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ABSTRACT 

 

 
Cooperation of engineering and biomedical sciences has produced significant advances 

in healthcare technology. In particular, computational modelling has led to a faster 

development and improvement of diagnostic and treatment techniques since it allows 

exploring multiple scenarios without additional complexity and cost associated to the 

traditional trial-and-error methodologies. 

The goal of this thesis is to propose computational methodologies to analyse how the 

changes in the microstructure of soft tissues, caused by different pathological conditions, 

influence the mechanical properties at higher length scales and, more importantly, to 

detect such changes for the purpose of quantitative diagnosis and treatment of such 

pathologies in the scenario of drug delivery. To achieve this objective different techniques 

based on quasi-static and dynamic probing have been established to perform quantitative 

tissue diagnosis at the microscopic (tissue) and macroscopic (organ) scales. The effects 

of pathologies not only affect the mechanical properties of tissue (e.g. elasticity and 

viscoelasticity), but also the transport properties (e.g. diffusivity) in the case of drug 

delivery. Such transport properties are further considered for a novel multi-scale, patient-

specific framework to predict the efficacy of chemotherapy in soft tissues. It is hoped that 

this work will pave the road towards non-invasive palpation techniques for early 

diagnosis and optimised drug delivery strategies to improve the life quality of patients. 
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1.1 Motivation 

Perhaps the most significant recent advances in improving the life of humanity are 

attributable to cooperation between engineers and medical and biological scientists. 

Increasingly, computational modelling has become a key tool in biomedical practice and 

research, in such areas as surgery planning [1], clinician training [2] and preventive 

medicine [3]. Other biomedical and biological areas, such as tissue engineering [4], 

biomaterials  research [5] and cell mechanics [6] have also been advanced using the in-

silico approach. Major advantages of computational modelling include faster evaluation 

of parameters that can be easily controlled (compared to experimentation) and examined 

individually for sensitivity analysis, thus offering unique time and cost-effective 

capabilities over the traditional trial-and-error approach. 

Despite recent advances in biochemistry and diagnostic imaging, early diagnosis of 

pathologies in soft tissues still remains challenging and often requires a biopsy to 

ascertain the presence of pathology and its grade. However, such procedures are often 

invasive and not free from risks such as infection and haemorrhage. In addition, they can 
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only be carried out in well-equipped medical centres. Considering that a large part of the 

global human population is in the developing countries where appropriate and timely 

diagnosis may be inaccessible due to the lack of resources, a simple, less-invasive and 

cost-effective method for soft tissue diagnosis is urgently required.    

The mechanical properties of soft tissues have been shown to be subject to different 

physiopathological conditions such as cancer [7], liver fibrosis [8], kidney hydration level 

[9] or even age [10]. These changes, often observed at organ level [11-13], have been 

attributed to variations at lower length scales assessed under histopathological analysis 

[14]. Palpation, where the practitioner looks for abnormalities such as nodules, changes 

in roughness and lumps, has been successfully used for centuries as a diagnostic 

technique. However, palpation remains qualitative to this day, largely relying on the 

practitioner’s experience and is open to inter-clinician variations. Although various 

devices and methodologies have been proposed to detect such changes, and so to avoid, 

or at least reduce, the number of invasive diagnostic procedures, quantitative diagnosis 

using palpation remains challenging. More importantly, inter-patient differences 

including those due to previous treatments or different anatomical structures further 

complicate diagnosis. Such patient-specificity could greatly affect the diagnostic 

effectiveness and so must be taken into account for generic applicability. Furthermore, 

some aspects of treatment could benefit from patient specific modelling. For example, 

current models for assessment of the efficacy of drug delivery [15, 16] are often one 

dimensional and do not consider the unique features of each patient such as details of the 

vascular network or microstructural changes due to pathological conditions thus leading 

to treatments that may not necessarily optimized with respect to the conditions of 

individual patient. 
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1.2 Thesis scope and structure  

This thesis has two major goals. The first is to establish new methodologies for soft tissue 

diagnosis, with specific reference to instrumented palpation applied to prostate cancer. 

