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Abstract

Resonance fluorescence from solid state devices have been motivated by the capability to

obtain a bright source of antibunched and indistinguishable photons from a semiconductor

chip. Such a photon source would be a strong candidate for applications in the quantum

information field. In this thesis, an experimental setup to obtain high signal to noise reso-

nance fluorescence from a single quantum dot is first presented. I then discuss the photon

statistics, power spectrum, second-order correlation function and two-photon interference

of the stream of resonance fluorescence. Particular emphasis is placed on a throughout in-

vestigation of spectral fluctuations caused by charge noise and Overhauser field generated

by fluctuating nuclear spins in the quantum dot. In each case, it is found that noise can

be overcome to generate single photons that exhibit high visibility two-photon interference.

Finally, an interference effect caused by the interaction of a quantum dot and a nearby metal

surface is presented. Preliminary analysis yields quantitative agreement with the data.
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2.1 Sketch of the experimental setup. On an optical table, 50% of the exci-

tation laser beam from a 950 nm laser is coupled into a SMF using an as-

pheric lens and sent to a wavemeter, where its wavelength is recorded and

stabilised through a PID system in the laser controller. The other 50% of the

light interacts with a ND filter wheel for power calibration and with a QWP

and a HWP for polarisation control in free-space. This is then coupled into

a SMF by another lens, which takes the laser signal to the excitation arm of

the microscope head placed on a cryostat platform. In the excitation arm,

the light is collimated, passed through a LP and reflected to the sample by a

TUGP beam splitter. This downward travelling beam is transmitted through

an AR coated optical window and starts travelling inside the sample tube.

The power of the radiation transmitted by the beam splitter is measured by

a PD. Before reaching the sample, the light is focused by another aspheric

lens. The sample is placed on an xy-scanner, which is on the top of a stack

of nano drives which gives the freedom to move the sample in three dimen-

sions. For non-resonant photoluminescence experiments, a second diode

laser with wavelength of about 830 nm was also coupled into the system. . . 5

2.2 Configuration of the optical elements to check the background light

suppression. The light from the LP interacts with a QWP to correct any

polarisation distortion caused by the interaction of the light with the optical

elements before it reaches beam splitter. The light is then suppressed by the

PBSC (left) or a second LP (right) and the resulting radiation is monitored

by a CCD camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Background light suppression. Linearly polarised laser suppression for

different beam splitters (PBSC, LPBS, TUGP) and without a beam splitter

(on the right side) monitored with a sensitive CCD camera. . . . . . . . . . 7
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2.4 Energy diagram of a charge-tunable QD. The detuning between the QD

energy and the Fermi sea (EF ) can be controlled through the gate voltage

(V0), and if they are far (close) from resonance, the probability of the elec-

tron to tunnel into the QD is small (big), as can be observed in (a) and (b),

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Bulk sample structure. The bulk sample is composed by (bottom to up):

GaAs buffer layer, n-doped GaAs layer, GaAs tunnel barrier, InAs QD

layer, GaAs capping layer, AlAs/GaAs blocking barrier, GaAs cap and the

Si SIL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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contact with the n-doped layer; (b) deposit 150 nm Au layer as Schottky

contact and back reflecting mirror, leaving a 500 µm insulation gap between

the ohmic contact and Schottky contact; (c) flip the sample and transfer it to

a host substrate using an epoxy glue and compression; (d) selectively etch

the bonded sample to remove GaAs substrate and AlGaAs sacrificial layer

of the QD sample in sequence; (e) selectively etch the access areas for both

contacts wiring; (f) wire both contacts using silver paint. . . . . . . . . . . 10

2.7 FDTD simulations (figure supplied by Dr. Yong Ma). FDTD simulation

of the electric field distribution for a QD embedded in (a) bulk GaAs for
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for emission wavelength of 937 nm using geometric parameters from the

optimized structure of our design. . . . . . . . . . . . . . . . . . . . . . . 11

2.8 Photoluminescence map of a charge-tunable device. The number of Xs

in the symbol indicates how many electron-hole pairs are involved in the
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to X2−, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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Chapter 1

Introduction

Nowadays, most information processing is based on the charge flux in electronic devices.

In the search for alternatives, the principles of quantum mechanics have been exploited to

propose new ways to process information. Here, the classical bits (basic information unit)

would be replaced by two states of a quantum system. These would be called quantum bits

or qubits. The main advantage of the qubits over the classical bits is that information can

be stored in a superposition of the two quantum states instead of only one of the states as

in classical information processing. However, the most interesting situation happens when

two qubits interact with each other and the quantum state of the system can be anyone de-

scribing the mixture of the two qubits. Some quantum algorithms have demonstrated that

this feature could be used to accelerate the processing rate of some information tasks [1, 2].

One example is the factorisation of a large number, which takes a long time to perform

with today’s computers and for this reason is the basis for information encryption. This

has motivated research and proposals in which quantum systems would be ideal. Among

these proposals, the most promising is the seminal work of Loss and DiVincenzo [3], who

proposed to use the spin degree of freedom in semiconductor quantum dots, whose deco-

herence time is relatively large, allowing many manipulations before the information dete-

rioration. Fortunately, such a system can interact with light, making optics based systems

interesting for this purpose.

A quantum dot (QD) is a nanometric region shaped like an island and composed of

a semiconductor embedded in another semiconductor of larger band gap. They exhibit

characteristics in both transport and optical spectroscopy which indicate that the charge

carriers are confined in the three dimensions. Electrons and holes (lack of an electron in the

valence band) in QDs can occupy only a specific set of states with discrete energy levels, as

an atom. Because of these similarities, the QDs are also called artificial atoms [4, 5], and
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in principal allow experiments similar to ones performed in atomic physics but in a fully

controlled solid state environment.

In this work a single QD transition is studied using the resonance fluorescence tech-

nique [6], which relies on the resonant excitation of the optical transition. This yields a

main experimental obstacle: the distinction between the light emitted by the QD and the

laser light reflected by the sample surface. In the next chapter, the experimental setup will

be fully described, including the self-assembled QD samples and the dark-field microscope

used to achieve high signal to noise resonance fluorescence (RF) signal. The steps to-

wards the optimal version of the microscope is also discussed, as well as the non-resonant

photoluminescence technique used to find the QDs both spectrally and spatially, and the

measurement of the Stark coefficient, which quantifies the dependence of the energy shift

of the QD transition on the bias voltage applied to the device, using resonance fluorescence.

The third chapter is dedicated to the analysis of the two-level system (TLS), which is

a good approximation for the neutral exciton (X0) and negatively charged exciton (X1−)

transitions of the QD in the absence of magnetic field. Here I present the photon statis-

tics, power spectrum of the QD emission, second-order correlation function and the Hong-

Ou-Mandel (HOM) interference under weak, moderate and strong charge noise regimes.

Charge noise is a consequence of the interaction between the charge carriers in the QD and

the time-dependent charge density in the QD environment.

In the fourth chapter, the optical properties of the four-level system formed by the X1−

transition under an external magnetic field in the Faraday geometry are investigated, as

well as the consequences of the random magnetic field resulted from the set nuclear spin

(Overhauser field) on the power spectrum and second-order correlation of the QD emission.

The fifth chapter is dedicated to the discussion of the interaction between the QD and

the gold mirror of the planar-cavity antenna (PCA) samples. It starts from the discussion of

the experimental results, then, preliminary analysis is presented.
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Chapter 2

Experimental methods

In this chapter, I will present the experimental techniques used to perform the research in

this thesis. First, I will describe the overall experimental setup that enables ultra-stable

RF of a single QD for an unlimited time. I will then describe the dark-field microscope

used to obtain RF with the scattered laser light suppressed by a factor greater than 107.

This enables very high (> 1000) signal to background ratios. Next, I will present the

analytical components: the spectrometer, Fabry-Perot interferometer (FPI), Hanbury Brown

and Twiss (HBT), and HOM interferometers as well as the timing electronics. Finally, I

will describe the charge-tunable QD sample designs [7]. These samples were grown by

the application of the molecular beam epitaxy technique [5, 8, 9, 10, 11]. Three samples

were investigated during the course of this thesis, which are refereed to as: 1) the bulk

sample, 2) the ‘noisy’ planar cavity antenna (PCA) sample, and 3) the ‘clean’ PCA sample.

The PCA provides an increased collection efficiency, ∼ 10 times greater than the bulk

sample [12]. Sample 1 was grown by Prof. Gerardot in Prof. Petroff’s lab at University

of California, Santa Barbara. Sample 2 was grown in the University of Sheffield by Dr.

Edmund Clarke’s group and Sample 3 in the Korea Institute of of Science and Technology

by Dr. Song’s group. The PCA processing and fabrication was performed by Yong Ma

in Prof. Gerardot’s lab at Heriot-Watt University. The main contribution of the author for

the experimental setup was the construction of the microscope head placed on the cryostat

[Fig. 2.1].

The dark-field confocal microscope relies on the polarisation of the light emitted by

the QD in order to suppress the reasonable amount of light reflected by the GaAs sample

surface [6, 13] by a factor greater than 107.
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Experimental setup

Collecting resonantly scattered photons from a single quantum dot is an important step

towards the use of QDs for quantum network with applications in quantum communication

[14] and for spin-based qubit initialisation, manipulation and read-out [15, 16, 17, 18]. The

challenge for the experimental realisation is to distinguish between the photons scattered

from the QD and the photons reflected from the sample surface, since they have the same

energy. In this work, we exploit the polarisation to differentiate photons from these two

different sources.

The complete experimental setup is described in this section, starting from the primary

source of photons until the detector, which is the final destination of the resonantly scattered

photons, following the optical path [Fig. 2.1].

On an optical table, 50% of the excitation laser beam from a tunable diode laser is

coupled into a single-mode fibre (SMF) using an aspheric lens of numerical aperture (NA)

equal to 0.15 and focal distance equal to 18.40 mm and sent to a wavemeter, where its wave-

length is recorded and stabilised through a proportional-integral-derivative (PID) system in

the laser controller. The other 50% of the light interacts with a continuously variable neu-

tral density (ND) filter wheel for power calibration and with a quarter-wave plate (QWP)

and a half-wave plate (HWP) for polarisation control in free-space. This is then coupled

into a SMF by another aspheric lens of NA equal to 0.15. The laser is coupled into the

single-mode fibre by adjusting its position using a xy translation mount (Thorlabs/ST1XY-

D) and all the lenses in the microscope were mounted in a z-axis translation mount (Thor-

labs/SM1Z) in order to place it in an optimum position. The details of all the parts used in

the microscope can be found in [Appendix A]. The fibre takes the laser signal to the exci-

tation arm of the microscope head placed on a cryostat platform. In the excitation arm, the

light is collimated and passed through a linear polariser (LP). The linearly polarised light is

reflected to the sample by a 5 mm thick and uncoated glass plate (TUGP) beam splitter with

reflectance of ∼ 4% per surface. This downward travelling beam is transmitted through an

anti-reflection (AR) coated optical window. The power of the radiation transmitted by the

beam splitter is measured by a photodiode (PD). Before reaching the sample, the light is

focused by another aspheric lens with NA equal to 0.68 and focal distance equal to 2.75

mm [Fig. 2.1]. The sample is placed on an xy-scanner, which is on the top of a stack of

nano drives which gives the freedom to move the sample in three dimensions. The optical
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window is the interface between the microscope head, used for excitation and collection,

and the sample tube, which is evacuated and then filled with 20 mbar of He gas.

Laser
950 nm

50%

Lens
0.15NAND filter

Laser
controller

Wavemeter

SMF

LP1

PD

Lens
0.68NA

Opt. window

Electrical
connection

SIL
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96%
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Optical table
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Figure 2.1: Sketch of the experimental setup. On an optical table, 50% of the excitation
laser beam from a 950 nm laser is coupled into a SMF using an aspheric lens and sent
to a wavemeter, where its wavelength is recorded and stabilised through a PID system in
the laser controller. The other 50% of the light interacts with a ND filter wheel for power
calibration and with a QWP and a HWP for polarisation control in free-space. This is
then coupled into a SMF by another lens, which takes the laser signal to the excitation
arm of the microscope head placed on a cryostat platform. In the excitation arm, the light
is collimated, passed through a LP and reflected to the sample by a TUGP beam splitter.
This downward travelling beam is transmitted through an AR coated optical window and
starts travelling inside the sample tube. The power of the radiation transmitted by the beam
splitter is measured by a PD. Before reaching the sample, the light is focused by another
aspheric lens. The sample is placed on an xy-scanner, which is on the top of a stack of nano
drives which gives the freedom to move the sample in three dimensions. For non-resonant
photoluminescence experiments, a second diode laser with wavelength of about 830 nm
was also coupled into the system.

To be able to perform non-resonant photoluminescence experiments, a second diode

laser with wavelength of about 830 nm was also coupled into the system. The output beam

from this laser interacts with a HWP and then is coupled into a SMF, from where it follows

the same path as the resonant laser beam until reaching the first mating sleeve (FFC) taking

the signal and remaining background to the spectrometer. The results of this experiment is

presented in [Sec. 2.3].
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The circularly (linearly) polarised light emitted by the negatively-charged X1− (neutral

exciton X0) transition of the QDs in the sample and some amount of reflected laser - which

will be called background light from now on - are collected by the same lens used to fo-

cus the excitation laser beam to the sample [6, 13]. The QDs signal and the background

light are ∼ 96% transmitted by each surface of two glass-plate beam splitters and the sig-

nal reflected by the second (upper) beam splitter is captured by a charge-coupled device

(CCD) image sensor for alignment purposes. After crossing both beam splitters the signal

and background light reach the collection arm and interact with a QWP in order to correct

for any distortion that the linearly polarised excitation laser beam suffered by interacting

with these optical elements. The scattered laser light is the suppressed by another LP (LP2)

set to be orthogonal to LP1 in the excitation arm. Just after LP2 the light is coupled into

another single-mode fibre, which is also very important for the background suppression be-

cause of the spatial mode of the background light, described as the “Maltese cross”, which

is originated from the interaction between the excitation laser with the curved surface of the

lens with high NA [19]. While the background light is suppressed by the a factor > 107,

the signal from the QDs is suppressed only by a factor of two because of its circular polar-

isation (X1− case) or linear polarisation rotated by 45 degrees if the transition is X0. After

the background suppression, the signal and any remaining amount of background light is

sent to the spectrometer, single-photon avalanche diode (SPAD), FPI, HOM interferome-

ter for two-photon interference or HBT interferometer for g2(τ), depending on the kind of

measurement desired [Fig. 2.1].

Beam splitter analysis

Before reaching the final and optimal version of the microscope described above, some

beam splitters were checked in order to find the best optical element for background light

suppression. The best three elements were a polarising beam splitter cube (PBSC), a long

pass beam splitter (LPBS) and a thick uncoated glass plate (TUGP). The configuration

LP/QWP/LP was also checked just for comparison with the other elements.

The input laser (top arrow in [Fig. 2.2]) interacts with a LP adjusted to give maximal

suppression and with a QWP to correct for any distortion in the linear polarisation before

reaching the PBSC (left side in [Fig. 2.2]) or the second LP (right side in [Fig. 2.2]) in the

case of a non-polarising beam splitter. The output from the PBSC or LP is monitored by a

CCD camera and the suppressed radiation is shown in [Fig. 2.3].
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or
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CCD
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LPLP
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CCD

QWP

Figure 2.2: Configuration of the optical elements to check the background light sup-
pression. The light from the LP interacts with a QWP to correct any polarisation distortion
caused by the interaction of the light with the optical elements before it reaches beam split-
ter. The light is then suppressed by the PBSC (left) or a second LP (right) and the resulting
radiation is monitored by a CCD camera.

As it is noticeable in [Fig. 2.3], the PBSC tested was found to be very efficient in

one region of the reflected spot. However, the rest of the spot showed poor cancellation

due to wavefront distortion across the face of the beam splitter. By adjusting the QWP to

correct for wavefront distortion at a different portion of the PBSC, the regions of good or

poor cancellation could be interchanged. The maximum extinction ratio observed with this

optical element was ∼ 104. A Similar result is observed for the LPBS, but it is better than

the PBSC in the marginal regions of the laser beam. So, the beam splitter for the background

suppression was the TUGP, which allowed an almost uniform and very efficient suppression

of the linearly polarised laser giving an extinction ratio > 107, which is comparable to what

we observed for the LP/QWP/LP configuration (without any optical element) [Fig. 2.3 -

fourth panel].

For the LP/QWP/LP, different from what is depicted in [Fig. 2.2], was measured with

the laser input, optical elements and output to CCD in the same line.

Polarising beam splitter Long pass beam splitter Thick uncoated glass LP/QWP/LP

Exposure time = 8/60 second Exposure time = 1/60 second Exposure time = 1/60 second Exposure time = 1/60 second

Figure 2.3: Background light suppression. Linearly polarised laser suppression for dif-
ferent beam splitters (PBSC, LPBS, TUGP) and without a beam splitter (on the right side)
monitored with a sensitive CCD camera.
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Charge-tunable quantum dot samples

The possibility of controlling the number of electrons in nano-structures using an external

bias voltage gave rise to the chance of experimental investigation of Coulomb interaction in

devices where the contribution of the confinement energy to the total energy of the system

is small [20, 21, 22] and comparable or greater [23, 24, 25, 26, 27]. The high precision

control on the number of electrons trapped in the nano-structure also enabled the study of

spin dynamics, which is a natural candidate for a unit of quantum information [15, 16, 17,

18, 28, 29].

When the applied voltage is large and negative, the level structure of the QD is far

from resonance with the Fermi sea and the QD remains empty. As the voltage is moved

to positive, the QD gets closer to resonance with the Fermi sea and the probability of one

electron to tunnel into the QD also increases. On resonance, with one electron trapped into

the QD, the energy of the QD changes and the second electron needs a higher voltage to

tunnel into the QD to compensate the energy of the first electron trapped [Fig. 2.4].

GaAs
n-doped

back contact
gate

QD
(a) (b)

Figure 2.4: Energy diagram of a charge-tunable QD. The detuning between the QD
energy and the Fermi sea (EF ) can be controlled through the gate voltage (V0), and if they
are far (close) from resonance, the probability of the electron to tunnel into the QD is small
(big), as can be observed in (a) and (b), respectively.

Bulk sample

The charge-tunable quantum dot sample named “bulk sample” or simply Sample 1 in this

work is composed by a GaAs buffer, an n-doped back contact, a GaAs tunnel barrier, an

InAs QD layer covered by a capping layer, a superlattice and a Schottky gate which is a

semitransparent layer of NiCr on the top surface of the sample [Fig. 2.5]. The details of

the thickness of the layers can be checked in [Tab. 2.1]. The back-contact is an Ohmic

contact to a heavily Si doped (n+ = 4 × 1018 cm−3) layer. The Ohmic contact is achieved
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by diffusing a small amount of In from the sample surface supplying an Ohmic contact with

resistance of about 1 kΩ [7]. The probability of the electron to tunnel through the tunnel

barrier to a QD depends directly on the energy difference between the Fermi energy for

the back contact and the level energy to be occupied in the QD. The energy levels of the

QD can be changed by applying a voltage between the Schottky gate and the back contact,

exploring the confined Stark effect [30]. The superlattice prevents current flow through the

device. A glass hemispherical solid-immersion lens (SIL) is attached on top of the sample

to increase the effective NA [31, 32, 33, 34, 35, 36, 37] [Fig. 2.5].

layer size (nm) material
buffer 80 GaAs

back contact 20 n+ GaAs
tunnel barrier 25 GaAs

QDs InAs
capping layer 30 GaAs

blocking barrier 20×(3/2) (AlAs/GaAs)
cap 6.3 GaAs

Table 2.1: Description of the layers composing the bulk sample.

SIL

n+ GaAs

QD layer

GaAs

Blocking
barrier

capping layer

tunnel layer

GaAs buffer

Figure 2.5: Bulk sample structure. The bulk sample is composed by (bottom to up): GaAs
buffer layer, n-doped GaAs layer, GaAs tunnel barrier, InAs QD layer, GaAs capping layer,
AlAs/GaAs blocking barrier, GaAs cap and the Si SIL.

