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Abstract 

The recent emergence of super-resolution microscopy imaging techniques has 

surpassed the diffraction limit to improve image resolution.  Contrary to the 

breakthroughs of spatial resolution, high temporal resolution remains a challenge.  This 

dissertation demonstrates a simple, on axis, 4D (3D + time) multi-colour microscopy 

imaging (MCMI) technology that delivers simultaneous 3D broadband imaging over 

cellular volumes, which is especially applicable to the real-time imaging of fast moving 

biospecimens.  Quadratically distorted (QD) grating, in the form of an off axis-Fresnel 

zone plate, images multiple object planes simultaneously on a single image plane.  A 

delicate mathematical model of 2D QD grating has been established and implemented in 

the design and optimization of QD grating.  Grism, a blazed grating and prism 

combination, achieves chromatic control in the 4D multi-plane imaging.  A pair of 

grisms, whose separation can be varied, provide a collimated beam with a tuneable 

chromatic shear from a collimated polychromatic input.  The optical system based on 

QD grating and grisms has been simply appended to the camera port of a commercial 

microscope, and a few bioimaging tests have been performed, i.e. the 4D chromatically 

corrected imaging of fluorescence microspheres, MCF-7 and HeLa cells.  Further 

investigation of bioimaging problems is still in progress. 
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Chapter 1 

Introduction 

 

Preface 

Currently super-resolution optical microscopy imaging techniques focus primarily on 

breaking the limit of spatial resolution, and there is comparatively little work on the 

improvement of temporal resolution.  In this dissertation we develop a novel approach 

to a high temporal resolution technique by simultaneous multi-plane, multi-colour 

imaging based on commercial optical microscopes and standard camera systems, which 

we refer to as ‘4D multi-colour microscopy imaging (MCMI)’.  This chapter begins 

with an outline of super-resolution optical microscopy and basic principles of 

diffraction grating.  Followed by this background information, we show a short history 

of our quadratically distorted (QD) grating based 4D imaging technique and some 

similar methods which may obtain comparable 4D bioimages.  Finally the content of 

this dissertation is briefly interpreted. 

1.1 Super-resolution optical microscopy 

1.1.1 Spatial resolution limit and super-resolution imaging 

The optical microscope has become a ubiquitous tool in biological research, which 

utilizes visible light and a set of lenses to magnify images of biospecimen.  Since the 

17th century, bioimaging microscopy has undergone significant advances in improving 

sample resolution.  Using the visible light, however, we can hardly observe sub-

wavelength structures with these optical microscopes due to the Abbe diffraction limit 

[1].  Let a light beam with wavelength λ travel in a medium with refractive index n and 

converge to a spot with angle  , then a spot with radius 
2xyd

NA


  will occur, where 

sinNA n   represents the numerical aperture and can reach about 1.4~1.6 in modern 

optics.  And the axial resolution 
2

2
zd

NA


  is lower due to geometry.  Accordingly, 

structures as small as ~200nm can be resolved laterally (in the xy-plane) and ~500nm 

axially (in the z direction). 
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Over the past few decades, the optical imaging techniques have been developed to 

provide unprecedented spatial resolution beyond the diffraction limit.  The Nobel Prize 

in Chemistry of 2014 was awarded to Eric Betzig [2], William Moerner [3] and Stefan 

Hell [4] for the development of super-resolution fluorescence microscopy [5] which 

brings optical microscopy into the nanodimension.  Some well-established super-

resolution fluorescence microscopy techniques, stimulated emission depletion (STED) 

[6-8] which enhances the resolution by selectively deactivating some fluorophores and 

thus minimise the area of illumination at the focal point, (fluorescence) photo activated 

localization microscopy (fPALM/PALM) [2, 9] which utilizes sequential activation and 

time-resolved localization of photoswitchable fluorophores to create high resolution 

images, and saturated structured illumination microscopy (SSIM) [10-12] which 

improves spatial resolution by collecting information from frequency space using very 

photostable fluorophores, are in principle capable of a few nanometers spatial 

resolution.  A typical true subwavelength imaging technology, near-field scanning 

optical microscopy (NSOM), exploits the properties of evanescent waves and has 

demonstrated the lateral resolution of 20nm and vertical resolution of 2~5nm [13, 14]. 

1.1.2 High temporal resolution imaging techniques 

Although these microscopy techniques have achieved considerable high spatial 

resolution, the images are taken from one focal plane which is 2-dimensional (2D).  

However, biological samples, i.e. living cells, are three-dimensional (3D) and constantly 

changing, there has been an increased demand for imaging tools that can be used for 

analysing volume structures.  Most of current 3D microscopy techniques rely on time-

consuming methods by scanning the depth of a sample, leading to severe limitations for 

optically sensitive samples and good understanding of biosamples dynamics.  Therefore 

new temporal resolution imaging techniques are required in order to record 3D 

dynamics in high temporal frame rates. 

Two of current 3D optical imaging techniques are confocal laser scanning 

microscopy (CLSM or LSCM) and wide-field imaging [15].  Like a process known as 

optical sectioning [16], in CLSM a specimen is illuminated by a point laser source and 

the 3D imaging is achieved by scanning the laser spot, which gives excellent sectioning 

properties by obstructing out-of-focus light but the mechanical scanning operation is 

often time consuming thus limiting the imaging speed and making in vivo imaging 

difficult [17].  A successful CLSM product, Olympus FV3000, can support the so-called 
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live cell 2D-6D (x,y,λ,z,t,p) imaging and snapshot calcium sparks and waves at speeds 

up to 438 frames per second in a restrictive field of view.  But its scanning speed will be 

much lower when examining volume structure in a reasonable large field of view, which 

could hardly record fast-changing process [18].  Wide-field microscopy uses diffraction, 

reflection, or refraction of radiation incident upon the sample with the subsequent 

collection of this scattered radiation to build up an image, which provides real-time 2D 

imaging but z-scanning or holographic imaging may be required for constructing 3D 

images through complicated data analysis [19, 20].  Although modern microscopy 

benefits a lot from the development of high-sensitivity array detectors, the limitations 

above make it difficult to image relatively rapid intracellular trafficking processes that 

might be of central interest to biologists and clinicians. 

A commercial simultaneous 3D imaging product, InSight3D of PhaseView [21], 

enables real-time 3D acquisition using a scanless method based on microlens array.  But 

this lenslet system may introduce a few inherent optical aberrations and the imaging 

processing software could be considerable complicated, thus may hinder the versatile 

applications under different imaging conditions. 

We have seen that the conflict between spatial and temporal resolution always exists, 

especially when the biosample moves so fast that only one exposure could be recorded 

at each time point and thus a 3D focal stack can hardly be created in the classical 

manner.  To achieve higher spatiotemporal resolution, a few 3D imaging techniques, 

including the so-called multifocal plane microscopy (MUM) [22] and light-sheet 

microscopy (LSM) [23], have been developed.  MUM allows simultaneous imaging of 

different focal planes within the specimen, and the simplest setup can be formed by 

placing one or several dichroic mirrors in the infinity-beam of the light path to separate 

the sample emission light onto different cameras or different parts of the same camera 

chip [24].  Take a recent case for example, MUM enables rapid 3D tracking of several 

molecules at the same time across a depth of 10µm as well as multicolor imaging, 

which has played a significant role in exploring the 3D trafficking pathways in 

epithelial cell barriers [25].  However, as Fig. 1.1 shown, the fluorescence light emitted 

from the specimen is equally split into many 50:50 beams by a set of beam splitters 

[25], so that substantial luminous flux might be lost and rigorous calibration is required 

for the (a bit) unwieldy optical layout.  The traditional multiple light-sheets microscope 

unfolds the beam path and creates multiple copies of Gaussian beams using the 
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diffraction grating and the cylindrical lens [26], which allows simultaneous illumination 

of multiple specimen planes.  But the narrowband imaging properties and the non-

uniform energy distribution in each light sheet may restrict practical application(s) in 

3D bioimaging especially when the light power is insufficient to avoid bleaching, cell 

damage and other problems induced by over-exposure. 

 

Fig. 1.1 The schematic optical layout of multifocal plane microscopy (MUM) [25]. 

Real-time 3D (thus 4D) optical imaging technique, which can yield a 4D image of the 

continuously changing cell, is distinct among 3D imaging tools in its ability to record in 

vivo dynamics of living cell.  In this dissertation, we will demonstrate 4D multi-colour 

microscopy imaging (4D MCMI) in the context of biological fluorescence microscopy.  

Our relay system consisting of a quadratically distorted (QD) diffraction grating and 

lens can be simply attached to the camera port of microscope [27, 28].  In addition, a 

pair of grisms (a grating combined with a prism) are applied for correcting the 

chromatic smearing induced by the non-zero diffraction orders of QD grating [29, 30].  

Such an approach offers all of the advantages of multi-plane imaging performed by 

beam splitters and multiple light-sheets with the additional advantages of simplicity, 

low cost and full compatibility with commercial microscopes. 

1.2 Basic principles of the diffraction grating and its applications in imaging 

The diffractive optical element (DOE), which behaves as an optical signal converter 

such as diffraction grating, beam splitter, focusing device, diffuser, special filter and so 

on, is designed based on the efficient use of the diffraction phenomenon for imposing 

on an incident wave a functional variation of amplitude or phase, or both.  Being 
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constructed from specially designed micro-structure patterns, DOE may enable the light 

manipulation to almost any desired profile by means of altering the phase of input 

beam.  Of our particular interest is the transmission diffraction grating, which is, in the 

simplest and practical form, a set of slits distributed in accordance with a specific law 

on an optically transparent substrate.  Take a one-dimensional binary phase grating 

illuminated by a monochromatic scalar light wave for example, it may be characterized 

by its transmission function in the complex form [31], 

 
( )( ) i xF x e   (1.1) 

where the phase ( )x  is a real periodic function, whose period (say d) is equal to the 

period of the grating. 

Proceeding now with the theory of the diffraction grating on the basis of the 

derivations of ‘Born and Wolf’ [31], we consider a grating consisting of a succession of 

long equidistant slits, in which two corresponding points A and B locate in arbitrary 

neighbouring slits, to explore the significance of the phase difference and its underlying 

principles, as Fig. 1.2 shown. 

 

Fig. 1.2 Illustrating the theory of the diffraction grating [31]. 

From the geometry in Fig. 1.2 we find that the total path difference between light 

arriving at the distant point of observation from corresponding points in two 

neighbouring slits is, 

 0(sin sin )BL AK d dp      (1.2) 
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where K and L denote the foots of the perpendicular from B on to the ray incident at A 

and from A on to the ray diffracted at B in the direction  , respectively; 
0  and   are 

the angles of incidence and diffraction measured from the normal to the grating outer 

face, respectively; d is the period of grating and p is set to be 
0(sin sin )  . 

Hence the corresponding phase difference is given by, 

 
2 dp

kdp



  (1.3) 

where 
2

k



 is termed the wave number and λ the incident wavelength. 

From the principles of Fraunhofer diffraction the normalized intensity function of a 

grating consisting of N similar equidistant parallel slits may be written as [31], 

 
 

 

 
2 2

2

sin / 2 sin / 21
( )

sin / 2 / 2

Nkdp ksp
I p

N N kdp ksp

   
    

  
 (1.4) 

where s is the width of each slit. 

Eq. (1.4) appears in the form of the product of two factors.  The first factor is the 

normalized interference function which indicates the effect of interference of light from 

different periods.  We see that this function has maxima at all points where the 

denominator  2 2sin / 2N kdp  vanishes, i.e. where / 2kdp is zero or an integral multiple 

of π, and these maxima are separated by points of zero intensity at / 2 /kdp n N   

(the case where /n N  is an integer being excluded).  And the second factor is the 

normalized intensity function of a single slit which represents the effect of a single 

period of the grating and depends on the form of the slits.  Suppose that this function 

has a principal maximum for some direction and that on both sides of the maximum it 

falls off slowly in comparison with the interference function.  Then  I p  will have the 

general form of the first factor, but will be ‘modulated’ by the second one.  In 

conclusion,  I p  will still have fairly sharp maxima when, 
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 0sin sin ( 0, 1, 2, ...)
m

p m
d


          (1.5) 

which is the well-known grating equation.  In this dissertation we call the integer m the 

order of diffraction, which represents the path difference in wavelengths between light 

diffracted in the direction of the maximum, from corresponding points in two 

neighbouring slits.  A negative sign of 
o  might be set when a reflection grating is 

applied.  Furthermore, most of the light may be directed into one particular order 

(usually lower orders such as the first or second) if a blazed angle is introduced to each 

slit, which is the so-called blazed grating. 

By now we have modelled one-dimensional gratings, and the analysis may be 

extended to two- and three-dimensional periodic arrangements of diffracting bodies.  

Seen from Eq. (1.5), the diffraction directions (except for m=0) is dependent on the 

period of grating and the incident wavelength, so that the grating will decompose a 

beam of polychromatic incident light into spectral orders.  Consequently, acting as the 

dispersive elements, the diffraction gratings are commonly used in spectrometers and 

monochromators. 

However, it is more than just obtaining a separated monochromatic spectrum in 

practical applications.  Nowadays the diffraction grating (or say DOE) has come to be 

used in a wider sense, i.e. formation of laser beam(s) for specific optical manipulation 

[32-34].  Let us take a recent successful application for example.  The lattice light sheet 

microscopy developed by Eric Betzig’s group of Howard Hughes Medical Institute, 

USA, is a novel combination of techniques from light sheet fluorescence microscopy 

[23, 35-37], Bessel beam microscopy [32] and structured illumination microscopy (SIM) 

[11, 38, 39], in which, as illustrated in Fig. 1.3, a linearly polarized circular input beam 

is processed to a thin sheet of light using two pairs of cylindrical lenses (in the x and z 

directions respectively) successively, a binary ferroelectric spatial light modulator (SLM) 

then modulates the wavefront of this light, and an opaque mask containing a transparent 

annulus filters out unwanted diffraction orders and enforces maximum and minimum 

NA of illumination that dictate the y extent of the eventual lattice light sheet [40].  Here 

the lattice light sheet introduced by the transparent annular ring is two or three 

dimensional interference pattern. 
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Fig. 1.3 Schematic of the optical path of the lattice light sheet microscope [40]. 

At this stage we concentrate more on the function of the SLM and the mask rather 

than the overall principles of the microscopy.  In our point of view, these optical 

elements may be regarded as the specially designed gratings, which indicate that the 

diffractive optical element (thus customized grating) is also versatile in the optical 

modulation of the light field and has vast potential for further applications in imaging 

technology.  In this dissertation we will demonstrate a so-called ‘quadratically distorted 

(QD) grating’ comprising of a series of concentric arcs with varying radii, which 

(de)focuses light using diffraction instead of refraction for 4D microscopy imaging. 

1.3 4D imaging: from astronomy to bioimaging 

Images of stars, planets and other astronomical objects are now routinely sharpened 

using ‘adaptive optics’ (AO) [41] techniques that remove the distorting effect of the 

Earth’s atmosphere [42].  Borrowing various principles from AO, My PhD supervisor 

Alan H. Greenaway (who has retired in July, 2014) and his colleague Paul M. 

Blanchard developed a novel 4D imaging technique based on the QD grating in the 

mid-1990s, which was originally designed for photonic-crystal-fibre strain sensors 

(funded by the UK Ministry of Defence) and could be used in astronomy (funded by the 

Science and Technology Facilities Council) [27, 28, 43-45].  By introducing a detour 

phase term, the QD grating imparts an equal but opposing focal power in the positive 

and negative diffracted orders [28, 46].  When combined with a lens, such a QD grating 

provides simultaneous multi-plane imaging: i.e. the ability simultaneously to image 
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different object planes on a single camera.  All in one go, this imaging technique 

provides a simple, versatile avenue for implementing different imaging modes in optical 

imaging systems from astronomy to cellular biology.  Strange as it may seem, the very 

same gratings and mirrors that are used in telescopes to correct for the effects of 

turbulence can also be used to image biological samples [42]. My former group had 

developed such a QD grating based device using commercial optical components which 

can be simply bolted on to a conventional microscope to allow cells to be investigated 

in 4D.  One of the applications is the exploration of male infertility problems by 

examining the 4D dynamics of sperm tails, which was in collaboration with Jackson 

Kirkman-Brown of Womens’ NHT Foundation Trust and colleagues of Birmingham 

University.  Part of a single frame from a movie of swimming human sperms [47] is 

shown in Fig. 1.4, in which the three images represent a single sperm cell focused at 

different depths (the separation of these in-focus planes is 14.6μm). 

 

Fig. 1.4 4D phase contrast imaging of a swimming human sperm. 

A QD grating, which is made by etching slits into a thin fused-silica substrate with a 

fraction of a wavelength deep, brings the three object planes simultaneously into focus 

on the same image plane.  From Fig. 1.4 the biologist may find spatial localizations of 

both the sperm’s head and tail according to their focus conditions shown in each image.  

Since conventional imaging methods would capture only one of these images, our 

technique offers new insights into sperm dynamics that could help bioscientists to 

screen new drugs to improve fertility.  In conclusion, our QD grating based imaging 

technique has direct applications for studies of rapidly-changing objects in cell-biology 

(e.g. organelle and flagella dynamics), fluid-flow and high-speed, 3D tracking, and 

many imaging modes can be realised with a simple optical attachment fully compatible 

with commercial microscopes and standard camera systems [48]. 

More recently a different implementation of similar principles has been investigated 

by Sara Abrahamsson and her colleagues [49].  Named as the aberration-corrected 
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multifocus microscopy (MFM), it is capable of producing an instant focal stack of nine 

2D images in multiple colours [49], and can be extended to image up to 25 focal planes 

under some circumstance [50].  As illustrated in Fig. 1.5, the key optical elements of the 

imaging system should be the multifocus grating (MFG) and the combination of 

chromatic correction grating (CCG) and prism, which are utilized to provide a variety of 

focal lengths (like QD grating) and correct chromatic smearing introduced by the MFG 

(like our grism which will be demonstrated in Chapter 4), respectively. 

 

Fig. 1.5 Schematic of the optical path of the aberration-corrected multifocus 

microscopy (MFM) when the optical elements are appended to a wide-field 

fluorescence microscope [49]. 

It is definitely a really-swish system, boxed and with simple controls, and has been 

successfully applied in a few biological explorations [51, 52].  However, since the MFG 

patterns are calculated by the Matlab fft2 function [49], we may conclude that the 

design and optimization of both MFG and the imaging system are performed in an 

unknown ‘black box’ based on computer programming.  It can be seen from Fig. 1.6 

that the MFG patterns are very specially figured out and this unique design may only be 

appropriate for limited applications, thus hindering its practical usefulness. 

 

Fig. 1.6 The MFG grating function pattern (left) and the corresponding energy 

distribution (right) [49]. 
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With increasingly breakthroughs in biological microscopy imaging, it is particularly 

important to analytically and systematically develop an imaging technique based on 

physics principles.  In this dissertation we will endeavour to explore the content of the 

‘black box’, i.e. fundamental optical principles of the QD grating and the design and 

application of our 4D MCMI technique.  Distinct from Sara’s specific design [49], our 

4D MCMI system could be adjusted to meet versatile requirements, such as variable 

separations between focused planes and comparable broad bandwidth of incident light.  

We can also design/adjust the etch depth of QD grating to achieve balanced energy of 

the first three diffraction orders. 

1.4 Dissertation overview 

The main objective of this work is to develop a scanless 4D multi-colour microscopy 

imaging (4D MCMI) technique to improve the temporal resolution without 

compromising spatial resolution of microscopes.  In this dissertation we represent a 

microscope attachment which can simultaneously record images from several object 

planes.  By introducing a quadratically distorted (QD) diffraction grating into the optical 

system, an order-dependent focussing power is established in order to generate several 

(2~9) images, each arising from a different object plane.  A pair of grisms is also 

applied for the correction of chromatic aberration induced by QD grating.  This 4D 

MCMI technique is exploited for real-time 3D bioimaging, especially for the imaging of 

live cells which are constantly changing. 

Chapter 2 reviews the background of the QD grating based 4D imaging technique, 

including both the basic principles developed by Paul Blanchard and Alan Greenaway 

[28], and some primary work about optical efficiency and error budget which has been 

submitted in my first PhD dissertation but link to the work of this dissertation [47].  

Then a few problems are addressed, such as the rough 1D mathematical model of QD 

grating and the inherent chromatic smearing of non-zero diffraction orders, for further 

investigation. 

Based on the Fraunhofer diffraction theory [31], Chapter 3 covers the definition, 

deviation, numerical calculation and final verifications of an elaborate mathematical 

model of QD grating.  The numerical solution of Fourier spectra [53], thus the 

‘working phase’ of QD grating [48, 54], can be straightforwardly regarded as the 

fabrication guide in etch depth. 
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To correct the chromatic aberration induced by grating, Chapter 4 considers the 

chromatic control of QD grating based 4D imaging system.  Utilizing the combination 

of QD grating, a pair of grisms and a conventional microscope (Olympus IX73 in our 

case), chromatically-corrected and high-efficiency 4D MCMI could be achieved.  A few 

simulated eGFP fluorophore imaging tests are also demonstrated to compare the 

chromatic smearing with and without grisms correction. 

Since the problems proposed in Chapter 2 have been solved in Chapter 3 and Chapter 

4 respectively, attention is turned to the practical applications in Chapter 5 — 4D 

biological microscopy imaging.  The bioimaging tests start off with the basic 

fluorescence microspheres imaging and then applied the same experimental setup in live 

cell imaging, where MCF-7 and HeLa cells have been used as initial trials.  Biological 

process, such as TGF β II containing vesicles in living cells, has been a popular topic of 

biochemists, and we are endeavouring to ‘see’ more details for assisting the bio-

mechanism research in the near future. 

The final chapter is devoted to summarize the work of this dissertation as well as 

draw a picture of future work. 
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Chapter 2 

Principles of QD grating and 4D imaging system 

 

Preface 

This chapter reviews principles of QD grating and 4D imaging system.  We begin with 

the theory of QD grating and its application in 4D imaging system, which were first 

developed by Paul Blanchard and Alan Greenaway [1-5].  This theory underlines my 

current work in all the following chapters.  Then we discuss my previous work about 

optical efficiency optimization and error budget.  To estimate and optimize the optical 

efficiency of QD grating, a rough 1D mathematical model is built up and the intensity 

distribution of first three diffraction orders can be obtained.  For precisely describing 

the properties of QD grating, a delicate 2D mathematical model is established in 

Chapter 3.  The error budget reveals that the dominant error of optical system is 

chromatic smearing, accordingly we develop a new scheme of chromatic correction 

using a pair of grisms which will be illustrated in Chapter 4. 