The second goal is to establish a computational framework to test the efficacy of 

chemotherapeutic treatment. Fulfilling these objectives will pave the way towards early 

diagnosis of soft tissues and optimal treatment design. The ultimate impact of this work 

could be critical for pathologies such as cancer where early diagnosis significantly 

increases the life expectancy of patients, more so if the treatment at this stage can be made 

more effective. The methodologies presented here are expected, in the long term, to 

reduce the number of unnecessary biopsies performed on patients, leading to less invasive 

procedures, reduced medical costs and lower risk of infection. Additionally those patients 

requiring drug treatment would benefit from optimised treatments customised for their 

specific pathological conditions. It should be highlighted here that the two 

aforementioned objectives, namely tissue diagnosis and drug treatment, are linked by an 

analysis which takes into account the heterogeneous, hierarchical nature of soft tissue, 

whose changes under different pathophysiological conditions are also investigated in this 

thesis.  

The objectives of this thesis are, therefore: 

 to develop a methodology for quantitative tissue quality assessment using 

mechanical indices; 

 to establish a robust diagnostic framework to determine position, depth and size 

of harder nodules in soft tissues; 

 to analyse how changes in the microstructure of soft tissues influence the 

macroscopic mechanical properties; 

 to investigate the effects of patient-specific structural features affect mechanical 

response, specifically during a digital rectal examination procedure; 
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 to research the influence of patient-specific tissue microstructure on drug delivery 

to target sites 

The rest of this doctoral thesis is structured to elaborate how these objectives are met, as 

follows: 

Chapter 2: Multiscale Modelling of Soft Tissue and Diagnosis: State of the Art 

This chapter reviews the state of the art of the topics investigated in this thesis. First a 

brief survey of soft tissue microstructure and the changes caused by pathological 

conditions are discussed with an emphasis on prostate cancer. Secondly, existing methods 

to characterize and model the mechanics of soft tissues considering its heterogeneous and 

multiscale nature are reviewed. Then, the necessity for patient-specific modelling is 

discussed within the framework of diagnosis and treatment of soft tissue diseases. Finally, 

the current challenges in soft tissue diagnosis and treatment are highlighted, and the 

potential impact of meeting the thesis objectives discussed. 

Chapter 3: A novel palpation-based method to detect hard cancerous nodules in soft 

tissues – the computational framework and experimental validation 

In this chapter, a novel methodology to determine the size, shape and depth of hard 

nodules in soft tissue using palpation is presented. This methodology does not require a 

priori knowledge of any of the three targets; depth, size and geometry of the inclusion. 

First the methodology is tested using 2D examples with idealised geometries. It is then 

validated using gelatine phantoms with tissue-mimicking mechanical properties. The 

analysis carried out in this chapter suggests that the differences in the viscoelastic 

behaviour of cancerous and healthy tissues could be exploited as a critical diagnostic 

index for quantitative assessment of tissue quality, a matter which is further investigated 

in Chapter 4. 
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Chapter 4: Quantitative tissue quality assessment through viscoelastic 

characterization using instrumented palpation 

A framework for tissue quality assessment based on the changes in the apparent time 

constant observed during dynamic palpation is presented in this chapter. The 

methodology is described and tested on 2D specimens, and then on clinically-relevant 

patient-specific models of prostate, reconstructed from MRI. The capacity of dynamic 

palpation to measure the changes in viscoelastic properties is assessed. A diagnostic 

framework is proposed to measure elastic and viscous behaviours simultaneously using a 

reduced set of viscoelastic parameters, giving a reliable index for quantitative assessment 

of tissue quality. The approach is illustrated on prostate models reconstructed from MRI 

scans of prostate. The examples show that the change in viscoelastic time constant 

between healthy and cancerous tissue is a key index for quantitative diagnostics using 

point probing. Although the proposed methodology allows quantitative diagnosis of 

nodules in soft tissues, it does not allow the volume fraction of cancerous tissue to be 

obtained. Since this would be of particular interest in clinical diagnosis, e.g. in surgery, 

medication or palliative care, a new method to predict the volume fraction of cancerous 

tissue using its apparent viscoelastic parameters is presented in the next chapter. 