Planar cavity antenna sample

The main difference between the PCA sample and the bulk sample is in the collection

efficiency. Finite-difference time-domain (FDTD) simulations performed by Dr. Yong Ma

[Fig. 2.7] showed that the estimated collection efficiency for the PCA sample is ∼ 27%,

while it is only ∼ 2% for the bulk sample for an objective lens of NA equal to 0.68 [12].
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The planar cavity antenna (PCA) samples are fabricated from a bulk sample and consist

of a quantum dot layer embedded at the antinode of a low-Q, broadband cavity formed by

a Au mirror and the GaAs/SIL interface. Although the optical properties of the device are

modified compared to the bulk sample, the electronic device is identical to the bulk sample

and the same deterministic state charging is achieved.

The fabrication process consists of depositing and annealing AuGeNi in order to make

the ohmic contacts with the n-doped layer, depositing a gold layer which will act as a mirror

and Schottky contact, flipping it on a host surface containing epoxy glue and wet etching

the GaAs substrate and the Al0.65Ga0.35As layer. Then the Au layer is made accessible by

photolithography and wet etching [12] [Fig. 2.6].

Figure 2.6: Fabrication steps from bulk sample to PCA sample (figure supplied by
Dr. Yong Ma). From the diced sample, the fabrication steps are (a) deposit 100 nm of
AuGeNi and anneal the sample at 400◦C to create an ohmic contact with the n-doped layer;
(b) deposit 150 nm Au layer as Schottky contact and back reflecting mirror, leaving a 500
µm insulation gap between the ohmic contact and Schottky contact; (c) flip the sample and
transfer it to a host substrate using an epoxy glue and compression; (d) selectively etch the
bonded sample to remove GaAs substrate and AlGaAs sacrificial layer of the QD sample
in sequence; (e) selectively etch the access areas for both contacts wiring; (f) wire both
contacts using silver paint.
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Figure 2.7: FDTD simulations (figure supplied by Dr. Yong Ma). FDTD simulation of
the electric field distribution for a QD embedded in (a) bulk GaAs for emission wavelength
of 937 nm (b) GaAs membrane with Au back reflector for emission wavelength of 937 nm
using geometric parameters from the optimized structure of our design.

Photoluminescence

Photoluminescence (PL) is the emission of light by matter after the absorption of higher

energy light. Using a laser with an energy larger than the band-gap, electrons and holes

relax into the QD via a non-radiative process and then recombine in a radiative process.

In this experiment, the excitation was performed by using a diode laser with λ equal to

830 nm and the light emitted by the QDs, with λ usually between 920 nm and 980 nm, were

collected by the collection arm of the microscope and sent to a spectrometer [Appendix A]

through an optical fibre. The PL acquired as a function of the bias voltage makes clear the

change in the energy of the optical transition due to the presence of electron(s) in the QD

[Fig. 2.8].
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Figure 2.8: Photoluminescence map of a charge-tunable device. The number of Xs in
the symbol indicates how many electron-hole pairs are involved in the optical transition and
the index on the top of X indicates the number of electrons in the initial state. The two gate
voltages V0 = 0 V and V1 = 0.215 V are about the voltages for the transitions from X0 to
X1− and from X1− to X2−, respectively.

In this work, a PL map measurement always precedes the experiments based on the

resonance fluorescence because it helps to choose a spectrally isolated and bright QD and

most importantly, it indicates the wavelength range and the bias voltage range of each

optical transition that can be excited resonantly.

Stark coefficient measurement

Before starting the photon statistics measurements we need to obtain the Stark coefficient,

which indicates what is the energy shift for a given ∆Vg. The Stark coefficient can be

extracted from a set of detuning spectra along the plateau of the QD transition, in this case

the X1− transition [Fig. 2.8].
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Figure 2.9: Linear dependence of the resonant laser wavelength on the bias voltage.
The red dots correspond to experimental data and the blue solid line is a linear function fit.
From the fit we extracted a Stark coefficient equal to 701.28 µeV/V.

The detuning spectra is measured by setting the wavelength constant somewhere on the

plateau and then sweeping the bias voltage with a resolution of 1 mV. Consequently, this

sweeps the transition energy of the QD across the resonance of the driving field. The photon

count rate is recorded using a SPAD. The resonant bias voltage corresponds to the position

of the Lorentzian curve. By acquiring detuning spectra for different laser wavelengths we

can track the dependence of the transition energy on the bias voltage, which is a direct

measurement of the Stark coefficient [Fig. 2.9].

Second-order correlation function: setup scheme

For the second-order correlation measurement, the background-free RF signal from the

collection arm is coupled into the input of a 50% − 50% fibre splitter, which has the two

outputs connected to two SPADs with dead time ∼ 24 ns, timing resolution ∼ 0.5 ns and

dark counts ∼ 30 Hz [Appendix A]. When these SPADs are clicked, they send electrical

signals to the channels of a time-correlated single photon counting (TCSPC) module sup-

plied by PicoQuant [Appendix A], where it is connected through Bayonet Neill–Concelman

(BNC) connectors [Fig. 2.10].
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SPAD 0
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Figure 2.10: Equipment scheme for the g(2)(τ) measurement. The background-free RF
signal from the collection arm is coupled into the input of the 50%−50% fibre splitter. The
outputs are connected to detectors, that send electrical pulses to the channels of a TCSPC.
The TCSPC computes the delay time of signals between the two channels and send this
data to a computer which calculates a histogram of the delay time, corresponding to the
second-order correlation function.

To compute the intensity correlation between the two outputs, the first channel triggers a

clock and the second channel stops the clock and then one value of τ is obtained. This pro-

cess is repeated many times and a histogram, corresponding to the second-order correlation

function, is generated.

Two-photon interference: setup scheme

In this section, the experimental setup used to measure the two-photon interference is de-

scribed departing from the optical fibre of the collection arm [Fig. 2.1].

The RF signal from the single QD is separated using a 50% − 50% single-mode fi-

bre splitter and reaches the two inputs of the HOM setup. One manual fibre polarisation

controller (MFPC) [Appendix A] in each path is used to individually tune the polarisation

orthogonal or parallel to each other using the intensity of the signal through a linear po-

lariser as reference (red path in [Fig. 2.11]). In one of the paths, there is an optical delay

∆τ which was implemented using a long optical fibre. The two paths end in a 50%− 50%

beam splitter coupled to the SMF, where the HOM interference happens [Sec. 3.5]. After

the beam splitter, the photons are driven to the SPADs, which have their electrical output

signals taken to TCSPC channels, as in the second-order correlation measurement [Sec.

2.5]. Before the second channel of the TCSPC module an electrical delay τc is introduced

to move the dips away from zero [Fig. 2.11].

Once the signal reaches the TCSPC, it builds a histogram of the delay between the

arrival times of the photons in each channel, again, similar to the second-order correlation

measurement [Sec. 2.5].

14



Chapter 2: Experimental methods

Two other dips are also expected at τc ±∆τ along with the HOM dip due to the optical

delay between the two paths. The depth of these dips should be identical for a balanced

beam splitter [38, 39].

Figure 2.11: HOM setup. The separated RF signal reaches the two inputs of the HOM
setup. In one of the paths, there is a MFPC used to tune the polarisation orthogonal or
parallel to the second path, where an optical delay was implemented using a long optical
fibre. The two paths end in a 50% beam splitter coupled to the SMF, where the HOM
interference happens. After the 50% beam splitter the photons are driven to the SPADs,
which have their electrical output signals taken to the TCSPC module. Before the second
channel of the TCSPC an electrical delay is introduced to move the dips away from zero.
Two other dips are expected due to the optical delay between the two paths to the beam
splitter, with their relative depth depending on the balance of the beam splitter.
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The standard two-level system

The two-level system is the canonical example of a quantum bit and many realizations have

been experimentally explored, including spin-based systems [40, 41], nuclear magnetic

resonance (NMR) [42, 43] and in quantum optics [44, 45, 46]. The systems in quantum

optics experiments typically have more than two states, but the experimental results can

still be explained using the semi-classical formulation of the optical Bloch equations [47]

by exploiting the selection rules or neglecting an excited transition that is well detuned from

other states.

In this chapter, the photon counting statistics, based on the optical Bloch equations, the

power spectrum and the second-order correlation of the resonance fluorescence photons

will be discussed, along with the effects of spectral fluctuations on the photon emission.

Photon counting statistics

We consider a two-level system composed of the ground state |g〉 and the excited state |e〉

coupled by a near resonance electromagnetic (EM) driving field with power low enough

that the rotating-wave approximation is valid [48], and the Hamiltonian is given by

H = −∆

2
σz +

Ω

2
(σ− + σ+) , (3.1)

where ∆ is the detuning between the driving field and the transition, Ω is the Rabi energy,

σz is the Pauli Matrix defined as |g〉〈g| − |e〉〈e|, σ− = |g〉〈e|, and σ+ = |e〉〈g|.

The Rabi energy can be interpreted as the coupling energy between the optical transition

and the EM driving field. It relates to the experiment through the excitation power, which

is proportional to |Ω|2.

Using the Lindblad superoperator to describe the radiative decay from the excited state
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to the ground state and the pure dephasing we have

Lρ(σ−) =
Γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) (3.2)

Lρ(σz) =
γ

2
(σzρσz − ρ) , (3.3)

where Γ is the radiative decay rate and γ is the exciton pure dephasing rate.

Then, we have that the master equation is

ρ̇ = − i
~

[H, ρ] + Lρ(σ−) + Lρ(σz) , (3.4)

leading to the optical Bloch equations

ρ̇gg =
Ω

~
Im[ρeg] + Γρee (3.5)

ρ̇ee = −Ω

~
Im[ρeg]− Γρee (3.6)

ρ̇ge =
i

~
[∆ρge −

Ω

2
(ρee − ρgg)]−

(
Γ

2
+ γ

)
ρge (3.7)

ρ̇eg = − i
~

[∆ρeg −
Ω

2
(ρee − ρgg)]−

(
Γ

2
+ γ

)
ρeg . (3.8)

The steady state solution can be obtained by making the density matrix constant, i.e,

ρ̇ = 0, from where we get

ρee =
Ω2φ

2Γ(∆2 + φΩ2/Γ + ~2φ2)
(3.9)

ρgg = 1− ρee (3.10)

ρge =
−Ω(∆− i~φ)

2(∆2 + φΩ2/Γ + ~2φ2)
(3.11)

ρeg = ρ∗ge , (3.12)

where φ = Γ/2 + γ.

The average number of photons 〈n〉 is given by the multiplication of the probability of

being in the excited state ρee, the radiative decay rate Γ and the detection efficiency η, so

〈n〉 =
ηΩ2φ

2(∆2 + φΩ2/Γ + ~2φ2)
. (3.13)

If the driving field is on resonance with the QD transition energy, the expected number

of photons is

〈n〉 =
ηΓ

2

Ω2

(Ω2 + Ω2
sat)

, (3.14)

where Ωsat is the saturation Rabi energy [49] defined as

Ωsat = ~
√
φΓ . (3.15)
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Figure 3.1: Saturation curve. Normalized number of photons scattered as a function of
Rabi energy with decay rate equal to 1 GHz, ∆ = 0 and perfect detection. The vertical
lines represents the saturation Rabi energy for each dephasing rate.

The saturation curves for different dephasing rates are shown in [Fig. 3.1].

From [Eq. 3.13] we have that the width of the Lorentzian peak as a function of detuning

∆, which we will call detuning spectrum from now on, depends on the Rabi energy Ω,

becoming broader as Ω increases. This phenomenon is known as power broadening [50].

The width of the Lorentzian L is then given by

L = 2

√
φ(Ω2 + ~2φΓ)

Γ
, (3.16)

and for low Rabi energies it becomes

L = 2~φ , (3.17)

and in the absence of dephasing (φ = Γ/2) the width of the detuning spectrum is ~Γ, as

can be observed in [Fig. 3.2].

It is also well known that a TLS such as a QD can scatter a photon elastically (Rayleigh

scattering) or inelastically. In the first case the photons have the frequency and coherence

of the driving field [51, 52, 53] and just small population of the excited state is required.

Along with tiny population of the excited state, the phase of the TLS is changed when a

laser photon is scattered elastically [54]. In the second case the photons have the frequency

and coherence dependent on the QD properties since there is energy exchange between the

field and the QD. The average number of elastically scattered photons are given by [44]:

〈nel〉 = ηΓ〈σ+〉〈σ−〉 (3.18)
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Figure 3.2: Width of the detuning spectrum. For low Rabi energies, the width of the
detuning spectrum depends only on the decay rate and dephasing rate. As the Rabi energy
increases to larger than the saturation Rabi energy, the linewidth broadens due to power
broadening.

〈nel〉 = ηΓ |ρge|2 (3.19)

〈nel〉 =
ηΓΩ2(∆2 + ~2φ2)

4(∆2 + φΩ2/Γ + ~2φ2)2
, (3.20)

and the fraction of photons which are inelastically scattered can be calculated directly from

〈ninel〉 = 〈n〉 − 〈nel〉 giving

〈ninel〉 =
ηΩ2[∆2(2φ− Γ) + ~2φ2(2φ+ Γ) + 2φ2Ω2/Γ]

4(∆2 + φΩ2/Γ + ~2φ2)2
. (3.21)

The contribution of the elastically and inelastically scattered photons in the detuning

spectrum can be observed in [Fig. 3.3], where the decay rate was kept constant and the

dephasing rate equal to zero.
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Figure 3.3: Detuning spectrum. The contribution of the elastically (red line) and inelas-
tically (blue line) scattered photons to the total number of photons (black line) depends on
the Rabi energy and it is mostly elastic when Ω < Ωsat (a-b) and mostly inelastic when
Ω > Ωsat (d-e) for ∆ ∼ 0.

The photon counting statistics can be used to extract important information about the

QD like the radiative decay rate Γ and the pure dephasing rate φ using [Eqs. 3.13, 3.20

and 3.21] but to measure the precise number of the photons scattered by the QD may be

challenging because of fluctuations caused by interactions between the QD and its envi-

ronment elements (nuclei spin and surrounding charge carriers) and experimental noise

[55, 56, 57, 58, 59, 60]. To overcome this problem we use the ratio between the total

number of photons and the elastically scattered photons, given by

〈nel〉
〈n〉

=
Γ

2φ

(∆2 + ~2φ2)

(∆2 + φΩ2/Γ + ~2φ2)
, (3.22)

which is still dependent of the decay rate and the dephasing rate. For small Rabi energies

〈nel〉
〈n〉

=
Γ

2φ
, (3.23)

as we can see in [Fig. 3.4]
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Figure 3.4: Ratio between the amount of elastically scattered photons and the total
number of photons. The ratio 〈nel〉/〈n〉 depends strongly on the dephasing and in the low
Rabi energy regime (Ω � Ωsat) it can give a direct measurement of the dephasing rate if
the decay rate is known.

Photon counting statistics under spectral fluctuations

This section is dedicated to the discussion of the consequences of the spectral fluctuations,

caused by charge noise and spin noise, on the photons emitted by the QD.

Charge noise is present under both incoherent [61, 62, 63] and coherent [27, 51, 55,

56, 64, 57] excitation. The origins of the charge traps that host the fluctuations can vary

depending on the sample; potential sources include nearby surface states in processed pho-

tonic structures [65, 66, 67], traps created at heterostructure interfaces [55], impurities from

intentional dopants [27], and residual background dopant impurities [64, 68]. Charge noise

is often identified as an origin of increased ensemble dephasing and decreased two-photon

interference visibility [63, 69, 70, 71].

In self-assembled QDs, the surface between the superlattice and the capping layer has

some defects able to trap charges, which we believe to be the main source of charge noise

in Sample 1 with weak spectral fluctuations [55]. The charges interact with the QD via

the Stark effect shifting its transition energy and detuning it from the driving field, causing

spectral fluctuations [55, 56, 57]. For Sample 2, the main source of charge noise likely

originates from a very high impurity/defect density that is caused by the molecular beam

epitaxy chamber. It has been demonstrated that it is possible to stabilize the QD RF signal

under charge noise using a fraction of photons in a feedback loop [58, 59].
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Another source of spectral fluctuations is the interaction between the electron spin and

Overhauser field, originating from nuclear spins [56, 72, 73, 74, 75, 76, 77]. The Over-

hauser field imposes spectral fluctuations through the Zeeman splitting, which is expected

to be on the order of 0.8 µeV for Sample 1 [77]. The interaction between the Overhauser

field and the electron spin is discussed in more detail in [Sec. 4.2].

For the inclusion of the spectral fluctuations in the TLS model, the detuning needs to

be separated into two parts: one tunable detuning ∆ due to the applied bias voltage Vg and

another detuning δ caused by the noise. It is considered that the noise has a normal distribu-

tion, which is a good approximation for long measurement times [57]. Here the dephasing

caused by the fluctuation of the eigenenergies due to noise is not considered because it is

much slower than other incoherent processes, as we can conclude from experimental results

also presented in this thesis.
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Figure 3.5: Detuning spectrum under charge noise for φ = Γ/2. The spectral fluctua-
tions have strong influence on the detuning spectrum when the width of the noise distribu-
tion is larger than the width of the detuning spectrum (a). The influence of the charge noise
diminishes as the linewidth of the detuning spectrum increases due to power broadening
(b-c).

The noise was included in the photon counting statistics by numerically integrating the

expected number of photons [Eqs. 3.13, 3.20, 3.21] over the normal distribution of the

detuning:

〈nch〉 =
1√

2πσ2

∫ +∞

−∞
e−δ

2/2σ2〈n〉dδ , (3.24)

where σ is related to the width of the normal distribution w by

w = 2σ
√

2 ln 2 . (3.25)
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The effect of the charge noise on the detuning spectrum depends on how the width of

the noise distribution compares with the width of the detuning spectrum. For high values

of w/~Γ, the charge noise strongly diminishes the number of photons scattered by the

TLS, and its linewidth increases as a consequence of the spectral fluctuations. As the Rabi

frequency is increased, the linewidth of the detuning spectrum also increases due to the

power broadening, and consequently, the spectral fluctuations have smaller effect on it [Fig.

3.5].

0 2 4 6 8 10
w/ Γ

0
2
4
6
8

10

L
/

Γ

10-2 10-1 100

1.0
1.2
1.4
1.6

Figure 3.6: Effect of the charge noise on the linewidth of the detuning spectrum. For
small values of w, the detuning spectrum is the same as expected for an ideal TLS (zoomed
inset). As w increases, the width of the detuning spectrum increases linearly with w.

The dependence of the detuning spectrum linewidth on the charge noise distribution for

Ω = 0.1Ωsat is analysed in [Fig. 3.6], where it is possible to observe that, for small values

of w/~Γ, the charge noise has no effective influence on the photon emission by the TLS and

its linewidth equals ~Γ for φ = Γ/2 (see zoomed inset). As w/~Γ increases, the spectral

fluctuations start broadening the detuning spectrum, which has its width depending linearly

on the width of the noise distribution.

The ratio between the coherently scattered photons and total number of photons is also

affected by the charge noise, and its value can be calculated as

〈nch,el〉
〈nch〉

=

∫ +∞
−∞ e−δ

2/2σ2〈nel〉dδ∫ +∞
−∞ e−δ2/2σ2〈n〉dδ

. (3.26)
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Figure 3.7: Effect of charge noise on the fraction of elastically and inelastically scat-
tered photons for ∆ = 0 µeV. The ratio 〈nch,el〉/〈nch〉 (〈nch,inel〉/〈nch〉) always tends to
increase (decrease).

The consequences of the charge noise on the number of elastically and inelastically

scattered photons can be observed in [Fig. 3.7] for three different regimes, which are below

saturation, at saturation and above saturation. When w is comparable or greater than Ω

the total number of photons always tends to decrease, but the ratio described in [Eq. 3.26]

tends to increase with charge noise. This can be predicted by analysing the different situ-

ations displayed in [Fig. 3.3]. For Ω ≤ Ωsat the number of inelastically scattered photons

decreases faster than the quantity of elastically scattered photons. For Ω > Ωsat we have

that 〈nel〉 increases with detuning until reaching

〈nel〉 =
Γ2

16φ
(3.27)

at

δ = ±
√
φΩ2

Γ
− ~2φ2 (3.28)

for ∆ = 0 µeV. On the same point we have

〈ninel〉 =
Γ

16φ
(4φ− Γ) , (3.29)

and, consequently

〈n〉 =
Γ

4
. (3.30)
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Figure 3.8: Effect of charge noise in the photon counting statistics. Saturation curve (a)
and the ratio 〈nch,el〉/〈nch〉 (b) under charge noise with the width of the normal distribution
w in terms of the width of the detuning spectrum L. The other parameters are φ = Γ/2 =
0.5 GHz.