We note that the purpose for presenting my previous work which has been submitted 

to my first PhD dissertation [6] is to provide a base for the further work undertaken in 

this dissertation. 

2.1 How a QD grating works in 4D imaging system? 

QD grating is the abbreviation of quadratically distorted grating, which is also called 

curved grating.  The main difference between QD grating and general grating is the 

shape of grooves.  The general grating is comprised of many straight equidistant slits 

whereas the QD grating is formed by the arcs of a series of concentric circles with 

varying radii (left picture in Fig. 2.1).  As demonstrated on the right of Fig. 2.1, QD 

grating can also be described as an off-axis Fresnel Zone Plate (FZP) [7], which 

behaves like a lens but utilizes principle of diffraction instead of refraction. 
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Fig. 2.1 A demonstration of the structure of QD grating in an x-y Cartesian coordinate 

system. 

Due to the characteristic shape of grooves, the QD grating leads to an additional 

phase term to light which passes through it.  Since this phase term is produced by the 

detour of grating grooves rather than the etch depth phase term which is produced by a 

normal phase grating, it is the so called detour phase.  Therefore the form of detour 

phase term is determined by the way in which the grating grooves are distorted.  In this 

section, we will explore the principle of QD grating and how it works in 4D imaging 

system.  To make the following description clear and concise, I declare that most of the 

content introduced in this section is based on the work of my supervisor Alan H. 

Greenaway and his colleague Paul M. Blanchard [1-5], and these references will not be 

repeatedly cited. 

2.1.1 Principle of QD grating 

Fresnel zone plate (FZP) is a classical diffractive optical element (DOE), which serves 

as a flat lens but focuses light using diffraction rather than refraction or reflection.  The 

FZP consists of a set of radially symmetric rings that alternate between either 

opaque/transparent (in an amplitude way) or different optical thickness (in a phase 

way).  And the zones can be spaced so that the diffracted light constructively interferes 

at the desired focus, creating an image there [8].  The QD grating, which is also known 

as an off-axis FZP, can create multiple copies of the focussed image distributed along 

the axis of the plate.  In an alternative way, QD grating can be used to image multiple 

object planes onto a single image plane. 

Differing from most other uses of DOEs, which make practical use of only a single 

diffraction order, the QD grating discussed here makes simultaneous use of the zeroth, 
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the first, and potentially higher diffraction orders.  A quadratic displacement function is 

used to alter the optical transfer function associated with each diffraction order such that 

each order has a different degree of defocus.  The level of a phase shift, which is 

introduced by the displacement of the grating grooves in a direction perpendicular to the 

long grating lines, is dependent on the amount of local distortion of the grating relative 

to its undistorted form.  Considering a binary QD grating, we define an X-Y Cartesian 

coordinate system in which the x axis is perpendicular to the grooves and the y axis is 

parallel to the grooves in the grating, as shown in Fig. 2.2.  Thus the local phase shift 

for each diffraction order could be described as, 

 
2 ( , )

( , ) x
m

m x y
x y

d





  (2.1) 

where ∆𝑥(𝑥, 𝑦) is the displacement of the grating grooves relative to its undistorted 

position, thus ( , )m x y  is the phase shift applied to diffraction order m in a grating of 

period d. 

 

Fig. 2.2 Schematic of grating grooves: (a) undistorted grooves with period d; (b) 

distorted grooves with amount of local shift Δx [3]. 

To explore the different levels of defocus that are diffracted into each order, the phase 

profile which modifies the wavefront curvature should also be considered.  The phase 

profile of a QD grating that imparts a spherical phase delay could be written as, 
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where λ is the incident wavelength, f is the element focal length (or radius of curvature 

introduced) and r is a radial coordinate.  Eq. (2.2) can be expanded as, 
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The complete grating incorporates both defocus and spherical aberration correction 

and will be distorted according to, 
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where R is the radius of the grating aperture, x and y are Cartesian coordinates relative 

to an origin on the optical axis in the plane of the grating, 𝑥0 and 𝑦0 are the offsets of 

the origin of the quadratic distortion function from the optical axis of the system, 𝑊20 is 

the standard coefficient of defocus and is equivalent to the extra path length introduced 

at the edge of the aperture (in this case for the wave front diffracted into the +1 order), 

and 𝑊40  and 𝑊60  represent the spherical aberration terms.  Since the spherical 

aberration should be centred on the optical axis, the offsets of these terms (𝑊40, 𝑊60  

and higher terms) are not exploited in Eq. (2.4).  In the paraxial approximation case, 

only the first terms of Eq. (2.3)-(2.4) are being considered.  So combining the grating 

equation Eq. (1.5) and Eq. (2.1), when 𝑊20 is non-zero the expansion of the defocus 

(first) term in Eq. (2.4) produces a phase shift given by, 
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When the quadratic function centred on the optical axis, the defocus phase term can 

be written as, 
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which shows that shifting the origin of the quadratic function has no effect on the level 

of defocus introduced into each diffraction order. 

The second term in Eq. (2.5), 
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represents a linear increase in phase across the x-axis of the grating plane.  If 𝑥0 is 

chosen to have a value of, 
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then Eq. (2.7) becomes equal to, 
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This phase tilt is equal and opposite in sign to that introduced into light scattered 

from the grating structure (Eq.(2.1)).  The cancellation of these two terms for each order 

causes the diffraction order spacing to become zero in a plane perpendicular to the 

optical axis, corresponding to all of the orders lying along the optical axis of the system.  

The diffraction orders remain spatially separated along the optical axis according to the 

level of defocus within the distorted grating.  The shift of the origin of the quadratic 

function to that defined in Eq. (2.8) leads to a grating structure consisting of concentric 

circular fringes, like that demonstrated in Fig. 2.1. 

The third term in Eq. (2.5) causes the diffraction orders (except the zeroth order) to 

move along the y-direction in the image plane, which has the similar effect on the phase 

of grating to Eq. (2.7).  And the final term in Eq. (2.5) has no effect on the wavefront 

shape diffracted into each order.  Therefore the position of a particular diffraction order 

in the image plane can be controlled through choice of 𝑥0 and 𝑦0, whilst leaving the 

level of defocus unchanged.  Hence the distortion of QD grating can be described as, 
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And the equation of the grating arcs is, 
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where 𝑑0 is the grating period at the aperture centre, and the integer values of 𝑛 are the 

loci of each grating arc — 𝑛 = 0 corresponds to a grating arc that passes through the 
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mask centre and the values of n are opposite in sign to the x-direction (see Fig. 2.1).  

Thus the radii of the concentric grating arcs 𝐶𝑛 can be written as, 
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Since the grating period across the aperture is not constant, the grating period d at a 

distance x from the origin along the x axis can be given by, 
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Therefore when 𝑥 = −𝑅 the minimum grating period 𝑑𝑚𝑖𝑛 is, 
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 (2.14) 

Eq. (2.14) determines the accuracy of mask plotting in grating fabrication, from 

which we can see that for very high 𝑊20 values the period may become too fine to plot 

at the edge of aperture.  Normally we work on the basis that the minimum period is not 

less than 2µm.  And the error budget of mask plotting will be discussed in the following 

section (Chapter 2.3).  We note that the equation (7) in reference [3] is wrong in sign 

when the coordinate of minimum grating period in equation (10) corresponds to 

𝑥 = −𝑅 (which is the same with my definition, as Fig. 2.1 shown). 

2.1.2 Multi-plane 4D imaging by QD grating 

The quadratic phase function Eq. (2.6) imparts a phase delay on wavefronts scattered 

into the nonzero diffraction orders such that the wavefront curvature is altered.  

Therefore the QD grating has focusing power in the nonzero orders, and an equivalent 

focal length 𝑓𝑚 can be calculated for these orders.  Comparison of Eqs. (2.3), (2.5) and 

(2.6) yields, 
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where 𝑚𝑊20 is the path length difference introduced at the edge of the aperture in the 

mth order.  Here R is much greater than 𝑚𝑊20, thus Eq. (2.15) can be approximated by, 
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Since the QD grating is designed with defocus represented by 𝑊20 = 𝑛𝜆 (normally 

𝑛 > 0), 𝑓𝑚 in the ±1st orders is typically not less than 500mm.  Moreover, there is no 

real image in the negative orders so that QD grating is always applied as part of an 

optical system which provides the majority focussing power.  In principle, the QD 

grating could be placed anywhere within a multielement optical system for effectively 

modifying the focal length of the system in each diffraction order.  This grating-

multielement combination can be used for imaging either a single object plane onto 

multiple image planes or multiple object planes onto a single image plane.  In practice, a 

grating-lens combination is generally utilized for multi-focal imaging, in which a 

variable slit is used to ensure that the separate z-plane images do not overlap (see Fig. 

2.3). 

 

Fig. 2.3 Schematic of a QD grating based 4D imaging system. 

Fig. 2.3 shows that objects A, B and C located at different distances from QD grating 

are imaged simultaneously and spatially separated on a single image plane and the 

biological images on the right side are the partial view of a stage 8 drosophila egg 

chamber (the separation of object planes Δz is about 7.3µm in this case).  It is clear that 

the small dark spheres in bottom image are the follicle cells and the large dark spheres 

in both top and central images are two nurse cell nuclei, whilst the oocyte in the central 

image is focussed well.  This work was in collaboration with Prof. Ilan Davis of Oxford 

University. 
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The effective focal length of the combination (Fig. 2.3) in each diffraction order can 

be given by (from the thin lens approximation), 

 L m
meff

L m

f f
f

f f s


 
 (2.17) 

where 𝑓𝐿 is the focal length of the lens and s is the separation between the lens and QD 

grating. 

In practice we often set s to be equal to 𝑓𝐿 then the magnification of the images of 

each diffraction order will be identical, and this condition is described as ‘telecentric’.  

By setting up such a system, we do not need to re-scale the images of each layer when 

reconstructing the 3-dimensional object, which effectively avoids some possibilities of 

error(s) and makes image postprocessing easier. 

The object planes are separated along the z-axis by [9], 
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where M is the total magnification of the system (normally the objective magnification 

in the telecentric case), and 𝑓𝐿 could be replaced by the effective focal length of the 

lenses when a lens compound system is applied. 

Due to the diffraction properties of QD grating and the energy limit of optical system, 

only the images of first 3 orders could be utilized.  Thus the separation of object planes 

we are interested in is simply Δz, rather than the separations between objects/images of 

higher diffraction orders.  Normally Δz should be chosen to meet the research 

requirement of biologists, whilst the separation of the images on the camera can be 

calculated using basic trigonometry.  Here the physical size of the sensitive chip of the 

camera should be considered carefully so that the images may fit well onto the chip and 

make the best possible use of the whole area (see section 5.2.1 for details). 

To set up a working system, there are still quite a lot of practical things to consider, 

and most of them involve a trade-off of some sort, i.e. the light efficiency in each image, 
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the bandpass effect on the image quality, the optimization of both QD grating and 

optical system, etc. 

2.2 Optimization of optical efficiency by multi-etch of grating 

As described in section 2.1, we have demonstrated a real-time 3D (thus 4D) imaging 

technology based on the QD grating, in which the transmission grating, in the form of 

an off-axis Fresnel zone plate, works as key element to image multiple object planes 

simultaneously on a single image plane.  For the transmission QD grating we are using, 

efficiency is defined as the energy flow of light diffracted into the order being 

measured, relative to the energy flow of the incident light [10].  A grating with high 

efficiency is desirable for 4D imaging, especially in measuring/tracking rapidly moving 

live cells, with either weak signal or noisy background. 

As early as 1874, Lord Rayleigh recognized that the energy flow distribution (by 

wavelength) of a diffraction grating could be altered by modifying the shape of the 

grating grooves [11].  Our grating is generated by dry etch, during which the 

AutoCAD/GDSII files of plotting mask are used to produce chrome on fused silica, and 

after that the fused silica is etched where there is no chrome and the chrome is then 

removed to leave a fused silica substrate with the phase grating in relief.  Therefore we 

may evaluate the optical efficiency from controlling groove shape in the following 

aspects: 

1. Line width and pitch 

Present gratings are binary (i.e. two-level) structures and plotted with the mark to space 

ratio of 1:1.  The present etch is a dry etch and we aim to get etch profiles with sides as 

vertical as possible.  However, since the current fabrication of grating appears to 

produce acceptable results and we are not really able to measure the etch profile at the 

moment, we assume that the vertical edges have been produced.  Another point to 

consider is that the production of gratings with different mark to space ratio might be 

advantageous in some applications.  We may therefore simulate the effect and optimize 

the mark to space ratio in Mathematica software in the near future. 

2. Etch depth 
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We use the etch depth to control the energy scattered into each diffraction order and we 

are generally interested only in the zero, +1 and -1 diffraction orders.  We would 

generally etch to produce equal intensity in these 3 diffraction orders.  In principle, 

increasing the number of levels etched beyond 2 can improve the optical efficiency [12, 

13], thus we may need to develop our designs to write gratings with at least 3 levels 

(thus two etches). 

3. Surface profile 

The mean–surface profile cannot be straightforwardly measured as our assessment of 

the results of the etching process has only been made using a stylus probe and that 

cannot really give us accurate information.  Actually, a comprehensive budget of the 

fabrication errors, including surface roughness error, should be implemented in order to 

find the factor(s) which has (have) significant impact on the optical efficiency of grating 

(see details in section 2.3.1).  So we briefly assume that the etched-surface is perfect in 

this case. 

However, it is difficult to separate the estimation of etch depth levels and the mark to 

space ratio, so a properly-evaluated grating model will need to take both into account.  

There are several ways in which we can try to achieve multilevel: the easiest (taking 3 

levels for example) in terms of alignment is to etch two binary gratings of different etch 

depths, either on opposite sides of the substrate or (preferably) on the same side.  If the 

etches are on the same side of the substrate, some areas would be etched twice or more.  

Here we will build a principal grating model on the basis of same sided multi-etch (up 

to 3 etches).  In this section, full mathematical details with suitable commentary on the 

logical steps will be demonstrated and the principles can be expanded to higher etch 

levels.  Since we just need to check the improvement of efficiency with increase of etch 

levels, a 1D phase grating model might be enough to illustrate the principle [14]. 

2.2.1 1D mathematical model of single-etch grating 

Let us start off with the simplest grating model – single etch grating (i.e. two-level) with 

the mark to space ratio of 1:1.  The grating consists of a unit cell of length 2L of which 

the interval −
𝐿

2
≤ 𝑥 <

𝐿

2
 has the value unity and the interval 

𝐿

2
≤ 𝑥 <

3𝐿

2
 has the value A, 

where A is a complex, unimodular constant (Fig. 2.4). 
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So the definition of single-etch grating is, 
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Fig. 2.4 Schematic of unit cell of single etch grating structure. 

where 𝐴 = 𝑒𝑖𝜙𝐴 , 𝜙𝐴 =
2𝜋𝜀𝐴(𝑛−1)

𝜆
 is the phase step of grating, 𝜆 the wavelength, 𝜀𝐴 the 

etch depth and 𝑛 the refractive index. 

The extended grating is a convolution of the unit cell and a set of delta functions, 

with spacing 2L.  The Fourier Transform (FT) of the unit cell is the sum of the FT of the 

two unit-cell components.  So if the FT is defined by ∫ d𝑥 𝑓(𝑥)exp (−𝑖𝑥𝜉)
∞

−∞
 [15], the 

FT of the unit cell is, 
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where the exponent represents the phase shift due to the displaced position of the 

segment having complex transmittance. 

The positions in 𝜉-space for the diffraction order n is 𝜉 = 𝑛
𝜋

𝐿
.  Thus the scattered 

intensity in 𝜉-space is the modulus squared of 
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where the 
𝜋

𝐿
 comes from the FT of the array of delta functions. 
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For 𝑛 = 0 we have 𝜉 = 0, and thus for the zero-order, 
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For 𝑛 = ±1 we have 𝜉 = ±
𝜋

𝐿
, and thus for the first-orders, 
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Therefore the scattered intensities are, 
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and 

 

2

1

2   

( )

16sin ( )
2

I F
L




 



 (2.25) 

 

If the intensity is normalized such that a grating for which 𝐴 = 1 (i.e. no grating) 

gives unit amplitude in the zero order, we can write, 
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Clearly, the fraction of incident energy scattered other diffraction orders is, 

 2

lost 2

8
(1 )sin 0.19

2
I
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 
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 
 (2.28)  

Thus, there is always more than 81% of the incident flux detected in the 3 images in 

the 0
th

 and ±1
st
 orders, this minimum being reached when the etch is of a depth to delete 

the zero order. 

 

Fig. 2.5 In terms of single-etch grating, the energy can balance in the 0
th

 (solid red line) 

and ±1
st
 (dashed blue) diffraction orders, and the fraction of the flux lost goes into 

higher diffraction orders (black dots). 

The energy fraction in each order is plotted as Fig. 2.5, where the red line represents 

the zero order and the blue the +1
st
 orders.  Solving for the intersections of the energy in 

the zero and +1
st
 order curves gives 𝜙𝐴 = 2.00777 rad or  𝜙𝐴 = 4.27542 rad when 

0 < 𝜙𝐴 ≤ 2𝜋.  The corresponding etch depths are 𝜀𝐴 = 416.8nm or 𝜀𝐴 = 887.5nm, if 

we choose 𝑛 = 1.46 and 𝜆 = 600nm.  The energy lost into higher diffraction orders at 

these values of 𝜙 < 13.45%.  The zero and first diffraction orders each have 28.84%. 

2.2.2 Efficiency optimization by double-etch of grating 

Similar with the mathematical model of single-etch grating, the first layer of double-

etch grating consists of a unit cell of length 2𝐿 of which the interval −
𝐿

2
≤ 𝑥 <

𝐿

2
 has the 

value unity and the interval 
𝐿

2
≤ 𝑥 <

3𝐿

2
 has value 𝐴.  Moreover, the real number ‘𝑦’ 

indicates the fraction of the DOE exposed to the second etch, thus the intervals of the 
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second etch layer can be demonstrated as Fig. 2.6, which has the value 𝐵.  Here 𝐴, 𝐵 

and 𝐴𝐵 are complex, unimodular constant, separately. 

So the definition of double-etch grating is, 
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 (2.29) 

 

Fig. 2.6 Schematic of unit cell of double-etch grating structure (0<y<L/2). 

where 𝐴 = 𝑒𝑖𝜙𝐴, 𝐵 = 𝑒𝑖𝜙𝐵; 𝜙𝐴 =
2𝜋𝜀𝐴(𝑛−1)

𝜆
 and 𝜙𝐵 =

2𝜋𝜀𝐵(𝑛−1)

𝜆
  are the phase steps of 

first and second etch layers separately, 𝜆 the wavelength, 𝑛 the refractive index, 𝜀𝐴 and 

𝜀𝐵 the etch depths of first and second etch layers separately. 

Similarly with Eq. (2.21), the scattered intensity in 𝜉-space is the modulus squared of 
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thus 
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Then the amount of light diffracted into first 3 diffraction orders for a 2-bit etch phase 

grating can be given by, 
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To achieve ‘highest’ efficiency and intensity balance in first 3 orders, we need to find 

the ‘working’ phase of each etch and the interval of grating.  Here we would like to 

calculate the conditional extreme value of total intensity 
0 1Max[ 2 ]I I  in first 3 orders 

with condition, 

 
0 1 0I I   (2.35) 

The calculation results show that optimizing the phase terms for balanced intensity in 

each order occurs when 𝜙𝐴 = 1.60rad , 𝜙𝐵 = 0.64rad (i.e. 𝜀𝐴 = 332.8nm , 𝜀𝐵 =

132.5nm if 𝜆 = 600nm and 𝑛 = 1.46) and y=0.37.  Under these conditions, the photon 

flux per order increases to 30.3%, and the remaining 9.1% is lost into higher diffraction 

orders, see Fig. 2.7. 

 

Fig. 2.7 3D Plot showing the energy distribution of double-etch grating in the 0
th

 (red) 

and ±1
st
 diffraction orders (blue). 
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Thus, we obtain 91% intensity in first 3 orders, increasing up to 92% by tolerating 

just 1% variation in the image energy in each order, see Fig. 2.8. 

 

Fig. 2.8 The efficiency with balanced energies of first 3 orders is up to 92% if 1% 

variation of the image energy allowed. 

The results are particularly beneficial when using multiple QD gratings, where 

diffraction losses cumulate.  For example, 9-plane simultaneously imaging, using dual 

back-to-back QD gratings would result in higher order losses of 25.14% for single-etch 

grating compared to 17.37% for double-etch grating.   

2.2.3 Efficiency optimization by triple-etch of grating 

Similar with the definition of principal grating model above, the triple-etch grating can 

be expressed as following: the first layer of grating consists of a unit cell of length 2𝐿 of 

which the interval −
𝐿

2
≤ 𝑥 <

𝐿

2
 has the value unity and the interval 

𝐿

2
≤ 𝑥 <

3𝐿

2
  has 

value 𝐴; the real number ‘𝑦’ and ‘𝑡’ indicate the fraction of the grating exposed to the 

second and third etches separately.  So the intervals of the second and third etch layers 

can be demonstrated as Fig. 2.9, which has the value 𝐵 and 𝐶, separately.  Here 𝐴, 𝐵, 

𝐴𝐵 and 𝐴𝐵𝐶 are complex, unimodular constant, separately. 

So the definition of triple-etch grating is, 
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Fig. 2.9 Schematic of unit cell of triple-etch grating structure (0<y<L/2 & 0<t<y). 

where 𝐴 = 𝑒𝑖𝜙𝐴 , 𝐵 = 𝑒𝑖𝜙𝐵 , 𝐶 = 𝑒𝑖𝜙𝐶 ; 𝜙𝐴 =
2𝜋𝜀𝐴(𝑛−1)

𝜆
, 𝜙𝐵 =

2𝜋𝜀𝐵(𝑛−1)

𝜆
 and 𝜙𝐶 =

2𝜋𝜀𝐶(𝑛−1)

𝜆
  are the phase steps of first, second and third etch layers separately, 𝜆 the 

wavelength, 𝑛 the refractive index, 𝜀𝐴 , 𝜀𝐵  and 𝜀𝐶  the etch depths of first, second and 

third etch layers separately. 