Chapter 5: A novel method for rapid, quantitative, mechanical assessment of soft 

tissue for diagnostic purposes – a viscoelastic ‘rule of mixtures’ 

In this chapter a methodology is presented to obtain a rule of mixtures that relates the 

apparent time constant of a tissue sample to the fractions of its components. A rule of 

mixtures, which relates tumour volume fraction to the apparent mechanical properties, is 

obtained by minimizing the difference between the strain energy of a heterogeneous 

system and an equivalent homogeneous one subjected to a creep or stress relaxation test. 

The fraction of each tissue component is then predicted by comparing the observed time 

constant with that calculated from the rule of mixtures. Next, the methodology is tested 
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in a clinically relevant scenario: instrumented digital rectal examination and examination 

during a laparoscopic procedure.  

Chapter 6: Patient Specific Modelling of Palpation-based Prostate Cancer 

Diagnosis: Effects of Pelvic Cavity Anatomy and Intrabladder Pressure 

The analysis done in the foregoing parts of the thesis and the literature suggest that 

patient-specificity is critical to the accuracy of clinical diagnosis. In this chapter, a 

computational framework that takes into account some patient-specific features relevant 

to instrumented palpation is proposed, using the example of prostate cancer diagnostics 

using palpation taking into account specific features of both the prostate and the 

surrounding pelvic cavity. The effects of patient specific anatomical structures on 

palpation outcome are studied in three selected patients with different pathophysiological 

conditions whose pelvic cavities are reconstructed from MRI scans. In particular, the role 

of intrabladder pressure in the outcome of digital rectal examination is investigated with 

the objective of providing guidelines to practitioners to enhance the effectiveness of 

diagnosis. Furthermore, the presence of the pelvic bone is assessed to examine the 

necessity of including such a patient-specific feature in the proposed computational 

framework. 

Chapter 7: A multiscale, mechano-morphological approach to soft tissue mechanics: 

application in prostate cancer diagnosis 

The study presented so far has been carried out at either organ or tissue scale. However, 

in order to better understand how changes in the microstructure influence the apparent 

behaviour at higher scales it is essential to investigate lower scales (e.g. tissue 

microstructure). In this chapter, a methodology to predict the apparent mechanical 

properties of soft tissue microstructures is presented. The influence of pathological 

conditions on the apparent stiffness are analysed and compared with results obtained at 

different length scales with the aim of establishing a framework for multiscale modelling. 
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Furthermore, the use of support vector machines as a tool to perform diagnosis based on 

the mechanical properties of soft tissues is also presented.  

Chapter 8: Heterogeneity in Tissue Diffusivity: An Application in Drug Delivery 

Following on from some of the findings of Chapters 5 and 7 (i.e. that apparent properties 

are greatly affected by microstructural changes in tissue), this chapter aims to investigate 

how the pathophysiological conditions influence the diffusivity and therefore the efficacy 

of drug delivery. Specifically, a computational framework to analyse the effectiveness of 

a chemotherapeutic treatment for solid tumours is presented. The apparent diffusivity of 

two commonly-used drugs for prostate cancer (i.e. paclitaxel and doxorubicin) in healthy 

and cancerous tissues is estimated from the histopathological samples from various 

patients. The proposed methodology is then coupled with a mathematical model for 

predicting the fate of cancerous cells as a result of the treatment, in order to estimate its 

outcome. Following on from this, the efficacy of different strategies for drug delivery 

(e.g. intravenous infusion and bolus injection) is investigated.  

