMF (i.e., CMASS+SPARSE+WISE) as a function of

Mlog *. The CMASS sample is roughly 50% complete in stellar
mass at Mlog 11.4* = . These results are in reasonable
agreement with those of Leauthaud et al. (2016), which uses
the extra near-infrared imaging data available in Stripe 82 to
estimate completeness. Although the combination of WISE and
SPARSE data get us most of the way to a fully complete

sample, the total sample used in this paper is still missing
10%~ of galaxies at Mlog 11.4= . The stellar masses of

Leauthaud et al. (2016) are different than the PCA masses used
here, due to the inclusion of infrared imaging data. From the
comparison between the near-IR masses and the PCA Bundy
et al. (2015), there is a shift of 0.15 dex between the two mass
definitions, which we use to shift the Leauthaud et al. (2016)
completeness curves onto the PCA mass scale.
At Mlog 11.4* = , the combination of CMASS and SPARSE

is roughly 75% complete. Henceforth we will limit all analyses
to be above this mass scale. The limited size of the WISE
sample prevents us from making robust clustering measure-
ments for WISE galaxies; thus we make the assumption that the
bias of WISE galaxies and SPARSE galaxies is the same when
combining the clustering results of the samples. This does not
significantly affect our results; the constraining power on Mlog *

s
derives from the region of the SMF, where CMASS dominates
the statistics.
Figure 4 shows the completeness-corrected SMF of massive

galaxies down to the limit of Mlog 11.4* = . We fit these data
using a fitting function of the form:

M
M

M

M

M
1 ln 10 , 2

1

1

1
* * * *F = F +

a b g a b+ -⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( ) ( )

( ) ( )

with best-fit parameter values of 2.43 10 2*F = ´ - ,
Mlog 11.471 = , 0.728a = , 1.173b = , and 6.01g = - . This

fitting function will be used to map galaxy mass onto halo mass
using the abundance matching method in Section 4.3.

3.2. Measuring Clustering

Our statistical measure of the clustering of galaxies within
BOSS is the projected two-point correlation function w rp p( ).

Figure 2. Comparison of the space densities of each individual BOSS targets
class. All measurements implement at Vmax correction, which has minimal
effect at Mlog 11.4*  but can significantly enhance the measured abundance
at low masses. Red circles represent the CMASS targets. Green squares
represent the SPARSE sample. Yellow triangles represent the WISE data. Each
of these measurements peaks at a lower stellar mass, demonstrating the effect
of reaching further outside the typical LRG color selection.

Figure 3. Completeness of the BOSS target samples, relative to the total
abundance of all three target classes. At Mlog 11.4* = , indicated by the
vertical dash line, the CMASS sample is only 50% complete. Adding the
SPARSE sample brings the completeness at this mass scale up to 75%.
The CMASS sample by itself is >95% complete at Mlog 11.7* > . At lower
masses, the total abundance is itself incomplete. We thus make a conservative
completeness limit of Mlog 11.4* = for the full BOSS sample, at which scale
both SPARSE and WISE abundances have steep mass functions.

4

The Astrophysical Journal, 839:121 (11pp), 2017 April 20 Tinker et al.



This statistic integrates the two-dimensional redshift-space
correlation function, r r,px p( ), along the line-of-sight direction
rπ. w rp p( ) is defined as

w r r r dr2 , , 3p p p
0

max

ò x= ´
p

p p( ) ( ) ( )

where rp is the projected separation between galaxy pairs and
maxp is the maximal line-of-sight separation, which here we
make 80 h Mpc1- . To estimate r r,px p( ), we use the Lansy–
Szalay estimator (Landy & Szalay 1993) with 107 randoms.
When maxp = ¥, the projected correlation function is identical
whether the argument in the integrand is the real- or redshift-
space correlation function. Having a finite maxp introduces
some deviation from a real-space-only calculation (see, e.g.,
van den Bosch et al. 2013).

The projected clustering of galaxies is our preferred statistic
for two reasons. First, peculiar motions are (mostly) removed in
the line-of-sight integration. At large scales there is still a
residual effect, but we will model this out when fitting for bias.
Second, in the third paper in this series, we will present halo
occupation fits of the clustering to determine the stellar-to-halo
mass ratio of BOSS galaxies. Removing the peculiar motions
makes such modeling less cosmologically dependent and easier
to implement analytically.