Again, similar with the mathematical process in foregoing sections, we could work 

out the normalized energy distribution in 0
th

 and ±1
st
 orders as following,  
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The analytic expressions of 𝐼0  and 𝐼±1  (equations (2.37) and (2.38)) are so 

complicated that we tried a few algorithms to work out the global maximum or 

conditional extreme values.  However, quite a few of classic statistic models seem not 

applicable in this case.  Monte Carlo algorithm is always used for obtaining numerical 

solutions to problems too complicated to be solved analytically, but it is a stochastic 

technique based on the use of random numbers and probability statistics which might 

not be appropriate for our case [16].  Genetic algorithm is often applied as an approach 

to solve global optimization problems, which is actually a search technique to find exact 

or approximate solutions to optimization and search problems [17].  However, the stop 

criterion is not clear in each problem as a result of that the so-called ‘better’ solution is 

only in comparison to other solutions.  On the other hand, we also attempted to utilize 
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some optimization algorithms to see if better solution(s) could be found.  One of them is 

simulated annealing, which was developed in 1983 and originally used to deal with 

highly nonlinear problems [18].  Since the calculation starts off with a random point and 

may find a local maximum as the final result rapidly, the global maximum is rarely to 

be found, whilst the related convergence analysis and potential period of computation 

could be painful [19]. 

So we got back to the similar solution as illustrated in section 2.2.2, but calculated by 

Mathematica software with rigorous constraints.  We found that the conditional extreme 

value of efficiency could reach to 91.36% if the parameters 𝜙𝐴 = 7.821rad , 𝜙B =

0.671rad , 𝜙C = 0.103rad , 𝑦 = 0.386  and 𝑡 = 0.201  were selected, subject to 

0<y<0.39 and 0<t<y constraints.  It shows that efficiency of triple-etch grating is only 

0.4% higher than that of double-etch grating, so multi-etch (>3) may deliver nominal 

improvement. 

2.2.4 Conclusions 

It is demonstrated that grating efficiency could be improved by multi-etch fabrication, 

using theoretical models of gratings based on an analytical solution to the optimization 

of the multi-level phase conditions.  Under the conditions of refractive index n=1.46 

(fused silica) and wavelength of incident light λ=600nm, a set of optimized parameters 

of grating structure are obtained, which achieve a balanced intensity distribution 

between diffraction orders and maximum value of grating efficiency.  The results show 

that each order contains 28.84%, 30.3% and 30.45% of the flux, when the grating is 

single, double and triple etched, respectively.  For higher etch levels, we can set up an 

iterative (i.e. simply numerical) solution to investigate whether a more complex 

structure than we can easily model would give a superior solution.  Using Mathematica 

software, we made an iterative loop to code the grating in real space, Fourier transform, 

modulus square, compare peak heights and the energy in the first 3 orders, retain the 

phase of the grating FT but set the first 3 orders to be equal in strength (mod squared). 

Here we may conclude that double-etch is good enough because few efficiency gain 

would be obtained in 3 and higher etch levels.  Thus we will concentrate on the 

fabrication of double-etch grating in the near future and some grating fabrication 

methods are explored.  Actually the fabrication methods should be similar for all etch 

levels, which fall into two categories: etching the substrate material away, and 
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depositing/casting the material onto substrate.  We have had focused on each of them 

respectively and tried to find an improved method which could be an appropriate 

fabrication technique for our grating.  Film deposition might be a potential way due to 

the high accuracy of film thickness, although few promising result has been obtained 

yet [6].  And concerning the alignment, the two grating masks involved should be 

oriented at 90 degrees to each other with this angle as accurate as possible, but errors of 

even a few degrees would not seriously impede operation (at least in test 

measurements).  The lateral displacements of the grating centres should, again, be as 

accurate as possible, but alignment errors of up to 100 microns should not obstruct test 

measurements. 

2.3 Error budget — limitations of QD grating based 4D imaging system 

Errors affecting the accuracy of QD grating based 4D imaging can be treated under two 

convenient headings – those arising from defects in the grating structures (say 

fabrication error) and those arising from conventional optics (say optical system error).  

Experimentally, all of the QD grating-based schemes discussed here are used with an 

imaging system based on an optical relay between the usual microscope detector port 

and the image plane (to which the users’ chosen camera is displaced) [20]. 

2.3.1 Fabrication errors of grating 

The fabrication work will be assessed through accurate measurement of the diffraction 

of a laser beam by the gratings – any errors in the fabrication will be revealed by an 

imbalance in the energy scattered into each diffraction order.  Relating this to a model 

(as illustrated in section 2.2.1) can give an indication of the accuracy of the etch 

(provided that the refractive index of the material is reliable).  Measurement of higher 

diffraction orders can provide additional verification of the model.  Asymmetries in the 

pattern of scattered intensity will reveal any accidental blaze produced during the 

fabrication, and relating the measurements to the model can produce an assessment of 

the blaze produced.  Measurement of the diffuse scatter will provide information on the 

surface roughness and the accuracy of the vertical edges, although it may prove difficult 

to separate these influences. 

In this subsection, we will explore some principal sources of fabrication error, i.e. 

etch depth, surface roughness and plotting, and find the dominant error(s) to guide the 

practice. 
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2.3.1.1 Etch depth error 

The accuracy in etch depth determines the percentage of the incident light that is 

directed into each order. The energy balance between different diffraction orders is, as 

shown in Fig. 2.5, dependent on the phase-profile of grating.  To achieve the desired 

intensity balance between the images in each diffraction order it is important to control 

the etch depth.  We design the gratings but these are etched into a fused silica substrate 

commercially.  The etch depth is reasonably uniform across each set of 16 gratings that 

are etched together, but it is important to know how precisely a target etch depth can be 

achieved in order to determine the energy imbalance between the images. 

To model the effect of such error we assume that the etch-depth, 𝜁 , is Normally 

distributed with the target mean and a given standard deviation.  Eqs. (2.26) and (2.27)

then allow us to estimate the energy balance.  Both analytical and numerical integrals 

were performed [6], but will not be elaborated here due to the parallel deducing process 

with that illustrated in section 2.2.1.  The results indicate that the energy balance 

between zero and first diffraction orders is less than 4%, with a 95% probability, if the 

standard deviation on the etch depth error is less than 2nm. 

For a fused silica substrate (refractive index 1.46) we would aim for an etch depth of 

about 361nm if working at a wavelength of 520nm.  On a relatively small sample of 

etch runs the depth error appears to be typically ~2nm with just one example exceeding 

7nm error.  The experimental results indicate about 5% variation in the energy balance 

between the diffraction orders and we have been able to work with that variability.  The 

accuracy with which our former supplier (Photronics Inc) has etched the gratings has 

been about ±3nm.  It seems that we can use a single etch with a high certainty of getting 

the correct energy balance for the selected wavelength. 

2.3.1.2 Surface roughness 

The surface roughness contains all spectral scales and leads to scattering of light out of 

the useful images to all angles.  The effect of residual roughness in the grating etch can 

be analysed using the Maréchal approximation [21] to assess its effect on the Strehl 

ratio, whilst Strehl ratio is defined as the ratio of the observed peak intensity at 

detection compared to the theoretical maximum peak intensity of a perfect imaging 

system working at the diffraction limit [22, 23]. 
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The residual roughness can be measured by stylus contact and, in the examples 

fabricated thus far, has an rms amplitude of ~3nm.  The effect on the optical wavefront 

also depends on the scale length of the error, since roughness with a scale length 

significantly below one wavelength will tend to be averaged, but we assume that the 

rms roughness applies equally at all lateral scales.  A plot of the Strehl for small errors 

is shown in Fig. 2.10. 

 

Fig. 2.10 The Strehl ratio as a function of the roughness error standard deviation. 

The Maréchal approximation gives the Strehl ratio as the negative exponential of the 

phase variance 𝑆 = exp(−𝜎𝜙
2), which is easily calculated.  As Fig. 2.10 shows, the 

Strehl remains >0.99 provided that 𝜎𝜀 < 20nm, so the roughness does not present a 

problem in terms of system performance. 

Provided that the mean etch depth is accurate, a very-crude Strehl-ratio based 

estimation would suggest that we could tolerate up to 20nm random surface roughness 

before the random scattering errors exceeded 1%, so performance is driven by the 

accuracy of the mean etch depth and the flatness of the mean –surface profiles (any 

mean-value slopes would imply a grating blaze). 

2.3.1.3 Plotting error 

Our gratings are designed using AutoCAD/GDSII (see details in section 2.1.1) and the 

etch masks are made using a laser plotter, followed by a dry-etch of the fused silica.  

The binary masks are plotted with a 1µm resolution and typical grating periods are 

25µm.  Particularly in the case of the zone plates used to produce multi-focus images, 
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the curved features in the zone-plate are plotted in straight-line segments, which is a 

source of error. 

Again we set up a mathematical model of the grating with plotting error (ignoring all 

the other errors here).  The ideal grating consists of phase steps of a height characterized 

by a complex, unimodular number ε with an equal mark to space ratio.  There are two 

transitions between mark and space per grating period – let odd-numbered transitions be 

from space to mark and even numbered transitions from mark to space.  At each 

transition a plotting error takes the form of a top-hat function of width 
j , centre 

j

jt





and height   sgn( )
j

j  .  Assume that 
j is taken from a Normal distribution 

of zero mean and standard deviation σ. 

Then the plotting error function is, 
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The length of the unit cell is 2p, of which the interval 0 ≤ 𝑥 < 𝑝 has the value 𝜀 and 

the interval 𝑝 ≤ 𝑥 < 2𝑝 has the value unity. The error function ensures that plotting 

errors with a mark are negative valued (eroding the mark) whilst those with a space are 

positive valued (augmenting the mark). 

To analyse the effects of this we model the grating as the sum of an idealized phase 

grating plus an array of ‘top hat’ functions located at the transitions between the etched 

and un-etched regions and of positive- or negative-going nature dependent on whether 

the error represents an erosion of, or augments, the width of an etched region.  The ideal 

grating structure and the error function are each Fourier transformed, summed and 

modulus squared in order to assess the effects of the plotting error.  This model is 

amenable to numerical evaluation and for comparison with a computer simulation. 
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Similar to Eqs. (2.24) and (2.25), the scattered intensities of first 3 orders can be 

described as [6], 
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Thus 
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Please note that sgn(𝛿𝑗) is just a sign label thus has no effect in the calculation 

(except in summing). For example, there is no phase shift in Fourier transform (or else 

ℱ{sgn(𝑥)} =
1

𝑗𝜋𝑓𝑥
)  

The results indicate that for a 25µm period grating a 1µm (or 0.5µm) plotting error 

will lead to a variation of the relative energy scattered into each diffraction order with 

an average rms of 6.2% (or 1.6%).  This error can be reduced by plotting the masks with 

higher precision, e.g. using electron-beam lithography.  However, that is significantly 

more expensive than the laser-plotting here. 

2.3.2 Optical system errors  

As demonstrated in section 2.1.2, combining a QD grating with a conventional positive 

lens achieves multi-mode imaging by exploiting the well-known detour phase principle, 

i.e. that radiation scattered from a distorted diffraction grating suffers a phase change 

dependent on the local distortion of the grating and the diffraction order considered 

[24].  Each of the diffraction orders forms an image by virtue of the conventional lens.  
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The use of a QD grating to achieve simultaneous in-focus images of many specimen 

planes is greatly beneficial in terms of both imaging and photometric efficiency (see 

Fig. 2.3 and Fig. 2.5), but the related optical system errors induced from the grating are 

supposed to be investigated in order to find the crucial one(s) and therefore optimize it 

(them).  Some of the typical system errors are explored in this subsection. 

Fig. 2.3 shows a schematic of the optical relay.  As discussed before, the QD grating 

is positioned one focal length behind the lens to form a ‘telecentric’ system so that all 

images have identical magnification without re-scaling.  Here we use a re-imaging lens 

of f ~75mm focal length, so the total optical length of this system is ~300mm.  Varying 

the grating period changes the separation of the images thus allowing full exploitation 

of any camera format.  The ray-tracing work in this subsection was in collaboration with 

Dr. David Lee of UK Astronomy Technology Centre. 

2.3.2.1 Mis-placing the QD grating 

For 4D imaging, placing the QD grating one focal length behind the lens (Fig. 2.3) 

ensures that the images in all diffraction orders have equal magnification.  The optics 

were modeled (Fig. 2.11) with Zemax ray-tracing software and include a bandpass filter 

limiting the wavelength range to 530±5nm, two 150mm achromatic lenses acting as a 

1:1 relay, and the quadratically curved grating.  The QD grating has a 1mm thick fused 

silica substrate, period 20μm, and a focal length of ±2m for diffraction orders ±1.  The 

model includes an NA=0.6, ×40 microscope objective and tube lens not shown in Fig. 

2.11.  The object plane separation caused by the QD grating is ±2.9mm at the entrance 

to the relay optics equivalent to -1.86μm and +1.80μm at the specimen.  For a 40x 

microscope objective, the beam entering the relay optics has a focal ratio of F/26.  The 

predicted P-V wavefront error in the relay optics is less than 0.01 waves on-axis (zeroth 

order), and ~0.12 waves at the edges of the detector (±1st orders).  The system is thus 

diffraction limited, with an Airy disk at focus ~34μm diameter (~5 Nyquist-spaced 

detector pixels).  Magnification differences ~.25% between the images in the 3 

diffraction orders are achievable experimentally using test objects on the microscope 

[20]. 
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Fig. 2.11 Optical ray-trace diagram of the 4D imaging system. 

 

2.3.2.2 Dispersion 

The diffraction gratings are dispersive, i.e. the diffraction angle is wavelength 

dependent (see Eq. (1.5)), so chromatic effects degrade performance in the ±1st order 

images.  Fig. 2.12 shows that the non-zero diffraction order images appear to be 

severely smeared laterally across the camera when a white light source from an 

unfiltered halogen bulb was used [4]. 

 

Fig. 2.12 Images of three object planes (as Fig. 2.3 demonstrated), where chromatic 

smearing of non-zero diffraction orders destroys the images of planes A and C [4]. 

The QD grating we use to perform multi-focus imaging has the property that the 

period varies across the transverse of the grating.  The period that a beam ‘goes through’ 

is the grating period at the centre of the beam.  To quantify the chromatic smearing 

effect we consider the case of two discrete wavelengths 𝜆1 and 𝜆2, where the grating 

periods at each beam centre are 𝑑𝜆1 and 𝑑𝜆2.  We therefore can equalise the diffraction 

angle at these wavelengths (thus eliminate transverse smearing) when the following 

ratio yields [4], 

 1 2

1 2

d d 

 
  (2.44) 

Then we need to spectrally separate the input beam into its component wavelengths 

and spread these individual beams across the QD grating following the relationship 
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described as Eq. (2.44).  Based on Eqs. (2.13) and (2.44), the separation between the 

two beams across the grating should be, 

 

2

1 2

20 02

R
x

mW d
     (2.45) 

Hence all wavelengths within a broadband beam dispersed across the QD grating can 

be re-arranged according to Eq. (2.45), such that the images at each wavelength will be 

accurately centred. 

In practical use, over a 10nm bandwidth the peak position for the ±1st order images 

can move by one half of the width of a diffraction-limited spot (2-3 pixels for the 

system in Fig. 2.11).  This chromatic smearing depends on the grating period, the focal 

length of the re-imaging lenses and the spectral profile used.  In phase-contrast imaging, 

DIC (differential interference contrast) and dark-field imaging modes one can use a 

sufficiently-narrow band illumination that chromatic effects are negligible [20].  For 

fluorescent imaging the fluorophore bandpass may reach 30-50nm, and use of the full 

fluorescence spectrum is important to minimize photo-damage, so chromatic correction 

is required.  For the instantaneous z-stack images the changing period of the QD grating 

structure may be used to correct the chromatic effects due to the wavelength-dependent 

angle of the diffraction orders. 

Pre-dispersion of the light before it is incident on the QD grating can correct this 

chromatic smearing, even for unfiltered white light illumination, and a correction 

scheme has been demonstrated much earlier [4].  But this method used a pair of 

reflective gratings and a folded optical path to compensate for the chromatic distortion 

by introducing an opposing chromatic shear.  The amount of chromatic shear is 

controlled by changing the distance between the gratings but, because of the folded 

path, changing the grating separation necessitates adjustments of the angle and/or 

position of various optical components.  Adjusting these additional parameters 

complicates the control system, making it harder to integrate into user instrumentation 

and restricting practical application.  Work is continuing to effect this chromatic 

correction in telecentric imaging and with high efficiency, and we have been exploring 

an optically and ergonomically-efficient correction, the details of which will be 

illustrated in Chapter 4. 
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2.3.2.3 Assessing focus 

The Strehl ratio and the image sharpness [25] are both maximum for a diffraction -

limited image.  The Strehl is hard to measure experimentally but, as shown in Fig. 2.13, 

the Strehl and image sharpness maxima coincide accurately.  In our experiments [5,6] 

we use the maximum image sharpness (equally applicable to extended incoherent 

sources) as an indicator of ‘best focus’. 

 

Fig. 2.13 Plot showing the through focus variation in Strehl ratio (dashed line) and 

image sharpness (IS - solid line) versus defocus at the microscope image plane. 

These curves are produced from the Zemax software and model a displaced point 

source.  The peak Strehl and image sharpness values occur at the optimum focus where 

the wavefront error is minimized.  The image sharpness falls to 50% of its peak value 

when the P-V wavefront aberration reaches 0.34 waves – in this example at 0.65μm 

focus offset.  This work was in collaboration with Dr. David Lee of UK Astronomy 

Technology Centre. 

2.3.2.4 Spacing of the z-stack 

The spacing of the axial foci is measured using the image sharpness and related back to 

a microscope specimen using the square of the magnification.  Ray-tracing for catalogue 

lenses gives image-plane z-separation exceeding thin-lens calculations [3, 4, 9] by 

~3.6%. 

2.3.2.5 Image z-plane intensity variation 

The QD grating moves the principal plane of the objective lens in the diffraction orders 

[9], slightly changing the numerical aperture (NA) for each plane in the 4D imaging 
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mode (objects closer to the objective are imaged with a slightly-higher NA).  This effect 

was noted experimentally, and the observed changes are consistent with ray-tracing 

analysis.  The induced flux variation in the multi-focal images can be ~4% percent, but 

is easily assessed from measurements. 

2.3.2.6 Aberrations induced by optics 

Deviations in the thickness of the cover slip from that for which the microscope 

objective was designed is the principal source of spherical aberration, but small amounts 

of additional spherical aberration and defocus are due to the interference filter and the 

substrate into which the QD grating has been etched.  In addition, the use of diffraction 

by the QD grating to separate the images recorded in different image modes means that 

the images in the ±1st diffraction orders strike the camera at slight angles, and this 

breaking of the axial symmetry induces small amounts of coma aberration [3].  Ray-

tracing analysis indicates that these effects reduce the Strehl in the ±1 diffraction-order 

images by less than 1% for monochromatic imaging. 

2.3.3 Conclusions 

We have discussed the principal sources of error and have assessed their significance 

using ray-tracing, theoretical analyses and computer simulations.  The analysis 

presented shows that with achievable accuracies, the plotting error, the residual surface 

roughness, the thickness of the spectral filters and QD grating substrate, the misplacing 

of the grating and the delivery of images in the ±1st diffraction order do not produce 

significant image defects.  We also find that the image sharpness is a good experimental 

measure to characterize ‘best focus’.  And the axial spacing and location of the in-focus 

images are altered slightly by the use of thick lenses and the aberrations introduced by 

other optics.  The principal influence on the ability to balance the energy in the multi-

focal images arises from the slight change in the NA of the imaging system between 

diffraction orders of the QD grating.  For narrow-spectral bands the etch depth error 

dominates other errors, but the analysis here was in 1D and we expect this effect to be 

less in 2D QD gratings.  The most serious error in fluorescence imaging arises from the 

wavelength-dependent diffraction angle of the ±1st diffraction orders.  In multi-focal 

imaging this effect may be largely corrected by pre-dispersing the light before it strikes 

the QD grating, however work at this stage continues to find a telecentric and high-

efficiency implementation of this. 
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2.4 Summary 

In this chapter we have demonstrated that a QD grating in the form of an off-axis zone-

plate imposes a different curvature on the incident wavefront in each diffraction order.  

Combined with a conventional positive lens, this provides multiple in-focus images on a 

single detector in which each diffraction order focuses on a different specimen depth.  

The system thus provides a ‘z-stack’ with no need for mechanical scanning and with the 

advantage that images at all depths are recorded during a single integration time. 

However, maximizing the optical efficiency and improving the image quality are 

crucial in most modern microscope imaging applications.  When using QD grating, the 

first challenge is to maximize photometric efficiency in the usable diffraction orders, by 

reducing the intensity in the unused higher orders, without compromising QD grating 

performance or functionality; the second challenge is to diminish chromatic aberration 

induced in non-zero diffraction orders of QD grating. 

Based on principles of Fourier optics, it has been proved that the grating efficiency 

could be optimized by multi-etch fabrication.  1D mathematical models of multi-level 

phase grating with balanced intensity distribution between first 3 diffraction orders have 

been established, which illustrate that 4.4% efficiency gain is obtained by double-etch 

than that of single etch grating.  However, efficiency gain from a third etch is only 

0.4%, which looks sufficiently surprising that some more investigation about the 

efficiency of multi-etch grating should be essential.  Hence we may say that improved 

efficiency is desirable (the efficiency of single etch grating is about 84% in practical 

experiments) but not essential at present, and it should not worth doing more than 2 

etches for a 4D imaging system.  For the long term, any process that allows the 

production of a continuous surface profile (grey level rather than discrete levels), or 

very precise alignment of etches on the same side of the substrate (alignment better than 

about 2 microns), would offer new opportunities, but we presently have no plans to 

attempt this level of sophistication. 