Chapter 9: Looking back / working forward 

In this chapter, the work carried out in the thesis is summarized and the main conclusions 

are highlighted. Future work is proposed to pursue the benefits of computational 

modelling in clinical practice and, ultimately, realise the aim of tangible benefits to human 

health. In particular, further research directions are suggested that would potentially 

enhance the outcome of tissue diagnosis using instrumented palpation. Additionally, the 

basis of a novel patient-specific platform for drug delivery into soft tissue is sketched.  
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2.1 Summary 

SECTION TITLE OBJECTIVE 

2.2 Soft hierarchy and heterogeneity Establish the hierarchical, heterogeneous, 

viscoelastic nature of soft tissues and how 

changes in their microstructure influence 

the apparent properties at higher length 

scales 

2.3 Soft tissue characterization Survey the current methodologies for 

characterizing viscoelastic materials with 

emphasis on soft tissue 

2.4 Viscoelastic modelling Review viscoelastic models for soft 

tissues 

2.5 Homogenization and multiscale 

 modelling– a necessary simplification 

Review the different computational 

approaches to homogenize and treat 

multiscale modelling problems required 

for soft tissue modelling 

2.6 Patient specific modelling  

– a complication to medical diagnosis 

Establish the need for patient specific 

modelling to obtain the accuracy required 

in clinical practice 

2.7 Soft tissue diagnosis Review the state of the art for methods for 

soft tissue diagnosis and their limitations 

2.8 Drug delivery Review the current methods for analysing 

and predicting the outcome of drug 

delivery strategies 

2.9 Conclusion Identify the gaps in knowledge to be 

addressed in the thesis 

 

2.2  Soft tissue hierarchy and heterogeneity 

Biological tissues are heterogeneous, hierarchical, visco-elasto-plastic materials whose 

mechanical properties have been proved to change subject to physiological conditions 

such as swelling and menstruation as well as pathological conditions such as the presence 

of cancer and ageing.  

Viscoelasticity in biological tissue was first recognized by Bayliss and Robertson [17] in 

cat lungs. The time-dependent behaviour of tissue has been attributed to the movement 

of fluid within its microstructure in such tissues as cartilage or liver [18, 19] and also to 

the lubricating effect that the proteoglycan matrix exerts between the collagen fibrils that 
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occurs, for example, in arterial tissue [20]. The mechanical behaviour of collagen is also 

known to vary with strain rate [21],  and is believed to contribute significantly to the 

viscoelastic response of tissues such as lung [22], liver [23], prostate [7] and skin [24].  

Breast tissue has been observed to exhibit viscoelastic properties which vary with such 

conditions as hormonal balance or cancer [25-28]. The viscoelastic behaviour of brain 

tissue[29, 30]  has been shown to vary with such pathological conditions as multiple 

sclerosis [31], cancer and ageing[10]. Liver tissue also exhibits a certain viscoelasticity 

[32] that has been observed to vary subject to conditions such as fibrosis [12], water 

content [19] and preservation time [14]. Arteries have been reported to have a rate 

dependent behaviour where the response is often anisotropic and nonlinear [33, 34]. In 

cartilage, viscoelasticity, which is responsible for energy dissipation, is a desirable 

property that allows the stress associated with physiological load to be less damaging 

[35]. Furthermore it has been shown that the energy dissipated is sufficient to increase 

the temperature of healthy cartilage so that proteoglycans and hyaluronic acid can be 

produced [36]. Muscle tissue also exhibits an anisotropic viscoelastic behaviour that 

becomes nonlinear at large strains [37, 38]. Changes in the mechanical properties of 

kidney tissue under different hydration conditions, and different cancer phenotypes have 

also been reported in the literature [9, 39]. 

Prostate tissue, the particular focus of this thesis makes a useful case study for structure-

property relationships. Conditions such as prostatitis, benign prostate hyperplasia (BPH) 

and prostate cancer (PCa) are also known to influence the elastic and viscoelastic 

properties of the prostate gland [7, 40].  Fig. 2-1 shows histological images of a prostate 

at different magnifications. The hierarchical and multiscale nature of the tissue is clearly 

visible therein, where large acini can be found from the upper (non-cancerous) part and a 

homogeneous structure (at the magnification used) is present in the lower (cancerous) 

part. However, with increased magnification, as illustrated in Fig. 2-1 (b), it is seen that 
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the apparently homogeneous cancerous nodule visible in Fig. 2-1(a) also contains smaller 

acini indicating the presence of prostate cancer. A further detailed look at the tissue as 

shown in Fig. 2-1 (c) clearly reveals the heterogeneity of acini in the cancerous nodule, 

which is associated with the clinical prognosis for the patient through the Gleason score 