To estimate the errors on the correlation function, we
jackknife the DR10 footprint into 100 roughly equal-size
angular regions, removing one subsample at a time and
calculating the covariance matrix as

C
N

N
w w w w

1
, 4ij

n

N

i i j j
1

å=
-

- -
=

( ¯ )( ¯ ) ( )

where N is the total number of jackknife subsamples (100), i
and j represent rp bins, and w̄ represents the mean correlation
function in each bin.

To correct for fiber collisions, we use the angular-
upweighting method as described in White et al. (2011). On
a given plate, fibers can only be positioned within 62 arcsec of
one another. At z=0.5, this translates to a projected separation
of about 400 kpc/h. Roughly 40% of the area within the survey
is covered by multiple plates. These areas have nearly unit
completeness, at least in terms of fiber assignment. Galaxy
pairs within the collision radius are upweighted by the ratio of
the angular correlation function of all CMASS targets, to those
for which fibers were assigned at the angle of the pair in
question. Inside 62″, this ratio11 is nearly a constant value of
2.57. In practice, we only use this method to correct for one rp
bin inside the collision radius, and for no bins that effect our
bias calculation.
We measure the autocorrelation of the CMASS sample, but

the SPARSE sample, by definition, has too low a density to
make a robust measurement of the clustering. We thus cross-
correlate the SPARSE and CMASS samples to get the relative
bias between these two samples, and then divide by the bias of
the overall CMASS sample, which is 1.99±0.04 for the
cosmology chosen.

3.3. Measuring Bias

We use the projected separation range r5 35p< < h Mpc1-

to determine the bias relative to the clustering of matter.
Although clustering is more linear at larger scales, errors on
clustering rise monotonically with scale. Additionally, as rp
increases, the contribution of peculiar velocities to w rp p( ) also
monotonically increases. Although we model out the peculiar
motions, the optimal approach is to extend the rp range out as
far into the linear regime as possible, while keeping the effect
of a finite maxp to under 25%.
To recover linear bias from our clustering measurements, we

need to model both peculiar velocities and nonlinear clustering.
Rather than try to subtract these effects out of our measure-
ments, we add them into the model for the matter clustering.
First we model real-space galaxy clustering as

r b r r , 5mgal gal
2x x z=( ) ( ) ( ) ( )

where rmx ( ) is the nonlinear matter correlation function from
Smith et al. (2003), bgal is the bias parameter for the galaxy
sample, and rz ( ) is the scale-dependent halo bias function from
Equation (B7) in Tinker et al. (2005). This scale-dependence of
halo bias, relative to the large-scale value, asymptotes to unity
at r 20 h Mpc1- , with a maximum deviation of 10%~ at
r 2~ h Mpc1- (see Figure 12 in White et al. 2011 for a halo
occupation fit of the scale-dependent bias of BOSS CMASS
galaxies). At smaller scales, the scale-dependence of galaxy
bias becomes dependent on the details of halo occupation, and
it is only partially correlated with bias at large scales.
Second, we incorporate the effects of peculiar velocities

using the linear approximation of Kaiser (1987). Although
peculiar velocities are poorly described by linear theory at
r 20 h Mpc1- , maxp of 80 h Mpc1- eliminates the contrib-
ution of redshift-space distortions at scales where linear theory
breaks down. The configuration-space implementation of the
Kaiser effect is described in detail in Appendix A of Hawkins
et al. (2003).

Figure 4. Upper panel: the total BOSS stellar mass function at
z 0.45, 0.60= [ ], down to our completeness limit of Mlog 11.4* = . The
best-fit parameters of equation (x) are shown with the solid curve. Lower panel:
residuals of the fit. The y-axis is BOSS fit fitF - F F( ) . The 2c for this fit is 7.0
for (10–5) degrees of freedom.

11 This, incidentally, is the ratio of total area of the survey to that covered by
more than one plate.
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In practice, we fit for bgal by 2c minimization using the full
covariance matrix.