In order to assess the influence of errors and thus find significant ones to mitigate a 

comprehensive error budget, in the form of theoretical analyses, computer simulations 

and ray-tracing, has been established.  It seems that etch depth error dominates other 

fabrication errors, yet only a very rough 1D mathematical model of phase grating 

(which is similar with Fig. 2.4) was built.  In my practice of telecentric cases, the 
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relative positions of in-focus object planes in each diffraction order, i.e. Δz value 

between A, B and B, C separately (see Fig. 2.3), are never identical (sometimes even 

not close enough) and considerably deviate from the theoretical value (see Eqs. (2.15), 

(2.16) and (2.18)).  Prof. Greenaway, who is the co-inventor of the QD grating-based 

optical system, supposed that that might be induced by system error(s), i.e. spherical 

aberration and/or misplacing the QD grating such that a nominal telecentric relay was 

delivered.  Actually, besides the significance of Δz values for the reconstruction of 4D 

images, there should be a few other parameters to be carefully considered.  Therefore 

the ultimate approach to estimate and/or eliminate the theoretical error(s) is formulating 

an ideal 2D grating model with more details in terms of the quadratic curvature and 

gradually varied periods.  In this dissertation, we first develop a 2D theoretical model of 

QD grating, which will be demonstrated in Chapter 3.  And this delicate 2D model may 

be applied in more sophisticated design of both (crossed) QD grating and 4D imaging 

system in the future. 

In addition to the fabrication error, the chromatic aberration generated by the QD 

grating has been proved to be the significant error in 4D imaging system.  We have had 

found that grisms, a grating and prism combination, are a simple way to achieve 

chromatic control in 4D imaging [6, 26].  However, the whole imaging system was ~1.3 

metres long and, the imaging system was quite difficult to align and thus not compatible 

with microscope.  Accordingly only the image of a single diffraction order can be 

recorded in each snapshot.  Having identified and quantified the properties and/or 

defects of our current grisms, my work continues to optimize the design of grism, by 

means of geometrical optics analyses, minor changes of the grism structure, 

customization of new grisms as well as their mounts, etc.  Some simulated experiments 

are also followed to assess the practical capacities of new grisms.  The full details will 

be provided in Chapter 4. 
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Chapter 3 

Fraunhofer diffraction at the two-dimensional QD grating 

 

Preface 

Due to the high level of sophistication in modelling the 2D QD grating, in the past a 

rough 1D model was applied for some basic design, i.e. the optimization of optical 

efficiency and estimation of etch depth error as illustrated in Chapter 2.  In order to 

explore accurate properties of QD grating, the characteristic quadratic curvature and 

chirped-period should not be simplified as the 1D equidistant slits (see Fig. 2.4).  In this 

chapter we establish a delicate mathematical model of 2D QD grating, derive the 

analytical expression of Fourier spectrum, and finally obtain the numerical solution of 

‘working’ phase which is one of the key parameters in grating fabrication.  Since the 2D 

QD grating model is first developed, a few verifications are performed.  Based on this 

mathematical model, further investigations regarding to the design and optimization of 

both QD grating and 4D multi-colour microscopy imaging (MCMI) system will be 

considered in the future. 

3.1 The analytical model of the 2D QD grating 

It has been proved that the scalar diffraction theory can be utilized for evaluating the 

image formed with a source of natural light by an optical system of moderate numerical 

aperture, thus an approximate description in terms of a single complex scalar wave 

function is adequate to describe most problems encountered in optics [1].  The further 

approximations, which are referred to as Fresnel and Fraunhofer approximations, have 

greatly simplified the calculations of diffraction patterns under certain conditions.  

Before establishing the analytical model of the 2D QD grating, some initial diffraction 

theory derivations with respect to these approximations that form the basis of our 

mathematical model are introduced first.  Please note that the content mentioned in 

subsection 3.1.1 is based on ‘Born and Wolf’ [1] and this reference will not be 

frequently marked to make the context tidy. 
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3.1.1 Introduction to the derivation of Fraunhofer diffraction theory 

Based on the scalar diffraction theory, a monochromatic scalar light can be described by 

the function of the complex amplitude U(x, y, z) which satisfies the Helmholtz equation, 

 
2 2( ) 0k U    (3.1) 

where 𝑘 =
2𝜋

𝜆
 is the wave number and λ the incident wavelength. 

Solving Eq. (3.1) by Green’s theorem, we have a form of the integral theorem of 

Helmholtz and Kirchhoff, 
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where P represents any point within a closed surface S, U is assumed to be continuous 

and partial differentiable up to the second order within and on S, 
n




denotes 

differentiation along the inward normal to S, and s is the distance from P to the element 

dS. 

According to Kirchhoff’s boundary conditions, which are the basis of Kirchhoff’s 

diffraction theory (see Eq.15-16 of Chapter 8.3.2 and Fig.8.3 in reference [1]), and 

abandoning the strict monochromaticity, the Fresnel-Kirchhoff diffraction formula can 

be obtained, 
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where  could be any open surface, of which the rim coincides with the edge of the 

aperture; A is a constant, λ is the incident wavelength, r and s are the distances from a 

point Q in the aperture to the point source P0 and observation point P respectively (see 

Fig. 3.1), n denotes the normal to the aperture. 

A Cartesian system is then established, with origin in the aperture and the x- and y-

axes in the plane of the aperture, and the positive z direction is chosen to point into the 

half-space that contains the observation point P, as shown in Fig. 3.1. 



 

51 

 

Fig. 3.1 Diffraction at an aperture in a plane screen [1]. 

With some reasonable approximations, 2cos  could be applied instead of the factor 

 cos( , ) cos( , )n r n s , where δ is the angle between the line P0P and the normal to the 

screen; and the factor 1/rs could be replaced by 1/r's', where r' and s' are the distance of 

P0 and P from the origin.  Thus Eq. (3.3) reduces to, 
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 (3.4) 

It is assumed that the linear dimensions of the aperture are small compared to both r' 

and s', then we may have, 
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where (x0, y0, z0) and (x, y, z) are the coordinates of P0 and of P respectively, and (ξ, η) 

the coordinates of a point Q in the aperture. 

Substitution from Eq. (3.5) into Eq. (3.4) gives, 
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where 



 

52 

 
   

2 22 2 2 2
0 00 0

3 3
( , )

2 2 2 2

x y x yx y x y
f

r s r s r s

          
 

    
       

     
 (3.7) 

If we denote by (l0, m0) and (l, m) the first two direction cosines, 
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So Eq. (3.7) can be written in the form, 
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Then the problem of determining the light disturbance at P has been reduced to the 

evaluation of the integral (3.6).  When the quadratic and higher-order terms in ξ and η 

could be neglected in f, the case is the so-called Fraunhofer diffraction; otherwise 

Fresnel diffraction would be performed when the quadratic terms cannot be neglected.  

Further investigations reveal the certain conditions of Fraunhofer diffraction, 
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Conditions (3.10) is used to estimate the distances r' and s' for determining whether 

the Fraunhofer diffraction could be applied, whereas conditions (3.11) imply that 

Fraunhofer diffraction could also occur when the observation point is situated in a plane 

parallel to that of the aperture, provided that both the observation point and the source 

are sufficiently close to the z-axis. 

In the case of Fraunhofer diffraction, the factors, l0, m0, l and m, enter Eq. (3.9) only 

in the combinations, 
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Hence the evaluation of Fraunhofer diffraction could be written as a Fourier integral, 
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where the integral extends over the whole ξ-η plane, and G(ξ, η) the pupil function is 

given by, 
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3.1.2 Definition of the analytical model of 2D QD grating 

For a compound imaging system comprised of QD grating and 2f:2f relay lens discussed 

in Chapter 2 (see Fig. 2.3 and Fig. 2.11), the diffraction limited optical state is 

approaching the far-field conditions of Fraunhofer diffraction (Eq. (3.10)).  Hence the 

complex field distribution across the Fraunhofer diffraction pattern can be simply 

obtained by the Fourier transform of the aperture distribution, i.e. the groove profile of 

QD grating, as implied by Eq. (3.13).  And consequently, the scattered image intensity 

can be calculated by the modulus squared of the Fourier spectrum. 

Now attention has been focused on the Fourier transform of the QD grating profile.  

As Fig. 2.1 shown, the QD grating is characterised by a diffractive structure with the 

quadratic curvature and gradually varied periodic phase relief.  For simplicity, we 

designed the QD grating based on a very rough one-dimensional model as illustrated in 

section 2.2.1, in which a single period of grating unit (as shown in Fig. 2.4) was 

replicated in the calculation such that the period of the 1D grating remained unchanged 

instead of the chirped-period of QD grating.  Moreover, the 1D model restricts the 

analysis of the effect(s) induced by the particular 2D profile such as quadratic grooves.  

Therefore an analytical 2D model of QD grating should be investigated, although it 

might seem of more theoretical than practical interest at the early stage. 

Before presenting the analytical model of QD grating, at first glance, we consider a 

more straightforward and logical way to do the Fourier transform — taking the structure 

of QD grating as the pupil function G(ξ, η) and working out the Fourier spectrum by Eq. 
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(3.13).  In principle, we may produce a ‘circular window’ in a Fresnel zone plate (see 

Fig. 2.1 for details) to form a QD grating and the field strength caused by the QD 

grating would be obtained if both a high-performance computer and considerable 

running time were implemented.  In practice, however, an alternative solution based on 

the Fourier transform of a single circular sector (as Fig. 3.4 shown) will be proposed. 

To establish the analytical model of 2D QD grating described in Chapter 2 [2, 3], a 

set of concentric circular sectors with varied radii have been defined, thus a series of 

annular slits can be produced by the subtraction of adjacent sectors.  Then the Fourier 

transform of the whole QD grating can be represented by summing up the Fourier 

spectra of annular slits according to the Linearity theorem of Fourier transform [4].  As 

shown in Fig. 3.2, the annular slits behave as a QD grating with radius R and, for the 

purpose of integral calculations, the wedge angle corresponding to each arc is denoted 

by 𝛿𝑗, where j is an integer varies from negative to positive values which depends on the 

loci of each grating arc (see Eq. (2.11) for details).  Consequently, the bounds of the 

Fourier integral (Eq. (3.13)), which may be regarded as one of the most complicated 

elements in the calculations, can be effectively replaced by much more general bounds 

of a single sector.  Here we suppose that the effect of the marginal fractions, which is 

generated by the subtraction of adjacent sectors, could be neglected due to their limited 

contribution to the diffraction images.  The detailed calculations will be demonstrated in 

the following sections. 

 

Fig. 3.2 Schematic of geometric model of QD grating comprising a series of annular 

slits, which covers a circular area with radius R. 
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As discussed above, the analytical process of modelling the 2D QD grating could be 

diagrammed as Fig.3.3 (excluding the phase set step, amplitude grating can be modelled 

following the same procedure).  It should be pointed out that in the last step before 

obtaining the final spectrum of grating, the phase change between the adjacent zones 

can be easily modified, which allows us to explore the phase properties of QD grating 

more flexibly. 

 

Fig.3.3 Analytical process of 2D QD phase grating modelling. 

3.2 Two-dimensional Fraunhofer diffraction spectrum of the QD grating 

3.2.1 Fraunhofer diffraction at a single circular sector 

Eqs. (3.13) and (3.14) illustrate that the evaluation of Fraunhofer diffraction, which 

presents the total light disturbance at an arbitrary point (p, q), could be expressed as a 

Fourier integral.  Attention is now turned to a certain pupil function, the single circular 

sector, as indicated in Fig. 3.4. 

Fourier transform of a single sector 

Spectra subtraction between adjacent sectors 

Spectra of a series of sectors with varied radii 

Spectra of a series of annular slits 

Sum up the spectra of odd and even numbered slits separately 

2 sets of summed spectra (odd and even numbered spectra) 

Set different phase to the 2 spectra and then sum them up 

Spectrum of 2D QD grating 

Define a single sector 
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Fig. 3.4 A single circular sector. 

Now we make a transformation to polar coordinate system in both the (ξ, η) and the 

(p, q) planes, and let (r, θ) and (ρ, φ) be the polar coordinates of a typical point in the 

aperture and diffraction pattern respectively as follows, 
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Aside from the constants preceding the integral, the Fraunhofer diffraction spectrum 

of a single circular sector (simply ‘pie’ for short) could be expressed in the form of 

Fourier transform, thus in polar coordinates the Fraunhofer diffraction (3.13) can be 

written as [4], 
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where 
2

k



  is the number of waves, z the observation distance between aperture and 

image plane, a the start point of the sector, λ the wavelength of incident light, 𝛿𝑗 the 

wedge angle of the jth sector, 𝑟𝑗  the varying radii, and as preceding notations, j an 

integer varies from negative to positive values which depends on the loci of each grating 
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arc (see Eq. (2.11) for details).  Here the Fourier transform of the ‘pie’ aperture 

distribution is evaluated at frequencies, 
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Noting that if the aperture is illuminated by a normally incident, unit-amplitude and 

monochromatic plane wave, then the field distribution across the aperture is equal to the 

transmittance function (a constant of 1 in this case). 

To make the calculation process clearer, we devote special attention to work out the 

integral kernel (marked as ‘ker’) of Eq. (3.16) first, 
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This equation, which neglects the multiplicative phase factors preceding the integral 

(3.16), will serve as the base of our following calculation in this section. 

Before solving Eq. (3.18), we may introduce the Jacobi–Anger expansion, which is 

an expansion of exponentials of trigonometric functions, as the following formula [5], 
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where 𝐽𝑛 is first kind Bessel function of order 𝑛. 

Accordingly the integral kernel (3.18) is found to be, 

 

0

( )
2

0

( )
2

0

2
ker d d

2
     d d

j j

j j

a

r a
in

n

n

r
in a

n

n

J r e r r
z

J r r r e
z

 
 

 
 


 




 






 




  



 
 

 




 



 

 

  

 (3.20) 

When 𝑛 = 0, Eq. (3.20) can be simplified to, 



 

58 

 0 0

0

e
2

r dk

jr

n jJ r r r
z


 




 
  

 
  (3.21) 

And according to the following property of first kind Bessel function, 
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we can derive the solution of integral kernel (3.20) under the condition of n=0, 
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An alternative, which should be more general, is the condition that 𝑛 is a nonzero 

integer.  Then Eq. (3.20) can be re-written as, 
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For the first kind Bessel function of integer order n, we have the identity, 
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n nJ t J t    (3.25) 

Thus when n is a negative integer, the series (3.24) could be expressed as, 
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Therefore when 𝑛  is a nonzero integer, our derivation of integral kernel (3.20) 

becomes, 
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We now consider two cases —either n is even or odd number, to work out Eq. (3.27) 

separately.  Let m denote an arbitrary non-zero integer, hence when n is an even number 

the integral (3.27) takes on the form, 
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Alternatively when n is an odd number, 
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The main problem accordingly turns to be resolving the integrals  
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which leads to the expressions as following, 
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where k is a nonnegative integer. 

Substituting Eq. (3.31) into Eq. (3.28) we find, 
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Similarly substituting Eq. (3.32) into Eq. (3.29) we have, 
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Consequently, instead of the integral (3.18) we obtain the analytical solution of the 

kernel from Eqs. (3.23), (3.33) and (3.34), 
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And applying the linearity theorem, the Fourier transform of the whole ‘pie’ (3.16) 

could be simply sum of the individual transforms, 
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Finally the Fourier spectrum of a single circular sector can be explicitly expressed as, 
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where 𝐽𝑛𝑢𝑚 is a Bessel function of first kind, order 𝑛𝑢𝑚. 
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3.2.2 Fraunhofer diffraction spectrum of the 2D QD grating 

To obtain the final spectrum of QD grating, we first consider the structure of grooves.  

In accord with the previous introduction of the QD grating principles (see section 2.1.1), 

the grating is plotted on rectangular (x-y) coordinates, in which the base point of the 

system corresponds to the centre of concentric annuli.  Here only the grating profile 

along the x axis is taken into account. 

The non-periodic varying radii 𝑟𝑗  (Eq. (2.12)) can be re-written as, 
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 (3.38) 

Again, as preceding notations, λ is the wavelength of incident wave, R the radius of 

grating, d0 the central period, W20 the defocus coefficient which is equivalent to the 

extra path length introduced at the edge of the aperture [7].  The integer j is equivalent 

to the numerical order of grating arcs in this calculation, where j=0 represents the 

grating centre (0, 0).  Consequently j varies from negative to positive values (from left 

to right side of grating model as Fig. 3.2 shown). 

In practical terms, we should also consider the extreme limits of j, which depends on 

the edges of aperture and can be described as, 

 20
limits

0

WR
j

d 
    (3.39) 

where the plus and minus sighs are included to allow for the maximum or minimum 

value of j, respectively. 

Here we emphasize again that the minimum period of grating (Eq. (2.14)) should also 

be checked during the grating design, which is normally not less than 2µm to meet the 

limitation(s) of grating fabrication [2]. 

Taking all the factors above into account, a set of parameters illustrated in Table 3.1 

are applied to the analytical grating model for further calculations. 
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Table 3.1 Designed parameters of QD grating. 

Parameter Value 

Central Period (d0) 50µm 

Radius (R) 10mm 

W20 50λ 

Wavelength (λ) 532nm 

So the Eqs. (3.39) and (2.14) give the results that N, the total number of grating arcs, 

is 801 (jmax-jmin+1) and the minimum period is 40µm.  And, the wedge angles 𝛿𝑗 could 

be obtained by cosine formula in trigonometry as demonstrated in Fig. 3.2 and Fig. 3.4, 
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where 𝑟0 corresponds to the radius of the arc which is located at the centre of the QD 

grating. 

Now we return to the spectrum calculation of the QD grating.  Based on the 

discussions above, we can obtain the values of radii 𝑟𝑗 and wedge angles 𝛿𝑗, where j 

varies from jmin to jmax (Eq. (3.39)).  Then these values are exported to a matrix for 

quantizing the Fourier spectra of circular sectors (expressed as Eq. (3.37)) later. 

According to the linearity property of Fourier transform [4], the Fourier spectra of the 

‘concentric’ sectors should be the linear superposition of Fourier spectrum of each 

sector.  Especially in this case, the Fourier spectrum of an amplitude grating could be 

expressed as the sum of spectra of even/odd numbered slits (i.e. the even/odd numbered 

slits represent transparent/opaque regions, respectively).  Let odd-numbered slits be 

transparent, and a positive integer N represents the total number of grating arcs.  The 

Fourier spectrum of an arbitrary odd-numbered slit could be described as, 
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where the integer 𝑀 = 0,1, … ,Ceiling[
𝑁

2
− 1] .  Note that Ceiling[

𝑁

2
− 1]  denotes the 

smallest integer greater than or equal to 
𝑁

2
− 1. 

Consequently the Fourier spectrum of the amplitude grating tends to the form, 

    

Ceiling 1
2

2 1
0

amplitude grating transp-slit

N

N M
M

 
 

 

 


   (3.42) 

Consider next a more complicated case.  It is known that gratings could be 

categorised by the modification to incident light — the so called ‘amplitude grating’ 

consists of alternating transparent and opaque regions, whereas in a phase grating all 

regions are transparent so that the optical efficiency is higher.  In order to explore the 

Fourier spectrum of the 2D QD phase grating, let us start off with the original integral 

(3.16).  The only difference between the definitions of amplitude and phase gratings 

might be the additional phase shift ω, so that Eq. (3.16) may be expressed as, 
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where the value of ‘bool’ alternates between 1 and 0 in accordance with whether a 

single grating slit is etched or not.  Assuming that the phase shift ω is constant for a 

specific grating to ensure the intensity balance in first 3 diffraction orders, the phase 

factor 𝑒𝑖𝜔∙bool  could accordingly be considered as a constant and taken out of the 

integral, by which Eq. (3.43) yields, 
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We have briefly introduced that, as illustrated in section 2.2, the phase gratings we 

are currently using are single etched.  Similar to the notations defined in Eq. (3.41), for 

the phase grating let odd-numbered slits be etched (bool=1) thus a constant phase delay 

ω has been produced.  Therefore, for odd- and even- numbered slits, we have the 

Fourier spectra respectively, 
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 (3.45) 

For the purpose of calculation, we set  
0

0pie  . 

Finally the Fourier spectrum of the phase grating can be described as, 

      

Ceiling 1 Ceiling 1
2 2

2 1 2 2
0 0

phase grating odd-slit even-slit

N N
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   

   
 

    (3.46) 

Note that the effect of the marginal fractions generated by the subtraction of adjacent 

sectors (Eqs. (3.41) and (3.45)) may be neglected due to their nominal contribution to 

the calculation of Fourier integral and hence the image quality. 

3.3 Numerical solution to the Fourier spectrum of 2D QD grating 

We have obtained the analytical solution to the Fraunhofer diffraction spectrum of the 

2D QD grating (Eqs. (3.37), (3.42) and (3.46)).  However, due to the computational 

complexity of the high order Bessel functions and the tremendous series, it seems not 

practical to work out the numerical solution through the continuous analytic expression.  

Therefore an algorithmic method based on discrete arguments sampling is utilized, by 

which some points with identical intervals are selected from the spectra surface (Eq. 

(3.37)) for calculation, such that the spectrum/power curve can be fitted by the 

numerical function values at these points. 

Of particular interest is the case when the energy is balanced in the first three 

diffraction orders, as section 2.2.1 represented.  Although a ‘working’ phase of 

2.00777rad (Fig. 2.5) had been obtained using the one-dimensional, period-fixed grating 

model under certain experimental conditions, an effective optimization based on the 

two-dimensional QD phase grating model should be of great assistance in the more 

precise grating design. 
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In this section we firstly show the design of the algorithm for calculating the Fourier 

spectrum of 2D QD grating, and the optimized working phase is therefore figured out 

using an iterative method; accordingly the Fraunhofer diffraction pattern at the ‘working’ 

point can finally be obtained. 

3.3.1 Numerical computation of the Fourier spectrum of 2D QD grating 

The theoretical model of 2D QD grating has been established in preceding sections, but 

the analytical results attract practically little attention.  Hence we shall now extend this 

analysis to the numerical expressions, i.e. the final description of a specific diffraction 

pattern may therefore be the intensity distribution.  To fully demonstrate the Matlab 

algorithm design, we will just focus on the 2D QD phase grating model and for simpler 

cases, such as QD amplitude grating, similar principle may be straightforwardly 

applied. 

According to Eq. (3.46), it turns out that the Fourier spectrum of the QD phase 

grating is the sum of Fourier transform of all slits, so that we may start off with the 

calculation of Fourier transform of a single slit.  To do so we now recall Eqs. (3.44) and 

(3.45) to compute the Fourier spectrum of a single ‘pie’.  Considering two neighbouring 

pies OBA and OCD, we set up an X-Y Cartesian coordinate system as shown in Fig. 