[41]. Such changes in the acini size would influence not only the amount of liquid within 

the tissue but also its transport properties which have been related to viscoelasticity [18, 

19]. Thus, there is a huge potential to use viscoelasticity as an index in the diagnostic 

assessment of soft tissue, not only for prostate, but also more generally in terms of a 

number of positive or negative physiological or pathological axes. Compared to 

traditional methods for tissue diagnosis based on elastic indices [42, 43] viscoelasticity 

introduces at least two further parameters (i.e. time constants and long term modulus) that 

could provide more accurate and specific diagnosis. 

 

Figure 2-1. Histological sample stained with haematoxylin and eosin show the multiscale nature 

of soft tissue. (a) The bigger acini of a healthy prostate are clearly visible compared to the smaller 

ones in blue shown at the bottom of (a) and (b), which are malignant cells (M). A closer look into 

the cancerous area is shown in (c) and (d) where a blood vessel and blood cells are shown. 
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2.3 Viscoelasticity in soft tissue 

2.3.1 An introduction to viscoelasticity 

A wide range of materials such as biological tissues and polymers present certain inelastic 

behaviours such as creep, which causes the strain to increase when the stress is held 

constant; stress relaxation, where the stress decreases with time when the strain is 

maintained constant; hysteresis or phase lag between the applied stress and strain which 

causes energy dissipation; strain-dependent properties such as an increase in the apparent 

stiffness at high strain rates. Different models that reproduce such behaviours have been 

proposed. The simplest models are the Maxwell model which consists of an elastic spring 

(Eq. 2-1) and a purely viscous dashpot (Eq. 2-2) in series and the Kelvin-Voigt model 

where the dashpot and spring are in parallel.  

 𝜎𝑒𝑙𝑎𝑠𝑡𝑖𝑐(𝑡) = 𝐸 ⋅ 𝜖(𝑡) (2-1) 
 

 𝜎𝑣𝑖𝑠𝑐𝑜𝑢𝑠(𝑡) = 𝜂 ⋅
𝑑𝜖(𝑡)

𝑑𝑡
 (2-2) 

 

In Eqs. 2-1 and 2-2 𝜎 is the stress, 𝐸 is the Young’s modulus,𝜖 is the strain,  𝑡 is the time 

and 𝜂 the viscosity of the dashpot. However, these models cannot reproduce creep and 

stress relaxation respectively. The standard linear model or Zener combines a Maxwell 

model with an elastic spring in parallel which is adequate to reproduce both creep and 

stress relaxation. Such model can be generalized and include several dashpot-spring units 

in parallel to account for more complex viscoelastic behaviours. A further generalization 

of these models includes the use of fractional derivatives for the dashpot as shown in Eq. 

2-3. 

 𝜎𝑣𝑖𝑠𝑐𝑜𝑢𝑠(𝑡) = 𝜂 ⋅
𝑑𝜖(𝑡)

𝑑𝑡𝛼
  (2-3) 

Although fractional derivative models have been used to model certain tissues such as 

prostate [44] they require numerically solving Riemann-Liouville [45] or Caputo [46] 
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integrals which is a complex and computationally intensive task [47] especially for large 

models. It should be noted here that most commercial software for structural finite 

element simulations implement Prony series, Compared to other models previously 

mentioned, Prony series are widely used to model complex creep and stress relaxation 

behaviours and due to its simple analytical formulation shown in Eq. 2-4 easier to fit. 

 E(t) = E0 ⋅ (1 −∑𝑝𝑖 ⋅ (1 − 𝑒
−𝑡
𝜏𝑖 )

𝑛

𝑖=1

)   (2-4) 

   
2.3.2   Characterization of viscoelastic parameters  

Characterization of viscoelasticity for biological tissue requires the entire history of 

deformation when its time dependent behaviour is not negligible. Two different 

approaches are often adopted, i.e. creep/stress relaxation (quasi-static) and dynamic tests. 