For high Rabi energies - much greater than the detuning caused by the charge noise -

the charge noise is irrelevant for the expected number of photons. This happens because

the width of the detuning spectrum [Fig. 3.2] is huge - due to power broadening - when

compared to the width of the normal distribution used to describes the noise. As the Rabi

energy is decreased the detuning becomes more important and we can see a clear difference

in the expected number of photons [Fig. 3.8 (a)].

The ratio 〈nch,el〉/〈nch〉 as a function of the Rabi energy, from which important infor-

mation can be extracted as discussed in [Sec. 3.1], is also expected to be sensitive to charge

noise. For moderate Rabi energies, where the amount of coherent and incoherent photons

are comparable, the detuning increases the ratio significantly [Fig. 3.8 (b)].

In this section, we have provided a theoretical background to support the analysis of the

experimental photon statistics under spectral fluctuations using the resonance fluorescence

technique.

Experimental photon counting statistics

In this section we are going to analyse the experimental results on the photon counting

statistics acquired from Sample 1 (bulk sample), presenting relatively small spectral fluc-

tuations in the resonance fluorescence experiment, and on Sample 2 (‘noisy’ PCA sam-

ple), with more significant spectral fluctuations. Here, we analyse the detuning spectra,

the linewidth power dependence and the saturation curve, which were already discussed in

[Sec. 3.1] and [Sec. 3.2], of the X1− transition of the QDs in both samples.
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The detuning spectrum, acquired experimentally by tuning the laser wavelength in the

middle of the transition plateau and sweeping the bias voltage across the resonance between

the QD optical transition and the laser, is a direct measurement of the Lorentzian peak given

by [Eq. 3.13].

Results on Sample 1: relatively weak spectral fluctuations

Although the spectral fluctuations presented by this sample are much less severe than for the

other devices [Sec. 3.2], they are not expected to vanish. Therefore, the spectral fluctuations

must be taken into account and [Eq. 3.24] need to be considered to fit the experimental

data. The experimental detuning spectrum for different excitation powers (black dots) and

their correspondent fits (solid red lines) can be observed in [Fig. 3.9], where the decay rate

Γ = 1.3 GHz and the saturation power Psat = 8.8(8) nW were extracted by Dr. Ralph

Malein using power spectrum measurements, so the only free parameters were the width

of the noise distribution and the overall efficiency η, from which the average over the four

detuning spectra presented is 0.045(9)%. The blue dashed lines are the simulated detuning

spectra in the hypothetical case where there are no spectral fluctuations. Using this, it is

possible to estimate the number of photons not counted at ∆ = 0 µeV due to the spectral

fluctuations, which is given by 1 − 〈nch〉/〈n〉, and were 0.43, 0.40, 0.34 and 0.09 for (a),

(b), (c) and (d) in [Fig. 3.9], respectively.

The width of the noise distribution extracted from the fits of many spectra, including

the ones presented in [Fig. 3.9], are plotted in [Fig. 3.10]. It is noticeable that there is

an increase in the width of the noise distribution when the excitation power is comparable

to saturation power. It is known that the average detuning due to the Zeeman splitting

caused by the nuclear field is about 0.546 µeV for this QD at ∆ = 0 µeV [Sec. 4.2],

therefore, we can conclude that the charge noise has a significant contribution to the spectral

fluctuations. The poor fitting at the bottom of the detuning spectra in [Fig. 3.9 (a) - (b)] is

attributed to the small nuclear spin polarisation and possible dragging effects [78, 79, 80].

For excitation powers above the saturation power, the power broadening dominates and

this effect is masked. A more detailed and conclusive investigation about the cause of the

phenomenon still needs to be performed. In this thesis, the effects of the charge noise on

the RF power spectrum is also discussed in [Sec. 3.3.2], where the increase of the width of

the noise distribution with the Rabi frequency is also observed.
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Figure 3.9: Experimental detuning spectra. Detuning spectra and their respective theo-
retical calculations using Γ = 1.3 GHz, Psat = 8.79 nW and φ = Γ/2 for different powers:
(a) 0.01Psat, (b) 0.08Psat, (c) 0.58Psat, (d) 4.52Psat. The points represent the experimental
data, the solid red lines are the fits of the expected number of photons taking into account
the spectral fluctuations, and the dashed blue lines correspond to the simulation of the de-
tuning spectrum without the spectral fluctuations.

As it was discussed previously, the saturation curve and the linewidth of the detuning

spectrum as a function of the excitation power can provide important information about

the QD, such as saturation parameter, dephasing rate and decay rate. The detuning spectra

were measured five times for each value of the excitation power and the integration time

was 10 ms per point in the spectrum. The background was calculated by averaging over 10

points far from the resonant peak. From the fit of the saturation curve [Fig. 3.11 (a)] we

have that the saturation power is 26(3) nW and ηΓ/2 ∼ 3.8(1) × 105 Hz, from where it is

estimated η = 0.06(1)%, in good agreement with the overall efficiency estimated from the

detuning spectra fits (η = 0.045(9)%). The saturation power defined from the saturation

curve differs from the one defined from the RF power spectrum because the influence of

the detuning causing the spectral fluctuations is stronger on the expected number of photons

than on the properties of the RF power spectrum. From the background curve fit we have

BG = 33(14) + 6.5(1)P , from where we can get the dark counts of the SPAD BG(0).
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Figure 3.10: Dependence of the charge noise on the excitation power. The fits of the
detuning spectrum exhibits a dependence of the charge noise distribution on the excitation
power.

For the linewidth curve, the data points were obtained from fits of the detuning spectra

and the error bars come from the statistics over the five detuning spectra [Fig. 3.11 (b)]. The

function used to fit the linewidth as a function of the excitation power was L = a
√
P + Psat

and from the fit a = 0.334(7) µeV/nW1/2 and Psat = 29(4) nW, in good agreement with

the saturation curve [Fig. 3.11 (a)]. Therefore, the minimal value possible for L is ∼ 1.812

µeV, in contrast with the minimal L = 0.856 µeV expected in the absence of the spectral

fluctuations.
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Figure 3.11: Power sweep measurement. (a) The saturation curve (circle points) was
fitted using [Eq. 3.14]. From the fit, the saturation power (dashed red line) is 26(3) nW.
The linear fit for the background curve (square points) returned 33(14)+6.5(1)P . The solid
and dashed blue lines represents the saturation curve and the expected saturation power of
the system without the spectral fluctuations. (b) The linewidth L of the detuning spectra as a
function of the excitation power (red points) was fitted using the function L = a

√
P + Psat,

and from the fit a = 0.334(7) µeV/nW1/2 and Psat = 29(4) nW. Therefore, the minimal
value possible for L is∼ 1.812 µeV The blue line is the simulated linewidth of the detuning
spectrum without the spectral fluctuations. (c) Due to the high background suppression
caused by LP in the collection arm, a signal to background ratio (SBR) greater than 1000
could be routinely achieved, even with the presence of the spectral fluctuations, and it was
stable for an unlimited amount of time. The expected SBR curve in the absence of spectral
fluctuations is also presented (blue), and the powers corresponding to the maximum SBR
for both scenarios are represented by the dashed lines, which as located at 11.432 (7.207)
nW for red (blue) line.

The acquisition of this experimental data in good agreement with the theoretical results

was only possible because of the high suppression of the background laser, as discussed in

[Sec. 2.1] and presented in [Fig. 3.11 (c)]. It is prudent to consider that the microscope

alignment where the best RF signal is achieved is not necessarily identical to the alignment

where the maximal background suppression is attained because of an imperfect alignment

and optical components, but even so, a signal to background ratio greater than 1000 could

be achieved [Fig. 3.11 (c)].

From [Eq. 3.13] and writing

BG = aP + b , (3.31)

it is possible to calculate the power where the SBR peak will be located, and this is given

by
d

dP

(
〈n〉
BG

)∣∣∣∣
0

=

√
Psatb

a
. (3.32)

As the spectral fluctuations decrease the effective saturation power, for the same back-

ground, the SBR peak without the spectral fluctuations is expected to happen at smaller

powers [Fig. 3.11 (c)].

In this section, we have experimentally demonstrated how the spectral fluctuations af-
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fect the linewidth and intensity of the QD detuning spectrum, which reflects on the satu-

ration curve. It was shown that, for the low excitation power regimes where most of the

photons are elastically scattered, the number of photons collected is only 60% of the ex-

pected.

Results on Sample 2: strong spectral fluctuations

The charge fluctuations in the environment of the QD leads to fluctuations in the number

of photons scattered by the QD through the Stark shift. Despite the similarity between the

samples, apart from the gold mirror, Sample 2 shows much stronger flickering in the RF

signal [Fig. 3.12 (a)]. While the Lorentzian spectra of the QD in the bulk sample (Sample

1) have a minimal linewidth of 1.70(9) µeV [Sec. 3.2.1], the QD in the PCA sample can

scatter photons in a range of about 10 µeV, and even so, the RF signal collected from it is a

factor of about 10 higher than for the bulk sample.
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Figure 3.12: Noise detuning spectrum and time traces for the X1− transition. (a) RF
spectrum for both PCA and bulk sample acquired by exciting the QD at a power lower
than the saturation power (0.03Psat for the PCA device and 0.01Psat for the bulk sample)
and varying the bias voltage applied to the devices. (b-d) Time traces of the RF signal
for Tbin = 50 µs, 1 ms and 50 ms, respectively. These traces were acquired by setting
both excitation wavelength and applied bias constant and recording the arrival time of each
photon.

It is known that the charge noise dynamics is on the millisecond timescale [56, 58, 59],

so if the photon counting is integrated in the sub-millisecond timescale one can resolve the
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dynamics of the electric field due to charge fluctuation and eventually measure the number

of photons for the case where the detuning between the QD transition energy and the laser

energy is zero instead of the averaged signal over resonant and detuned times of the QD-

radiation interaction. This feature is demonstrated in [Fig. 3.12 (b-d)], where RF time

traces are shown for 50 µs, 1 ms and 50 ms. By changing from the millisecond to the sub-

millisecond timescale measurement the maximal recorded RF signal (accounting for shot

noise) increases by a factor of ≈ 4.4 [Fig. 3.12 (b)]. Here the shaded blue area corresponds

to the level of shot noise in the RF signal for the averaged RF signal (green line).

10-6 10-5 10-4 10-3 10-2 10-1 100

τ (s)

0.0

0.1

0.2

0.3

0.4

ac
or

 (τ
)

(a)

100 101 102 103 104 105 106

frequency (Hz)

10-5
10-4

10-3
10-2
10-1

FT
[a

co
r(τ

)]

(b)

Figure 3.13: Autocorrelation function and its power spectral density. (a) The autocor-
relation function of the RF time trace with a time bin equal to 1 µs presents a decay which
starts at ∼ 0.1 ms. The oscillation with small amplitude is probably a consequence of the
imperfect system stabilisation. (b) The power spectral density, calculated from the Fourier
transform of the autocorrelation function, shows how the noise decreases in the frequency
domain. It also presents a sharp peak at 141.121 Hz corresponding to the oscillation seen
in (a).

In order to analyse the dynamics of the noise in the system, including mechanical and

electrical noise, the autocorrelation function acor(τ) can be used, and it is given by

acor(τ) =
1

N

∑
t

(x(t)− 〈x〉)(x(t+ τ)− 〈x〉)
〈x(t)− 〈x〉〉2

(3.33)

where N is the number of points to be considered in the autocorrelation function.

The power spectral density of the autocorrelation function may also reveal some inter-

esting features, like the exact frequency of some sinusoidal behaviour, and it is given by the

Fourier transform of the |acor(τ)|.

The autocorrelation function of the RF time trace reveals that the noise has dynamics on

the millisecond timescale [Fig. 3.13 (a)], similar to [56, 58, 59]. The autocorrelation func-

tion also presents an oscillatory behaviour with frequency equal to 141.121 Hz, which is

probably a consequence of the imperfect stabilisation of the cryostat and/or the microscope
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head. In the power spectral density function [Fig. 3.13 (b)] this behaviour is presented in

the form of a sharp peak, localising the exact frequency of the sinusoidal curve.

A power dependence of the detuning spectrum was obtained for each sample with an

integration time equal to 10 ms [Fig. 3.14], and it is a strong evidence of the difference in

efficiency between the two devices, as the QD in the PCA sample saturates at a power 6.3

times smaller than the saturation power of the QD in the bulk sample. This is evidence of

improved coupling between the driving field and QD [81]. The difference in the amount of

photons collected above the saturation power for each sample expresses the improvement

on the overall efficiency of the system η due to the design of the PCA device.
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Figure 3.14: Experimental saturation curve under strong charge noise. (a) The blue
points and curves are identical to the ones presented in [Fig. 3.11 (a)]. The PCA sample
saturation curve (red circle points) was fitted using [Eq. 3.13]. From the fit, the saturation
power (dashed red line) is 4.1(3) nW and ηΓ/2 = 3.0(1) MHz. The linear fit for the
background curve (red square points) returned 35(65)+886(10)P . (b) Comparison between
the signal to background ratio for the PCA device (red) and the bulk sample (blue).

Based on the the second-order correlation function measurement, the decay rate Γ is

about 1.6 GHz. Then the total efficiency of the system can be calculated from the fit of the

saturation curve [Fig. 3.14], giving η = 0.37(1)% which is 8.5(4) times higher than the

efficiency of the system using the bulk sample, reflecting the difference of photon extraction

efficiency between the two samples.

The PCA device emits a non-Gaussian mode that, when aligning the confocal micro-

scope for the best collection of the RF signal may not coincide with the best alignment for

the background cancellation, giving a spatial dependence of the laser suppression by the

combination of the linear polariser with the single-mode fibre using the long pass beam

splitter [Fig. 2.3 (second panel)]. This factor, along with near unity reflectivity of the Au
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mirror, can explain why the BG signal for the PCA device has a greater slope than for the

bulk sample [Fig. 3.14 (a)].

Although the RF signal from the PCA device is much stronger than from the bulk sam-

ple, their signal to background ratios are about the same because of the worse background

suppression with the PCA sample.

The estimated efficiency of the coupling into the single-mode fibre is ηsmf ∼ 31.4 %

and the efficiency of the microscope combined with the detector is ∼ 0.86%. The main

sources of photon loss in the microscope are the LP with an efficiency ηlp ∼ 43%, the beam

splitter surfaces with ηbs ∼ 96%4 and the SPAD with ηdet ∼ 30%. Considering all these

efficiencies we can calculate the sample efficiency ηsample, which is 10.8(4)%, resulting in

more than 90 million of photons reaching the first lens of the microscope. For the bulk

sample, this number is less than 15 million.

Resonance fluorescence power spectrum

The power spectrum of the photons scattered by a two-level system under an EM driving

field was first studied by Mollow in [44], who obtained it directly from the first-order cor-

relation function g1(τ) which can be defined in the Heisenberg picture for the QD ladder

operators as

g1(τ) = 〈σ+(τ + t)σ−(t)〉 (3.34)

through

S(ω) ∝ 2Re

[∫ +∞

−∞
g1(τ)eiωτdτ

]
(3.35)

In this work we solve the time-dependent optical Bloch equations [Eq. 3.5-3.8] nu-

merically, from where we calculate the first-order correlation function in the Schrödinger

picture

g1(τ) = Tr
[
ρ(0)U †(τ + t)σ+U(τ)σ−U(t)

]
(3.36)

g1(τ) = Tr
[
ρ(t)U †(τ)σ+U(τ)σ−

]
(3.37)

g1(τ) = Tr
[
U(τ)σ−ρ(t)U †(τ)σ+

]
(3.38)

where U(t) is the time evolution operator. So, defining a new density matrix as ρ′(t) =

σ−ρ(t) and starting on the steady state solution for ρ(t), we can rewrite [Eq. 3.38] as

g1(τ) = Tr [ρ′(τ)σ+] (3.39)
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g1(τ) = ρ′ge(τ) (3.40)

Then [Eq. 3.40] is used directly in [Eq. 3.35] to obtain the power spectrum of the

resonantly scattered photons. For φ = 0, the RF power spectrum for Ω � Γ is given

by [44]

S(ω) = 2π|ρge(∞)|2δ(ω) +
ρee(∞)ΓΩ2

Ω4
eff

{
Ω2/2

ω2 + s2
0

+

(
3Ω2

8
+

∆2

4

)[
1

(ω − Ωeff )2 + σ2
+

1

(ω + Ωeff )2 + σ2

]}
, (3.41)

where

Ωeff =
√

Ω2 + ∆2 (3.42)

s0 = −Γ

2

[
Ω2 + 2∆2

Ω2 + ∆2

]
(3.43)

σ = −Γ

[
3Ω2/4 + ∆2/2

Ω2 + ∆2

]
. (3.44)

When the Rabi energy is much lower than the saturation Rabi energy we have the so-

called Heitler regime [51, 52, 53] where the photons are mostly elastically scattered and

have the same frequency and coherence of the EM driving field [Fig. 3.15 (a)]. As the Rabi

energy is increased and crosses the limit of the saturation Rabi energy, the Mollow triplet

appears and the side bands are separated from the central peak by the Rabi frequency Ω1

for the case where Ω � ∆ + w, where w is the width of the noise distribution [Fig. 3.15

(c)]. In the same figure, it is also possible to observe the change in the 〈nel〉/〈n〉, as it was

discussed in [Sec. 3.1] and presented in [Fig. 3.4].

The experimental RF power spectrum presented in [Fig. 3.15] was acquired by using

the Sample 1 (bulk sample) and a FPI with resolution of 27.5 MHz and free spectral range

of 5 GHz [Sec. 2.1]. Here, an external magnetic field equal to 600 mT in the growth

direction was applied to recover the TLS behaviour from the X1− transition of the QD,

which is destroyed by the Overhauser field [Sec. 4.2].

The low Rabi frequency spectrum was fitted using a single Lorentzian, which returned

a width equal to 29(1) MHz, in good agreement with the expected resolution of the FPI

[Fig. 3.15 (a)]. For an ideal TLS under no spectral fluctuations, some considerable amount

of inelastically scattered light is expected at ω = 0 when Ω = Ωsat/2, but, in the present

case, spectral fluctuations are present and especially high for this excitation power [Fig. 3.10],

1In this section, for simplification, all the parameters are in frequency units.
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which increases the 〈nel〉/〈n〉 ratio making the amount of inelastically scattered photons

negligible [Fig. 3.8 (b)].

0.3 0.0 0.3
0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
. c

ou
nt

 ra
te (a) 0.5Ωsat

0.5 0.0 0.5
ω (GHz)

(b) 1.18Ωsat

exp. data <n> <nel> <ninel>

1 0 1

(c) 6.4Ωsat

Figure 3.15: RF power spectrum under small spectral fluctuations (Sample 1) for
∆ = 0 MHz and Bext = 600 mT. (a) The spectral fluctuations diminish the amount of
inelastically scattered photons and at Ω = Ωsat/2, the RF power spectrum could be fitted
using a single Lorentzian, from where the resolution of the FPI could be extracted (29(1)
MHz). Above saturation, for (b) 1.18Ωsat (c) 6.4Ωsat, the spectral fluctuations become less
effective and the QD optical transition behaves like an ideal TLS.

For the cases where Ω > Ωsat [Fig. 3.15 (a - b)], the power spectra were fitted using

[Eq. 3.41], with the delta function replaced by a normalised Lorentzian peak with width

equal to the measured FPI resolution (29.3 MHz). As it was discussed in the previous

section [Sec. 3.2], these spectra are expected to be less sensitive to the spectral fluctuations

due to their high Rabi frequency relative to the width of the noise distribution. This claim

was confirmed with the good agreement between the experimental data and their fits, which

returned Γ = 1.63(4) GHz.

Since the elastically and inelastically scattered photons can be clearly distinguished

in a RF power spectrum measurement, it is possible to extract 〈nel〉/〈n〉 from a power

sweep of RF power spectra. The experimental data (red) accompanied by the simulation of

an ideal TLS (blue) is shown in [Fig. 3.16]2, where it can be observed that, for high Rabi

frequencies, the experimental data is in good agreement with what is expected from an ideal

TLS. But for this particular QD, as the Rabi frequency is decreased, the spectral fluctuations

become important and the experimental data deviates from the ideal TLS curve.