3.4. Numerical Simulations

Our theoretical models are created using the publicly
available halo catalog from the MultiDark simulation (Nuza
et al. 2013). The cosmology for this simulation is 0.27mW =
and 0.828s = . The halo catalog incorporates halos and
subhalos using the ROCKSTAR algorithm of Behroozi et al.
(2013b). We populate these halos with galaxies, using the
subhalo abundance matching model (a.k.a. SHAM; see
Reddick et al. 2013 and references therein). In its simplest
form, abundance matching provides a unique mapping of halo
mass onto galaxy mass (or galaxy luminosity) by assuming a
one-to-one relation between the two without any scatter. There
are multiple ways to incorporate scatter (Behroozi et al. 2010;
Trujillo-Gomez et al. 2011). We use the method in Wetzel &
White (2010), in which the stellar mass function is first
deconvolve of lognormal scatter of width Mlog *s . This allows
us to employ the simple abundance matching method using the
monotonic relation between M* and Mh. Then the Mlog * of
each galaxy is shifted by a random Gaussian deviate of the
same width.

Once halos are populated with galaxies, the large-scale bias
of the model is calculated by binning the mock galaxies by

Mlog * in the same manner as the data, and summing over each
halo in the stellar mass bin, weighting each galaxy by the bias
value b Mh halo( ) given by the Tinker et al. (2010) bias function.
For subhalos, we use the mass of the host halo (the halo that the
subhalo is located within) to calculate the bias. More explicitly,
the bias of sample galaxies is given by summing over each
galaxy, i, in the sample,

b
N

b M
1

, 6
i

h
i

gal
gal

hostå= ( ) ( )( )

where Ngal is the total number of galaxies in the sample. This
approach allows us to calculate the large-scale bias rapidly,

without explicitly measuring the clustering of the mock
galaxies. This is also less noisy than measuring the clustering,
an important feature in this method, as the BOSS data is
actually a larger volume than the MultiDark simulation.

4. Results

4.1. What Galaxy Property Correlates Most with Halo Mass?

Figure 5 compares the clustering of all 18 properties listed in
Table 1 at fixed number density. For each quantity, we rank-
order the sample form highest to lowest value. In this method,
cutting the samples at a given rank means that each sample has
the same number density. In the left panel, we show w rp p( )
relative to the i-band w rp p( ) for the top 100,000 galaxies for
each property (about 1 3~ the total sample). In the right panel,
we show the results for the top 25,000 galaxies in each
property, although in the right panel we only show a subset of
the properties considered. These two sample sizes correspond
roughly to the number densities of 1.2 10 4~ ´ - and

h0.3 10 Mpc4 1 3´ - - -( ) , respectively.
The left panel demonstrates that the observed scatter

between halo mass and luminosity is larger than all other
galaxy properties considered, regardless of the stellar mass
code employed. The cabal of photometrically based stellar
mass estimates yield a bias roughly 3% higher than i-band
magnitude. Because all the different variations of these two
codes are roughly consistent with one another, we do not
attempt to differentiate them in the plot. The clustering for
these samples increases sharply at r 1p < h Mpc1- relative to i-
band clustering. Clustering at these scales is reflective of the
number of satellite galaxies per halo (often referred to as the
“one-halo” term). At fixed luminosity, red galaxies are less
massive than blue galaxies. Because satellite galaxies are more
often red than field galaxies of the same M*, at fixed number
density, there will be a higher fraction of satellites when ranked
by M* rather than by luminosity. This argument is clearly
applicable for a complete sample like the SDSS Main galaxy

Figure 5. Top left: projected clustering relative to clustering of BOSS CMASS galaxies ordered by i-band absolute magnitude. The shaded region indicates the typical
error of the clustering measurement. The red symbols indicate the clustering when BOSS galaxies are rank-ordered by the PCA masses. The yellow triangles indicate
clustering when ranked by i-band absolute magnitude k-corrected to z=0.52. The blue dotted curves are the clustering when ranked by Granada Granada masses. The
green dashed curves indicate the clustering ranked by Portsmouth masses. The orange symbols indicate clustering when galaxies are ranked by velocity dispersion;
orange circles are the PCA estimate of velocity dispersion, while orange squares are the Portsmouth dispersion estimate. All samples are the top 100,000 out of
350,000 galaxies in this redshift slice. Top right: projected clustering for a subset of the samples in the left panel (to avoid confusion). In this panel, clustering for the
top 25,000 galaxies is measured for each rank-order. Red squares show the PCA masses with BC03 SPS models. The blue dotted curve is the fiducial Granada mass:
early formation times, Kroupa IMF, dust modeling. The green dashed line is the fiducial Portsmouth mass, which uses Kroupa IMF. The yellow triangles represent k-
corrected i-magnitude. The differences between PCA and other ranking methods is large enough to be seen without taking ratios.
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sample. For the CMASS target selection, which preferentially
selects red galaxies, the impact of this argument is less clear.
However, the increase in the clustering in one-halo terms
argues that the small fraction of blue galaxies in CMASS is
coming into play when rank-ordering the same by luminosity
and by stellar mass.