3.5, in which the X axis is the horizontal symmetry axis of the QD grating and the 

coordinate origin O is the centre of the adjacent arcs 𝐵𝐴̂  and 𝐶𝐷̂ .  Following the 

preceding notation, let 𝐵𝐴̂ and 𝐶𝐷̂ be the j-th and (j+1)-th arcs, respectively, hence the 

Fourier transform of the j-th slit 𝐴𝐵𝐶𝐷̂ can be given by, 

   bool

2
( )

slit d d( , ) e
p q

j
S

i

i

G p eq 


 
  

 
    (3.47) 

where ω is the phase shift, and ‘bool’ alternates between 1 and 0 with respect to j is 

odd- and even- number respectively.  In comparison with Eqs. (3.13) and (3.44), the 

integral extends over the closed boundary S which is surrounded by the arcs 𝐴𝐵̂, 𝐵𝐶̂, 

𝐶𝐷̂ and 𝐷𝐴̂. 
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Fig. 3.5 Illustration of a single slit in 2D QD phase grating. 

If a virtual arc 𝐸𝐹̂ , whose radius is the mid-value of that of arcs 𝐴𝐵̂  and 𝐶𝐷̂ , is 

defined, hence 𝐴′ denotes the intersection of OE and the extension of arc 𝐵𝐴̂, 𝐵′ the 

intersection of OF and the extension of arc 𝐴𝐵̂, 𝐶′ the intersection of arc 𝐶𝐷̂ and the 

extension of OF, and 𝐷′  the intersection of arc 𝐶𝐷̂  and the extension of OE, as 

described in Fig. 3.5.  In view of the fact that the width of a single slit is far smaller than 

the radius of concentric arcs, the Fourier transform of the slit may be approximated by 

the integral in an alternative domain 𝑆′, 

 
bool

2
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( , ) , d( ) e di

i
p q

S

G p q G p eq


 
  

 
     (3.48) 

where 𝑆′ is surrounded by the arcs 𝐴′𝐵′̂ , 𝐵′𝐶′̂ , 𝐶′𝐷′̂  and 𝐷′𝐴′̂. 

To solve the integral above, we again transform current Cartesian system to polar 

coordinates, in which (r, θ) and (ρ, φ) imply a typical point in the aperture and 

diffraction pattern respectively (see Eq. (3.15) for details).  For convenience the Fourier 

transform of a single pie can be characterized in terms of determinate parameters, 

   pie( , ; , , , , )j j jj
pie r a z     (3.49) 

where 𝑟𝑗 , 𝛿𝑗  and 𝑎𝑗  have been defined in Fig. 3.4 (note that 𝑎𝑗  was regarded as a 

constant in preceding calculation thus the abbreviation ‘a’ was applied), λ the 
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wavelength, and z the image distance.  Based on Fig. 3.4 and Fig. 3.5, we may rewrite 

Eq. (3.40), 

 

2 2 2
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2arccos( )
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j

m

r r R

r r


 
  (3.50) 

where 𝑟0  is the radius of the arc which is located at the centre of the QD grating, 

1

2

j j

m

r r
r


  the radius of the mid-arc and R the radius of QD grating. 

And 𝑎𝑗, the start point of the j-th sector, can be expressed as, 

 
2

j

ja


   (3.51) 

Under the certain conditions of Fraunhofer diffraction (Eq. (3.10)), a value of 
10

z


  

is chosen for numerical test of Fourier spectrum calculation.  Based on the numerical 

tests using Matlab, we may conclude that the smearing spots are axial symmetry 

(around φ=0 axis) and thus some basic information, i.e. size and position of the spots, 

could be roughly obtained.  The initial results show that the pattern consists of a bright 

and sharp spot centred at the origin and a pair of conjugate smearing spots 

symmetrically located at both sides of the centre one (in principle there should be a 

series of smearing spots but we only focus on the ones correspond to ±1st orders).  In 

this case, the radius of the sharp spot in the centre is about 0.4mm, whereas that of the 

smearing spots is about 6mm, with their centres at (ρ=20mm, φ=π) and (ρ=20mm, φ=0), 

respectively. 

Now let us turn our attention to the calculation of the detailed Fourier spectrum of 2D 

QD grating.  We have realized the huge complexity of solving the analytical solution 

(Eq. (3.37)) and thus would apply a discrete algorithm, which is based on the uniform 

sampling in the estimated distribution area of spots, to produce approximate numerical 

solution.  So far we have assumed that the image distance z is 10 /  , and we may 

sample ρ from 0 to 0.5 with the step of 0.001 and φ from 0 to 2π with the step of π /90. 
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This method of computing Fourier spectrum by means of discrete uniform sampling, 

which is of practical importance in attaining numerical solution, can be applied to 

search the optimized working phase and thus develop further design of QD grating with 

better performance. 

3.3.2 Finding the optimized working phase by bisection method 

Before discussing the working phase of the QD phase grating, we would like to say a 

few words about the bisection method, which is a root-finding algorithm for a given 

function g.  It typically works when g is a continuous function and requires previous 

knowledge of two initial guesses, a1 and a2, such that g(a1) and g(a2) have opposite 

signs.  And according to the intermediate value theorem, the continuous function g must 

have at least one root in the interval (a1, a2) [8]. 

In our case, since the Fraunhofer spectrum of the 2D QD phase grating (see Eqs. 

(3.37) and (3.46) for details) can be regarded as a continuous function of the phase ω, 

the bisection method is implemented to find the optimized ‘working’ phase of the QD 

grating, with which a balanced intensity distribution of Fraunhofer pattern in the first 

three diffraction orders could be achieved.  Ideally, on the assumption that all the energy 

flux was focused only on the first three orders, the total intensity of the Fraunhofer 

pattern of the QD phase grating, which is denoted by {phase grating}E , could be 

approximated by the sum of the intensities in the zero and first orders.  Then the energy 

in the zero order may be expressed as, 
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 (3.52) 

where 
0 represents the integral domain of the spectrum in zero order and 

{phase grating}  is the Fraunhofer spectrum of the QD phase grating (Eq. (3.46)). 

To determine the working phase ω, we define a continuous function, 

 

0

2 1
( ) {phase grating} d d {phase grating}

3
G E   
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   (3.53) 
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on an interval [
1 2,    ] such that    1 2 0G G   .  Hence at least one algebraic root of 

function  G   should be bracketed within a subinterval of [
1 2,    ] according to the 

bisection algorithm.  The iteration process can be described as the following flowchart, 

 

Fig. 3.6 Bisection method for searching the optimized working phase ω. 

where 1 2     implies an interval approaching that of an infinitesimal-sized 

interval. 

It is very unlikely but possible that the initial interval 1 2   is sufficiently small, 

such that the root of the function  G  , i.e. the working phase, can be calculated as the 

arithmetic mean value of 
1  and 2 .  Otherwise, in each iteration the method bisects 

the interval and computes MG , which is the function value at the midpoint 1 2

2

 
.  

Then the method examines the sign of  1MG G  , by doing so a new subinterval can be 

produced which is guaranteed to bracket a root.  The result of one iteration is used as the 
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starting point for the next iteration.  And as this continues, the interval between 
1  and 

2  will become increasingly smaller, converging on the root of the function.  We note 

that the method may never find a function value being exactly zero due to the finite 

precision of sampling, though the precision in our case can reach up to 10
-6

. 

Based on the numerical Fourier spectrum attained by discrete uniform sampling 

algorithm demonstrated in subsection 3.3.1, bisection method is applied to find the 

optimized working phase of QD grating.  As we have mentioned in preceding sections, 

a phase of 2.00777rad, which is calculated from a 1-D and period-fixed grating model, 

is currently used for design of QD grating (i.e. Fig. 2.5).  Therefore, an initial interval of 

[1.9, 2.1], which is around 2.00777rad, is chosen for further optimization.  For a certain 

QD grating (see Table 3.1 for parameters), an optimized phase of 1.99999rad is 

obtained after 18 iterations and the energy distribution of first 3 orders @2.00777rad is 

also calculated for comparison, as Table 3.2 shown. 

Table 3.2 Bisection method for searching optimized phase of QD grating. 

No. of 

Iteration 

Searching 

Phase 

Normalized Intensity Energy difference 

between 0
th

 & ±1
st
 orders 0

th
 order ±1

st
 order 

2 1.95 0.357920578 0.321039711 0.036880868 

6 1.996875 0.334857221 0.332571390 0.002285831 

10 1.999804688 0.333424825 0.333287588 0.000137237 

14 1.999987793 0.333335338 0.333332331 3.01E-06 

18 1.999994659 0.333331982 0.333334009 2.03E-06 

 2.00777 0.329536266 0.335231867 -0.005695601 

From Table 3.2 we may see that, for a QD grating with moderate parameters (Table 

3.1), the optimized phase is very close to 2.00777rad — which might also be the reason 

that the phase of 2.00777rad works well under some non-rigorous conditions.  However, 

according to our modelling experience, the working phase may depend strongly on the 

curvature parameter(s) of QD grating, i.e. W20.  Consequently, the optimized phase of a 

considerable curved QD grating may be quite different with the value calculated by 1D 
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model.  For future design of high-quality QD grating, obtaining a precise working point 

should be essential. 

3.3.3 Numerical solution to the diffraction pattern 

The discussion above refers to a complete algorithm for numerical computation of 

Fourier spectrum, as well as searching a working phase for optimized design of the 2D 

QD grating.  However, of ultimate interest is the intensity rather than complex field 

strength.  Therefore the normalized intensity of Fraunhofer diffraction pattern will be 

illustrated in this subsection. 

Firstly let us consider the QD amplitude grating.  According to Eq. (3.42) and the 

grating parameters introduced in Table 3.1, the Fourier spectrum of the 2D QD 

amplitude grating can be obtained using similar algorithm demonstrated in subsections 

above.  Its 2D Fraunhofer diffraction pattern is illustrated in Fig. 3.7 (see the blue solid 

line). 

 

Fig. 3.7 Normalized intensity distributions of same profiled 2D QD amplitude grating 

and circular aperture. 

In addition, as Fig. 3.7 shown, the Fraunhofer diffraction pattern of a circular aperture 

which has the same profile with that of 2D QD amplitude grating is also introduced.  In 

comparison with their intensity distributions, we can find that the half widths of the two 

central peaks are identical, which indicates the feasibility of our 2D QD grating model 

in some extent.  Further verifications will be demonstrated in section 3.4. 
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Similar considerations now apply to the 2D QD phase grating (see Eqs. (3.37) and 

(3.46) for the analytical Fraunhofer spectrum).  Implementing the bisection method 

illustrated in subsection 3.3.2, the optimized working phase of the QD phase grating is 

found to be 1.99999rad based on the parameters shown in Table 3.1, hence the etch 

depth could be 368nm @532nm wavelength when the fused silica is applied as grating 

substrate.  In Fig. 3.8, the normalized intensity distribution of optimal QD phase grating 

is displayed in the form of contour plot due to the big difference of intensity maxima 

among the spots, in which that of another 2D QD phase grating of the same design but 

with the phase of 2.00777rad (whence by Fig. 2.5) is also shown for comparison. 

(a) 

 

(b) 

 
 

Fig. 3.8 Contour plot of normalized intensity for Fraunhofer diffraction pattern of 2D 

QD phase gratings with working phases of: (a) 1.99999rad; (b) 2.00777rad. 

Although there is little difference between the two sets of contour lines displayed in 

Fig. 3.8, we have first demonstrated the Fraunhofer diffraction pattern of QD grating 

using a 2D analytical model, which approaches more elaborate grating design and may 

have important practical uses in the future.  To explore the detailed energy distribution 

of each order, we plot the 3D diffraction pattern of zeroth and first orders separately for 

better observation (working phase of 1.99999rad only), as Fig. 3.9 shown. 
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Zeroth 

Order 

 

First 

Order 

 
 

Fig. 3.9 3D diffraction pattern of 2D QD phase grating. 

 

3.4 Verifications of the 2D QD grating theory and algorithm 

To assess the validities and feasibilities of both my calculation and the numerical 

computation algorithm introduced in section 3.2 and 3.3, some verification tests, in 

which a few specially designed grating models are generated and the normalized 

intensity distribution of first three diffraction orders is illustrated, are applied in this 

section.  As demonstrated before, the gratings are illuminated by a normally incident, 

unit-amplitude and monochromatic plane wave.  Since only 2D phase gratings are 

applied in this section, we just simply label them ‘grating’ rather than constantly 

emphasizing the ‘phase’. 



 

75 

3.4.1 Verification of the algorithm by straight-line and period-fixed grating 

We have so far considered the 2D QD grating only, but our algorithm may easily be 

extended to other grating models.  In order to check whether the algorithm and Matlab 

codes work well, 799 rectangular functions with equal height h and different widths wj 

(𝑗 = −349, −348 … 448, 449) in the form of arithmetic progression (say the common 

difference, wj- wj-1, is 25µm) are generated.  Hence a series of equally-spaced straight 

slits are created by subtraction of adjacent rectangles and a phase grating could be 

obtained by assigning the working phase of 2.00777rad to the etched slit.  Instead of 

normal method that generates a comb function and Fourier transforms it for spectrum, 

we now start off with the Fraunhofer diffraction spectra of these rectangular functions 

and then work out the energy distribution of the grating with similar principles 

described by Eqs. (3.41) and (3.42); the result is accordingly in comparison with general 

conclusion which could be found in any introductory optics text. 

Under the condition of Fraunhofer approximation, it is well known that the 

diffraction spectrum of rectangular function can be approximated as Fourier transform 

of it, which is expressed as sinc function in rectangular (x-y) coordinates [4], 

  
2 2(
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    (3.54) 

where λ is the incident wavelength of 532nm and 10 /z   the normal distance 

between aperture and diffraction image plane in this case. 

Following Eq. (3.45), the Fourier transform of the odd- and even- numbered 

rectangular slits could be written as, 
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Similarly according to Eq. (3.46), the Fourier transform of this straight-line, period-

fixed phase grating is, 
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where 
799

Ceiling 1 399
2

 
  

 
 denotes the smallest integer greater than or equal to 

799
1

2
 . 

The diffraction pattern is given by the coefficient square of Fourier spectrum Eq. 

(3.56) [4], as Fig. 3.10 shown. 

 

Fig. 3.10 Normalized intensity of Fraunhofer diffraction pattern of 2D straight-line 

grating at working phase of 2.00777rad. 

Compared with the Fraunhofer diffraction pattern at rectangular aperture in ‘Born 

and Wolf’ [1], we find that the energy distribution of the three orders in Fig. 3.10 

matches very well with the theoretical value, which indicates that, at least, our algorithm 

is logically reasonable and in practice the Matlab codes have successfully modelled the 

2D grating.  For verifying both the theory and numerical computation of our 2D QD 

grating model, we will characterize a specific grating in next subsection. 

3.4.2 Verification of the 2D QD grating model by quasi-straight-line QD grating 

By now we have done a few simulation tests in preceding sections, for the quantitative 

verification of our calculation in section 3.2 as well as the comparison with pervious 

results.  Here we set the value of W20 to 0.5λ to produce a quasi-straight-line QD grating 

(see Table 3.3 for basic parameters). 
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Table 3.3 Designed parameters of QD grating with very small curvature. 

Parameter Value 

Central Period (d0) 50µm 

Radius (R) 10mm 

W20 0.5λ 

Wavelength (λ) 532nm 

Number of slits (N) 800 

 

Since the curvature of this QD grating is ‘quasi-straight-line’, its working phase is 

2.00831rad, which is quite close to 2.00777rad the rough phase attained from a 1D and 

period-fixed QD grating model.  The 3D and contour plots of Fraunhofer diffraction 

pattern are shown in Fig. 3.11 and Fig. 3.12, respectively. 

 

Fig. 3.11 3D Fraunhofer diffraction pattern of the quasi-straight-line 2D QD grating. 
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Fig. 3.12 Contour plot of normalized intensity for Fraunhofer diffraction pattern of the 

quasi-straight-line2D QD grating. 

From Fig. 3.11 and Fig. 3.12 we see that the integrated intensity of first three orders 

is balanced with the working phase of 2.00831rad, which verifies both the 2D grating 

model as well as the numerical algorithm.  Moreover, due to the central period of this 

quasi-straight-line 2D QD grating is equal to the period of the straight-line and period-

fixed grating we discussed in last subsection, and the amounts of slits in both cases are 

identical, Fig. 3.10 may be recalled for comparison of the Fraunhofer patterns.  

Although these two cases seem apparently different, let us just qualitatively characterize 

the common points of them — the peaks of both diffraction patterns locate at the same 

position which are exactly the theoretical ones.   

Based on the results of verifications, we may get a conclusion at this stage that the 

numerical computation algorithm works well thus our analytical model of 2D QD 

grating has been successfully established. 

3.5 Summary 

Although the physical principles underlying the quadratic curves of off-axis Fresnel 

zone plate have been substantially formulated by Blanchard and Greenaway [2, 3, 9-11], 

it is, in some cases, not straightforward for practical use.  We have seen from section 2.2 

that the ‘working’ phase (thus the etch depth) of present QD grating, which is a prime 

determinant for energy distribution of the first three diffraction orders, is obtained from 

a very rough 1D period-fixed (i.e. equally spaced) grating model. 
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A description of Fraunhofer diffraction at the 2D QD grating in terms of an elaborate 

analytical model is first systematically established.  Based on scalar diffraction theories 

and discrete uniform sampling method, the detailed energy distribution of QD grating 

has been demonstrated in a simple and graphic manner.  In our case, an optimal design 

of QD grating with high efficiency is the chief quantity of interest.  Our 2D theoretical 

model ensures in mathematics that all the energy flow of incident light can be diffracted 

into first three diffraction orders, and an optimized working phase obtained by bisection 

method allows the integrated light intensity of each order to be balanced.  A few 

simulation tests were also performed to verify the validities of our theory and algorithm.   

Our mathematical model of 2D QD grating is designed not only for current use of  

obtaining an accurate working phase as fabrication guide, but also for versatile design 

and further explorations of both QD grating and 4D imaging system in the future.  The 

work in this chapter is in collaboration with Dr. Yuewei Liu of School of Mathematics 

and Statistics, Lanzhou University. 
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Chapter 4 

Chromatic correction of QD grating based 4D MCMI system 

 

Preface 

From error budget demonstrated in Chapter 2, the chromatic smearing is regarded as the 

most severe aberration generated by QD grating.  And for biological applications, there 

is always a very limited amount of light available for imaging and the object to be 

measured constantly changes, so that it is essential to explore a method of performing 

4D imaging without the need of bandpass filter and complicated adjustment of optical 

system (i.e. the folded optical path [1]).  To efficiently correct the chromatic smearing, 

we developed a combination system of QD grating and grism before [2-4].  A pair of 

grisms, whose separation can be varied, provide a collimated beam with a tuneable 

chromatic shear from a collimated polychromatic input.  However, due to the 

mismatched optical parameters of grating-grism system, our previous imaging setup 

was not compatible with microscope and thus could be rarely utilized in actual stage of 

bioimaging applications.  In this chapter the optimization of grism parameters and the 

customization of grism and its mount have been comprehensively considered, such that 

the optical system can be effectively improved and hence available for 4D multi-colour 

microscopy imaging (MCMI). 

4.1 Background — chromatic properties of QD grating and grism 

In preceding chapters we have investigated the principles of QD grating design, 

including the basic principles, the design of grating curvature (thus the mask plotting), 

the assessment of optical efficiency with respect to the grating profile, error budget, and 

of more practical importance, the 2D theoretical model for the guide of grating 

fabrication.  However, due to the fact that the diffraction angle is wavelength dependent 

and the centre separation of the diffraction orders is dependent on the diffraction angle 

[5], for each wavelength that is input into the grating an image will be produced with a 

centre position determined by the wavelength, such that the images of nonzero 

diffraction orders may be chromatically smeared laterally if the dispersion is not 
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corrected as subsection 2.3.2.2 illustrated.  Hence the QD grating based technique has to 

be narrow band to limit chromatic distortion in practice [6, 7], limiting the incident 

spectral bandwidth, restricting photon flux and hindering application to multiple-

fluorophore life science imaging. 

From the theoretical point of view (see Eqs. (2.44) and (2.45) for details), utilizing 

the inherent non-periodic chirps of QD grating, identical diffraction angles with respect 

to different wavelengths could be obtained, thus correcting the chromatic distortion.  As 

demonstrated in Fig. 4.1, based on the chirped-period of QD grating, a well-designed 

optical system can produce collimated, chromatically displaced output, by which each 

colour ‘sees’ appropriate period of grating and therefore chromatic smearing can be 

corrected. 

 

Fig. 4.1 Pre-dispersion and collimation of the incident light before the QD grating can 

correct the chromatic smearing. 

Therefore one of the considerations for controlling the chromatically-induced lateral 

smearing is creating a collimated beam in which the spectral components are laterally 

displaced.  Apart from the method we briefly introduced in subsection 2.3.2.2, which 

used a pair of blazed gratings and a folded optical path [1], we did demonstrate another 

correction scheme using a pair of grisms (a grating combined with a prism) [2-4].  

Grisms of the sort discussed here were introduced by Traub [8] as a simple way to 

realize a (nearly) constant-dispersion spectrometer using a single grism to balance the 

oppositesense non-linearities of prism and grating dispersion.  In order to describe the 

behaviour of the grism schematically, let the intensities I(x) be a function of focal-plane 
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spatial coordinate x, and the blue (B), green (G), and red (R) rays be defined so as to 

give equispaced wave numbers.  As sketched in Fig. 4.2 [8], a prism and a grating 

produce crowding of the red and blue fringes respectively, whereas a grism disperses 

the spectrum at equal spatial intervals.  Here the labels R, G and B identify intensity 

maxima in the red, green and blue regions of the channeled spectrum, respectively. 

 

Fig. 4.2 Schematic diagram showing the appearance of spatially dispersed channeled 

spectrum from a: (a) prism, (b) grating, and (c) grism [8]. 

Grisms have subsequently been widely used in astronomy and in femtosecond laser 

systems for pulse stretching/compression [9-15].  Both reflective and transmissive 

grisms have been used, but not the use of a transmissive grism in which a selected 

wavelength can be undeviated – a possibility in the original suggestions by Traub and 

illustrated in the Diffraction Gratings Handbook [16]. It is this configuration, in which 

first-order diffraction of a selected wavelength occurs for an undeviated beam, that is 

exploited here to provide a simplified chromatic control system. 