The results from quasi-static tests are often correlated by means such as Prony series[48], 

although other fitting techniques have been used, including a more generalized transfer 

function (between stress and strain) in Laplace space [49], or  using splines [50]. These 

tests are capable of retrieving the instantaneous and the long-term moduli. In dynamic 

tests, the sample (usually in tensile/-compressive configurations) is often loaded with a 

pre-defined displacement function, such as a sinusoid. The amplitude of the force 

response and phase lag between the displacement and force signals can then be measured 

over a range of frequencies. In such tests, different techniques can be used to identify the 

corresponding transfer functions to relate the stress and strain in Laplace space [49, 51]. 

It should be noted here that the two types of tests, in fact, measure the same thing, where 

the transfer function obtained from a stress relaxation/creep test mathematically dictates 

the dynamic behaviour that would be measured in the frequency test, and vice versa.  

Therefore, the ranges of time and frequency that are used may influence measurement 

outcome. For example, using higher frequencies or shorter times allows the detection of 

the smaller time constants that define the behaviour in the early stage of stress relaxation, 
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whereas lower frequencies provide information for higher time constants that characterize 

the long-term response.  

The time constants obtained from models such as Prony series define the characteristics 

of amplitude and phase-shift, but overfitting of a single data set using an excessive 

number of time constants can lead to undesired, sometimes entirely artificial, 

characteristics at certain ranges of frequency. Therefore, it is critical to find the balance 

between the fitting error and the number of fitting parameters. Ideally the results of both 

dynamic and quasi-static tests should be fitted at the same time to avoid overfitting; 

however this would increase the complexity of testing making it inapplicable to clinical 

tissue diagnostics.  

2.3.2   Viscoelastic modelling in soft tissue  

The elasticity of biological tissue has been thoroughly discussed in reviews [52-54] and 

can be described using such models as the 8-chain model [55] or other phenomenological 

continuum models including Mooney-Rivlin [6], Ogden [30] and Holzapfel-Gasser-

Ogden (HGO) [34]. The origin of viscoelasticity in biological tissues is still unclear [18, 

19] and therefore there are relatively few physics-based models. Amongst these, Parker 

[56] has proposed a model where a perfect cube with a fluid microchannel inside is 

subjected to uniaxial loading and shows viscoelastic behaviour. The fact that such a model 

is able to mimic the viscoelasticity in soft tissues highlights their hierarchical and 

multiscale nature. Another category of theoretical models, often referred to as recruitment 

models, consists of multiple Maxwell elements arranged so that, when a given element 

reaches the allowable strain, the following element starts to deform. Such models, whose 

physical basis can be traced to a tissue made out of multiple fibres with varying stiffness 

and length (e.g. elastin and fibrin), have proven successful, for example, in modelling 

lung tissue where stress relaxation follows a power law [57]. In some scenarios, 

viscoelasticity is also modelled using Prony series [58] and Kelvin-Voigt fractional 
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derivative (KVFD) [32]. Of particular note is the work of Holzapfel and co-workers [20, 

33, 34, 59], who proposed a range of viscoelastic models based on a strain energy density 

function of fibre-reinforced anisotropy that successfully predicts the viscoelasticity in soft 

tissues such as arterial walls. Such models are particularly interesting as they are currently 

used in clinical practice.  Peña et al.[60] has also modelled the viscoelastic behaviour of 

vascular tissue including softening due to damage. Anisotropic viscoelastic models have 

also been proposed to predict the behaviour of heart valves [61]. Bergström and Boyce 

[55, 62] described tissue viscoelasticity using the interaction between two networks, one 

related to the elasticity and the other to the viscous behaviour. Although both networks 

have the same deformation gradient, the velocity gradient in the viscous network is 

decomposed into elastic and viscous velocity tensors [55, 62]. It should be noted here 

that, although it is possible to model complex behaviours using viscoelasticity, especially 

when dynamic loading is applied, the model complexity and computational time increase 

significantly. Furthermore, the number of parameters is increased, which can lead to 

higher uncertainty levels and therefore reduced relevance in clinical practice.  