2Note that this experimental data does not correspond to the one presented in [77]
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In this section, the RF power spectrum of an ideal TLS was discussed and the experi-

mental data acquired using the bulk sample (Sample 1) was presented. This sample presents

relatively small spectral fluctuations for some excitation powers and, under a modest exter-

nal magnetic field, it offers the best match to an ideal TLS among all the other samples

when using the X1− transition.

10-1 100 101

Ω/Ωsat

0.0
0.2
0.4
0.6
0.8
1.0

<
n
el
>
/
<
n
>

ideal TLS
Exp. data

Figure 3.16: 〈nel〉/〈n〉 ratio extracted from the RF power spectrum (Sample 1). For
high Rabi frequencies, the TLS behaviour is recovered and there is an agreement between
the TLS simulation and the data points. As the excitation power is decreased, the spectral
fluctuations become important and the experimental data deviates from the ideal TLS.

Noisy resonance fluorescence spectrum

The spectrum of the resonantly scattered photons is also severely affected by charge noise.

Beyond the change in the number of elastic and inelastic photons, there are also changes in

the shape of the Mollow triplet like the modest increase in the width of the inelastic central

peak and a more pronounced increase in the width of the side bands. There is also a change

in the intensity of the side bands relative to the intensity of the inelastic central peak and a

considerable modification in the position of the side bands, as we can conclude from [Fig.

3.17], where just the inelastic fraction of the RF spectrum is shown since only the intensity

of the elastic fraction is expected to change because its frequency and coherence depend

only on the driving field.
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Figure 3.17: Incoherent fraction of the RF spectrum in the presence of charge noise.
The spectra were normalized to make S(0) equal for all of them. No dephasing rate was
taken into account and the Rabi energy was 5Ωsat.

To describe the dependence of the width of the side band Γside and the width of the in-

coherent central peak Γcentral on the charge noise we fit the spectrum using three lorentzian

peaks, from where the error bars were extracted [Fig. 3.18]. The Rabi energy used (8Ωsat)

was large enough to make the side bands well separated from the central peak, like in [Fig.

3.17].

The detuning caused by charge noise affects the width of the incoherent central peak

first, which explains why the ratio Γside/Γcentral (black points in [Fig. 3.18]) goes below

the ideal 1.5 (indicated by the black dashed line) for a small range of w. Then the curve for

Γcentral saturates while Γside continues increasing, taking the ratio far from the ideal case.
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Figure 3.18: Width of the side band and incoherent central peak as a function of the
charge noise distribution. Both Γside (blue line) and Γcentral (red line) increase with the
width of the normal distribution of the charge noise. The black (red) dashed line indicates
the ideal case for the ratio Γside/Γcentral (Γcentral/Γ).

Along with the broadening, the side bands also undergo a shift in their positions due to

the detuning imposed by the charge noise. This shift, defined as (Ωeff −Ω)/2π~ where the

effective Rabi energy Ωeff indicates the new position of the side bands, is always positive

and has a steep slope until the width of the normal distribution w reaches about 10 times

the width of the detuning distribution L (not considering power broadening). After this, the

shift continues increasing, but in a more modest rate [Fig. 3.19 (a)].

Under strong charge noise the broadening of the side bands is also accompanied by

a decrease in their intensity compared to the elastic peak, which makes the Mollow triplet

much less visible [Fig. 3.19 (b)]. The intensity of the incoherent central peak is also strongly

affected.
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Figure 3.19: Effects of charge noise on the side band position and on the intensities
of the incoherent central peak and side bands. The side band shift (a) and the loss of
intensity (b) caused by the charge noise for a Rabi energy equal to 8Ωsat, the decay rate was
1 GHz and the dephasing rate was equal to zero.

Experimental RF spectrum of the noisy planar cavity antenna sample

Strong charge noise regime (Sample 2)

In this experiment we investigated the RF spectrum of the photons scattered from X1−

optical transition of a QD in the noisy PCA device, which has a relatively high intrinsic

charge noise. For these measurements, a FPI with a resolution of 27 MHz and free spectral

range equal to 5 GHz was used. A magnetic field equal to 1 Tesla in the Faraday geometry

was applied to decrease the effects of the nuclear field on the QD transitions by decreas-

ing the Raman scattering rate [Sec. 4.2]. The RF spectrum for Rabi frequencies equal to

0.45Ωsat, 1.01Ωsat, 2.31Ωsat, 7.41Ωsat and 8.89Ωsat are shown in [Fig. 3.20 (a-e)] where

Ωsat = 0.135 MHz, with Γ = 1.195 GHz based on the second-order correlation measure-

ment. When Ω < Ωsat a higher contribution of elastically scattered photons is expected

(solid green line), so the charge noise has a minor effect. But when Ω > Ωsat the Mollow

triplet appears along with some considerable number of elastically scattered photons - as

predicted in [Sec. 3.2] - composing a Lorentzian peak with width equal to the resolution of

the FPI.

From the measurement of the RF spectrum for different powers we can obtain the ex-

perimental ratio < nch,el > / < nch > and trace the dependence of the charge noise

distribution on the power. For this, the numerical methods discussed in [Sec. 3.2] and

[Sec. 3.3.1] are used and the results can be observed in [Fig. 3.21].
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Figure 3.20: RF power spectrum under strong charge noise at different Rabi frequen-
cies. The experimental RF spectra were measured using a FPI and fitted with the model
presented in [Sec. 3.3.1]. (a)-(b) The charge noise can be neglected when in the low power
regimes because most of the photons are elastically scattered. (c)-(e) At high powers there
is still a considerable quantity of elastically scattered photons due to the strong charge noise.

As it was expected, the experimental ratio - red points in [Fig. 3.21 (a)] - presented a

deviation from the curve for the ideal TLS (black solid line) due to charge noise. The blue

solid line is a fit for the experimental data where the charge noise is taken into account,

using [Eq. 3.26] with a constant w, from where we obtain w = 2.4(7) µeV. This function

seems to fit the data well, although from the fits of the individual power spectra it is known

that the width w changes linearly with power for the range measured [Fig. 3.21 (b)] as

w(Ω) = 0.3(2) + 6.2(3)Ω (blue solid line).

Because the RF power measurement is acquired under a constant bias voltage, when

the detuning due to charge noise and Overhauser field is much greater than the width of the

detuning spectrum L, the RF signal becomes too small to be measured, hence, the fits for

the RF power spectrum may return a noise distribution with width smaller than expected,

especially for Rabi frequencies where the power broadening is not significant. This may

also explain why the width of the detectable noise distribution increases linearly with the

Rabi frequency.
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Figure 3.21: 〈nch,el/〈n〉〉 under charge noise and the dependence of the width of the
charge noise distribution on the Rabi energy. (a) The experimental data (red points)
are fitted with [Eq. 3.26] for a constant σ (blue solid line). The curve for the TLS under
spectral fluctuations is compared with the curve for an ideal TLS (black solid line). (b) The
width of the noise distribution presents a linear dependence on the Rabi frequency, but this
mechanism is still not understood.

Moderate charge noise regime (Sample 3)

Similar measurements were also performed using another PCA device with less intrinsic

sources of charge noise. In this case the RF spectrum is closer to the ideal, but a significant

amount of elastically scattered photons can still be observed along with the Mollow triplet

at Ω = 7.4Ωsat [Fig. 3.22 (a)].

In this sample (Sample 3), a linear dependence of the width of the noise distribution

is also observed. For low Rabi frequencies the width w is similar to the previous sample

discussed, but the slope of the linear function is smaller for this case, i.e., the increment on

w is 5(1) smaller for the same dΩ when compared to the previous device (Sample 2). For

this sample we have w(Ω) = 2.4(4) + 1.4(4)Ω where w is in µeV and Ω is in GHz.

This intriguing dependence of the noise distribution can also be observed in the detuning

spectrum and, although it is challenging to quantify the noise from these spectra because it

requires a fast bias voltage sweep and a higher extraction efficiency, it can be analysed over

a larger range of excitation power.
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Figure 3.22: RF spectrum and charge noise dependence on the Rabi frequency for a
PCA device with weak charge noise. (a) For this QD it was measured Γ = 1.75 GHz
from the width of the inelastic central peak. (b) The width of the charge noise distribution
presents a linear dependence on the Rabi frequency and its function is w(Ω) = 2.4(4) +
1.4(4)Ω for Sample 3, which has a slope 5(1) smaller than the QD in Sample 2.

For very low Rabi frequencies, the energy of the QD varies with time and the Lorentzian

peak appears in some random position [Fig. 3.23 (a)] or it does not appear depending on

the speed of the measurement, as the attempt number 3 in [Fig. 3.23 (a)]. As the Rabi

frequency is slightly increased the QD gets suddenly stable and the detuning spectrum

is now a reproducible Lorentzian peak [Fig. 3.23 (b)]. If we keep increasing the Rabi

frequency, then it gets noisy again, but now instead of a single Lorentzian peak at some

random position it is observed a bunch of Lorentzian peaks in a single bias voltage sweep

[Fig. 3.23 (c)]. For very high Rabi frequencies where the power broadening is significant

the width of the detuning spectrum becomes greater than the width of the noise distribution

and then detuning spectrum become a single broad Lorentzian [Fig. 3.23 (d)]. This feature

could be observed in all the samples cited in this thesis with the only difference among

them being the intensity of the noise. The negative energy shift which happens at high Rabi

frequency [Fig. 3.23 (d)] is also a mystery. For other QDs in the sample, the shift energy

can be positive.
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Figure 3.23: Power dependence of the spectral fluctuations in the X1− transition
through the detuning spectrum. The noise profile changes with the excitation power.
(a) At 0.12Ωsat the detuning spectrum is a single Lorentzian at some random position over
time. (b) At 0.17Ωsat the detuning spectrum becomes stable. (c) At 2.68Ωsat the noise is
back and a bunch of Lorentzian spectra can be observed in a single bias voltage sweep. (d)
At 14.73Ωsat the power broadening is dominant over the noise detuning.

Second-order correlation function

The photon emission from a quantum two-level system happens only when there is some

probability for the QD to be in the excited state, as was described in [Sec. 3.1]. However,

every time a photon is emitted the QD decays to the ground state and needs to be re-excited

to emit the next photon. These processes require time, so it is impossible for the QD to

radiate two photons simultaneously, resulting in photon antibunching in the second-order

correlation function g(2)(τ), which is related to the probability of counting two photons with

a time delay τ between them. A single photon source [46, 82, 83, 84] is crucial for quantum

information science [85]. This is an exclusive property of quantum systems, consequently

Maxwell’s equations cannot be used to describe it.

To probe this feature of quantum systems we investigate the second-order correlation

function [38]

g2(τ) = 1− e−(φ+Γ)τ/2

(
cos(ντ) +

(φ+ Γ)

2ν
sin(ντ)

)
(3.45)

with

ν =

√(
Ω

~

)2

−
(

Γ− φ
2

)2

. (3.46)
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Figure 3.24: Second-order correlation function for ∆ = 0 and φ = Γ/2. g2(τ) with
Γ = 1 GHz and (a) Ω = 0.2Ωsat (b) Ω = Ωsat (c) Ω = 2Ωsat.

The second-order correlation function can be understood as the probability of counting

two photons with a time interval τ between them and, as we can see in [Eq. 3.45], the

probability of counting two photons simultaneously is equal to zero (g2(0) = 0), confirming

that a radiative TLS is a single-photon source.

15 10 5 0 5 10 15
τ (ns)

0.0

0.2

0.4

0.6

0.8

1.0

g2
(τ

)

φ=Γ/2

φ=Γ

φ=2Γ

Figure 3.25: Effect of dephasing rate in g(2)(τ) in the Heitler regime. Second-order
correlation function in the Heitler regime with Ω = 0.2Ωsat, Γ = 1 GHz and ∆ = 0 µeV.

When

Ω2 >

(
~(Γ− φ)

2

)2

(3.47)

the Rabi oscillations can be observed (blue line in [Fig. 3.24]). If the Rabi energy is much
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lower than the decay rate, then

ν ≈ i(Γ− φ)

2
(3.48)

and g2(τ) will depend only on the decay rate and dephasing rate, and the consequence of

having a dephasing rate different from zero in the Heitler regime can be observed in [Fig.

3.25].

Numerical calculations of g2(τ) were also performed by applying the same method as

for g1(τ) in the beginning of [Sec. 3.3]. In this case, the detuning could also be included

and its consequences can be observed in [Fig. 3.26]. From the optical Bloch equations

[Eq. 3.5 - 3.8], we can observe that a non-zero detuning ∆ produces an oscillating term

in the coherence element ρeg, even in the Heitler regime. This oscillation also appears

in the population element ρee due to its dependence on Im[ρeg], and, consequently, it can

be observed in the second-order correlation function along with a change in the slope at

τ < 1/Γ.
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Figure 3.26: Effect of detuning on g(2)(τ) in the Heitler regime. Second-order correla-
tion function in the Heitler regime with Ω = 0.2Ωsat, Γ = 1 GHz and φ = Γ/2.

Experimental second-order correlation function

The experimental second-order correlation function is obtained from the histogram of the

delay time between the arrival time of the photons, which is recorded using a TCSPC mod-

ule [Sec. 2.5].
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Figure 3.27: Experimental second-order correlation function of the X1− transition. (a)
The experimental data (black points) was acquired at P = 0.06Psat in Sample 1 and it was
fitted using [Eq. 3.49] with a background term multiplied to the exponential term to com-
pensate for the experimental limitations (red solid line). The fit returned g(2)(0) = 0.08(5)
and Γ = 2.7(2) GHz. (b) The experimental data obtained from Sample 2 was deconvolved
with a Gaussian curve with width equal to the timing resolution of the detectors. This data
was acquired at high excitation power, consequently the Rabi oscillations are visible. The
fit (dashed red line) using [Eq. 3.50] returned Ω/Ωsat = 3.31(5) GHz and Γ = 2.17(3)
GHz.

The g(2)(τ) function presented in [Fig. 3.27 (a)] was computed from the emission of a

QD in the bulk sample (Sample 1) at P = 0.06Psat (black points) and it was fitted using

g(2)(τ) = 1 +Be−Γτ − 2Be−Γτ/2 , (3.49)

obtained from [Eq. 3.45] with φ = 0 for Ω � Γ and B was included to account for the

non-zero g(2)(0) (solid red line). The fit returned g(2)(0) = 0.08(5), which is only limited

by the timing resolution of the two SPADs (0.707 ns). Again from the fit, it was estimated

Γ = 2.7(2) GHz, that is considerably greater than the Γ = 1.63(4) GHz reported from the

RF power spectrum measurements. This happens because the width of the central inelastic

peak in the RF spectrum, from where the Γ is extracted, is more robust against the spectral

fluctuations [Fig. 3.18] than the slope of the second-order correlation function [Fig. 3.26].

The data presented in [Fig. 3.27 (b)] (solid black line) is courtesy of Dr. Joanna Zajac,

who performed the measurement in the PCA sample with strong spectral fluctuations (Sam-

ple 2) and deconvolved with a Gaussian function with width equal to the timing resolution

of the combined detectors, which was∼ 50 ps each detector in this case. For the fit (dashed

red line), the g(2)(τ) function was reduced to the case where Ω � Γ with φ = 0. So, from

46



Chapter 3: The standard two-level system

[Eq. 3.45 and 3.46], it is given by

g(2)(τ) = 1− e3Γτ/4 cos(Ωτ) . (3.50)

It returned Ω = 0.808(3) GHz in linear frequency unit, which is responsible for the Rabi

oscillations, and a decay rate equal to Γ = 2.17(3) GHz.

In this section, we have demonstrated that the QDs from the bulk sample with weak

spectral fluctuations (Sample 1) and the PCA device with strong spectral fluctuations (Sam-

ple 2) are single-photon sources and that their TLS characteristics are preserved in the

second-order correlation function.

Two-photon interference

Indistinguishable single photons are a resource in the development of new technologies

[86, 87]. Several reports have been made in this direction exploiting a pair of indistin-

guishable photons. As examples we have the experimental demonstration of the basic

version of the single mode teleportation [88] and a controlled NOT (CNOT) gate oper-

ating with indistinguishable single photons [89, 90]. Most research investigating the in-

distinguishability between two photon uses the HOM interference effect [91] as an indica-

tor. The indistinguishability between photons emitted from semiconductor nanostructures

has already been broadly analysed using the quasi-resonant excitation and RF techniques

[63, 69, 38, 92, 93, 94, 95, 96, 97, 71]. It was demonstrated that the coherence time of the

emission is very important for the degree of indistinguishability [92, 95, 38, 39]. A high

degree of indistinguishability can also be achieved with Raman photons [96]. It has also

reported that the charge noise can destroy the visibility of the HOM interference, but this

obstacle could be overcome by using a weak non-resonant excitation combined with the

resonant excitation to prevent the charge dynamics in the QD environment [63].

In this section, the HOM interference measurement from the ‘noisy’ PCA device (Sam-

ple 2) will be presented, showing that high degree of indistinguishability can be achieved

in spite of the intrinsic charge noise.

The correlation function from the HOM interference is given by

g2
⊥(τ) =

1

2
g2(τ) +

1

4
g2(τ + ∆τ) +

1

4
g2(τ −∆τ) (3.51)

g2
‖(τ) =

1

2
g2(τ) +

1

4
g2(τ + ∆τ) +

1

4
g2(τ −∆τ)− V0

2

∣∣g1(τ)
∣∣2 (3.52)
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for distinguishable and indistinguishable photons, respectively, under the assumption that

the beam splitters are nearly perfect [38]. Here, ∆τ is the optical delay and V0 is a constant

accounting for all the imperfection in the experiment, which makes the experimental curve

deviate from the ideal situation (V0 = 1). In this experiment, the indistinguishability of the

photons was tuned by exploiting their polarisations [Sec. 2.6].

The experimental data is presented in [Fig. 3.28], where an external magnetic field

equal to 1 T in the Faraday geometry (X1− transition) was applied in order to minimize

the effects of the Overhauser field [Sec. 4.2] and the bias voltage was tuned to bring the

higher energy transition to resonance with the driving field. The Rabi frequency used was

Ω = 0.45(1)Ωsat.

One of the consequences of isolating a two-level transition using the Zeeman splitting

is that, due to the in-plane Overhauser field, the spin pumping process may occur and its

dynamics are also present in the second-order correlation function in the form of a bunching

which decays slowly, with a rate inversely proportional to the spin coherence time [77]. The

rate in this case is 0.051(4) GHz.

Another consequence is that the detuning between the two electron-spin states also con-

tributes to the increase in the slope of g(2)(τ) at τ < 1/Γ, making these measurements

more susceptible to the finite timing resolution of the SPADs, which strongly affects the

visibility of the interference in the raw experimental data, represented by the red points

in [Fig 3.28 (c)]. To take into account the finite resolution of the SPADs, it is necessary to

deconvolve the signal with instrument response function, which here is approximated to a

Gaussian function with width 0.707 ns for both detectors. The signal, in this work, is the

fit of the correlation function (solid green line) and the deconvolved fit is represented by

the dashed blue lines in [Fig. 3.28]. The curves for the visibility of the two-photon interfer-

ence presented in [Fig. 3.28 (c)] are not a fit, but a direct calculation from the correlation

functions using

visibility(τ) =
g

(2)
⊥ (τ)− g(2)

‖ (τ)

g
(2)
⊥ (τ)

, (3.53)

from where we get visibility(0) = 0.93 for the deconvolved fit, which is comparable to

the visibility achieved using the other samples where the QDs experience weaker spectral

fluctuation (visibility(0) ≈ 0.99)[77].

With an external magnetic field applied, there is no evidence of Raman photons [Fig. 3.20],

therefore, the spectral fluctuations are mainly attributed to the charge noise. At the excita-
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tion power where this data was acquired, the spectral fluctuations happen in a form similar

to [Fig. 3.23 (a)], where the detuning caused by the QD’s environment is much greater than

the linewidth of the detuning spectrum and fluctuates in the millisecond timescale. During

the correlation measurement, when the random detuning is present, the photon collection al-

most vanishes [Fig. 3.12 (d)] strongly affecting the number of counts in the histogram built

by the TCSPC module, but with minor influence on the visibility of the two-photon inter-

ference [Fig. 3.28 (c)]. In this experiment the phonon sideband was not filtered, therefore,

we expect that the imperfect deconvolved visibility is due to exciton-phonon interactions.