Ideally our grism should consist of a prism and a blazed transmission grating made 

from the same material (thus same refractive index) with the grating blaze angle equal 

to the wedge angle of the prism.  But for primary tests, we just selected them from 

easily-available commercial off the shelf (COTS) components — a 18°8' wedge-angle 

prism fabricated from N-BK7 and a B270 transmission grating of 300 grooves/mm and 

a blaze angle of 17°30' (from Edmund Optics), giving a ‘straight-through’ wavelength 
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of 538.5nm.  The grating is then cemented to one side of the prism and ideally the 

exterior faces of the grating facets should be parallel to the input face of the prism, 

whereas the cementing process seems not accurate enough such that the two grisms 

perform observable different jobs.  These two grisms were mounted back to back in 

custom mounts within an assembly using opto-mechanical components (Thorlabs).  To 

alleviate the unknown side-effect induced by the cementing error, we examined both 

grisms separately, then fixed the ‘worse’ performed grism yet moved the ‘better’ one for 

optical experiments illustrated in references [2-4].  Our custom mounts allow the input 

faces of the grisms to be rotated in the horizontal with respect to the optical axis with 

accuracy of ~2 degrees.  The blazed surfaces of the grisms are quite fragile and 

represent a significant disadvantage of this design.  The opto-mechanics allows for the 

grism separation to be varied, to within an accuracy of approximately ±1mm, over a 

range from 3 to 154mm, the lower figure selected to protect the fragile gratings whereas 

the higher one limited by the length of optical path as well as the size of grism mounts.  

Under these unstable conditions, though, the former results still appear to be promising 

that the grism pair successfully re-collimate the input beam with easily-varied chromatic 

shear by very careful adjustments, and thus verify the feasibility of the chromatic 

correction for our QD grating based broadband microscopy imaging system. 

However, due to the lack of theoretical design, some optical parameters of our 

previous grating-grism system were mismatched.  Accordingly the old imaging setup 

could only record one image of a single diffraction order, which was just applicable for 

chromatic correction tests rather than real microscopy imaging [2-4].  Moreover, the 

imaging system was incompatible with microscope because of various errors, i.e. 

inaccurate alignment of the long optical path (longer than 1 metre, see [4]) and the 

defects in the fabrication of grisms and their mounts.  In this chapter a Mathematica ray-

path model of grism is established and thus the parameters of grism could be 

theoretically optimized.  With the well-customized grisms and their mounts, our 4D 

MCMI system can be successfully combined with microscope and considerable 

correction of chromatic smearing in both images of ±1
st
 diffraction order could be 

simultaneously achieved. 

4.2 Design and customization of grism and its mount 

It has been seen in the previous sections, e.g. Fig. 2.12, that the images of the first order 

formed by the QD grating and 4f relay system are dispersed.  A technique of dispersion 
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compensation using a pair of grisms could produce a wavelength dependent beam offset 

at the QD grating, however the initial design of grating-grism system reveals some 

significant disadvantages as introduced in section 4.1.  The main question now arises 

how we optimize both the optical elements and the relay system to ensure our optical 

package of grating-grism combination be suited for attachment to a commercial 

microscope.  Based on the practical experience, well designed/fabricated grisms and 

their mounts are of particular importance in building the 4D MCMI system. 

4.2.1 Grism design and customization 

Given that we have briefly obtained the chromatic properties of grism in section 4.1, in 

discussing the grism design and customization we shall take as our starting point the 

ray-path model, as Fig. 4.3 shown. 

 

Fig. 4.3 Grism schematic showing ray paths from air to grism, and back to air. 

In this case we still consider the cemented grism consisting of a wedge prism and a 

blazed grating rather than manufacturing a grating structure onto the hypotenuse face of 

a right-angle prism, in which the wedge angle of prism and the blazed angle of grating 

are identical and equal to E.  The sign convention is that, measuring from the normal to 

the incident surface, counterclockwise angles are positive.  Fig. 4.3 schematically 

describes that a ray indicated by the red arrow lines successively enters the prism at 

angle A, refracts, reaches to the grating at angle  , and finally diffracts into air at angle 

  (+1 order here), where the dashed blue lines represent the directions of the prism 
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normal (PN), grating normal of outer face (GN) and facet normal (FN).  Here we 

assume that the interface of resin between prism and grating is sufficiently thin, and the 

refractive indices of the grism substrate and resin are nearly the same at our working 

wavelength.  We also note that   is the angle between GN and FN (thus equals to E) 

and the ray angles with respect to the facet are   and  , thus it is straightforward that, 

 
  

  

 

  
 (4.1) 

According to the basic grating equation Eq. (1.5) and Snell’s law [17], the grating 

equation becomes, 

  sin sinm d n     (4.2) 

where m is the number of diffraction order, λ the incident wavelength, d the grating 

period, and n the refractive index of the grism substrate  The positive orders diffract 

clockwise with respect to the zero order, whereas the negative orders diffract 

counterclockwise.  From Eq. (4.2) we see that in the 0m   diffraction order, for which 

sin sinn  , the diffracted beam is deflected as if it were being refracted at the 

surface of a smooth plate, instead of being refracted on an individual facet which is 

given by the condition    sin sinn       [8]. 

Following Snell’s law [17] and Eq. (4.2), the diffraction angle   can be given by, 

 
sin

arcsin sin arcsin
A m

n
n d


 

   
     

   
 (4.3) 

From the practical point of view, we shall seriously consider the design parameters of 

grism and thus the feasibility of implementing the 4D MCMI.  The disadvantages of our 

former grism lie practically in the faulty design of grism mount, different sizes/shapes 

of grating (25mm×25mm squared) and prism (1 inch round) and hence the fragile 

cemented structure, the poor precision of cementing which maks the prism outerface 

and the grating facet unparallel, and the unstability of the ‘long’ relay system [2-4].  

Since some of these shortcomings can be overcome by customizing the grism, firstly we 

will discuss a set of possible design parameters. 
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In order to minimize the alignment error, we begin by considering that any element in 

the optical system should be well assembled with the commercial opto-mechanical 

components.  For ease of manufacture and use, a squared size of 25mm×25mm for both 

wedge prism and blazed grating is preferred.  Accordingly, with a lower cost, a 

Thorlabs’ blazed grating of part number ‘GT25-03’ is selected, such that the parameters 

of prism can be customized on the basis of that of grating.  The main characteristics of 

blazed grating and wedge prism are shown in Table 4.1. 

Table 4.1 Characteristics of customized grating and prism. 

 

Aside from the configurations introduced in Table 4.1, further treatments are also 

applied to achieve higher optical efficiency as well as optimum performance, such as 

making >90% of diameter of the prism aperture be clear and employing the 350-700nm 

antireflection (AR) coating on polished surfaces of the prism. 

To verify the custom parameters of grism listed in Table 4.1, a ray-path model based 

on Fig. 4.3 is established using Mathematica software, which indicates that the grism is 

able to give an un-deviated wavelength of 527.3nm.  In order to assess the performance 

from the point of visual sense, a ray-tracing model done by Zemax software is also 

performed and the results are in full accord with that of the Mathematica model, 

demonstrating that the grism pair can produce a collimated, chromatically displaced 

Items Blazed Grating Wedge Prism 

Substrate Material Schott B270 

Refractive Index @532nm 1.5261 [18] 

Size 25mm×25mm (tolerance of +0.0/-0.1mm for prism) 

Wedge/Blazed Angle 17.5° ( angular tolerance of ±30arcsec for prism) 

Surface Quality of  

Polished Surfaces 
60-40 Scratch-Dig 

Thickness 
3mm                  

(tolerance of ±0.5mm) 

3mm                           

(thin edge of wedge) 

Dimensional Tolerance ±0.5mm ±0.15mm 

Specialized Parameters 
Grooves per mm           

300 

Surface Flatness @532nm 

λ/10 
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output as Fig. 4.4 shown.  The footprint of the beams at the output surface of the second 

grism is shown in Fig. 4.5, in which the blue, green and red colours indicate the 

wavelengths of 450nm, 532nm and 610nm, respectively.  Furthermore, an optical 

efficiency in excess of nearly 70% with the undeviated beam could be achieved in 

experiment. 

 

Fig. 4.4 A ‘straight through’ optical layout using a pair of grisms. 

 

 

Fig. 4.5 Zemax footprint diagram for the output beam of grism pair. 

The Zemax simulation is done by Dr. Zhengkun Liu of National Synchrotron 

Radiation Laboratory, University of Science and Technology of China. 

4.2.2 Custom grism mount 

As discussed above, in an attempt to align the multi-degree-of-freedom grisms system, a 

new design of the sufficiently rigid grism mounting is proposed instead of picking up 

the commercial off the shelf (COTS) opto-mechanical mounts.  Due to the mutual 

excitation of different degrees of freedom, in the mechanical considerations of 

designing and making such a mount, we shall mainly be concerned with the motion(s) 
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of relatively higher alignment sensitivity.  And in our case, the custom mounts should 

allow a precise, stable and easy-to-use alignment of grism thus an anticipated 

positioning of the multi-colour beam can be manually tuned.  Taking the alignment 

sensitivity, stability, complexity, as well as our experimental experiences [2-4] into 

account, we present a design that the rotation of grism in the vertical direction with 

respect to the optical axis is finely adjusted using a lockable 360° rotation plate, 

whereas the horizontal rotation is nonadjustable to ensure the outer surfaces of grisms 

are perpendicular to the optical axis (as Fig. 4.4 shown).  Another point to consider 

when building the 4D imaging system is making the custom mounts to be compatible 

with Thorlabs' opto-mechanical components, i.e. 30/60mm cage mounts and standard 

assembly rods/posts, such that the flexibility and stability of our compact optical relay 

system could be achieved. 

Now we look further at the characteristics of the custom grism mount.  According to 

the basic design idea that the mount should securely hold the grism whilst providing 

360° of continuous rotation around the optical axis, we propose that the grism mount 

can be classified into 3 mechanically interconnected parts: holding mount, rotation plate 

and rack, which does not come with any adjuster knob for effective use in confined 

spaces.  The centration of these parts is a bit critical (the concentricity is less than 

±0.02mm) to minimize the system error(s), and all the parts are fabricated from black 

anodized aluminium to reduce unwanted reflections.  The mechanical diagram of the 

custom mount (neglecting the threaded holes distributed around the rotation plate in the 

top-view and part of front-view for clarity), which indicates the three parts in different 

colours, is demonstrated in Fig. 4.6.  In order to outline the main functions of the grism 

mount, only very typical dimensions are marked and the photos of the mount with front 

and back views (with the grism and a Throlabs’ post mounted) are also attached at the 

bottom right of the diagram.  Please note that some dashed/centre lines appear like thin 

solid ones in the mechanical drawing due to the limitations of line styles (and thus the 

display) of AutoCAD software. 
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Fig. 4.6 Mechanical diagram and photos of grism mount. 

To concisely introduce the design of the grism mount without tremendous details, 

only a schematic draft rather than the ‘strict’ mechanical assembly drawing is 

illustrated.  Further descriptions of the three main parts are following: 

The holding mount is uniquely designed for our grism which offers fixed optic height 

of 25mm, adjustable width of up to 36mm and sufficient depth of 6.4mm, such that the 

grism could be mounted in various orientations.  With a nylon-tipped M2.5 setscrew 

and a flexure clamp, the grism is stably held in the mount where the setscrew presses 

the flexure clamp against the edge of the grism to create a secure area of contact.  This 

holding mount is then fixed on the rotation plate that engages three mounting screws in 

the counterbores at the top right corner and bottom corners, whilst the fourth (top left) 

corner is cleared for operation within the mount.  To securely protect the grism, two 

little sticks (length of 6mm and diameter of 2mm) are laid at the bottom of the grism 

within the mount for pressure buffering, and a protection bar with length of 14.9mm, 

width of 12.8mm and thickness of 2.4mm is inserted into the outer surface of the mount 

for protecting the fragile grisms from collision when they are very close to each other.  

Both the sticks and the protection bar are made from Teflon.  This holding mount 
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should also be mechanically compatible with 25mm tall rectangular optics which is at 

least 3mm thick. 

The rotation plate is a compact platform that comes with an annular dial and evenly 

distributed internally threaded holes, thus allowing us to easily fix the removable 

holding mount at three points on the back of it by using M3 mounting screws.  It 

provides 360° coarse rotation and is labelled every 30° with 2° graduations on dial, 

while the smooth rotation mechanism can be manually operated to any position and 

locked by a M4 locking capscrew once the desired position is reached.  The large 

annular dial with the inner diameter of 53.6mm provides the maximum aperture 

available for use within a cage system.  The annual dial is also internally threaded and a 

few small internally threaded holes are distributed on the dial plate, thereby other 

mounted optics might be applied. 

The rack mounts the rotation plate into it by a special technology called ‘grind 

assembly’, which is a type of interference fits and the last step of procedure is purely 

handmade to minimize the roundness and concentricity errors, as well as ensure the firm 

and smooth adjustment.  Subsequently the holding mount is also embedded into the 

large aperture (63.6mm in diameter) of it via rotation plate so that the grism may be 

protected in this inner space from any misoperation during the alignment.  With a 

bottom-located M4 tapped mounting hole and four Φ6 through-holes in the corners, the 

rack is compatible with Thorlabs standard TR series posts, ER series rods and 60mm 

cage system.  The side-located M4 counterbore enables the rotation plate to be locked 

by a setscrew which is made of a composite material of nylon and polyvinyl chloride 

(PVC) for stably locking and protecting the rotation plate against scratching.  The top 

through-hole enables a M2.5 hex key to go through and fix the grism within the mount. 

From the above discussion on the significant design criteria of our custom grism 

mount, it is evident that the manually-actuated mount is convenient and low-cost, and 

its slim overall profile makes it ideal for use with compact optical assemblies.  

Furthermore, there is great flexibility in these designs to provide other potential motions, 

i.e. the rotation of the mount in the horizontal direction with respect to the optical axis 

can be achieved when it is attached on a Thorlabs’ rotation platform.  Although the 

alignment tolerances are presently difficult to achieve and maintain, the custom mount 
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works sufficiently well for our initial attempts and further optimization might be 

developed if high precision alignment is required. 

YF acknowledges Mr. Qiang Zhang and Mr. Shengli Lu of Beijing Shinehe 

Technology Co. Ltd. for the advice of mechanical design and the fabrication of grism 

mounts. 

4.3 Chromatic imaging tests of grism pair 

We propose to use a pair of grisms for correcting the chromatic smear induced by the 

QD grating, consequently quantifying and controlling the lateral shear produced by 

grisms is significant (see Fig. 4.1 and Fig. 4.4).  The Mathematica and ray-tracing 

models illustrated in subsection 4.2.1 reveal some characteristics of grisms.  However, 

due to the likely effect of both the fabrication errors of grisms and the optical system 

errors, experimentally assessing the chromatic shear using a polychrome input beam 

should be of practical importance.  In this section a series of tests are conducted to find 

the relation between the chromatic smear and the grism separation, and the experimental 

results will be compared with the theoretical conclusions for further consideration. 

4.3.1 Experimental setup 

Consider the case that the grisms are mounted back to back (see Fig. 4.4) in custom 

mounts within an assembly using Thorlabs’ opto-mechanical components, as shown 

schematically in Fig. 4.7. 

 

Fig. 4.7 Schematic of polychromatic ray paths of the grism-achromat combination. 

Two lasers, of wavelengths 532nm and 637nm (both are calibrated by spectrometer), 

are coupled successively through a few neutral density (ND) filters, 3 mirrors (M), a 

dichroic mirror (DC) and a Newport singlemode fibre coupling kit #9131-M (ND filters 
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and Newport #9131-M are not shown in Fig. 4.7), and feed through an optical fibre 

(Thorlabs P1-488PM fibre, available in wavelength ranges from 460nm to 700nm) to 

provide a compact polychromatic source.  The light from this fibre is evenly collimated 

by an achromat with focal length of 60mm and an approximately 3mm diameter beam 

can be obtained when a pinhole is implemented.  Then the collimated beam is refocused 

by a second achromat (focal length 250mm) chosen to give well-sampled images with 

the 6.5μm pixels (Andor Zyla 4.2 sCMOS), and the separation between the two 

achromats is 250mm to offer adequate space for varying the grism separation.  A 

schematic of the grism configuration is also illustrated in Fig. 4.7, and in our 

experiments a Zolix optical rail allows for the grism separation to be varied smoothly, to 

within an accuracy of approximately ±1mm, over a range from 2mm to 212mm between 

the inner faces of the grisms, the lower figure selected to protect the fragile blazed 

gratings from contacting against each other at close proximity and damaging the 

surfaces whereas the higher figure is approaching the practical marginal value due to the 

limited numerical aperture of the optical relay system.  The sCMOS camera is mounted 

on a Thorlabs’ manual translation stage for moving back and forth along the direction of 

optical axis. 

4.3.2 Chromatic image experiments 

As discussed above, the grism pair proposed here will be applied in tests for the easily-

varied chromatic dispersion.  Building an optical system as Fig. 4.7 shown, a pair of 

identical, back to back grisms is used to produce a collimated beam with chromatic 

shear from a collimated polychrome input, hence the lateral shear between the 

polychrome components in the output beam is controlled by varying the separation 

between the grisms.  Images with both lasers incident can be recorded as a function of 

camera position as the camera is translated ±10mm either side from the ‘best focus’ 

image plane for variety of grism separations.  The ND filters are adjusted so that both 

laser lines are matched in intensity and, in combination, do not saturate the camera. 

In order to systematically explore how the chromatic dispersion changes as the grisms 

moving backwards and forwards, we firstly fix the grism separation, translate the 

camera through the ‘best focus’ image plane and record the laser spots.  Then this 

process is repeated with a set of grism separations, as Fig. 4.8 demonstrated. 
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Fig. 4.8 Each false-colour montage showing the separation of the image of the fibre 

source in each laser line as a function of camera distance from ‘best focus’.  The grism 

separations from top to bottom are 2mm, 32mm, 62mm, 92mm, 122mm, 152mm, 182mm 

and 212mm, respectively. 
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where the labels on the bottom of each montage indicate the positions of camera plane 

— ‘O’ marks the ‘best focus’, ‘L’/‘R’ represents left/right side of the camera from ‘O’, 

and the numbers indicate the distance between ‘O’ and camera plane (in mm).  For 

example, ‘L3’ means that the camera plane is 3mm away from ‘best focus’ on the left 

side.  It can be seen from Fig. 4.8 that there is a clear shift of the 637nm spot relative to 

the 532nm spot, whereas the 532nm spot remains largely fixed as it is very close to the 

designed un-deviated wavelength (~527nm) of the grism pair. 

To quantitatively analyse the relation between chromatic smear and grism separation, 

the position (geometric centre) of each spot in Fig. 4.8 has been measured, thus the 

lateral spot separation between the two lasers can be calculated and plotted as a function 

of camera position, as shown in Fig. 4.9.  Since the longitudinal displacements of the 

two spots at each camera position, which may be caused by alignment error of optical 

system, is very little (~1 pixel), the spot separations demonstrated in Fig. 4.9 only refers 

to the lateral displacements rather than Euclidean distances. 

 

Fig. 4.9 The image separation of the polychromatic lasers as a fuction of camera 

position for various grism separations, using data in Fig. 4.8. 

By repeating the measurements as a function of grism separation, the angle of arrival 

of chromatic components can be estimated and, using the focal length of the imaging 

lens, the spatial chromatic shear produced by the grism separation can be deduced.  Fig. 

4.10 shows that 0.0338mm shear between the laser beams per millimeter separation can 
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be obtained, which is equivalent to 322μm shear per nanometer bandpass per millimeter 

of grism separation. 

 

Fig. 4.10 The spatial chromatic shear produced by varying grism separation and 

deduced from Fig. 4.9 using the focal length of the second achromat. 

It is convenient to compare this experimental data with the principle value deduced 

from the mathematical model illustrated in subsection 4.2.1.  As Fig. 4.10 shown, we 

find that the difference between the slopes of experimental fit line (black solid) and 

theoretical line (red dashed) is only 0.9‰, which indicates the well-designed and 

fabricated grisms and the well-adjusted optical relay system, and from practical point of 

view, the potential for chromatic tuning using an on-axis grism pair. 

4.4 4D imaging tests of grism and QD grating combination 

As illustrated in section 2.1.2, 4D imaging using a QD grating is based on the 

simultaneous focus of multiple object planes on a single image plane using a simple, on 

axis optical setup.  The QD grating imparts a different focusing power in each 

diffraction order, with a linear dependence of focal length on incident wavelength.  

However, the QD grating introduces a natural chromatic smearing in the non-zero 

orders.  In our previous work narrow-band filters, ~10nm, have been used to reduce this 

effect to a few camera pixels.  Unfortunately, this still induces some chromatic smearing 

and significantly reduces available photon flux, thus restricting practical biological 

applications.  However, by definition the period of QD grating is linearly chirped along 

one axis, and that chirp can be used to our advantage.  By pre-dispersing the 

polychrome input beam using the grism pair, each incident wavelength is positioned 
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within the chirped zone plate to ‘see’ the same structure of QD grating measured in 

wavelength units.  This pre-dispersion thus equalises the angle of diffraction for each 

wavelength, giving non smeared, ‘white light’ images in all diffraction orders (see Fig. 

4.1). 

4.4.1 Experimental setup 

To test the grism correction in QD grating based 4D imaging we mounted the grism pair 

between two 250mm achromatic lenses, as shown in Fig. 4.11.  A continuum laser 

(Fianium supercontinuum light source SC450-PP-HE, operating wavelength ranges 

from approx. 450nm to >1750nm) fed through a single mode optical fibre (Thorlabs P1-

488PM) was utilized instead of dual lasers for qualitatively describing the wide-range 

chromatic correction capability of grism system.  The achromats, spaced 200mm apart, 

operated as a unit magnification relay system with an effective focal length of ~208mm.  

When the QD grating was placed 208mm from the second principal plane (~42mm from 

the second achromat) of the compound imaging system equal magnification images 

were obtained in each diffraction order, providing simultaneous multi-plane imaging 

due to the order dependent focusing power introduced by the QD grating [1, 6, 19].  

Because of the diffraction generated by straight edges of slit, we still used a pinhole as 

aperture stop and an approximately 3mm diameter beam was obtained.  Note that only 

the spacing between the two grisms is relevant, not their absolute position between the 

achromat pair. 

 

Fig. 4.11 Schematic of the grism system used to correct chromatic blur in a 4D imaging 

system using a QD grating. 

The 3 foci shown on the right of Fig. 4.11 illustrate the position of focus of the single 

fibre source in each diffraction order and when the single source position is fixed.  On a 

single, flat camera plane each diffraction order is focussed on a different specimen plane 
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and the 3 foci are recorded simultaneously.  In our measurements the QD grating has a 

nominal axial period of 50μm, a curvature W20 of 50 waves and radius 10mm, thus has 

±1880mm focal lengths in the first diffraction orders at 532nm wavelength. 