2.4 Homogenization and multiscale modelling– a necessary simplification 

In the context of continuum mechanics materials such as composites or biological tissues 

are often modelled as homogenous material, with effective properties ‘averaged’ from 

microstructures at lower length scales. Often these methodologies consider the existence 

of a representative volume element (RVE) whose apparent properties are estimated as 

‘homogenized’ values and used to predict mechanical behaviour at a higher length scale. 

This implies the existence of a unit cell in a periodic microstructure or an infinite volume 

(in practice, very large compared to the size of the unit cell)  containing a large set of 

representative volume elements [63]. Fig. 2-2 shows a flowchart typically used in 

multiscale modelling where data is interchanged between different length scales of the 

model.  Such averaging techniques have been developed for heterogeneous engineering 
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materials  for years [64]. For example, analytical models, such as the series (or Reuss) 

and parallel (or Voigt) models, have been proposed to determine the effective properties 

of heterogeneous materials and are often used to estimate upper and lower bounds of 

effective properties [65, 66]. Such models, usually expressed as a relationship that 

involves the volume fractions of the constituent phases and their respective properties, 

are often referred to as ‘rule of mixtures’. Hamilton and Crosser [67] proposed an 

analytical model for composite materials when the topology of the inclusions is known, 

and Landauer [68] when unknown. Of special interest is the work by Hashin and 

Shtrikman [69] in the 1960s, shown in Fig. 2-3, who mathematically derived upper and 

lower bounds of effective properties such as conductivity and Young’s modulus using 

asymptotic homogenization irrespective of the topology of the microstructure. 

Theoretical bounds for viscoelastic materials were also derived in the late 90s [70].  

Despite their advantages, including ease of use and low computational cost, analytical 

models have certain limitations such as oversimplified physics and an inability to tackle 

more complex problems including fluid-structure interaction, contact and viscoplasticity 

[64]. In this regard, numerical methods have proven useful especially for more complex 

scenarios such as in determining the effective properties when contact occurs within 

microstructures [71] and also for thermo-coupled problems [72]. Various methodologies 

that estimate the effective properties of viscoelastic materials have been proposed in the 

Fourier [73], time [74] and Laplace [75] domains, respectively. 
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Figure 2-2. Schematic of multiscale modelling for the example of lung tissue [76]. The data 

predicted on respective scales flow upscale/downscale and vice versa to improve the fidelity of 

the model. 

 

Computational approaches such as the self-consistency method  have also been developed 

to take into account the topology of the sample and also non-linear behaviours including 

plasticity, viscoelasticity or damage [77]. Although such algorithms can handle complex 

behaviours, they often require multiple finite element problems to be solved iteratively. 

Therefore, the estimation of effective properties and hence a rule of mixture for 

heterogeneous materials may become a computationally intensive task.  

Fig. 2-3 (a) illustrates the example of a structure composed of a large number of RVEs. 

Each of these unit cells contains a pore and a solid inclusion. By imposing certain 

boundary conditions on such an RVE, it is possible to obtain the apparent mechanical 

properties, as illustrated in Fig. 2-3(b), using computational methods such as asymptotic 

homogenization. Three main types of boundary conditions are commonly used for this 

purpose, namely kinematic uniform boundary conditions (KUBC), stress uniform 

boundary conditions (SUBC) and periodic boundary conditions (PBC). KUBCs consist 

of applying a prescribed displacement field and often provide upper bounds for the 
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apparent stiffness, whereas SUBCs often result in a lower bound by imposing a force 

field. PBCs consider and average the compression or shear field in each principal 

direction so that displacements on the boundaries are periodic [63].  

 

 

 

Figure 2-3. (a) Example of a hierarchical, multiscale structure built from multiple representative 

volume elements (RVE). (b) The average behaviour, represented by the thick solid line, may of 

sufficient use for certain applications when the high frequency local challenges [78]. 

 

To impose such periodic boundary conditions in a finite element regime, meshes with 

matching nodes at opposite sides of the RVE (in either 2D or 3D) are often used. 