The amplitude of clustering for the samples defined by
velocity dispersion is consistent with the photometrically
derived stellar masses. For some photometric stellar mass
codes, the clustering of the velocity dispersion sample is
slightly higher than the photometric stellar mass clustering, but
when considering the entire ensemble of photometric mass
definitions, it is not clear that there is any differentiation
between the two properties when it comes to clustering
amplitude.

The spectroscopic PCA masses have a clustering amplitude
25%~ higher than i-band clustering, significantly higher than

both velocity dispersion and photometric stellar mass.
Although we do not perform any halo occupation fits of the
clustering, it is improbable to ascribe the boost in the large-
scale amplitude entirely to an increase in satellite galaxies; as
opposed to the photometric stellar masses, the relative w rp p( )
for the PCA masses decreases in the one-halo term. In the right
panel, we restrict the lists to only the highest 25,000 objects by
rank. In this sample, the difference between the PCA clustering
and the other samples is large enough—∼60%—to be seen
clearly on a logarithmic scale, and without taking ratios. In this
panel, we show only a subset of clustering results in order to
avoid crowding of the plot.

We note that the enhanced clustering of the PCA masses is
not due to any selection effect (i.e., in the samples in the left
and right panels of Figure 5, the distribution of color and
luminosity for the most massive PCA galaxies are nearly
indistinguishable from the most massive FSPS and Portsmouth
galaxies). We therefore conclude that Mlog *s , and by extension

errs , for the PCA masses is smaller than for photometrically
defined stellar masses, galaxy luminosity, and stellar velocity
dispersion. For the remainder of this paper, all results will use
the PCA masses with the BC03 SPS code.

4.2. Bias as a Function of Stellar Mass

Figure 6 shows the measured values of w rp p( ) for CMASS
and the total CMASS sample crossed with SPARSE galaxies,
binned by stellar mass. Using the technique described in
Section 3.3, we fit for bgal for each bin in M* for CMASS and
for the CMASS-SPARSE cross-correlation. Figure 7 shows the
results for each sample. The SPARSE results have had the bias
of the overall CMASS sample divided out. At Mlog 11.4*  ,
the CMASS bias rises monotonically with stellar mass. Not
coincidentally, this is the mass range where the CMASS
sample is most complete in stellar mass. In terms of space
density, the CMASS sample peaks at Mlog 11.4* = , and
rapidly decreases at smaller masses, mainly due to the color

Figure 6. Left panel: projected clustering of CMASS galaxies binned by stellar mass above the completeness limit of the CMASS selection algorithm. The solid black
curve shows the nonlinear clustering of dark matter. Middle panel: clustering of CMASS galaxies at and below the completeness limit of the sample. Right panel:
cross-correlation function of the SPARSE sample, binned by stellar mass, with the full CMASS sample. In each panel, the numbers on the right side indicate the center
of the bin in Mlog *.

Figure 7. Bias as a function of stellar mass for the CMASS sample (circles),
the SPARSE sample (squares), and the combined sample (gray shaded region).
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cuts. At Mlog 11.4* < , the CMASS bias rises back up again.
This rise at low masses can be explained if the target selection
cuts preferentially select satellite galaxies at lower masses.
Previous studies of color-dependent clustering have shown this
U-shaped behavior is red galaxy clustering (see, e.g., Swanson
et al. 2008; Ross et al. 2011), a trend that is driven by the
increasing fraction of satellite galaxies in the red subsample as
luminosity or stellar mass decreases. In contrast to those
results, the minimum bias shown in Figure 7 is at a much
higher mass relative to the knee in the stellar mass function, but
it is possible that the effect is amplified by the BOSS CMASS
color cuts.

However, the clustering of the SPARSE sample is nearly
independent of stellar mass. The WISE sample is not large
enough to afford spatial clustering analysis, so we make the
approximation that the WISE clustering is the same as the
SPARSE and weight the SPARSE clustering results accord-
ingly. The shaded band represents the total bias of galaxies in
the combined sample weighted by the relative number of the
CMASS versus the (WISE+SPARSE) samples.