In summary, in this chapter we have discussed the statistics of photons emitted from

an ideal TLS and from an ideal TLS under spectral fluctuations making direct compar-

isons with experimental data acquired from three different samples with different inten-

sities of spectral fluctuations, but with similar characteristics, with an intriguing but not

understood dependence on the excitation power. The quality of the photons was also in-

vestigated through RF power spectrum and two-photon interference measurements, from

where it could be concluded that the spectral fluctuations increase the fraction of elastically

scattered photons and do not affect the indistinguishability of the photons in the specific

situation demonstrated here.
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Figure 3.28: HOM interference measurement using Sample 2. The polarisation of the
interfering photons were tuned to be (a) orthogonal (b) parallel to each other. (c) Visibility
of the two-photon interference. In all plots, the red points representing the experimental
data, the dashed blue lines are the fits using the equations for an ideal TLS, and the solid
green lines are the results of the convolution of the fit with the instrument response function.
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Four-level systems

Optical properties of semiconductor quantum dots

The system studied here consists of a self-assembled QD initially charged with a single

electron in the conduction band, which can be obtained through the application of a bias

voltage in a charge-tunable device, as discussed in 2.2.

Using a driving EM field we can excite an electron-hole pair, forming an charged ex-

citon also known as trion, with two electrons in the conduction band and a single hole in

the valence band. The ability to create the additional electron-hole pair is governed by well

defined selection rules, which can be used to manipulate the spin of the confined electron.

Therefore, the knowledge of the selection rules is essential. Considering the band structure

of a bulk semiconductor of direct gap like GaAs [Fig. 4.1] and InAs, we know that the

bottom of the conduction band is composed of s-type states with angular momentum l = 0

and the top of the valence band has p-type states with l = 1 [98]. This description is a good

approximation for semiconductors with direct gap with wave vector about zero, which is in

general the case for this kind of material. In the QD case, even though it misses the spher-

ical symmetry we can assume that angular momentum conservation will be satisfied and

then we can describe its states in terms of the orbitals just as in an atom. In addition to the

angular momentum L, the spin momentum S of the charge carriers in the valence band and

conduction band should be taken into account. Thus, for the valence band whose orbital

angular momentum is l = 1, the total angular momentum J = L + S will have eigenvalues

j = 3/2 and j = 1/2. For j = 3/2 we have the projection in the growth direction Jz with

eigenvalues m = ±3/2 and m = ±1/2 which are known as the heavy hole (HH) band

and light hole (LH) band, respectively. They have these names due to their effective mass

close to the point k ≈ 0 [98]. We also have j = 1/2, with eigenvalues of the projection Jz
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equal to m = ±1/2, forming the split-off band. About the point k ≈ 0 these states are well

separated from the other states due to the spin-orbit interaction, so it can be ignored, while

the HH and LH states are degenerate. In self-assembled QDs the HH and LH degeneracy

is broken by the stress between the layers of atoms with different lattice parameters [99].

The HH band is the one with higher energy and usually the LH band can be ignored. For

the conduction band (l = 0) we have only s = 1/2 and projections m = ±1/2.

Conduction band
s-type:

Valence band
p-type:

Electrons:

Heavy hole

Light hole

Split-off

Figure 4.1: Band structure. Representation of the band structure of a bulk GaAs. Eg is the
gap energy and ∆SO is the energy of the spin-orbit interaction.

In this section we are going to consider only the HH band (j = 3/2 and m = ±3/2)

and the conduction band (s = 1/2 and m = ±1/2). In this way, the trion state will be

represented by |↑↓,⇑〉 (|↑↓,⇓〉) when the state corresponding to m = 3/2 (m = −3/2) of

the HH band is occupied along with the two states of the conduction band (m = ±1/2).

When only a single electron is in the conduction band we will represent it by |↑〉 (|↓〉) for

m = 1/2 (m = −1/2).

Along with electric fields, magnetic fields are also very important in the manipulation

of the QD states due to its influence in the selection rules, as we will describe in the next

section.

Selection rules

Disregarding any band mixing due to the irregular shape of the QD and in the absence of

a magnetic field, the two electron spin states are degenerate (|↑〉 and |↓〉), just like the two
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trion states (|↑↓,⇑〉 and |↑↓,⇓〉) [Fig. 4.2] and they have well defined selection rules, asso-

ciated with the conservation of the angular momentum and the Pauli exclusion principle.

Figure 4.2: Selection rules for B̃ = 0̃. In the absence of a magnetic field the states of
the QD are degenerate and the coupling with the EM driving field must follow the selection
rules, where different trions can be created with the application of circularly polarised light.

In the dipole approximation the coupling is given by the potential V = ε̂ · ~p where ε̂ is

the vector representing the polarisation of the field and ~p is the linear momentum operator

of the electron [99]. Then we can determine the selection rules by calculating the matrix

elements 〈Ψ| ε̂ · ~p |Ψ′〉, which can be rewritten in the following form:

〈Ψ| ε̂ · ~p |Ψ′〉 ∝ ε̂ · 〈Ψ| [H,~r] |Ψ′〉

∝ ε̂ · 〈Ψ|~r |Ψ′〉 (4.1)

with ~r = r sin(θ)[cos(φ)x̂+ sin(φ)ŷ] + cos(θ)ẑ.

Here it is convenient to write the vector ~r as a function of the spherical harmonics

Y m
l (θ, φ) which are given by

Y −1
1 (θ, φ) =

1

2

√
3

2π
sin(θ)[cos(φ)− i sin(φ)] (4.2)

Y 1
1 (θ, φ) = −1

2

√
3

2π
sin(θ)[cos(φ) + i sin(φ)] (4.3)

Y 0
1 (θ, φ) =

1

2

√
3

π
cos(θ). (4.4)

The unitary vector r̂, can be written as

r̂ =

√
2π

3

{
Y −1

1 (θ, φ)(x̂+ iŷ) + Y 1
1 (θ, φ)(−x̂+ iŷ)

}
+ 2

√
π

3
Y 0

1 (θ, φ)ẑ. (4.5)
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With

σ+ =
x̂+ iŷ√

2
(4.6)

σ− =
x̂− iŷ√

2
, (4.7)

we have that (4.5) is

r̂ = 2

√
π

3

(
Y −1

1 σ+ − Y 1
1 σ− + Y 0

1 ẑ
)
. (4.8)

Charge carriers trapped in a QD are well described by a wave function Ψ composed by

Bloch functions ψ, which determines the selection rules, along with envelope functions f ,

which can extend beyond the QD and take information about the geometry of the QD [100]:

Ψm
n,l = An,lfn,lψ

m
l (4.9)

where A is the normalization constant and the index n corresponds to the possible bands.

This approximation, known as the envelope function approximation, is valid for QDs where

the effective potential of the specified band varies in a scale of length much greater than the

lattice parameter. In this way, the matrix elements are given by

〈Ψm
n,l|~r|Ψm′

n′,l′〉 = 〈fn,l|fn′,l′〉〈ψml |~r|ψm
′

l′ 〉+ 〈ψml |ψm
′

l′ 〉〈fn,l|~r|fn′,l′〉. (4.10)

For the interband transitions, going from one of the electron states to one of the trion

states, only the first term of [Eq. 4.10] will contribute:

〈Ψm
n,l|~r|Ψm′

n′,l′〉 = 〈fn,l|fn′,l′〉〈ψml |~r|ψm
′

l′ 〉, (4.11)

where the second inner product will determine the selection rules and the first term will

determine its intensity.

The Bloch functions, for the electron in the conduction band and for the hole in the

valence band, can be written in the following way [101]:

ψml =
1√

2l + 1

 ±√l ±m+ 1
2
Y
m−1/2
l√

l ∓m+ 1
2
Y
m+1/2
l

 . (4.12)

Using these functions we can calculate the matrix elements 〈Ψ|~r |Ψ′〉 for all possible

transitions. Starting with the electron states in the conduction band |Ψ′〉 = |↑〉 and the HH

in the valence band forming the trion state 〈Ψ| = 〈↑↓,⇑|, we have to calculate

〈↑↓,⇑|~r |↑〉 = 〈ψ3/2,3/2
1 |~r|ψ1/2,1/2

0 〉, (4.13)
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which can be rewritten as:

〈↑↓,⇑|~r |↑〉 = 2r

√
π

3

(
σ+

∫ θ=π

θ=0

∫ φ=2π

φ=0

(
Y 1

1

)∗
Y −1

1 Y 0
0 sin(θ)dθdφ+

−σ−
∫ θ=π

θ=0

∫ φ=2π

φ=0

(
Y 1

1

)∗
Y 1

1 Y
0

0 sin(θ)dθdφ+

+ẑ

∫ θ=π

θ=0

∫ φ=2π

φ=0

(
Y 1

1

)∗
Y 0

1 Y
0

0 sin(θ)dθdφ

)
. (4.14)

Only the second double integral is different from zero, giving us the result:

〈↑↓,⇑|~r |↑〉 =
−r√

3
ĉ− (4.15)

Because of the inner product ~r · ε̂ that describes the potential responsible for the cou-

pling between the states, we have that only the EM field with circular polarisation couples

the states |↑〉 and |↑↓,⇑〉. It is important to emphasize that angular momentum must be con-

served. Taking the example above, for an initial state with one electron in the conduction

band with m = 1/2, one photon with angular momentum m = 1 can only be absorbed if

the final state is a trion with m = 3/2, conserving angular momentum. Any other transition

via radiation that does not respect the conservation of angular momentum is forbidden. In

this case, in the absence of a magnetic field and taking as basis the states in the z-direction

ẑ, we can obtain the coupling between |↑〉 and |↑↓,⇑〉 using light with ĉ+ polarisation and

between the states |↓〉 and |↑↓,⇓〉 via light with ĉ− polarisation [Fig. 4.2].

In the presence of a magnetic field, the degeneracy of the spin states is broken through

the Zeeman effect and the energy separation for the electron states δe is different from the

energy separation for the trion states δh due to distinct g-factors for electron (ge) and hole

(gh). The spin states up and spin down of the electron and of the trion trapped in the QD

can now be identified through their energies. The direction of the magnetic field is very

important in this case. With the magnetic field applied in the growth direction we have

the Faraday geometry, where the states |↑〉 and |↑↓,⇑〉 (|↓〉 and |↑↓,⇓〉) are separated in

energy, but still preserving the selection rules described above, however, the states can now

be identified through optical spectroscopy due to the energy difference among them. If we

apply a magnetic field in a direction orthogonal to the growth direction (Voigt geometry),

along with the broken degeneracy [Fig. 4.3] we also get a superposition of the states, and

as a consequence we get a change in the selection rules. Defining

|0〉 =
1√
2

(|↑〉+ |↓〉) (4.16)
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|1〉 =
1√
2

(− |↑〉+ |↓〉) (4.17)

|2〉 =
1√
2

(− |↑↓,⇑〉+ |↑↓,⇓〉) (4.18)

|3〉 =
1√
2

(|↑↓,⇑〉+ |↑↓,⇓〉) , (4.19)

the coupling with radiation can be obtained again by calculating the matrix elements, as in

the following example:

〈2| r̂ |0〉 =
1

2
(−〈↑↓,⇑|+ 〈↑↓,⇓|) r̂ (|↑〉+ |↓〉)

=
r

2
√

3
(−ĉ− + ĉ+)

=
ir√

6
ŷ. (4.20)

Other elements different from zero are:

〈3| r̂ |0〉 =
r√
6
x̂ (4.21)

〈2| r̂ |1〉 =
r√
6
x̂ (4.22)

〈3| r̂ |1〉 =
ir√

6
ŷ. (4.23)

In this way, the application of a magnetic field aligned in the direction x̂ allows transi-

tions in the diagonal direction, forbidden in the Faraday geometry, using linearly polarised

light.

Figure 4.3: Voigt geometry. In the presence of magnetic field in the Voigt geometry the
states of the QD are not degenerate and the selection rules allow the transitions from any of
the lower energy states to any of the trion states by the application of a linearly polarised
light.
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Overhauser field effects on the X1− transition

The electron and hole wavefunctions of self-assembled III-V quantum dots [2.2] extend

over a large number of spin bearing nuclei. The nuclear spins generate an effective magnetic

field, called the Overhauser field, that couple with the spins via the hyperfine interaction and

can lead to relaxation and dephasing. In the context of the low temperature experiments

performed in this manuscript, the “frozen-fluctuation model” [73], in which the nuclear

spins are considered to be stationary for a timescale (≈ 1 µs) much greater than the optical

transition lifetime (≈ 1 ns), is most relevant for self-assembled quantum dots [56, 74, 75].

In this picture, the electron spin precesses around the hyperfine field on a ns timescale. Here

we are interested in changes to the energy levels and selection rules caused by the random

Overhauser field orientation. In particular, we develop a theoretical model for predicting

the resonance fluorescence spectrum of the photons scattered from the X1− transition of the

QD. Our model features four levels, two of those representing the electron spin of the QD’s

ground state, and the other two the unpaired (heavy) hole spin states of the first excited

state.

We let the electron spin levels be Zeeman split by the total magnetic field, i.e. the sum

of the externally applied field Bext plus the effective Overhauser contribution BN (in the

frozen fluctuation regime). By contrast, we assume the hole spin only ‘sees’ the external

field that is applied along the ẑ-direction. (Due to the reduced hole Bloch functions at the

nuclear positions, the hyperfine interaction coupling coefficient between a hole and nuclear

spins is only ≈ 10 % that of the electron spin coupling coefficient [102, 103]. Further, the

hyperfine interaction for an ideal heavy hole takes on an Ising-like form such that heavy

hole spin dephasing is greatly suppressed by an in-plane magnetic field [104]). As the basis

for our model we adopt the Zeeman eigenstates of both electron and hole (but with respect

to different magnetic fields as discussed above), see Fig. 4.4 for a schematic depiction of

the relevant level structure.

Writing the total magnetic field ~B = Bextẑ + ~BN as

~B = B[sin θ cosφx̂+ sin θ sinφŷ + cos θẑ] (4.24)

the electron spin Zeeman eigenstates are

|+〉 = cos

(
θ

2

)
|↑〉+ eiφ sin

(
θ

2

)
|↓〉 , (4.25)
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|−〉 = sin

(
θ

2

)
|↑〉 − eiφ cos

(
θ

2

)
|↓〉 . (4.26)

Figure 4.4: The X1− transition under an Overhauser field with an in-plane component.
When the total magnetic field is not completely parallel to the growth (ẑ) direction the elec-
tron spin-mixing alters the selection rules and all four transitions become dipole allowed.

Denoting the trion states with hole spin (anti)parallel to the ẑ-direction as (|⇓〉) |⇑〉, we

obtain the following optical dipole transition matrix elements:

〈⇑|~r |+〉 ∝ cos

(
θ

2

)
ĉ− , (4.27)

〈⇓|~r |+〉 ∝ eiφ sin

(
θ

2

)
ĉ+ , (4.28)

〈⇑|~r |−〉 ∝ sin

(
θ

2

)
ĉ− , (4.29)

〈⇓|~r |−〉 ∝ −eiφ cos

(
θ

2

)
ĉ+ , (4.30)

where ĉ± refers to the two possible circular polarisation states. Including the dependence of

the selection rules on the magnetic field direction and under a rotating wave approximation,

the system Hamiltonian is then given by

H

~
= −B

2
|+〉〈+|+ B

2
|−〉〈−|+

(
∆− Bext

2

)
|⇓〉〈⇓|+

(
∆ +

Bext

2

)
|⇑〉〈⇑|

+
Ω

2
sin

(
θ

2

)
(eiφε̂ · ĉ+ |+〉〈⇓|+H.c.) +

Ω

2
cos

(
θ

2

)
(ε̂ · ĉ− |+〉〈⇑|+H.c.)

− Ω

2
cos

(
θ

2

)
(eiφε̂ · ĉ+ |−〉〈⇓|+H.c.) +

Ω

2
sin

(
θ

2

)
(ε̂ · ĉ− |−〉〈⇑|+H.c.),

(4.31)

where H.c. denotes the Hermitian conjugate, B and Bext are in angular frequency units1, Ω

1For simplicity, the g-factors for the electron and hole were made equal.

58



Chapter 4: Four-level systems

is the optical Rabi frequency and ∆ the laser detuning from the QD transition in the absence

of any magnetic field, and ε̂ is a unit vector in the direction of the polarization of the driving

laser field.

The selection rules Eqs. (4.27-4.30) also imply spontaneous emission decay channels

with polar angle θ dependence as follows

Γ+⇑ = Γ cos2

(
θ

2

)
, (4.32)

Γ+⇓ = Γ sin2

(
θ

2

)
, (4.33)

Γ−⇑ = Γ sin2

(
θ

2

)
, (4.34)

Γ−⇓ = Γ cos2

(
θ

2

)
, (4.35)

where Γ = 1/T1 is the inverse lifetime of the QD. These processes are depicted schemati-

cally in Fig. 4.4. Further, we define a lowering operator for each circular polarisation

σ
(⇓)
− =

(√
Γ+⇓ |+〉〈⇓|+

√
Γ−⇓ |−〉〈⇓|

)
ĉ+ , (4.36)

σ
(⇑)
− =

(√
Γ+⇑ |+〉〈⇑|+

√
Γ−⇑ |−〉〈⇑|

)
ĉ− . (4.37)

Using these equations, we can obtain the temporal evolution of the density matrix, given

by integrating the master equation

dρ

dt
= − i

~
[H, ρ] + L(σ

(⇑)
− )ρ+ L(σ

(⇓)
− )ρ , (4.38)

where L(◦)ρ = ◦ρ ◦† −(◦† ◦ ρ+ ρ ◦† ◦)/2 is the standard Lindbladian dissipator.