Before conducting the chromatic correction experiment illustrated by Fig. 4.11 (here 

we call it ‘rainbow test’), a few tests with the dual lasers system (532nm & 637nm) are 

performed as section 4.3 described for simply calibrating this imaging system.  

Following our Mathmatica model of grism-grating combination system, a chromatic 

shear of 37.6μm per nm of bandpass is required across the QD grating in order to 

equalize the angle of dispersion across the optical bandpass.  For the 105nm bandpass 

between the dual lasers used, the total chromatic shear required between the two beams 

is thus 3.95mm.  This is the shear required at the QD grating, allowing for the beam 

convergence to the camera, this corresponds to 4.74mm of shear before the final lens.  

Thus a grism spacing of 140mm was chosen to correspond to this shear.  Again as 

previously described, we changed the image distance (thus moving the camera along the 

optical axis) to observe the chromatic dispersion between the two laser spots.  The 

images of first three diffraction orders (-1st, 0th and +1st) were recorded at the image 

distances of 407mm, 417mm and 427mm separately, with and without using the grism 

system.  Since images of the 3 orders should be snapped on a single camera plane in 

real microscopy imaging, we cropped the focused image of each order and re-combined 

these 3 images together as Fig. 4.12 shown, from which we see that the chromatic smear 

can be obviously corrected when the grisms are introduced.  Here the total integrated 

images intensity has been equalised in each colour band. 

 
Diffraction Orders 

            -1st                                         0th                                              +1st 

With Grisms 

 

Without Grisms 

 

 

Fig. 4.12 False colour images snapped at varied image distances, with and without 

grisms correction.  Scale bar: 1mm. 
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Now we turn our attention to a more practical case: imaging multiple object planes 

onto a single image plane.  Since a single polychromatic source was used in these 

experiments, we just needed to scan the source position to record the 4D foci in the 

different diffraction orders whereas keeping all the other optical parameters constant.  

Again the images of the first 3 orders were focused successively and recorded with and 

without grism correction.  Fig. 4.13 demonstrates the chromatic correction of all the 3 

diffraction orders on a single camera plane — the object distances are 440mm (-1st 

order), 417mm (0th order) and 394mm (+1st order), respectively. 

Focused 

Order 
Images of the 3 diffraction orders 

-1st 

With 

Grisms 

 

Without 

Grisms 

 

0th 

With 

Grisms 

 

Without 

Grisms 

 

+1st 

With 

Grisms 

 

Without 

Grisms 

 

 

Fig. 4.13 False colour images snapped at varied object distances, with and without 

grisms correction. 

Comparison of top and bottom images of each order in Fig. 4.13 shows that the 

chromatic smearing of first orders is reduced by a factor of ~2.5, rather than ‘complete’ 

correction as expected.  For further exploring the chromatic correction capability of 

grism system, the colour band will be expanded to white light range (440nm~660nm). 
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4.4.2 Yan’s rainbow 

Due to the inherent dispersion property of grating, the incident white light diffracted 

into non-zero orders can be splitted into its constituent spectral colours, thus a series of 

colour bands which look like rainbows are generated.  In the following experiment, a 

high power fibre continuum source (Fianium SC450-PP-HE) filtered by a set of 20nm 

bandpass filters (Thorlabs) with central wavelengths from 450nm to 650nm in 20nm 

steps were implemented.  Since one of the main experimental phenomena is the colour 

of rainbow, I label it following my name — Yan’s rainbow, which is supposed to 

specify the multi-colour images introduced by the QD grating with/without grism 

correction (see Fig. 4.14). 

For precise comparison, we maintained the optical setup as previously demonstrated 

(see subsection 4.4.1, i.e. grism separation of 140mm), and varied the object distance to 

explore the chromatic correction extent of grism system using white light.  Since the 

image quality is dominated by a residual λ dependence of the focal length of the QD 

grating when broadband light was implemented [1], for demonstrating the true range of 

the chromatic correction an appropriate focal length of first diffraction order might be 

selected carefully.  It had been found that, for the QD grating we chose (a nominal axial 

period of 50μm, a curvature W20 of 50 waves and radius of 10mm), the focal lengths of 

first diffraction orders were as large as ±1880mm at 532nm wavelength, which 

indicated that we did not need to reposition the light source at each bandwidth to 

compensate for the QD grating induced focal dependence [2] as the focusing power at 

each wavelength may vary little in a reasonable small range of object distances (a few 

millimeters in this case).  Therefore the system was only focused for the un-

deviated/central wavelength of ~532nm in the first 3 diffraction orders respectively 

(thus the object distances of -1st, 0th and +1th orders are 440mm, 417mm and 394mm, 

respectively), with and without grism correction.  Each greyscale image captured by the 

sCMOS camera (Andor Zyla 4.2) was then normalized for equal total photon flux at 

each waveband using ImageJ software, and falsely coloured using Mathematica 

software by means of calculating the RGB value of each central wavelength, 

normalizing each image for compatibility with RGB, creating coloured images using R, 

G and B scalers, and compositing a coloured image of a single wavelength.  Finally the 

images of all the 11 wavebands were combined together and thus formed the colour of 

rainbow, as Fig. 4.14 shown. 
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Focused 

Order 
Images of the 3 diffraction orders 

-1st 

With 

Grisms 

 

Without 

Grisms 

 

0th 

With 

Grisms 

 

Without 

Grisms 

 

+1st 

With 

Grisms 

 

Without 

Grisms 

 
 

Fig. 4.14 Yan’s rainbow. 

Yan’s rainbow demonstrates the successful use of the grism pair for chromatic 

correction of the QD grating.  It is evident that the chromatic smearing of first orders is 

effectively improved by the grisms but not enough eliminated as expected, whereas the 

0th order image is unaffected by both the QD grating and the grisms (but excluding the 

photon flux) as it inherently has no chromatic distortion.  Due to the well performed 

grisms and their mounts (Fig. 4.10), the reasonable accuracy of optical alignment 

(~1mm) and high repeatability of the experimental results, the residual chromatic 

smearing of first orders may be attributed to the fault(s) of our Mathematical model of 

grism-grating combination system (Mathematica codes are not shown in this 

dissertation) — accordingly an inaccurate grism separation may be attained.  We have 

been trying all our best to revise/optimize the theoretical model and, at the same time, 

the biological applications may not be hindered as the entire visible spectrum is always 



 

102 

not needed in most of the imaging processes and the rainbow experiment can be 

exploited for calibration under certain condition(s). 

Let us now take a simulation test in fluorescence microscopy for example.  We 

simulated the performance of the grism correction to fluorophore imaging by modifying 

the bandpass filtered white light (i.e. rainbow experiment for certain bandwidth) and 

simply summing a series of images spanning the fluorophore bandwidth (from 480nm 

to 600nm), with an appropriate weighting to mimic the fluorophore spectrum.  

Importantly, the limiting bandwidth of most fluorophores and the fluorophore spectral 

profile, combined with the grism correction, effectively removed the image blurring due 

to the λ dependence of the focal length of the QD grating.  As an illustration we have 

chosen to model eGFP fluorophore, which is widely used in cell biology.  The optical 

system was focused and aligned for the filter that best matched the peak fluorophore 

wavelength of 520nm.  With the source position fixed for the fluorophore (here only 0th 

order image was adjusted in focus), a series of narrow band images were then recorded 

using a set of spectral filters covering the fluorophore emission spectrum.  The spots 

corresponding to the individual filters are clearly visible.  To process the images, the 

total flux for each filter is first normalized to the total flux at the peak wavelength and 

then weighted to simulate the fluorophore spectrum by the appropriate factor [2].  The 

composite ‘fluorophore’ images for the simulated eGFP fluorophore, with and without 

grism in place, are shown in Fig. 4.15. 

    Monochrome fluorophore images simulated from bandpass weighting 

With Grisms 

 

Without Grisms 

 
 

Fig. 4.15 Simulation of chromatic correction applied to eGFP fluorophore imaging. 

Once again chromatic smearing is effectively improved for such a broad bandwidth 

of 120nm, although minor imprecision occurs in the red wavebands (top image in Fig. 
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4.15).  It is reasonable to conclude that this optical system could be straightforwardly 

applied to measure some dynamic biological procedures which are not sensitive to the 

shape of objects, such as single particle tracking for analysing the diffusion of cells 

[20].  Or for reconstructing the exact 4D images of cells, the results of rainbow 

experiment, which are obtained in the same condition with biological imaging (i.e. same 

waveband and photon energy distribution), may be taken as reference so that the 

distortion of first order images can be corrected by post-image processing technique(s). 

By now we have successfully developed a chromatic correction scheme using a pair 

of grisms for QD grating based 4D MCMI system, which, for the first time, achieves 

chromatically-corrected, high-efficiency, easy-to-use, and simultaneously imaging of 

first three diffraction orders. 

4.5 Discussion 

The simple control using a grism pair permits the correction of chromatic smearing in 

QD grating based 4D MCMI system and improves control of the axial profile of a 

focussed spot in multi-photon experiments.  Although this grating-grism system had 

been presented earlier [2-4], it only corrected the chromatic smearing for a single 

diffraction order each time and, the optical system was extremely unstable and far too 

difficult to align, which hindered its application in microscopy imaging.  Similarly to 

the grism design we did before, our grisms are also drawn to give an un-deviated 

wavelength in the mid visible where many biologically-useful fluorophores emit.  This 

grism pair is used in tests to achieve a collimated output beam firstly and we can assess 

the chromatic shear produced as a function of the grism separation by measuring the 

angle at which two different laser wavelengths are brought to focus as a function of the 

grism separation.  We then demonstrate correction of dispersion in 4D imaging of a 

compact polychromatic source using QD grating and the measured performance of our 

grisms is also compared with the theoretical value calculated by ray-path model.  It 

seems that the chromatic smearing can be effectively improved for a reasonable broad 

bandwidth of ~80nm, yet further investigation of the theoretical model of grating-grism 

system is still essential. 

The two sets of tests presented in sections 4.3 and 4.4, demonstrate the ease with 

which grisms of this design can be incorporated into complex optical systems in order 

to achieve a variable chromatic shear on an input beam without changing the 
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convergence properties of the beam.  This is verified by considering, for the 4D imaging 

system, that the position of the in-focus images in different colour, is entirely consistent 

with the expected shift in focus evaluated from the chromatic variation of the QD 

grating focal length. 

The chromatic focus control used to evaluate the chromatic shear as a function of 

grism separation can also be used to achieve control of the 4D field distribution at 

focus.  The chromatic corrections achieved here can be effected with blazed gratings 

that deviate the beam [1], but such systems are difficult and expensive to maintain in 

alignment, whereas the system described uses a simple sliding mechanism and thus 

provides a significantly more practical solution. 

For the long term, work will focus on optimizing both the structure of grism and the 

relay design of optical system.  Most importantly, to build a practical mathematical 

model of grism-grating combination system, more complex consideration would be 

involved, i.e. deviation from linearity in the grism dispersion, mis-placing the optical 

component(s), spherical aberration, and further, chromatic correction of 9-plane 4D 

imaging, the details of which may be published in the near future. 

4.6 References 

[1] P. M. Blanchard and A. H. Greenaway, Broadband simultaneous multiplane 

imaging. Optics Communications 183(1), 29-36 (2000). 

[2] Y. Feng, P. A. Dalgarno, D. Lee, Y. Yang, R. R. Thomson and A. H. 

Greenaway, Chromatically-corrected, high-efficiency, multi-colour, multi-plane 

3D imaging. Optics Express 20(18), 20705-20714 (2012). 

[3] Y. Feng, P. A. Dalgarno, D. Lee, A. H. Greenaway, Y. Yang and R. R. 

Thomson, Optical system. in UK Intellectual Property Office. UK Patent 

Application No. GB2504188-A, (Marks & Clerk LLP Edinburgh Office, United 

Kingdom, 2013). 

[4] Y. Feng, Optimization of phase gratings with applications to 3D microscopy 

imaging, A dissertation for the degree of Doctor of Philosophy, Precision 

Instruments and Machinery, University of Science and Technology of China, 

Hefei, China (2013). 

[5] M. Born and E. Wolf, Principles of optics. Cambridge University Press, 

Cambridge, Corrected reprint of the 7th edition, (2001). 

[6] P. M. Blanchard and A. H. Greenaway, Simultaneous multiplane imaging with a 

distorted diffraction grating. Applied Optics 38(32), 6692-6699 (1999). 

[7] Y. Feng, L. Scholz, D. Lee, H. Dalgarno, D. Foo, L. Yang, W. Lu and A. 

Greenaway, Multi-mode microscopy using diffractive optical elements. 

Engineering Review 31(2), 133-139 (2011). 

[8] W. A. Traub, Constant-dispersion grism spectrometer for channeled spectra. 

Journal of the Optical Society of America A 7(9), 1779-1791 (1990). 



 

105 

[9] S. Kane and J. Squier, Grism-pair stretcher–compressor system for 

simultaneous second-and third-order dispersion compensation in chirped-pulse 

amplification. Journal of the Optical Society of America B 14(3), 661-665 

(1997). 

[10] K. Glazebrook, LDSS++ commissioning report. AAO Newsletter 87, 11-15 

(1998). 

[11] G. J. Hill, M. J. Wolf, J. R. Tufts and E. C. Smith, Volume phase holographic 

(VPH) grisms for infrared and optical spectrographs. Paper presented at 

Astronomical Telescopes and Instrumentation, International Society for Optics 

and Photonics  (2003). 

[12] E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. 

Durfee and J. Squier, Efficient reflection grisms for pulse compression and 

dispersion compensation of femtosecond pulses. Optics Letters 31(22), 3363-

3365 (2006). 

[13] K. Nakajima, N. Ebizuka, M. Iye and K. Kodate, Optimal fabrication of volume 

phase holographic grism with high efficiency and high dispersion, and its 

applications for astronomical observation. Paper presented at Astronomical 

Telescopes and Instrumentation: Synergies Between Ground and Space, 

International Society for Optics and Photonics  (2008). 

[14] T. H. Dou, R. Tautz, X. Gu, G. Marcus, T. Feurer, F. Krausz and L. Veisz, 

Dispersion control with reflection grisms of an ultra-broadband spectrum 

approaching a full octave. Optics Express 18(26), 27900-27909 (2010). 

[15] N. Ebizuka, K. S. Kawabata, K. Oka, A. Yamada, M. Kashiwagi, K. Kodate, T. 

Hattori, N. Kashikawa and M. Iye, Grisms developed for FOCAS. Publications - 

Astronomical Society of Japan 63(Special Issue: Exploring the Universe with 

the Subaru Telescope: From Galaxies to the Solar System), S613-S622 (2011). 

[16] C. A. Palmer, E. G. Loewen and R. Thermo, Diffraction grating handbook. 

Newport Corporation Springfield, OH, 6th edition, (2005). 

[17] E. Hecht, Optics. Pearson Education, Addison Wesley, San Francisco, 4th 

edition (International edition), (2002). 

[18] RefractiveIndex, http://refractiveindex.info/, Access date: 19 Jan., 2015. 

[19] S. Djidel, J. K. Gansel, H. I. Campbell and A. H. Greenaway, High-speed, 3-

dimensional, telecentric imaging. Optics Express 14(18), 8269-8277 (2006). 

[20] A. Kusumi, ., Y. Sako, . and M. Yamamoto, . Confined lateral diffusion of 

membrane receptors as studied by single particle tracking (nanovid 

microscopy). Effects of calcium-induced differentiation in cultured epithelial 

cells. Biophysical journal 65(5), 2021–2040 (1993). 

 

 

http://refractiveindex.info/


 

106 

Chapter 5 

Initial bioimaging tests of 4D MCMI system 

 

Preface 

In this chapter, for practical use, some considerations of the combination of 4D MCMI 

system, commercial microscope and standard cameras are proposed.  Then a few initial 

bioimaging tests have been performed, but we only concentrate on the optical 

performance rather than the bioprocess for now.  Further optimization of the whole 

imaging system is still in progress to improve the stability of optical relay as well as 

implement the 4D MCMI technique for real biological research. 

5.1 Introduction 

In modern optical bioimaging, the photons can now routinely be detected by microscope 

imaging techniques through absorption, emission (fluorescence), scattering, or 

combinations using labelled systems [1, 2].  Most optical imaging technologies are 

applied to two-dimensional cellular context, which is defined by hard and flat surfaces, 

i.e. coverslips.  Take the most common tools for example: biological imaging is 

traditionally dominated by wide-field imaging techniques, which illuminate the entire 

thickness of the specimen and capture the full field of view in a single exposure thus 

cellular information is obtained from only a single focal plane.  Since the observation of 

three-dimensional biological specimens has been an increasing need for basic biological 

research as well as clinical diagnosis and therapy, it is vital to extend these techniques 

into the third dimension, ideally with a multi-spectral capability, so that dynamic 

interactions between two or more components can be studied in whole living cells.  A 

variety of methods have been proposed, in which confocal fluorescence microscopy [3] 

has become a standard tool for 3D biological imaging by means of optical sectioning.  

Unfortunately, the limited temporal resolution is one of the significant drawbacks of 

conventional microscopy, especially when fast dynamical processes are required to be 

followed.  Even worse, the spatial and temporal resolutions are mutually opposed to one 
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another, and the temporal resolution is always sacrificed for seeing fine structural 

details. 

We have demonstrated a simple, on axis 4D MCMI technology that delivers real-time 

3D imaging over cellular volumes, as described in preceding chapters.  Our technique 

utilizes a QD grating, in the form of an off axis-Fresnel zone plate, to image multiple 

object planes simultaneously on a single image plane [4], which has been used in all 

wide-field imaging modes, e.g. bright-field, fluorescence, phase-contrast etc.  It is 

compatible both with particle localization and tracking and with full-field, 3D, 

deconvolution-based specimen reconstructions from z-stacks.  Z-plane separations of 

multi-focal images obtained using the QD grating based system can be varied from 

arbitrarily small to many microns (see Eq. (2.18)).  For full-field imaging, Nyquist z-

plane separations allows for volumetric data to be gathered up to 9 times faster, through 

the simultaneous acquisition of multiple, in-focus specimen planes.  Alternatively, by 

utilizing the defocussed information contained within multiple specimen planes, single 

particles can be tracked and localized to sub 10nm axial accuracies through full cell 

(10μm) volumes using 9-plane and modest plane separations.  Due to the need to limit 

chromatically-induced lateral smearing, a pair of grisms has been applied to create a 

collimated beam in which the spectral components are laterally displaced, as 

demonstrated in Chapter 4. 

In this chapter, our QD grating and grisms based 4D MCMI system will be 

implemented to the practical bioimaging tests. 

5.2 Practical considerations of the 4D MCMI system 

We have seen from preceding chapters that the QD grating and grisms combination 

system may be utilized as key optical elements for 4D MCMI.  Moreover, for practical 

use, there are still a few issues to consider and most of them involve a trade-off of some 

sort, i.e. defining a proper physical separation of the images on the camera to make the 

best use of the sensor chip, investigating the axial blurring induced by the varied 

wavelength-dependent focal lengths of non-zero diffraction orders, making the whole 

optical length as short as possible, and so on.  Before performing the real bioimaging 

experiment, we will try to solve some of these problems in this section. 
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5.2.1 The physical separation of the multi-plane images on the camera 

Due to the physical size of the camera sensor chip, we need to arrange the multi-plane 

(2~9) images to fit onto this chip as well as make the best use of it.  Recalling Fig. 2.3 

we find that the physical separation of the images on the camera only depends on a 

simple trigonometry determined by the diffraction angle.  Based on our case of 

telecentric imaging (1:1 magnification of the optical system), we will consider a 

practical 3-plane imaging example using the real/typical parameters to calculate the 

image separation at the camera, and also assess the efficiency of this setup in terms of 

how much of the available chip it makes use of. 

As mentioned before, our camera is a 2048×2048 array of 6.5µm square pixels 

(Andor Zyla 4.2 sCMOS), therefore the chip is 13.3×13.3mm
2
.  At normal incidence, 

when the effective focal length of the combined achromats system is 208mm (both 

achromats have a focal length of 250mm and the separation between them is 200mm), 

the central wavelength is 525nm and the central period of QD grating is 30µm, the 

diffraction angle of first orders is about 1°, accordingly a centre separation of 3.64mm 

between the 3 images (0
th

 and ±1
st
 orders) is achieved which should be the maximum 

width of each image without overlapping.  Thus 3×3.64mm = 10.92mm (~82%) of the 

camera chip width will be occupied by these images, which presents a well-designed 

optical system.  Moreover, since the image delivered by the microscope is very large in 

diameter, the images of first three diffraction orders at the camera will therefore 

inevitably overlap.  Thus a variable slit is utilized to fit all three images on the camera 

side by side without overlapping as well as make the largest possible field of view in 

each image — the images are only just touching or the gap between them is reasonably 

small. 

5.2.2 As compact optical path as possible 

The QD grating and grisms used on their own could form no real images in the negative 

orders so that the selection of achromats and the design of optical path are of practical 

importance.  In real bioimaging experiment, there are trade-offs to be made, such as 

how much of the camera chip is filled, the central period of QD grating, the focal length 

of the achromats, the overall length of the optical path and so on.  Let us recall the case 

in last section for example: we would halve the amount of the camera if the period of 

the QD grating was doubled (i.e. 30μm).  Surely we could increase the camera usage 

with a large period grating by choosing achromat with a longer focal length, but this 
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would then mean making the whole system longer.  Since our optical system provides 

both telecentric imaging (thus 4f system) and chromatic correction, the length of the 

unfolded beam-path is about 4x the effective focal length of the achromats combination. 

 

Fig. 5.1 The long optical path of QD grating and grisms based 4D imaging system we 

developed before [5]. 

Fig. 5.1 shows our previous optical design of the QD grating and grisms based 4D 

imaging system, which has the overall optical length of ~1.3m.  Due to the long optical 

path, the optical system was quite unstable and thus the alignment was constantly 

needed, which restricted its application in the practical imaging work.  Actually our 

preceding relay design cannot be applied to the 4D MCMI at all, although the initial 

optical tests worked well for chromatic correction of a single diffraction order [5-7].  As 

far as I could concern, to attach the optical system on microscope, the stability (thus the 

shorter optical path) is of the highest priority for optimization. 

 

Fig. 5.2 Establishment of the QD grating and grisms based 4D MCMI system. 