4.3. Scatter of Stellar Mass at Fixed Halo Mass

Figure 8 compares our combined bias results to predictions
from the numerical simulation described in Section 3.4. As
described previously, each curve represents a model that
matches the same stellar mass function, but has different
amounts of scatter between halo mass and stellar mass. Four
different curves representing different Mlog *s values are shown
for comparison. A model with zero scatter would predict
clustering too high relative to the results. A model with scatter
at 0.26Mlog *s = is ruled out because the clustering amplitudes
are too low. The best-fit value of Mlog *s is 0.18, with a 68%
confidence interval of [0.16, 0.19].

The SDSS pipeline reports a mean error of 0.16 dex for the
PCA masses. This includes both systematic and random errors.
To estimate errs —the statistical errors alone—we use repeated
spectra of CMASS galaxies that occur on regions of the
footprint covered by multiple tiles. The rms difference in
masses between the repeat spectra is 0.11 dex, implying that
the intrinsic scatter of stellar mass at fixed Mhalo is 0.16 dex.
The completeness at M 1011.5

*  deviates from unity, so it is
possible that Mlog *s of galaxies that pass the CMASS and
SPARSE color cuts is not representative of the full scatter, but
it is clear that the bias at these masses is relatively insensitive to

Mlog *s and the constraints are driven by the higher masses.

4.4. The Stellar-to-halo Mass Relation

Figure 9 shows the SHMR using the best-fit Mlog *s value of
0.18. The solid curve represents the mean stellar mass at fixed
halo mass, M Mhalo*á ñ∣ . Due to the steepness of the halo mass
function, the reverse relation, M Mhalo *á ñ∣ , is quite different. The
filled circles show the M Mhalo *á ñ∣ for the bins analyzed in this
paper. The errors show the inner 68% of the distribution of

Mlog halo in each bin, demonstrating the significant overlap in
the halo distribution analyzed in each bin.
The left side of Figure 10 shows the sensitivity of the SHMR

to the assumed value of Mlog *s . At 0.13Mlog *s = , the SHMR is
a steeply rising function of Mhalo. At 0.20Mlog *s = , M*
becomes nearly independent of halo mass at Mlog 14halo  .
The reverse relation, M Mhalo *á ñ∣ , shows the opposite trend: as

Mlog *s gets larger, the mean halo mass at fixed M* decreases,
yielding the trend of the theoretical models in Figure 8 and
producing the tight constraints on Mlog *s .
The right side of Figure 10 compares our best-fit relation to a

sample of other measurements. Those based purely on
abundance matching—that is, where no other data other than
the stellar mass function is fit (Behroozi et al. 2013a and
Moster et al. 2013 in the figure)—lie significantly below our

Figure 8. The combined CMASS+SPARSE bias values compared with
models derived by abundance matching dark matter halos and subhalos in the
MultiDark simulation and the stellar mass function of BOSS. Different curves
indicate different values of scatter (in Mlog *) in stellar mass at fixed halo mass.

Figure 9. The stellar-to-halo mass relation (SHMR) for BOSS CMASS
galaxies using the PCA stellar mass estimates. The solid green curve shows the
mean M* in bins of Mhalo, with the dashed curves indicating the 0.18 dex in
scatter of the best-fit relation. The colored circles show the mean Mhalo in the
observed bins in M* used in this paper. Error bars indicate the inner 68% of
the distribution of Mlog halo in each bin. The gray shaded region indicates the
number of halos, scaled as Nlog h, at each point in this 2D parameter space.
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relation. This comparison is complicated by different stellar
mass estimates and significantly smaller data samples at z=1,
but it is clear the estimates that probe this relation directly using
galaxy groups and clusters are in better agreement with the
BOSS relation (Lin & Mohr 2004; Hansen et al. 2009; Yang
et al. 2009, 2012). Finally, our results are in good agreement
with the SHMR for BOSS galaxies obtained by Rodríguez-
Torres et al. (2016). This relation is based on the Portsmouth
stellar masses (line 13 in Table 1), and the abundance matching
is based on peak circular velocity, with a scatter of V0.31 peak´
obtained by matching the redshift-space monopole of the
galaxy correlation function.