Writing every element of the master equation, we have

dρ++

dt
= −Ω

[
sin

(
θ

2

)
Im
[
ρ+⇓e

−i(φ+α)
]

+ cos

(
θ

2

)
Im
[
ρ+⇑e

iα
]]

+ Γ+⇓ρ⇓⇓ + Γ+⇑ρ⇑⇑ (4.39)
dρ−−
dt

= Ω

[
cos

(
θ

2

)
Im
[
ρ−⇓e

−i(φ+α)
]
− sin

(
θ

2

)
Im
[
ρ−⇑e

iα
]]

+ Γ−⇓ρ⇓⇓ + Γ−⇑ρ⇑⇑ (4.40)
dρ⇓⇓
dt

= Ω

[
sin

(
θ

2

)
Im
[
ρ+⇓e

−i(φ+α)
]
− cos

(
θ

2

)
Im
[
ρ−⇓e

−i(φ+α)
]]
− Γρ⇓⇓(4.41)

dρ⇑⇑
dt

= Ω

[
cos

(
θ

2

)
Im
[
ρ+⇑e

iα
]

+ sin

(
θ

2

)
Im
[
ρ−⇑e

iα
]]
− Γρ⇑⇑ (4.42)

dρ+−

dt
= −iΩ

2

[
cos

(
θ

2

)
e−iα

(
ρ+⇓e

−iφ + ρ↑−
)
− sin

(
θ

2

)
eiα
(
ρ+⇑ − ρ⇓−eiφ

)]
+ iBρ+− +

√
Γ+⇓Γ−⇓ρ⇓⇓ +

√
Γ+⇑Γ−⇑ρ⇑⇑ (4.43)
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dρ+⇓

dt
=

ρ+⇓

2
[i(B −Bext + 2∆)− Γ] +

iΩ

2
ei(φ+α) sin

(
θ

2

)
(ρ++ − ρ⇓⇓)

− iΩ

2
cos

(
θ

2

)
(ρ+−e

i(φ+α) + ρ⇑⇓e
−iα) (4.44)

dρ+⇑

dt
=

ρ+⇑

2
[i(B +Bext + 2∆)− Γ] +

iΩ

2
e−iα cos

(
θ

2

)
(ρ++ − ρ⇑⇑)

+
iΩ

2
sin

(
θ

2

)
(ρ+−e

−iα − ρ⇓⇑ei(φ+α)) (4.45)

dρ−⇓
dt

=
ρ−⇓
2

[i(2∆−B −Bext)− Γ] +
iΩ

2
ei(φ+α) cos

(
θ

2

)
(ρ⇓⇓ − ρ−−)

+
iΩ

2
sin

(
θ

2

)
(ρ−+e

i(φ+α) − ρ⇑⇓e−iα) (4.46)

dρ−⇑
dt

=
ρ−⇑
2

[i(2∆−B +Bext)− Γ] +
iΩ

2
e−iα sin

(
θ

2

)
(ρ−− − ρ⇑⇑)

+
iΩ

2
cos

(
θ

2

)
(ρ−+e

−iα + ρ⇓⇑e
i(φ+α)) (4.47)

dρ⇓⇑
dt

= ρ⇓⇑[iBext − Γ] +
iΩ

2
e−iα sin

(
θ

2

)
(ρ⇓− − ρ+⇑e

−iφ)

+
iΩ

2
e−iα cos

(
θ

2

)
(ρ⇓+ + ρ−⇑e

−iα) (4.48)

For Ω� Ωsat, the diagonal elements of the density matrix are expected to be very small

(∝ Ω2) and, therefore, have minor influence on the temporal evolution of the off-diagonal

elements. Assuming ρ⇓⇓(0) = ρ⇑⇑(0) = ρ⇓⇑(0) = 0, the solution of the density matrix in

the low Rabi frequency regime is given by

ρ+−(t) = ρ+−(0)eiBt (4.49)

ρ+⇓(t) =

[
ρ+⇓(0)− ρ+⇓(∞)− ρ−⇓(∞)

ρ+−(0)

ρ−−(0)

]
exp

{
(iE+⇓ − Γ)t

2

}
+ ρ−⇓(∞)

ρ+−(0)

ρ−−(0)
exp {iBt}+ ρ+⇓(∞) (4.50)

ρ+⇑(t) =

[
ρ+⇑(0)− ρ+⇑(∞)− ρ−⇑(∞)

ρ+−(0)

ρ−−(0)

]
exp

{
(iE+⇑ − Γ)t

2

}
+ ρ−⇑(∞)

ρ+−(0)

ρ−−(0)
exp {iBt}+ ρ+⇑(∞) (4.51)

ρ−⇓(t) =

[
ρ−⇓(0)− ρ−⇓(∞)− ρ+⇓(∞)

ρ−+(0)

ρ++(0)

]
exp

{
(iE−⇓ − Γ)t

2

}
+ ρ+⇓(∞)

ρ−+(0)

ρ++(0)
exp {−iBt}+ ρ−⇓(∞) (4.52)

ρ−⇑(t) =

[
ρ−⇑(0)− ρ−⇑(∞)− ρ+⇑(∞)

ρ−+(0)

ρ++(0)

]
exp

{
(iE−⇑ − Γ)t

2

}
+ ρ+⇑(∞)

ρ−+(0)

ρ++(0)
exp {−iBt}+ ρ−⇑(∞) , (4.53)
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where we have defined

E+⇓ = B −Bext + 2∆ (4.54)

E+⇑ = B +Bext + 2∆ (4.55)

E−⇓ = −B −Bext + 2∆ (4.56)

E−⇑ = −B +Bext + 2∆ (4.57)

and α is related to the direction of the polarisation vector of the driving field through

ε̂ = cos(α)x̂+ sin(α)ŷ . (4.58)

Although the initial assumption that the electron spin basis is always in the direction of the

total magnetic field eliminates any chance of having ρ+−(0) 6= 0, the Eq. [4.49] must not

be ignored for the correlation function, where it plays an important role.

The steady state solution for the density matrix is

ρ+⇓(∞) = −iΩe
i(α+φ)ρ++(0)

iE+⇓ − Γ
sin

(
θ

2

)
(4.59)

ρ+⇑(∞) = −iΩe
−iαρ++(0)

iE+⇑ − Γ
cos

(
θ

2

)
(4.60)

ρ−⇓(∞) =
iΩei(α+φ)ρ−−(0)

iE−⇓ − Γ
cos

(
θ

2

)
(4.61)

ρ−⇑(∞) = −iΩe
−iαρ−−(0)

iE−⇑ − Γ
sin

(
θ

2

)
(4.62)

ρ⇓⇓(∞) =
Ω2ρ++(0) sin2

(
θ
2

)
E2

+⇓ + Γ2
+

Ω2ρ−−(0) cos2
(
θ
2

)
E2
−⇓ + Γ2

(4.63)

ρ⇑⇑(∞) =
Ω2ρ++(0) cos2

(
θ
2

)
E2

+⇑ + Γ2
+

Ω2ρ−−(0) sin2
(
θ
2

)
E2
−⇑ + Γ2

(4.64)

Resonance fluorescence power spectrum

We proceed to calculate the first-order correlation function G(1)(τ) = 〈σ+(t + τ)σ−(t)〉,

which will give us access to the fluorescence spectrum of the photons scattered by this

four-level system. In our case we have (due to the two orthogonal polarisations)

G(1)(τ) = 〈σ(⇑)
+ (t+ τ)σ

(⇑)
− (t)〉+ 〈σ(⇓)

+ (t+ τ)σ
(⇓)
− (t)〉 (4.65)

= Tr
[
U−(τ)σ

(⇓)
− ρ(∞)U(τ)σ

(⇓)
+

]
+ Tr

[
U−(τ)σ

(⇑)
− ρ(∞)U(τ)σ

(⇑)
+

]
,(4.66)

with

σ
(⇓)
− ρ(∞) =

√
Γh (ρ⇓+(∞) |+〉〈+|+ ρ⇓−(∞) |+〉〈−|)
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+
√

Γv (ρ⇓+(∞) |−〉〈+|+ ρ⇓−(∞) |−〉〈−|) (4.67)

σ
(⇑)
− ρ(∞) =

√
Γv (ρ⇑+(∞) |+〉〈+|+ ρ⇑−(∞) |+〉〈−|)

+
√

Γh (ρ⇑+(∞) |−〉〈+|+ ρ⇑−(∞) |−〉〈−|) , (4.68)

where Γv = Γ+⇑ = Γ−⇓ and Γh = Γ+⇓ = Γ−⇑.

Defining

ρ(⇓)(τ) = U−(τ)σ
(⇓)
− ρ(∞)U(τ) , (4.69)

ρ(⇑)(τ) = U−(τ)σ
(⇑)
− ρ(∞)U(τ) , (4.70)

G(1)(τ) = Tr
[
ρ(⇓)(τ)σ

(⇓)
+

]
+ Tr

[
ρ(⇑)(τ)σ

(⇑)
+

]
(4.71)

=
√

Γhρ
(⇓)
+⇓(τ) +

√
Γvρ

(⇓)
−⇓(τ) +

√
Γvρ

(⇑)
+⇑(τ) +

√
Γhρ

(⇑)
−⇑(τ) (4.72)

and knm = ρnm(∞)/ρnn(0), the first-order correlation function may be written as

G(1)(τ) =
[
ρ⇓⇓(∞)− |k+⇓|2ρ++(0)− |k−⇓|2ρ−−(0)

] [
Γhe

(iE+⇓−Γ)τ/2 + Γve
(iE−⇓−Γ)τ/2

]
+

[
ρ⇑⇑(∞)− |k+⇑|2ρ++(0)− |k−⇑|2ρ−−(0)

] [
Γve

(iE+⇑−Γ)τ/2 + Γhe
(iE−⇑−Γ)τ/2

]
+

(
Γv|k+⇓|2 + Γh|k+⇑|2

)
ρ++(0)e−iBτ +

(
Γh|k−⇓|2 + Γv|k−⇑|2

)
ρ−−(0)eiBτ

+
(
Γh|k+⇓|2 + Γv|k+⇑|2

)
ρ++(0) +

(
Γv|k−⇓|2 + Γh|k−⇑|2

)
ρ−−(0) . (4.73)

The amplitude of the damped oscillations in Eq. [4.73] tends to zero for extremely

low Rabi frequencies, which can be easily checked using Eqs [4.59-4.64], but, once the

number of expected photons differs from the amount of coherently scattered photons, these

damped oscillations in the first-order correlation function turn into two peaks located at

their respective frequencies, which is relative to the driving field frequency in the present

case, and with width completely determined by the decay rate Γ in the power spectrum.

For the purpose of this work, we may rewrite the G(1)(τ) function as

G(1)(τ) =
(
Γv|k+⇓|2 + Γh|k+⇑|2

)
ρ++(0)e−iBτ +

(
Γh|k−⇓|2 + Γv|k−⇑|2

)
ρ−−(0)eiBτ

+
(
Γh|k+⇓|2 + Γv|k+⇑|2

)
ρ++(0) +

(
Γv|k−⇓|2 + Γh|k−⇑|2

)
ρ−−(0) . (4.74)

The validity of this approximation, based on the small importance of the population of

the excited states, can be analysed by comparing the approximated analytical G(1)(τ) func-

tion [Eq. 4.74] with the numerical solution of the first-order correlation function, without
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the approximation under investigation. The function F used for this comparison is given

by

F =
1

N

∑
τ

√(
G(1)(τ)−G(1)

n (τ)
)2

(4.75)

where N is the number of points in the temporal evolution and the subscript was included

to differentiate the analytical solution from the numerical solution. In [Fig. 4.5 (a)], F can

be observed as a function of the Rabi frequency, where BN = 250 MHz, θ = π/2, Γ = 1

GHz and ρ++(0) = ρ−−(0) = 1/2. The points marked with a green and blue dots are

demonstrated in [Fig. 4.5 (b)] and [Fig. 4.5 (c)], respectively, with the dashed black line

corresponding to the analytical solution presented in [Eq. 4.74].
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Figure 4.5: Dependence of the approximation validity on the Rabi frequency. (a) As the
Rabi function increases, the analytical solution differs from the general solution presented
by the numerical calculation and F increases. (b) At Ω = 0.05Ωsat, the approximated
solution (dashed black) agrees with the general numerical solution (solid green). (c) At
Ω = 0.3Ωsat there is a reasonable discrepancy between the approximated solution (dashed
black) and the numerical solution (solid blue). Here the parameters used were Γ = 1 GHz,
BN = 250 MHz, θ = π/2 and ρ++ = ρ−− = 1/2, and the time resolution of the temporal
evolution is 10 ps.

The power spectrum of the resonance fluorescence can be calculated by taking the dou-

ble of the real part of the Fourier transform of the first-order correlation function

S(ω)

2
=

(
Γv|k+⇓|2 + Γh|k+⇑|2

)
ρ++(0)δ(ω +B) +

(
Γh|k−⇓|2 + Γv|k−⇑|2

)
ρ−−(0)δ(ω −B)

+
(
Γh|k+⇓|2 + Γv|k+⇑|2

)
ρ++(0)δ(ω) +

(
Γv|k−⇓|2 + Γh|k−⇑|2

)
ρ−−(0)δ(ω) . (4.76)

In the absence of an external magnetic field and for ∆ = 0 MHz, the measurement of a

single power spectrum at temperature T ∼ 4 K can be simulated using ρ++(0) = ρ−−(0) =
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1/2. In these conditions, the power spectrum is given by

S(ω) =
Ω2Γ

B2
N + Γ2

{[
1 + cos2 θ

]
δ(ω) +

sin2(θ)

2
[δ(ω −BN) + δ(ω +BN)]

}
. (4.77)

In [Eq. 4.77], it can be observed that the Raman process is responsible for up to 50% of

the photon scattering, with the maximal achieved at θ = π/2, when all the transitions have

equal intensity. From the same equation, it can also be observed that only the distribution of

the photons over the frequency domain depends on the orientation of the Overhauser field,

while the total number of photons remains constant, as expected.

In [Fig. 4.6], the normalised spectra for different values of θ are presented, where the

delta peaks were converted into Lorentzian peaks with width equal to the spectral resolution

of the instrument used in the experiments, which is ∼ 27.5 MHz. In the Faraday geometry

(θ = 0), only the central peak is observed [Fig. 4.6 (a)], but as θ is increased, the Raman

peaks, also converted into Lorentzian peaks, appear [Fig. 4.6 (b)], achieving their maximal

intensity in the Voigt geometry (θ = π/2) [Fig. 4.6 (c)].
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Figure 4.6: Resonance fluorescence spectra with fixed Overhauser fields for
Bext = ∆ = 0 MHz. (a) In the Faraday geometry with low Rabi frequency Ω = 0.01Ωsat,
only elastically scattered photons are expected. (b) θ = π/4 and Ω = 0.01Ωsat. The two
side peaks at ±δe (BN = 250 MHz) are due to Raman scattered photons (broadened to the
interferometer resolution). (c) Voigt geometry with other parameters as in (b): the Raman
transitions reach maximal intensity in this configuration.

To reproduce the long time measurements, it is necessary to average several spectra

with different instantaneous nuclear fields ~BN . Considering that the Overhauser field has

no preferential direction, we will realise 〈 ~BN〉 = ~0 (as required) upon performing uniform

averaging over the solid angle.

〈S(ω)〉θ,φ =

∫ 2π

0

∫ π

0

S(ω) sin θdθdφ (4.78)
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〈S(ω)〉θ,φ =
4πΩ2Γ

3(B2
N + Γ2)

[4δ(ω) + δ(ω +BN) + δ(ω −BN)] . (4.79)

It remains to specify a radial distribution of BN to represent the magnitudes of the instanta-

neous Overhauser fields. We consider the case of a normal distribution with generally finite

mean 〈BN〉 and variance δBN .

〈S(ω)〉BN ,θ,φ =

∫ ∞
0

〈S(ω)〉θ,φN exp

(
−(BN − 〈BN〉)2

2δB2
N

)
dBN (4.80)

〈S(ω)〉BN ,θ,φ =
4πΩ2ΓN

3

{
4δ(ω)

∫ ∞
0

1

B2
N + Γ2

exp

(
−(BN − 〈BN〉)2

2δB2
N

)
dBN

+

∫ ∞
0

[δ(ω −BN) + δ(ω +BN)]

B2
N + Γ2

exp

(
−(BN − 〈BN〉)2

2δB2
N

)
dBN

}
(4.81)

〈S(ω)〉BN ,θ,φ =
4πΩ2ΓN

3

{
4δ(ω)

∫ ∞
0

1

B2
N + Γ2

exp

(
−(BN − 〈BN〉)2

2δB2
N

)
dBN

+
1

ω2 + Γ2

[
exp

(
−(ω − 〈BN〉)2

2δB2
N

)
+ exp

(
−(ω + 〈BN〉)2

2δB2
N

)]}
,(4.82)

where N is the normalisation factor of the probability distribution.

For 〈BN〉 = 0 the difference between the energy of the Raman scattered and the

Rayleigh photons is typically small, and consequently the average over the Raman peaks

yields a single Gaussian envelope of width proportional to δBN [Fig. 4.7 (a)]. By contrast a

finite mean 〈BN〉 > 0 separates the Rayleigh from the Raman peaks, leading to two shifted

Gaussian Raman envelopes either side of the central elastic peak [Fig. 4.7 (b)]. This latter

case gives very close agreement with our measured spectra shown in [Fig. 4.7 (c)].
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Figure 4.7: Resonance fluorescence spectrum averaged over a fluctuating Overhauser
field. Here the parameters are Γ = 1.33 GHz, Ω = 0.01Ωsat, Bext = 0 MHz, and an
isotropic angular distribution of the Overhauser field throughout. (a) 〈BN〉 = 0 MHz and
δBN = 200 MHz: the Raman peak envelope forms a single Gaussian with width propor-
tional to δBN . (b) 〈BN〉 = 300 MHz and δBN = 100 MHz: the Raman peak envelopes
can be resolved separately either side of the central elastic peak. (c) Our averaged full sim-
ulation of the spectrum with 〈BN〉 = 264 MHz and δBN = 113 MHz provides an equally
good fit to the experimental data as directly fitting (i.e. without underlying calculation of the
spectrum) two Gaussian peaks with mean 0.208(5) MHz and standard deviation 0.114(6)
MHz plus a Lorentzian peak with mean equal to 0 MHz and width equal to 27.5 MHz (FPI
resolution).

Another relevant case to be analysed is when the external field is different from zero

and the driving field is tuned on resonance with one of the optical transitions of the Faraday

geometry. For example, if the driving field is on resonance with the transition from |+〉 to

|⇑〉, i.e., ∆ = −(Bext +B)/2, the spectrum can be written as

S(ω)

2
=

[
ΓvΩ

2

4B2
ext + Γ2

+
ΓhΩ

2

Γ2

]
ρ++(0)δ(ω +B)

+

[
ΓhΩ

2

4(Bext +B)2 + Γ2
+

ΓvΩ
2

4B2 + Γ2

]
ρ−−(0)δ(ω −B)

+

[
ΓhΩ

2

4B2
ext + Γ2

+
ΓvΩ

2

Γ2

]
ρ++(0)δ(ω)

+

[
ΓvΩ

2

4(Bext +B)2 + Γ2
+

ΓvΩ
2

4B2 + Γ2

]
ρ−−(0)δ(ω) . (4.83)

For Bext � BN , we have that B ∼ Bext, θ ∼ 0 and, consequently, Γh ∼ 0 and Γv ∼ Γ, so,

S(ω)

2
=

ΓΩ2ρ++(0)

4B2 + Γ2
δ(ω +B) +

ΓΩ2ρ−−(0)

4B2 + Γ2
δ(ω −B)

+

[
Ω2ρ++(0)

Γ
+

ΓΩ2ρ−−(0)

16B2 + Γ2

]
δ(ω) . (4.84)

If Bext is also much greater than the decay rate, then

S(ω) =
2Ω2ρ++(0)

Γ
δ(ω) (4.85)
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and the TLS behaviour is recovered. The recovery of the purely elastic scattering in spite

of the presence of the nuclear field is important, since it is one of the reasons behind the

degradation of the visibility of two-photon interference measurements [77].

Second-order correlation function

In this section, the effects of the Overhauser field and its fluctuation on the second-order

correlation function in the low Rabi frequency regime will be investigated.

The un-normalised second-order correlation function G(2)(τ) is written as

G(2) = 〈σ+(t)σ+(t+ τ)σ−(t+ τ)σ−(t)〉 , (4.86)

with the normalised second-order correlation function g(2)(τ) given by

g(2)(τ) =
G(2)(τ)

|G(1)(0)|2
. (4.87)

Again due to the orthogonal polarisation of the optical transitions, this correlation function

may be rewritten as

G(2) = 〈σ(⇑)
+ (t)σ

(⇓)
+ (t+ τ)σ

(⇑)
− (t+ τ)σ

(⇓)
− (t)〉+ 〈σ(⇑)

+ (t)σ
(⇓)
+ (t+ τ)σ

(⇓)
− (t+ τ)σ

(⇑)
− (t)〉

+ 〈σ(⇓)
+ (t)σ

(⇑)
+ (t+ τ)σ

(⇑)
− (t+ τ)σ

(⇓)
− (t)〉+ 〈σ(⇓)

+ (t)σ
(⇑)
+ (t+ τ)σ

(⇓)
− (t+ τ)σ

(⇑)
− (t)〉

(4.88)

G(2) = Tr
[
U−(τ)σ

(⇓)
− ρ(∞)σ

(⇑)
+ U(τ)σ

(⇓)
+ σ

(⇑)
−

]
+ Tr

[
U−(τ)σ

(⇑)
− ρ(∞)σ

(⇑)
+ U(τ)σ

(⇓)
+ σ

(⇓)
−

]
+ Tr

[
U−(τ)σ

(⇓)
− ρ(∞)σ

(⇓)
+ U(τ)σ

(⇑)
+ σ

(⇑)
−

]
+ Tr

[
U−(τ)σ

(⇑)
− ρ(∞)σ

(⇓)
+ U(τ)σ

(⇑)
+ σ

(⇓)
−

]
(4.89)

With ρ⇓⇑(∞) = ρ⇑⇓(∞) = 0, all the elements of σ(⇓)
− ρ(∞)σ

(⇑)
+ and σ(⇑)

− ρ(∞)σ
(⇓)
+ are

zero. So,

G(2) = Tr
[
U−(τ)σ

(⇑)
− ρ(∞)σ

(⇑)
+ U(τ)σ

(⇓)
+ σ

(⇓)
−

]
+ Tr

[
U−(τ)σ

(⇓)
− ρ(∞)σ

(⇓)
+ U(τ)σ

(⇑)
+ σ

(⇑)
−

]
(4.90)

with

σ
(⇑)
− ρ(∞)σ

(⇑)
+ = ρ⇑⇑(∞)

[
Γv |+〉〈+|+

√
ΓvΓh (|+〉〈−|+ |−〉〈+|) + Γh |−〉〈−|

]
(4.91)

σ
(⇓)
− ρ(∞)σ

(⇓)
+ = ρ⇓⇓(∞)

[
Γh |+〉〈+|+

√
ΓvΓh (|+〉〈−|+ |−〉〈+|) + Γv |−〉〈−|

]
.(4.92)

Writing ρ(a)(τ) = U−(τ)σ
(a)
− ρ(∞)σ

(a)
+ U(τ), we have that

G(2)(τ) = Γ
[
ρ

(⇑)
⇓⇓ (τ) + ρ

(⇓)
⇑⇑ (τ)

]
. (4.93)
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The temporal evolution of the excited states can be calculated by replacing the off diag-

onal elements [Eqs. 4.50-4.53] in [Eqs. 4.41-4.42], as presented in [Appendix B].