We are currently working towards optimizing this system.  It is shown in Fig. 5.2 that 

our recent relay system can be attached between the microscope and camera because the 

overall optical path is shorten to only ~50cm, which is 2.6-fold shorter than that of 

previous design shown in Fig. 5.1.  However, there is a compromise between the optical 

length and chromatic correction effect (see details in section 5.4), so that further 
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optimization is still required, especially the plotting design of QD grating and the 

selection of achromat(s).  For the case that the optical length/space is very limited, we 

may shorten the overall length by folding the optical path between the QD grating and 

the camera without complicating the optical alignment. 

5.2.3 Axial/Focus resolution 

We have described the lateral smearing of the images induced by the wavelength 

dependence of the diffraction angle in subsection 2.3.2.2, and the chromatic correction 

using a pair of grisms has been demonstrated in Chapter 4.  To fully assess the effect of 

bandpass on image quality, we now consider a further wavelength dependent property: 

the focal length of non-zero diffraction orders. 

Based on the principle of QD grating illustrated in section 2.1.1, we may deduce that 

the distortion of the grooves adds a constant detour phase at all wavelengths, rather than 

a constant path length as in the case of a perfect lens, which causes the focal length of 

the QD grating to vary with wavelength and thus each non-zero diffraction order to 

image a different object plane at every wavelength.  Accordingly the axial smearing 

occurs and the wavelength dependent focal lengths will also lead to slight magnification 

variations.  However, unlike the lateral smearing effect, the axial smearing cannot easily 

be corrected and will therefore in some applications, where focus resolution is critical, a 

narrow bandpass filter can be used to limit the bandwidth. 

Here we would like to briefly quantify this axial effect in mathematical way.  It has 

been known that the standard coefficient of defocus W20 represents the constant path 

length added to every wavelength and can be replaced by the term nλ where n is the 

number of waves of defocus introduced in the +1 diffraction order.  Therefore Eq. 

(2.16) could be written as, 
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Given that the multi-plane imaging is typically achieved by combining a QD grating 

with achromat(s), the effective focal length of this combination will also vary as ( )mf   

varies, which produces the axial smearing.  The object distance (z) imaged in the 0
th

 

order is assumed to be constant since it only depends on the achromat(s), whereas at a 

given wavelength the plane imaged in the m
th

 order can be calculated by, 
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where we assume that 2

202mzW R .  Whence, on partial differentiation we find that 

the spread of object planes images (Δdm) for a given bandpass Δλ could be characterized 

by, 
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   (5.3) 

where   is the mean wavelength. 

According to the Rayleigh criterion [8, 9], the depth of focus (DOF) [8] is equivalent 

to a defocus error of λ/4 (i.e. 1/ 4n  ).  And 
md  can be expressed as a function of 

DOF of the imaging system to assess the broadband image quality of the system.  

Hence, by substituting 1/ 4n   into Eq. (5.2) we find that at the mean wavelength, 
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Consequently the chromatic spread of the object planes 
md , as a function of DOF, 

can be expressed as, 
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If / DOF 1md   no degradation of the image will be seen since this is equivalent to a 

grating with / (4 )n    for 1m  .  Thus the positions of the in-focus image planes 

in 4D MCMI will change slightly. 

5.3 4D MCMI tests of fluorophore 

One of the principal applications for 4D MCMI should be fluorescence microscopy 

imaging, allowing access to the full bandwidth of the fluorophore.  A simulation of 

chromatic correction for imaging fluorophore has been demonstrated in section 4.4 and 

here, in practice, we will apply the optical system to the real fluorophore microscopy 

imaging tests. 
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5.3.1 Preparation of fluorophore sample 

Preparing samples for QD grating and grisms based fluorescence microscopy demands 

cleanliness and an appropriate thickness of the sample, which ensure a clear imaging 

background and adequate space for z-plane separations respectively.  Therefore a very 

clean and flat coverslip, and a transparent carrier medium which could be evenly mixed 

with fluorescent beads and quickly get solidified to form a desired thickness are the key 

points to sample preparation. 

The coverslips (BRAND, 470820), which should be standardly cleaned based on the 

previously reported procedure [10], were treated with acetone and 1M NaOH solution 

successively.  Each treatment was performed in an ultrasonicator for half hour, followed 

by thoroughly rinsing with deionized water for several times (>2, sonicate when 

necessary).  These clean coverslips were then dried with nitrogen.  As to the carrier 

material, Polyvinyl Acetate (PVA, 81381 Sigma-Aldrich) was chosen due to its good 

viscosity and optical properties [11].  30% PVA aqueous solution was prepared using 

standard method [12] by dissolving the powder in water heated to about 100°C under 

stirring.  Next the 1:10 diluted suspension of fluorescence microspheres (Invitrogen, 

F8827, 2µm, 505/515) was mixed with PVA solution with a ratio of 1:10, along with 

repeated sonicate, 70°C water bath and vortex mixture which allowed few beads 

clustering and sufficient mixing of beads and PVA solution.  Finally the well-dispersed 

fluorescent beads with PVA solution were gently dipped onto the cleaned coverslips 

(~100µl per sample, spin coating would be applied if an accurate thickness was required) 

and left in the 45°C oven for a few minutes for drying.  With a quick check by 

microscope, we saw that the fluorescence microspheres were monodispersed and quasi-

stochastic uniformly immobilized in PVA gel.  The samples were kept in dark place to 

avoid photolysis (although it rarely happened) for further experiments. 

YF acknowledges Dr. Jianli Liu and Mr. Hefei Ruan of Institue of Chemistry, 

Chinese Academy of Sciences, for the assistance of sample preparation. 

5.3.2 Optical setup 

Imaging experiments were carried out on an Olympus IX73 microscope setup (100x oil-

immersion objective) that was configured to simultaneously image 3 object planes on to 

a single image plane with chromatic correction (similar with Fig. 4.11).  This was 

achieved by placing the QD grating at Fourier plane of lens system, but the absolute 
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positions of grisms are not strictly defined.  Based on the optical parameters applied in 

section 4.4, the relay design of this 4D MCMI system is demonstrated in Fig. 5.3, where 

the fluorophore sample was excited by a laser source with wavelength 473nm and a 

bandpass filter (Thorlabs, FB550-40) was also implemented to generate a certain 

spectrum for accurate calculation of grism separation, see Fig. 5.4 for details..  Again in 

this case the separation between the object planes (Δz) is 2.3µm.  Note that after the 

grism only the on-axis rays (solid) are shown and the green broken lines illustrates the 

ray paths and position of focus (0
th

 order) if no grisms are used. 

 

Fig. 5.3 Schematic of the relay design of 4D MCMI system. 

 

Fig. 5.4 Spectra of fluorescent microspheres [13]. 

In Fig. 5.4, the dashed and solid green lines represent the excitation and emission 

plots, respectively. 
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5.3.3 4D MCMI tests of fluorescence microspheres 

The images were captured by the sCMOS camera (Andor Zyla 4.2) with the exposure 

time of 50ms and then were processed by the software Fiji-ImageJ [14].  The images of 

the first three orders before and after chromatic correction have been shown in Fig. 5.5. 

 
Broadband fluorescent images of microspheres 

              -1
st

                     0
th

                  +1
st

 

With Grisms 

 

Without Grisms 

 
 

Fig. 5.5 4D multi-colour images of fluorescence microspheres with/without grism 

correction. 

From Fig. 5.5 we see that the chromatic smearing of first diffraction orders has been 

effectively corrected using grism pairs.  The simultaneous use of multiple fluorophores 

to facilitate studies of the interactions between cellular components is important in 

many biological studies and the results obtained permit us to assess the use of the 

system described for 4D MCMI.  Using a dual QD grating system (each etched for a 

different wavelength), a single grism pair and a dichroic mirror between the QD grating 

and camera, allows one to form multifocus images simultaneously on two separate 

monochrome cameras.  If the dichroic directs emission from a short wavelength 

emission fluorophore to one camera and the other camera sees a long wavelength 

fluorophore, these fluorophores can both be imaged separately but simultaneously in 3D 

on the two cameras.  A third fluorophore at a central wavelength can be chosen such 

that the light from this fluorophore is detected in 3D on both cameras.  The coincident 

images on the two cameras are clearly due to the mid-wavelength fluorophore and, once 

these coincidences have been established, the remaining images on each camera can be 

assigned to the appropriate long or short wavelength fluorophore.  Since each 
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fluorophore is thus imaged simultaneously in 3D, it is possible to study dynamic 

interactions between three different cellular components in 3D with accurate chromatic 

correction. 

5.4 4D MCMI tests of cells engulfing fluorescent beads 

As demonstrated in last section, we have successfully recorded the 4D multi-colour 

images of fluorescent beads on the coverslip.  Here we apply this optical set to a 

sophisticated biological system — cells engulfing fluorescent beads. 

5.4.1 Cell culture and uptake fluorescent beads 

MCF-7 cells were cultured in DMEM (Hyclone, U.S.A.) containing 10% fetal bovine 

serum (Hyclone, U.S.A.) in a humidified 5% CO2 atmosphere at 37°C.  Cells growing 

in a 35mm glass-bottom dish (Shengyou Biotechnology) were incubated with 

fluorescent beads (10µM, Invitrogen, F8813, 500nm, 505/515) for 5h and washed with 

PBS buffer to remove the non-internalized nanoparticles.  Then the cells were fixed 

with 4% paraformaldehyde for 30min at 4°C.  The cells were rinsed several times with 

PBS buffer and incubated in fresh medium, and then imaged by our optical system. 

5.4.2 Optical setup 

To demonstrate, bright field imaging is applied to capture the structure of MCF-7 cells, 

whereas the beads are observed from the fluorescence imaging channel.  The optical 

setup keeps almost the same with that of the fluorescent beads imaging as illustrated in 

Fig. 5.3 (except replacing a QD grating with a smaller central period and a bandpass 

filter), .  For clarity, here we recall some key parameters of the optical design, as shown 

in Table 5.1. 
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Table 5.1 Key parameters of 4D MCMI of MCF-7 cells. 

Parameter Value 

Radius of QD grating (R) 10mm 

Central Period of QD grating (d0) 30µm 

Defocus (W20) 50λ 

Central wavelength (λ) 525nm 

Wavelength range (Δλ) 78nm 

Magnification of objective (M) 100x 

Pixel size of camera (Andor Zyla 4.2 sCMOS) 6.5µm 

Size of camera chip (Andor Zyla 4.2 sCMOS) 13.3×13.3mm
2
 

Focal length of achromatic lens (f) 250mm 

Separation between achromats 200mm 

Effective focal length of lens pair (feff) 208mm 

Separation between object planes (Δz) 2.3µm 

Focal length of QD grating_±1
st
 order @ 525nm (fg) ±1905mm 

Grism separation (d) 152mm 

 

Note that the wavelength range (Δλ) of 78nm is achieved by a bandpass filter 

(Thorlabs, MF525-39); see Fig. 5.4 for the spectra of fluorescent microspheres.  Besides 

the issues we have discussed in previous sections, some trade-offs among the 

parameters above have been made to minimise the overall length of the optical path.  In 

principle the chromatic smearing induced by the waveband of 78nm should be corrected 

when the grism separation is 176mm.  However, due to the size of optical mounts, the 

maximum grism separation can only be 152mm.  As discussed in section 5.2.2, 

achieving a compact optical path is of the highest priority.  Therefore the effect of 

chromatic correction has been compromised in this case. 
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5.4.3 Results and problems 

Both the bright field and fluorescence multi-plane images of MCF-7 cells engulfing 

fluorescent beads were recorded, which was illuminated/excited by 520nm LED and 

473nm laser through objective, respectively. 

With  

Grisms 

 

Without 
Grisms 

 
 

Fig. 5.6 Composite images of bright field and fluorescence multi-plane imaging of 

MCF-7 cells engulfing fluorescent beads, with and without grism correction. 

Fig. 5.6 shows the composite images of MCF-7 cells with and without chromatic 

correction, in which the green dots are the fluorescent beads.  From both the bright field 

and fluorescence multi-plane images we see that the image quality has been improved 

when grisms are implemented.  The results are so positive that the chromatic smearing 

should be further minimized if the theoretical grism separation of 176mm was applied 

— in principle only 67nm bandwidth of smearing could be corrected using the current 

grism separation of 152mm. 
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Another problem in Fig. 5.6 is that the images of non-zero orders seem not in focus.  

It might be because that the separation between object planes (Δz = 2.3µm) is larger 

than the axial size of the cell.  To obtain guidance for further optical design, we tried a 

few cells for bioimaging tests and one of which looked a bit clear, as the bright field and 

fluorescence multi-plane imaging of HeLa cells shown in Fig. 5.7 (the optical 

parameters were exactly same with that shown in Table 5.1).  Here the biosample 

preparation is similar with the process illustrated in section 5.4.1. 

 

Fig. 5.7 Multi-plane images of HeLa cells engulfing fluorescent beads.  Scale bar: 5µm. 

From Fig. 5.7 we can see clearly the profile of both the whole cell and some 

organelles in multiple object planes, especially the cell nuclei.  But unfortunately these 

cells did not uptake the fluorescent beads successfully (see the bright dots at the right 

bottom of each image). 

After quite a few imperfect bioimaging tests, we have been trying all our best to 

optimize the optical relay system, especially minimising the size of grism mounts.  And 

the bright field imaging of HeLa cells without fluorescent beads was performed again, 

by optimizing the grism separation to the theoretical value of 176mm rather than the 

earlier value of 152mm (other parameters were same with that shown in Table 5.1).  As 

demonstrated in Fig. 5.8, the three images appear to be significant different and the 

shape/size of cell in non-zero order images look undistorted and well in-focus.  
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Therefore at this stage we would say that these initial bioimaging experiments have 

been the solid proof of our optical principles and thus our imaging technique. 

 

Fig. 5.8 Bright field 4D images of of HeLa cells. The separation between each in-focus 

image plane (Δz) is 2.3µm and the bandwidth is 525±39nm. 

We have been concentrating on improving the performance of 4D MCMI system and 

will explore a ‘balance’ of all the parameters, including the plotting parameters of QD 

grating, new design of grism and its mount and, of course, the overall optical path.  At 

the same time, we are also working to optimize the 4D MCMI technique for real 

biological applications. 

YF acknowledges Dr. Jianli Liu of Institue of Chemistry, Chinese Academy of 

Sciences, for the biosample preparation. 

5.5 Current and future work 

We are fortunate to have collaborations and interactions with several biology research 

groups and thus quite a few promising biological systems are of the potential 

applications.  Two of the hottest topics are the investigation of Transforming growth 

factor-β (TGF-β) II containing vesicles [15], as well as the TGF-β receptor endocytic 

trafficking [16]. 

TGF β is a member of the structurally related growth factor family, which plays key 

roles in regulating a wide range of biological responses such as cell proliferation, 

differentiation, motility and apoptosis [17, 18].  Disregulation of their signal 

transduction is related to several human diseases such as cancer and tissue fibrosis [19, 
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20].  TGF-β signalling is initiated by ligand binding to receptors (type I and type II).  

TGF-β type II receptor (TβRII) is the primary receptor for ligand binding. Generally, 

TβRII molecules are synthesized in endoplasmic reticulum (ER) [21, 22], most of them 

get highly phosphorylated, then 90% of the receptors undergo further modifications in 

the Golgi apparatus before being transported to the cell surface [23, 24], but little 

cognition about transport process can be obtained at this stage.  Most of TβRII-

containing vesicles (TCVs) were experiencing post-Golgi transportation and only a few 

were internalized from the plasma membrane through endocytosis [15].  Therefore, it is 

still unclear how these two processes are related at present, and there might be 

something we could explore using our 4D MCMI system. 

We previously applied total internal reflection fluorescence microscopy (TIRFM) 

[25] and quasi-TIRFM alternately imaging modes to investigate the intracellular 

transport of GFP-tagged TβRII after its biosynthesis from trans Golgi network (TGN) to 

the cell surface [26].  In TIRFM mode, the incident angle of the excitation light (θe) is 

equal or larger than the critical angle (θc), and an evanescent field was produced at the 

interface between the glass substrate and cell medium.  This evanescent field with a 

penetration depth of less than 160nm from the plasma membrane was used for 

fluorescence excitation.  Only TβRII-GFP molecules on or close to the plasma 

membrane were imaged.  However, Quasi-TIRFM, one variant of TIRFM, extends the 

probing depth to the cytoplasm.  In this mode, θe is smaller than θc, but much larger than 

that in the normal epi-mode (where θe = 0), intracellular TβRII-GFP molecules which 

are more than 160nm away from the membrane could be detected with adequate 

imaging contrast.  Through shifting between TIRF and quasi-TIRF, the process of 

TCVs transporting from TGN to the cell surface were captured respectively [15].  

However, it would be much more convenient to monitor the relative distribution of 

TCVs both in the cytoplasm and regions close to the cell membrane at the same time by 

4D microscopy. 

Endocytosis and intracellular sorting of TGF-β receptors play an important role in 

TGF-β signalling [27].  Previous studies have shown that internalization of TGF-β 

receptors at the plasma membrane is mainly mediated by two independent endocytic 

pathways, clathrin- and caveolae-mediated endocytosis [28, 29].  These indirect 

conclusions based on TGF-β receptors colocalized with related proteins in clathrin- and 

caveolae-mediated endocytosis pathways [30, 31].  We have recently found that the 
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clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β 

receptor endocytic trafficking in the cytoplasm by using a combined approach of live-

cell fluorescence microscopy, electron microscopy and biochemical methods.  By 

tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor 

(TβRI), we found that after mediating TβRI internalization, certain clathrin-coated 

vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a 

novel type of caveolin-1 and clathrin double-positive vesicles.  Under the regulation of 

Rab5, the fused vesicles are targeted to early endosomes and thus deliver the 

internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes 

(caveolin-1-positive early endosomes).  We further found that the caveolin-1-positive 

early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act 

as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and 

degradation, although deeper investigation would be required to explore whether the 

caveolin-1-positive early endosome is a multifunctional organelle for the other 

internalized receptors.  Consequently, these findings uncover a novel scenario of 

endocytosis, which is the direct fusion of clathrin-coated and caveolae vesicles during 

TGF-β receptor endocytic trafficking [16].  However, given that both the detailed 

dynamics of each protein in the membrane of early endosomes and the role of clathrin 

and caveolae in TGF-β receptor endocytosis are still unclear, we are endeavouring to 

establish a 4D MCMI system to directly monitor the TGF-β receptor internalization via 

either clathrin or caveolae. 

YF acknowledges Dr. Jianli Liu of Institue of Chemistry, Chinese Academy of 

Sciences, for the manuscript preparation of this section. 
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Chapter 6 

Conclusions and future work 

 

This dissertation is mainly constructed in three sections that tackle in turn the 

mathematical modelling of 2D QD grating, chromatic correction using a pair of grisms 

and bioimaging tests, offering a complete view of the current research state of QD 

grating and grisms based 4D MCMI technique. 

The motivation for this work is to design a high temporal resolution microscopy 

imaging technique with which two to nine focal planes can be imaged simultaneously.  

This is achieved by the combination of key optical elements QD grating [1] and grisms 

[2, 3] and by attaching this imaging setup to a commercial microscope for biological 

applications.  To fully develop the effectiveness of this approach to 4D imaging in 

biological systems and further applied to 4D particle localization, a series of 

optimizations have been performed including establishing the 2D mathematical model 

of QD grating for optimizing the light efficiency [4] and the working phase, and a 

specially designed chromatic correction module using a combination of customized 

prism and blazed grating (thus grism).  Some initial bioimaging experiments have 

proved that this novel imaging technology works well and is capable of recording the 

biological process, especially the fast changing objects in living cells. 

One of the prime reasons for developing our imaging system was to implement a 

simple chromatic correction that would allow us to make effective use of the full 

fluorophore bandwidth and, for that reason, the optical efficiency of the grism system is 

of significant interest.  For application in 4D live-cell microscopy of fluorescently-

tagged live cells, where the sources are intrinsically faint and the photon flux may be 

limited by the inherent photophysics (bleaching, blinking and cyto-toxicity), achieving 

the highest total optical throughput is very important.  High optical efficiency is further 

crucial in our application, where the need to re-collimate the dispersed beam dictates the 

use of two identical grisms.  With the experimental measurement using power meter 

(Thorlabs) the optical efficiency of ~70% is achievable with the grisms used here, 
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which provides substantial overall flux gains.  Without chromatic correction 4D 

imaging is restricted to, typically, a 10nm collection bandpass, whereas with grism 

correction the full fluorophore range can be accessed, giving a significant increase in 

collected flux levels. 

In conclusion we have demonstrated the use of a simple, linear, grism (grating and 

prism) pair to remove chromatic smearing in QD grating based 4D imaging application 

without compromising image quality.  With the addition of two relay lenses, the 

imaging system can easily be appended to the camera port of many commercial 

microscopes.  The initial bioimaging experiments demonstrate that the 4D MCMI 

system is practicable to perform simultaneous imaging of living cells. 

Future modifications can easily optimize performance and operation.  The present 

mathematical model of our 2D QD grating has included only the basic principles of 

analytical model and numerical computation of 2D QD grating.  Both the theory and 

algorithm can be extended to more complicated cases, i.e. crossed QD grating for 9-

plane imaging and combination of QD grating and lens/grisms system.  In more 

considerations, the chromatic aberration is one of the most remarkable and useful 

properties of QD grating, so that the evaluation of the dispersion of both single and 

crossed QD phase gratings will also be investigated.  Further explorations are still in 

process and an adequate discussion may be published later. 

As to the chromatic correction, in a custom system the grism pair can be optimized 

for ideal on axis throughout at a chosen wavelength, typically the central of the input 

bandwidth.  In practical terms the angular controls required within the grism system are 

independent of grism separation and can be locked when the system is constructed.  The 

grism separations can be easily controlled by a simple motor driven translation in future 

systems.  The grism orientation used in all of these experiments and designs was such 

that the prism faces were outermost in the grism pair.  Reversing this arrangement so 

that the blazed grating are outermost offers further control possibilities, in that the 

interior prism faces in such an arrangement provide some additional chromatic control 

through the refraction of all but the un-deviated wavelength.  A ray-tracing study shows 

that this arrangement offers slightly better linearity in the dispersion.  A further 

possibility is the use of two grisms of slightly-different design, rather than a pair of 

(nominally) identical grisms back to back as described here.  Such an arrangement 
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would permit the images on the camera to be separated chromatically, for example if 

different colour fluorophores are required. 
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