5. Discussion

In this paper we have demonstrated a novel method of
discriminating between disparate methods of estimating the
stellar masses of galaxies. We caution that the clustering results
represent only half the story when it comes to appraising
different methods, because clustering is only sensitive to the
rank-ordering of a set of galaxies, from most massive to least
massive, which in turn provides information on the scatter
induced in the estimation of M*. However, the method has
nothing to say about absolute offsets between different
methods. Using this technique, the stellar masses derived from
the PCA code of Chen et al. (2012) correlate more strongly
with halo mass than i-band magnitude, velocity dispersion, and
other estimates of stellar mass provided in the BOSS pipeline.
These other stellar masses are based on photometric data only,
while the PCA masses are based on analysis of the spectral
information. The PCA method has the limitation that the
spectra only contain information about the galaxy from within
the diameter of the fiber, which for BOSS is 2. This may lead
to aperture bias for the derived quantities, but any bias goes in
the direction of strengthening the correlation with halo mass,
which indicates something fundamental about the quantities
being estimated. But given the average radius of the typical
BOSS galaxy of 1 2 (Masters et al. 2010), aperture bias might

be non-negligible, but it is unlikely to be the dominant source
of the differences between the methods.
Bundy et al. (2015) present a detailed comparison of the

Porstmouth and PCA masses, with masses obtained using
extra-infrared imaging available in the SDSS southern
equatorial stripe, “Stripe 82” in the collaboration parlance.
The dispersion between the Portsmouth masses12 and the near-
IR masses is 0.29 dex, while the dispersion between near-IR
and PCA masses is 0.20. The tighter correlation with near-IR
masses supports the results here that the PCA masses have a
smaller intrinsic scatter relative to other photometric-based
methods.
However, as discussed previously, there is a bias between

the near-IR and PCA of 0.15 dex as well, as well as an offset of
the PCA masses with respect to the Porstmouth values (Chen
et al. 2012). Additionally, the lower amplitude of the PCA
w rp p( ) at r 1p < Mpc h−1 is indicative of fewer satellite galaxies
in the PCA sample relative to the other stellar mass samples (cf.
Figure 5). This does not mean that satellites are “missing” from
the PCA catalog, but rather that they are assigned lower masses
than in other catalogs. Satellites should be redder than the
overall population, implying that the PCA method finds higher
stellar masses for bluer galaxies relative to other methods.
Tinker et al. (2012) found that X-ray groups with bluer central
galaxies have higher clustering at fixed halo mass, at the same
redshift and stellar mass as the BOSS sample. Tinker et al.
(2012) concluded that this was assembly bias in massive
galaxies, with the caveat that the sample was statistically
limited. It is possible that the higher clustering amplitude of the
PCA masses is partly due to an assembly bias effect imparted
by the relative ranking of bluer and redder galaxies within the
catalog, and not entirely from a minimization of intrinsic
scatter. The evidence for this is circumstantial at best, but is
worth further investigation.

Figure 10. Left side: the sensitivity of the SHMR to the assumed value of Mlog *s . The solid curves show the SHMR for each value of scatter indicated in the key. The
dashed curves show the mean Mhalo in bins of M*. This figure explains why the bias in Figure 8, b M*( ), decreases as the scatter increases. Right side: comparison of
the SHMR derived here to other measurements in the literature. There are few measurements at z=0.5, so we show values at z=0 and z=1 from the same works,
with the expectation that the z=0.5 value should lie somewhere in between. Estimates of the SHMR from abundance matching, such as Behroozi et al. (2013a) and
Moster et al. (2013), lie significantly below the relation here. Values derived from cluster samples appear to be in much better agreement with BOSS. Lastly, we are in
good agreement with the results of Rodríguez-Torres et al. (2016), who also analyze the CMASS sample but using a different stellar mass estimate and abundance
matching technique.

12 The Portsmouth masses used here, which are a combination of the two
templates based on galaxy color, are referred to in Bundy et al. (2015) as
“Porstmouth Best.”
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It is noteworthy that all stellar mass estimates considered
here correlate with halo mass better than absolute magnitude.
The CMASS sample, although it is primarily intended to target
luminous red galaxies, does have a non-negligible component
of star formation galaxies with blue(ish) colors that have a
lower clustering amplitude at fixed Mi (Guo et al. 2013). We
conclude that almost any estimate of stellar mass provides a
more robust rank-ordering of a heterogeneous color sample of
galaxies relative to luminosity alone.