For ∆ = 0 MHz, ρ++(0) = ρ−−(0) = 1/2 and in the absence of an external magnetic

field, the g(2)(τ) function is

g(2)(τ) = 1 + e−Γt − 2 cos

(
BN t

2

)
e−Γt/2 , (4.94)

from where it can be concluded that the intensity correlation function does not depend

on the orientation of the Overhauser field, but only on the detuning it causes through the

Zeeman splitting. As it can be easily checked in [Eq. 4.94], forBN = 0 MHz and under the

conditions already cited, the four-level system will present an intensity correlation function

equal to the correlation of a TLS under the same conditions. But, if BN 6= 0 MHz, the

presence of the Overhauser field affects the slope of the curve and originates a bunching for

modest values [Fig. 4.8 (a)].

To simulate long time measurements, it is necessary to integrate g(2)(τ) over a normal

distribution. So, it is given by

〈g(2)(τ)〉BN
= 1 + e−Γt − 2e−Γt/2

∫ ∞
0

cos

(
BN t

2

)
n(BN , 〈BN〉, δBN)dBN , (4.95)

where n(BN , 〈BN〉, δBN)dBN is the normal distribution with mean 〈BN〉 and deviation

δBN .
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Figure 4.8: g(2)(τ) function under the influence of the Overhauser field. (a) With Γ = 1
GHz, a constant Overhauser field affects the slope of the curve and originates a bunching
for modest values. (b) When the g(2)(τ) function is averaged to simulate a long time mea-
surement, the slope is affected even for 〈BN〉 = 0 MHz (black solid line) and the bunching
is slightly decreased. The correlation with BN = 0 MHz (black dashed line) was intro-
duced for comparison and the standard deviation for the Overhauser field is δBN = 200π
MHz in angular frequency unit.
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In [Fig. 4.8 (b)] it is possible to observe that the slope of the curve deviates from the

ideal (black dashed line) even with 〈BN〉 = 0 MHz (black solid line). In this sense, when

there is a considerable interaction between the nuclear field and the quantum system, the

second-order correlation function under low Rabi frequency cannot be used as a precise

measurement of the decay rate.

In order to account for the non-zero g(2)(0) due to the response time of detection, it is

necessary to include another parameter K in [Eq. 4.95], so that it reads

〈g(2)(τ)〉BN
= 1 + (1−K)

[
e−Γt − 2e−Γt/2

∫ ∞
0

cos

(
BN t

2

)
n(BN , 〈BN〉, δBN)dBN

]
.

(4.96)

In [Fig. 4.9] it can be noticed that the slope of the simulated g(2)(τ) function matches

the slope of the experimental g(2)(τ) function measured in the low Rabi frequency regime.

In this case, the parameters used come from the fit in [Fig. 4.7 (c)], which are 〈BN〉 = 1.659

GHz and δBN = 0.754 GHz, and the decay rate Γ = 1.33 GHz measured by Dr. Ralph N.

E. Malein through the ratio between the elastically scattered photons and the total amount

of photons under a modest external magnetic field in the growth direction (red solid line).

The bunching at ∼ 2 ns is also present in both plots, but the decay from the bunching

until g(2)(τ) = 1 is not covered by this model. Possible explanations are the not included

incoherent spin flip and the not considered finite value of the laser coherence time. The

expected g(2)(τ) function without the effect of the Overhauser field can also be observed in

[Fig. 4.9 (dashed blue line)].
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Figure 4.9: Experimental g(2)(τ) function and its correspondent simulation. (black
dots) The experimental g(2)(τ) function acquired with no external field applied in the low
Rabi frequency regime. (red solid line) Simulation of the g(2)(τ) function using the param-
eters from the fit in [Fig. 4.7 (c)], which are 〈BN〉 = 1.659 GHz and δBN = 0.754 GHz,
and the decay rate Γ = 1.33 GHz measured by Dr. Ralph N. E. Malein through the ratio
between the elastically scattered photons and the total amount of photons under a modest
external magnetic field in the growth direction. (dashed blue line) The simulation of the
g(2)(τ) function not taking into account the effects of the Overhauser field for Γ = 1.33
GHz.

In this chapter, it was discussed the optical properties of semiconductor quantum dots, as

well as the selection rules for the negatively charged exciton transition. The selection rules

are crucial for the understanding of the effects of the Overhauser field on the resonance

fluorescence signal from the X1− optical transitions. The effects of the nuclear field on

the first-order correlation function was investigated for the case of low excitation power

(Ω� Ωsat) and a comparison between the model and an experimental result was presented

for the related power spectrum, from where it was concluded that the average magnitude

of the nuclear field is ∼ 264 MHz with a deviation of ∼ 113 MHz. It was also concluded

that the second-order correlation function is affected by the Overhauser field, which leads

to a considerable change on the slope of the antibunching dip and the appearance of an

oscillating term. As a continuity to this work, a theoretical study about the effects of the

nuclear field on the two-photon interference measured using the HOM interferometer will

be investigated.
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Quantum dots near a metal surface

This chapter describes the investigation of some effects of a metal surface (Au), present in

both PCA devices (Sample 2 and Sample 3), in close proximity to the quantum dots. These

effects are observed in resonant excitation and appear to be caused by an image dipole

induced on the metal surface. I will present the experimental observations and discuss

the possible cause of the effect with a theoretical model which leads to a good degree of

quantitative agreement. Following these preliminary results, further experiments will be

suggested that can lead to a complete understanding of the coupling between a quantum

dot and nearby metal mirror. Here, the X1− optical transitions of the QDs are considered

TLSs, even in the absence of an external magnetic field and for linearly polarised excitation

field. In the theoretical analysis, the effects of the charge noise and Overhauser field on

the photon counting statistics and selection rules of the X1− transition are put aside for

simplicity.

As discussed in [Sec. 2.2], the Au mirror was introduced in the samples to reflect the

fraction of photons that the QD emits in the direction opposite to the objective lens of the

microscope and to shape the far-field radiation pattern for optimised collection efficiency

[Fig. 2.1]. The distance between the metal surface and the QD layer dqd−i was optimised

by Dr. Yong Ma using FDTD simulations and an analytical analysis in order to get the best

extraction efficiency possible, resulting in dqd−i = 176.6 (196.6) nm for Sample 2 (3).

Experimental g(2)(τ ) of a QD near a gold surface

In this section, we will discuss the experimental results of the second-order correlation

function measured using the photons emitted by a QD and its image on a gold surface.

In order to analyse the g(2)(τ) at relatively long timescales (microseconds), the photon

counting was performed in the time-tagged mode of PicoHarp [Appendix A], where the
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arrival times of photons were recorded for post-processing.
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Figure 5.1: Second-order correlation function of a TLS near a metal. (a) The g(2)(τ)
for small τ is dominated by the photon emission of the QD, which has ΓQD = 1.5 GHz,
extracted from power spectrum measurements. In this case ΩQD = 0.111(7)Ωsat

QD. The
small bunching observed is caused by the spectral fluctuations, similar to [Fig. 4.9]. (b)
Oscillations caused by the interaction between the QD and the metal surface with frequency
12.8π MHz and decay rate of 2 MHz. (c) Fourier transform of g(2)(τ)− 1 presented in (b)
used to facilitate the extraction of the frequency of oscillation and decay rate.

In [Fig. 5.1], we can observe the experimental data acquired using the ‘noisy’ PCA

device with a gold mirror placed ∼ 176.6 nm away from the QD layer (Sample 2) [Sec.

2.2] for a Rabi frequency equal to 0.111(7)Ωsat
QD. The time bin of the experimental data is

Tbin = 0.064 ns in [Fig. 5.1 (a)], where the usual antibunching curve is observed when τ is

comparable to the QD lifetime. In [Fig. 5.1 (b)], the time bin used was Tbin = 2 ns and an

oscillation with frequency Ωi = 12.8π MHz and decay rate Γi = 2 MHz is observed due

to the interaction between the QD and the mirror, which is not present in the second-order

correlation function measurements performed using the bulk sample (Sample 1).

It was observed that the coherence time and frequency of the oscillations depend on the

power of the driving field [Fig. 5.2], which is tuned using a neutral density filter [Sec. 2.1],

so no change in the coherence time of the laser is expected. The coherence time has a linear

dependence on the Rabi frequency [Fig 5.3 (a)], while the frequency of the oscillations

exhibits a small alteration which, in the range measured, depends exponentially on ΩQD

[Fig 5.3 (b)]. The numbers presented were extracted from fits of the data presented in

[Fig. 5.2] using

g(2)(τ)− 1 = B cos(Ωiτ)e−3Γiτ/4 , (5.1)

where the factor 3/4 was included in the exponential term to make the equation identical to

the intensity correlation function of a TLS for Ωi >> Γi, where B is a constant to account

for the fact that g(2)(0) 6= 0.
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Figure 5.2: Dependence of the image TLS decay rate Γi on the QD excitation
power. g(2) function displaying the image TLS Rabi oscillations for (a) P = 0.46 nW
(ΩQD = 85.85 MHz, Γi = 1.68(6) GHz) (b) P = 1.54 nW (ΩQD = 157.08 MHz,
Γi = 2.28(4) GHz) (c) P = 7.69 nW (ΩQD = 351.01 MHz, Γi = 3.68(5) GHz) and (d)
P = 15.38 nW (ΩQD = 496.41 MHz, Γi = 4.67(7) GHz).

As the probability of collecting two photons with a time interval ∆t between them

decays exponentially (assuming a Poissonian distribution), the oscillations are expected to

exponentially decay. To get rid of this undesired slope, we used an exponential function to

fit the decay and the fitted function was subtracted from the data.

In summary, we have experimentally observed, through the second-order correlation

function, the interaction between a QD and a metal surface separated by a distance shorter

than the driving field wavelength. It was also shown that the decay rate and frequency of

these oscillations depend on the excitation power, and that this dependence might be caused

by alterations of the charges and currents confined on the conductor surface.
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Figure 5.3: Decay rate and frequency of the oscillations due to the presence of the
metal surface as a function of the Rabi frequency. (a) The decay rate of the oscillations
depends linearly on the Rabi frequency ΩQD with Γi(ΩQD) = 0.0072(2) ΩQD + 1.11(5).
(b) The frequency of the oscillations is also dependent on ΩQD and its curve can be fitted
using Ωi(ΩQD) = 0.03(1) exp[0.008(1)ΩQD] + 39.18(4).

Two QDs under the same laser spot near a metal surface

Some reports have been made about the nature of the light emitted by more than one source

through correlation functions [105, 106], effective lifetime [107] and intensity [108, 109].

These results point to phenomena like superradiance and subradiance [107, 110, 111],

which are the cooperative emission of photons from different single photon sources and

a cooperative inhibition of this emission, respectively. A pair of two-level systems can also

be very useful in the field of quantum information because they can be used to generate

entangled states [110], which are key for quantum information processing. Here we report

the dependence of the expected number of photons emitted by a set of two QDs under the

same laser spot in the PCA device with moderate intrinsic charge noise (Sample 3), which

has the Au mirror 196.6 nm away from the QD layer.

Initially, the bias voltage was tuned to a value where the X1− transition is expected.

Then the nano drives and the xy-scanner [Appendix A] were used to move the sample in

the xy-plane while the PL signal was used to search for two QDs with transition energies

close enough to be completely tuned to resonance by applying an external magnetic field

smaller than 9 T, which was the maximal that the superconducting magnet installed in the

cryostat could reach [Appendix A]. After two such QDs were identified, a PL map was

acquired and the spectral separation can be observed in [Fig. 5.4].

The Stark coefficient for the X1− transition of the QDs was measured by acquiring
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detuning spectra for different wavelengths of the resonant excitation laser and recording the

position of the peaks. From this measurement it was concluded that the Stark coefficient for

QD1(2) is 1.641(1.735) µeV/mV and the wavelength chosen for the simultaneous excitation

of the QDs was 960.595 nm, where the spectral separation is ∼ 51 µeV [Fig. 5.5 (a)].
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Figure 5.4: PL map acquired to localise two spectrally close QDs. PL map acquired
from the excitation of QDs with a non-resonant driving field (830 nm) and analysing the
signal using a spectrometer at 1800 g/mm.

A power dependence of the expected number of photons was also measured for simul-

taneous excitation of the transitions, from where the saturation powers P sat
1 = 60.0 nW and

P sat
2 = 39.1 nW were extracted through the fit of a TLS model [Eq. 3.14], as presented in

[Fig. 5.5 (b)].

The spatial separation between the two QDs also needs to be investigated because it is

crucial for the estimation of the energy exchange between the QDs through dipole-dipole

interaction [112] or even through an electronic coupling [113, 114].

The distance between the QDs was measured using by monitoring the RF signal of a

single QD with a SPAD while moving the position of the sample relative to the laser spot

using a xy-scanner [Appendix A]. The position map for QD1 and QD2 can be observed in

[Fig. 5.6 (a) and (c)], respectively. The cross section of both maps (dashed lines) presents a

Gaussian profile in both directions, as presented in [Fig. 5.6 (b) and (d)], in good agreement

with the theory presented in [115].
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Figure 5.5: Stark shift and saturation curve for two QDs under the same laser spot.
(a) Stark coefficient measured by recording the detuning spectrum position as a function of
the wavelength of the excitation laser. The dashed horizontal line at 960.595 nm represents
the wavelength chosen for the simultaneous excitation of the QDs, where the spectral sep-
aration is ∼ 51 µeV. (b) Saturation curve of the two QDs for λ = 960.595 nm and their
respective TLS fits [Eq. 3.14], from which the saturation powers P sat

1 = 60.0 nW and
P sat

2 = 39.1 nW were extracted.

With the identification of the position of each QD in the xy-plane from the Gaussian

curves it was possible to conclude that the spatial separation between the QDs is ∼ 158(4)

nm, so with wavenumber k ≈ 0.0065 nm−1 we have kr ≈ 1.03(3).

The application of an external magnetic field is needed to tune the transitions of the

two QDs into resonance, as explained in [Fig. 5.14], and a few steps of this process can

be observed in [Fig. 5.7 (a)], where the detuning spectra of both QDs are presented for an

external magnetic field equal to 0.1 T, 0.4 T and 0.72 T. The excitation power used was

about 1 nW in order to minimise the influence of the charge noise in the measurements,

as presented in [Fig. 3.23]. The energy of the transitions as a function of Bext was traced

using the detuning spectrum [Fig. 5.7 (b)]. In the absence of a magnetic field, the difference

between the transition energies is ∼ 86 µeV. As the magnetic field is increased, the energy

of the σ+ transition of QD1 (QD2) increases with rate equal to 62(3) µeV/T (51(4) µeV/T)

while the σ− transition energy decreases with rate equal to 69(4) µeV/T (62(2) µeV/T),

consequently the σ+ transition of QD1 and the σ− of QD2 are tuned into resonance at

0.70(2) T. With this information it is possible to calculate the combined Zeeman splitting

(ZS) of the electron and HH as a function of Bext for each QD, which is 131(2) µeV/T for

QD1 and 113(3) µeV/T for QD2 [Fig. 5.7 (c)].
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Figure 5.6: Investigating the spatial separation between the two QDs. (a) and (c) RF
signal as a function of xy-scanner position for QD1 and QD2, respectively, with the dashed
lines indicating the position where the cross sections in (b) and (d) were considered. (b)
and (d) Cross sections of the RF signal as a function of xy-scanner position, as indicated
by the dashed lines in the maps, fitted with a Gaussian curve. The width of the curve for
QD1 (QD2) in the x-direction is 0.052(2) µm (0.045(2) µm) and in the y-direction it is
0.03(1) µm (0.026(2) µm), and the distance between the QDs is 158(4) nm.

To investigate the oscillations due to the interaction with the gold surface, the arrival

time of emitted photons was recorded using the PicoHarp in time tagging mode after pass-

ing through the HBT interferometer. From this, it was possible to rebuild the coincidence

histogram with a minimal time bin Tbin equal to 4 ps. Since the timescale of interest is in

the microseconds range, no delay was utilised to shift the τ = 0 point and the time bin Tbin

was made equal to 50 ns.

To demonstrate that photons from both QDs are collected, the second-order correlation

function was measured for the two bias voltages (−0.424 V and −0.322 V) where photons

from only one of the QDs are expected [Fig. 5.8 (a-b)]] and for the bias voltage where

photons are expected from both QDs (−0.367 V). The second-order correlation function

of the tuned transitions has g(2)(0) = 0.6, which is close to the value expected for two

identical and uncorrelated emitters (g(2)(0) = 0.5) [Fig. 5.8 (c)].
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Figure 5.7: Tuning QDs transitions using an external magnetic field in the Faraday
geometry. (a) Detuning spectra of two QDs under the same laser spot with P ≈ 1 nW for
Bext = 0.1 T, 0.4 T and 0.72 T. (b) In the absence of a magnetic field, the difference between
the transition energies is ∼ 86 µeV. As the magnetic field is increased, the σ+ transition
energy of QD1 (QD2) increases with rate equal to 62(3) µeV/T (51(4) µeV/T) while the σ−

transition energy decreases with rate equal to 69(4) µeV/T (62(2) µeV/T), consequently the
σ+ transition of QD1 and the σ− transition of QD2 are tuned into resonance at 0.70(2) T.
(c) The combined Zeeman splitting (ZS) of the electron and HH is 131(2) µeV/T for QD1

and 113(3) µeV/T for QD2.

With the two transitions of the QDs tuned into resonance using the external magnetic

field, excitation power P = 0.3 nW and the laser wavelength set to be in the middle of

the plateaus of both QDs, the second-order correlation function for a single emitter was

acquired by tuning the ĉ− transition of QD1 into resonance with the laser, and, as it was

discussed in [Sec. 5.1], it was possible to observe the coherent oscillations at τ � 1/Γ for

a single QD with frequency Ω1 ≈ 0.545 MHz [Fig. 5.9 (a)]. Then the bias voltage was

changed to bring the two tuned QD transitions into resonance with the laser and the second

measurement was performed [Fig. 5.9 (b)]. In this case, it was observed that the oscillations

are very similar to those obtained for a single QD [Fig. 5.9 (e)], confirming the resonance

between the transitions of the two QDs.
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Figure 5.8: g(2)(τ) function demonstrating the photon emission from two single photon
sources. The g(2)(τ) function was acquired at P = 0.77 nW and for the deconvolved fit we
have (a) g(2)(0) = 0.16, (b) g(2)(0) = 0.13, and (c) g(2)(0) = 0.6, demonstrating the tuning
between the two QDs.

A change in the frequencies composing the coherent oscillations was achieved by de-

tuning the two QDs using the external magnetic field. With QD1 detuned by −254 MHz

and QD2 detuned by 219 MHz, the two measured frequencies were separated by 0.071 MHz

and a beating can be observed in [Fig. 5.9 (c)].

The symmetry of the oscillations around the detuning was also probed, by detuning

QD1 by 190 MHz and QD2 by −164 MHz and comparing with the previous measurement

[Fig. 5.9 (d)]. The confirmation of this symmetry can be observed in [Fig. 5.9 (f)], where

the frequency of the oscillations matches surprisingly well in spite of a considerable dis-

crepancy among the detuning values.
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Figure 5.9: g(2)(τ) function of two QDs near a metal surface. Oscillations measured
with excitation power P = 0.3 nW for (a) a single emitter (QD1) (b) two emitters with zero
detuning (c) two emitters with |∆1|−|∆2| = 35 MHz (d) two emitters with |∆1|−|∆2| = 26
MHz. (e) Coherent oscillations in the frequency domain for (a) and (b). (f) Coherent
oscillations in the frequency domain for (c) and (d).

A two-level system near a conducting surface

In this section, two possible approaches in the interaction between the TLS and a metal

surface are discussed. In the first approach, the conducting surface is treated as a simple

reflecting surface with reflectivity equal to 1 [116, 117, 118, 119]. In the second approach,

the charges and currents induced in the metal surface by the electric field radiated from the

QD [120] are considered as a second TLS with decay rate Γi and Rabi frequency Ωi [121,

122, 123, 124, 125].
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(a) (b)

Figure 5.10: Two possible approaches for the TLS-metal interaction. (a) The QD with
dipole moment ~p emits half of its radiation towards the detector and the other half towards
the perfect mirror, which reflects towards the detector. The undetectable solid-angles are
not considered. (b) The electric field radiated by the QD (dipole-approximation) confines
oscillating charges and currents in the metal surface which then emit photons towards the
detector.

Metal as a reflecting surface

To discuss the case depicted in [Fig. 5.10 (a)], any dynamics in the metal surface due to the

original QD is neglected and the mirror is introduced in the TLS through the σ− operator,

which is given by

σ− =

√
Γ

2

(
1 + e−iωlδt

)
|g〉〈e| , (5.2)

where ωl is the laser frequency and δt is the travel time of the photon from the QD to the

mirror and back to the QD layer [119].

Since the whole system still behaves like a single TLS with an effective decay rate

Γeff (ωlδt) with incorporated mirror effect, in this model, the photon statistics and cor-

relation functions [Chapter 3] are also expected to have strong dependence on ωlδt. For

example, from [Eq. 5.2], the expected number of photons collected in a hypothetical case

of perfect collection efficiency is

〈n〉 = Γ[1 + cos(ωlδt)]ρee(∞) , (5.3)

with the periodic function accounting for the interference of the light emitted from the QD

and reflected by the metal surface. Still on the steady state solution side of the analysis,

alterations in the detuning spectrum, saturation curve, and width of the inelastic peaks are

also expected, since it is expected that the decay rate changes by varying ωlδt [Fig. 5.11].

The second-order correlation function has a slope (τ < 1/Γ) [Fig. 5.11 (c)] and the damping

of the Rabi oscillations dependent on the decay rate, so it would also suffer alterations with

ωlδt.
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In the present experimental situation, τ is a constant defined by FDTD simulations tak-

ing into account a more realistic picture of the gold layer, which is not a perfect conductor.

In all PCA devices analysed here (Sample 2 and Sample 3), the photoluminescence map

showed QDs in a wavelength range going from ∼ 930 nm to ∼ 980 nm and ωl is deter-

mined by QD selection. In RF, ωl is constant so the term cos (ωlδt) should be very small

according to the simulated results, which could be confirmed by comparing the decay rate

of these samples to other samples without the Au mirror, but with similar structure, like the

bulk sample (Sample 1).
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Figure 5.11: Effects of ωlδt on the photon statistics. (a) Expected number of counts
scattered from the system as a function of ωlδt for Ω� Ωsat. (b) The width of the inelastic
peaks are defined by the decay rate of the TLS, so, they are strongly dependent on ωlδt. (c)
At low Rabi frequency (Ω = 0.1Ωsat), the slope at τ < 1/Γ is also sensitive to ωlδt.

QD and image dipole approach

A different approach, depicted by [Fig. 5.10 (b)], considers the oscillating charges and cur-

rents in the metal surface induced by the electric dipole field ~Edp radiated by the QD [120]

as a second TLS, with corresponding Rabi frequency Ωi and decay rate Γi. In this model,

the electric field of the dipole ~Edp is considered constant, since the driving field is contin-

uous and the collapse of the wavefunction due to the photon count is assumed to be faster

than any other dynamic phenomenon in both TLSs. The optical transition of the original

TLS is circularly polarised (X1−) and photons coming from the image TLS are expected

to have a π shift, having orthogonal polarisation relative to the photon emitted by original

TLS. For simplicity, we neglect any possible dipole-dipole interaction between the QD and

its image.

Under these assumptions, the Hamiltonian of the system can be written as

H = HQD ⊗Hi , (5.4)
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which for ∆QD,i = 0 is

H =
ΩQD

2
(|0〉〈2|+ |1〉〈3|+ h.c.) +

Ωi

2
(|0〉〈1|+ |2〉〈3|+ h.c.) , (5.5)

where the states were mapped as

|0〉 = |g−〉 (5.6)

|1〉 = |g+〉 (5.7)

|2〉 = |e−〉 (5.8)

|3〉 = |e+〉 , (5.9)

where |−〉 (|+〉) is the ground (excited) state of the image TLS [Fig. 5.12].

Figure 5.12: Energy diagram of the system composed of two image quantum dots. The
ground state is composed of both QD and image TLS in the ground state, the second (third)
level has the QD in the ground (excited) state while the image TLS is in the excited (ground)
state, and the fourth level has the QD and the image TLS in the excited state.

Because the transitions are orthogonal, the Lindblad operators can be calculated sepa-

rately as

L(σ−)ρ = L
(
σQD−

)
ρ+ L

(
σi−
)
ρ , (5.10)

with

L(o)ρ = oρo† − o†oρ

2
− ρo†o

2
, (5.11)

and the density matrix is calculated numerically using the master equation

dρ

dt
= −i[H, ρ] + L

(
σQD−

)
ρ+ L

(
σi−
)
ρ . (5.12)
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The number of emitted photons is

〈n〉 = 〈nQD〉+ 〈ni〉 (5.13)

and no interference term is expected, since the transitions are orthogonal [Fig. 5.13 (a)]. The

first-order correlation functions can also be calculated separately due to the polarisation,

but in the second-order correlation function, some expressions involving both TLSs are

expected.
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Figure 5.13: Photon counting rate and expected degree of antibunching of a QD-image
system. For ΓQD = 1.5 GHz and Γi = 2 MHz, (a) the expected number of photons
(total, elastic and inelastic), assuming perfect collection and detection, was calculated as
a function of the Rabi frequency for the TLS (solid lines) and its image (dashed lines) (b)
the intensity correlation at τ = 0 was calculated in terms of the ratio between the expected
number of photons for the TLS and its image by keeping the Rabi frequency of the image
TLS constant at 0.1Ωi

sat for the red curve and 5Ωi
sat for the blue curve, and varying the Rabi

frequency of the original TLS.

Writing the annihilation operators as

σQD− =
√

Γĉ± (|0〉〈2|+ |1〉〈3|) (5.14)

σi− =
√

Γiĉ∓ (|0〉〈1|+ |2〉〈3|) , (5.15)

where ĉ± refers to the circular polarisation of the transition, the system annihilation operator

is

σ− = σQD− + σi− (5.16)

and the second-order correlation function can be calculated as

g(2)(τ) = 〈σ+(t)σ+(t+ τ)σ−(t+ τ)σ−(t)〉 (5.17)

g(2)(τ) = Tr
[
U−(τ)σ−ρσ+U(τ)σ+σ−

]
(5.18)
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g(2)(τ) = g
(2)
QD(τ) + g

(2)
i (τ) + Tr

[
U−(τ)σQD− ρ(t)σQD+ U(τ)σi+σ

i
−

]
+ Tr

[
U−(τ)σi−ρ(t)σi+U(τ)σQD+ σQD−

]
, (5.19)

where U is the propagator. The last two terms in [Eq. 5.29] are responsible for the depen-

dence of g(2)(0) on the properties of the TLS and its image [Fig. 5.13 (b)].

This model predicts a non-zero g(2)(0) and two different dynamics in the second-order

correlation function, supporting the experimental result presented in [Fig. 5.1]. Explana-

tions of the relatively small decay rate and coupling energy are still missing.

Two two-level systems near a metal surface

In this section, I will discuss the results of an experiment where two distinct QDs near a

metal surface interact with the same linearly polarised driving field. We start from a simple

model to explain the results. Two QDs, initially with different transition energies, have

their transitions tuned on resonance through the application of an external magnetic field in

the Faraday geometry [Fig. 5.14]. Then, using linearly polarised radiation, both transitions

can be driven simultaneously and, for a particular magnetic field the energy diagram can be

reduced to [Fig. 5.12] because of the large detuning between the on-resonance transitions

and the two outer transitions.

QD A QD B
Figure 5.14: Tuning two QDs transitions using an external magnetic field. Although a
difference in selection rules exists for the degenerate transitions, the degenerate transitions
can be excited simultaneously using a linearly polarised light.

We are interested in studying the dynamics imposed by the metal surface, which was

already demonstrated to have a timescale in the microsecond range [Sec. 5.1]. Here we
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do not consider the original QDs’ dynamics, which occur on the nanoseconds timescale.

Because of the orthogonal polarisations of the two tuned transitions, the image transitions

are also expected to be orthogonal to each other; consequently, their evolution is completely

independent. Under these assumptions, we have a ground state composed of two image

dipoles in the ground state, and the second and the third levels are composed of one of the

image dipoles in the excited state and the other image dipole in the ground state. These

states can be tuned on or off resonance with each other by tuning their energies with the

applied magnetic field. The fourth level is composed of both image dipoles in the excited

state [Fig. 5.12]. The Rabi frequencies and the decay rates of the image dipoles may not be

equal, as they depend on the original QDs. For this reason, they are going to be labelled as

A and B.

For convenience, the states can be written as

|gg〉 = |0〉 (5.20)

|ge〉 = |1〉 (5.21)

|eg〉 = |2〉 (5.22)

|ee〉 = |3〉 . (5.23)

It was assumed that the distance between the two image dipoles is large enough to

neglect coupling between them. Therefore, the Hamiltonian of the system is

H = −(∆A + ∆B)

2
|0〉〈0| − (∆A −∆B)

2
|1〉〈1|+ ∆A −∆B

2
|2〉〈2|+ ∆A + ∆B

2
|3〉〈3|

+
ΩA

2
(|0〉〈2|+ |1〉〈3|+ h.c.) +

ΩB

2
(|0〉〈1|+ |2〉〈3|+ h.c.) +

ΩAΩB

4
(|0〉〈3|+ h.c.) .

(5.24)

The annihilation operators are

σA− =
√

ΓAĉ−(|0〉〈2|+ |1〉〈3|) (5.25)

σB− =
√

ΓB ĉ+(|0〉〈1|+ |2〉〈3|) , (5.26)

where the unit vectors ĉ± represent the circular polarisation of the transition. Their radiative

decay are described by the Lindblad operator

L(o)ρ = oρo† − o†oρ

2
− ρo†o

2
, (5.27)

and the master equation

dρ

dt
= − i

~
[H, ρ] + L(σA−)ρ+ L(σB−)ρ (5.28)
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was solved numerically in order to obtain the temporal evolution of the density matrix.

Second-order correlation function

The second-order correlation function g(2)(τ) is calculated by taking into account the fact

that the image dipoles are independent of each other, so it is similar to [Eq. 5.29], but with

the original QD operators replaced by the operators corresponding to the second image

dipole:

g(2)(τ) = g
(2)
A (τ) + g

(2)
B (τ) + Tr

[
U−(τ)σA−ρ(t)σA+U(τ)σB+σ

B
−
]

+ Tr
[
U−(τ)σB−ρ(t)σB+U(τ)σA+σ

A
−
]
. (5.29)

0 5 10 15 20
τ (µs)

0.4
0.2
0.0
0.2
0.4

g(
2)

(τ
)−

1

(a)

0 5 10 15 20
τ (µs)

(b)

Figure 5.15: Effect of the Rabi frequency mismatch between the two image dipoles
in the g(2)(τ) function. Superposition of the Rabi oscillations of two image dipoles for
Γ = 0.5 MHz, ∆ = 0 MHz and (a) ΩA,B = 1 MHz, (b) ΩA = 1 MHz and ΩB = 2 MHz.

If the image dipoles are identical, except for the polarisation, the g(2)(τ) function will

be similar to the one presented for a single image [Fig. 5.15 (a)], but if there is a mismatch

between their Rabi frequencies, it is expected that the g(2)(τ) function will be affected by

the superposition of two distinct Rabi oscillations [Fig. 5.15 (b)].

For a single ideal TLS, the detuning between the driving field and the transition energy

increases the frequency of the damped oscillations presented in the g(2)(τ) function with
√

Ω2 + ∆2. The same is true of two independent TLSs. If the absolute values of ∆A

and ∆B are equal, then only one frequency should be present in the oscillation (assuming

same Rabi frequency for both image dipoles) [Fig. 5.16 (a) and (c)]. If ΩA = ΩB and

|∆A| 6= |∆B|, there will be two different frequencies superimposed in the Rabi oscillations

[Fig. 5.16 (b) and (d)].
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In this section, the second-order correlation function of a pair of QD-image dipole was

discussed taking into account the different timescales expected for their dynamics. Due to

the selection rules of the original QDs transitions tuned into resonance using an external

magnetic field in the Faraday geometry, the analysis could be simplified to the case where

the temporal evolution of the pairs are completely independent. Under these circumstances,

the model supports the experimental data presented in [Fig. 5.9], but it cannot explain the

timescale of the oscillations.

0 5 10 15 20
τ (µs)

0.5

0.0

0.5

g(
2
)
(τ

)−
1 (a)∆A =∆B

∆A =−∆B

0 5 10 15 20
τ (µs)

(b)∆A >∆B

∆A <∆B

0 1 2 3 4
freq. (MHz)

0.0

0.5

1.0

FT
[g

(2
)
(τ

)−
1]

(c)
∆A =∆B

∆A =−∆B

0 1 2 3 4
freq. (MHz)

(d)
∆A >∆B

∆A <∆B

Figure 5.16: Effect of the detuning mismatch between the two image dipoles on the
g(2)(τ) function. Superposition of the Rabi oscillations of two image dipoles for ΓA,B =
0.5 MHz, ΩA,B = 2 MHz and (a) |∆A,B| = 1 MHz (b) ∆A = 1 MHz and ∆B = −0.3 MHz
(red solid line) or ∆A = −1 MHz and ∆B = 0.3 MHz (blue dashed line). (c) and (d) are
the normalised Fourier transform of (a) and (b), respectively, with the dashed black line
corresponding to the Rabi frequency used.

Summary

In this chapter, experimental observation of the interaction between QDs and a metal sur-

face was presented along with a simplified model which agrees qualitatively with the ex-

perimental data. Here, it is suggested that a fraction of the photons detected are from an

image dipole based on the following characteristics: different coherence time of the image

dipole while the emission rate of the original QD is conserved, the dependence of the image
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dipole properties (Γi, Ωi) on the Rabi frequency of the QD and the sensitivity of the these

photons to the detuning between the driving field and the original transition.
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Conclusion

An experimental setup was constructed to perform resonance fluorescence experiments on

devices containing a single QD layer in the Laboratory of Quantum Photonics at Heriot-

Watt University. The confocal dark-field microscope built was able to suppress the light

reflected by the sample surface by > 107 using two linear polarisers in orthogonal posi-

tions and exploiting the difference between the polarisation of the photons reflected and the

photons emitted by the QD.

Using this experimental setup, the properties of the X1− transition of single QDs were

investigated using the resonance fluorescence technique and one of the characteristics of

the photon emission by the QDs for all the samples analysed was the fluctuation of the RF

signal due to a dynamic density of charges in the QD environment and Overhauser field. For

one of the PCA devices (Samples 2) it was demonstrated that the timescale of the spectral

fluctuations happens mainly is in the milliseconds range, evidencing the domination of the

charge noise over the nuclear field, while for the bulk sample (Sample 1), the experimental

RF power spectrum demonstrated that the Overhauser field was dominant. The spectral

fluctuations affect the photon counting statistics, the RF power spectrum and the second-

order correlation function of the QD emission. In the photon counting statistics the spectral

fluctuations affect the saturation curve at low excitation powers and the elastic to inelastic

ratio, which are useful to extract information about the QD as lifetime and dephasing rate.

The charge noise affects the Mollow triplet by increasing the width of both central peak and

side peaks, decreasing the height of the side peaks relative to the central peak and shifts the

side peaks to higher frequencies. Nevertheless, it was also demonstrated that it is possible to

achieve a good degree of indistinguishability between two photons emitted from the same

QD if the spectral fluctuations timescale is much longer than the life time of the emitter.

The RF technique is also used to measure extraction efficiency of planar cavity antenna
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devices. The bulk samples with a SIL on its top have an estimated extraction efficiency of

∼ 2%, while the PCA device reaches ∼ 10%, leading to cw count rates at saturation of

0.38(1) MHz and 3.0(1) MHz, respectively.

In this work, analytical results about the effects of the Overhauser field on the power

spectrum and second-order correlation of the QD emission was also presented. The Over-

hauser field splits the electron spin states through the Zeeman effect, which can be neglected

for the heavy hole because of its weak interaction with the nuclear spin, and then Raman

scattering happens, generating photons detuned by the Zeeman splitting for the ground

states which give rise to two symmetric side bands ∼ 200 MHz away from the central peak

and with width of about ∼ 200 MHz as a consequence of the Overhauser field dynamics. It

affects the second-order correlation function through the detuning imposed by the Zeeman

splitting.

Finally, experimental observations of the interaction between QDs and a gold mirror

was presented. A simple model based on the presence of an image dipole was used to

analyse the results, but the coherence time of the oscillations is still not understood.
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Appendix A

Equipment list

Label Company/Part number Quick description
Laser 950 nm Toptica/DL pro Tunable diode laser

Laser controller Toptica/DC 110 Diode laser supply and control rack
Wavemeter HighFinesse/WS-U Wavelength meter for high speed measure-

ment of lasers
Laser 830 nm Thorlabs/LPS-PM830-FC Diode laser supported by compatibles tem-

perature controller and current controller
ND filter Thorlabs/NDC-100C-4M Mounted continuously variable ND filter
λ/4 Thorlabs/AQWP10M-980 Mounted achromatic quarter-wave plate
λ/2 Thorlabs/AHWP10M-980 Mounted achromatic half-wave plate

Lens - 0.15NA Thorlabs/C280TM-B Mounted geltech aspheric lens
SMF Font Canada/Unknown Single-mode fibre with central wavelength

equal to 980 nm
LP1 Thorlabs/LPVIS050-MP2 Mounted linear polariser

TUGP Unknown Thick uncoated glass plate
PD Thorlabs/SM1PD1A Mounted silicon photodiode

Opt. window Thorlabs/WG11050 Broadband precision window
Lens - 0.68NA Thorlabs/C390TM-B Mounted geltech aspheric lens

SIL Unknown 2 mm diameter solid immersion lens
XY scanner Attocube/ANSxy100 Compact open loop xy-scanner

X-motor Attocube/ANPx100 Nano drive to move the sample horizon-
tally

Y-motor Attocube/ANPx100 Nano drive to move the sample horizon-
tally

Z-motor Attocube/ANPz100 Nano drive to move the sample vertically
Microscope tube Attocube/Unknown Customized vacuum tube for attocube mi-

croscope
Cryostat Attocube/AttoDry1000 cryogen-free cryostat with superconduct-

ing magnets
CCD Watec/WAT 120N Monochrome camera
LP2 Laser physics/COD-CUST-950 Customised ultra high extinction ratio po-

lariser for use at 950 nm
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FFC Thorlabs/ADAFC3 FC/APC to FC/APC Mating Sleeve
FPI Micron optics/FFP-SI Fibre Fabry-Perot Tunable Filter

SPAD Excelitas/SPCM-900-14-FC Single Photon Counting Modules
NI Box NI/782251-01 Data Acquisition Device
g2(τ) HWU-QPL [Fig. 2.10]
HOM HWU-QPL [Fig. 2.11]

PicoHarp PicoQuant/PicoHarp 300 Stand-alone TCSPC Module
Spectrometer Princeton instruments/unknown Spectrograph

MFPC Thorlabs/FPC560 Manual fibre polarisation controller
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Temporal evolution of the X1− excited
states

By replacing the off diagonal elements [Eqs. 4.50-4.53] in [Eqs. 4.41-4.42], the temporal

evolution of the excited states are

ρ⇓⇓(t) =
Ω2ρ+−(0) sin(θ)

2(B2 + Γ2)

[
−BE+⇓ + Γ2

E2
+⇓ + Γ2

+
BE−⇓ + Γ2

E2
−⇓ + Γ2

] [
e−Γt − cos(Bt)

]
+

ΓΩ2ρ+−(0) sin(θ)
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E−⇓ −B
E2
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E2
+⇓ + Γ2

]
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+
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(B.1)

and
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