In our analysis, the photometric stellar mass indicators
provide the same level of scatter as velocity dispersion, all of
which yield a larger scatter than the PCA stellar masses. Wake
et al. (2012) used clustering to claim that velocity dispersion
had a stronger correlation with halo mass than stellar mass, a
result that was challenged by Li et al. (2013), who claim that
the Wake etal.result is contaminated by satellite galaxies, and
once these satellites are removed, stellar mass has the strongest
correlation. Our results suggest that the choice of stellar mass
estimator can play a large role in this comparison. Both Wake
etal.and Li etal.employ photometric mass estimates, which
are likely to include extra measurement scatter, although we do
not test their exact methods. We make no attempt to remove
satellite galaxies from our analysis, but the satellite fraction of
BOSS galaxies is low ( f 0.10 0.02sat =  from White
et al. 2011), and it is clear in Figure 5 that the PCA clustering
in the one-halo term (r h1 Mpcp

1 - ) is lower relative to the
photometrically based codes. This implies that the satellite
fraction of the PCA sample is smaller than the satellite fraction
of the other samples, thus not artificially enhancing the
clustering of the sample. Our theoretical modeling includes
subhalos in the abundance matching procedure, and this
method yields the proper satellite fraction of BOSS galaxies
(Nuza et al. 2013).

Our constraint on Mlog *s of 0.18 0.02
0.01

-
+ compares favorably with

other estimates from the literature. Zu & Mandelbaum (2016) use
abundance and lensing data to obtain 0.20 0.01Mlog *s =  at
M 10halo

13= h M1-
 (linearly interpolating between their results

at 1012 and 1014). More et al. (2011), using satellite kinematics,
find 68% confidence regions of 0.14, 0.21[ ] for red galaxies and
0.07, 0.26[ ] for blue galaxies in the SDSS Main sample. Reddick
et al. (2013), using the SHAM approach with multiple free
parameters constrained by both clustering and comparison to an
SDSS group catalog, find 0.20 0.03Mlog *s =  . Leauthaud
et al. (2012) apply the SHMR approach to multiple statistics in the
COSMOS field to find 0.25 0.02Mlog *s =  at similar redshifts
to those probed here. Our constraint has both the smallest
uncertainty and the lowest value itself. The previous measure-
ments used photometrically derived stellar masses, which must be
contributing to the measurement scatter in each study. Kravtsov
et al. (2014) measure the scatter in brightest cluster galaxy mass
for a sample of X-ray clusters, finding 0.17 0.02Mlog *s =  ,
which is in excellent agreement with our results. The notable
aspect of the comparison between Kravtsov et al. (2014) and our
results is that they are largely distinct in the halo masses probed.
Kravtsov etal.analyze clusters at M 10halo

14 h M1-
, which is

the upper limit of the halo masses probed by out stellar mass bins.
This implies that Mlog *s is independent of halo mass over the
range M12.7 log 15.2halo  . This has largely been assumed,
mainly because existing data could be fit with a constant scatter,
and constraints on Mlog *s at low halo and galaxy masses are very
weak because of the lack of variation of bias with halo mass at
those scales. Additionally, all of these results imply little to no

redshift evolution in Mlog *s for massive galaxies. This is expected,
given that the maority of the galaxy population at these masses is
passively evolving, although strict passive evolution does not fit
the evolution of the clustering of massive galaxies over the same
timespan (Zhai et al. 2016).
Gu et al. (2016) investigate the origin of scatter at fixed halo

mass by following the hierarchical buildup of both dark and
stellar mass in simulations using abundance matching as a
function of cosmic time. They find that Mlog *s from merging
alone (e.g., “ex-situ” stellar mass growth) can account for 0.16
dex of scatter at cluster-scale halo masses. This is in excellent
agreement with Kravtsov et al. (2014), but the comparison with
the BOSS results is more nuanced. Our SHMR indicates that
the average 1014 h M1-

 halo contains at M1011.5
 galaxy, but

once binned by stellar mass, the average halo at that mass scale
is 1013~ h M1-

. The Gu et al. (2016) simulations indicate that,
at that halo mass, “in situ” processes dominate. The abundance
matching analyses indicate that the fraction of stellar mass from
merging for M 10halo

13~ h M1-
 is low, 10% from Moster

et al. (2013) and 25% from Behroozi et al. (2013a). Thus
CMASS galaxies, although they are among the most massive in
the universe, still are a sensitive probe of the physics of galaxy
formation.
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