However, obtaining such periodic meshes may become a difficult task or require 

extremely refined meshes especially when the geometry is complex, such as it might be 

when reconstructed from medical images. Different methods have been reported in the 

literature to overcome such a complication. A Lagrange polynomial and spline 

interpolation has been proposed to eliminate the need for matching nodes at the 

boundaries [79]. Another method, developed for composites, was proposed by Tyrus et 

al. [80] using cubic interpolants along the boundaries to reduce the number of constraints 

and therefore the computational cost. However, this method requires periodicity to be 

imposed onto the intersection of the inclusions with the RVE therefore making it less 

capable of modelling biological tissues, which often are not symmetric. The approaches 

presented so far have certain limitations regarding the topologies that can be handled or 

the necessity to modify the stiffness matrix of the problem which can be difficult in 
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commercial finite element software. Furthermore, there can be a significant increment in 

the number of degrees of freedom required to interpolate the displacement fields using 

the Lagrange polynomials or splines leading to a significant increase in the computational 

time.  

2.5 Patient specific modelling – a complication to medical diagnosis  

Patient specific models use inputs (i.e. material properties, geometry, loadings etc.) from 

the very patient for whom a treatment, diagnosis or any other procedure is being 

investigated, instead of using average values estimated for all people or certain groups 

based on gender, age, ethnicity or other factors. Nowadays, it is widely accepted that 

patient specificity plays a vital role in the effectiveness of predictive modelling [81-83] 

and so it is of great importance to examine the sensitivity of any biomechanical model to 

patient-specific parameters, especially when quantitative information is required for 

clinical diagnosis. 

There are some examples in the literature of how patient-specific modelling has 

successfully enhanced clinical diagnosis and treatment. Bone tissue has attracted 

significant interest in the past decade due to the social and economic impact of diseases 

including osteoporosis and osteoarthritis as well as in the correction of traumas, e.g. hip 

fracture. Garijo et al. [84] used artificial neural networks, support vector machines and 

linear regression to predict loads in bone when taking into account patient specific 

features such as proximal femur geometry. Kerner et al. [85] investigated whether bone 

loss following total hip arthroplasty could be explained by strain remodelling using 

patient-specific geometries and bone densities.  For osteoporosis, Schileo et al. [86] 

proposed a framework which included patient specific geometries and material properties 

based on tissue density and Young’s modulus to predict the strain in bones and, 

consequently, the probability of fracture. Other examples of patient-specific modelling 

include planning of clinical treatment such as radiotherapy and cryosurgery. The side 
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effects of radiotherapy, for example, can be mitigated by predicting the movement of the 

healthy organs that surround the malignant tissue. In this context, Scaife et al. [87] 

developed a framework, which takes patient uniqueness (e.g. topology) into account, to 

determine the position and absorbed dose to the rectum during radiation treatment to 

avoid unnecessarily extreme exposures. In the area of cryosurgery, where probes are used 

to cool tissues down below a certain threshold, (e.g. for prostate cancer surgery),  Zhang 

et al. [88] modelled the temperature distribution taking into account patient-specificity in 

thermal properties as well as the heating from the urethral warming catheter, which is 

inserted to reduce the risk of damage to the urethral tissue. This approach allows a safer 

and more reliable approach since it is possible to control the temperature of the tissues to 

avoid damage. As a result the malignant tissue can be eliminated while maintaining the 

integrity of surrounding healthy tissue and adjacent structures.  

Patient specific modelling has recently also proven successful in other clinical scenarios 

[89, 90]. Gasser and co-workers proposed a systematic approach to estimate the risk of 

rupture of abdominal aorta aneurysms which has already been translated into clinical 

practice [91]. In this framework, the geometry of the blood vessels was obtained from the 

patient using CT scans, despite the use of average values for the mechanical properties. 

Patient specific models have greatly assisted in understanding the mechanisms behind the 

rupture of aortic aneurisms [92] and consequently the prediction of rupture risk [93], thus 

making a significant contribution in preventive cardiovascular medicine.  

2.6 Soft tissue diagnostics 

Various techniques that exploit the changes in the mechanical properties of the tissue 

subject to pathophysiological conditions have emerged to help clinical tissue diagnosis. 

X-ray, computerized axial tomography (CAT), magnetic resonance imaging (MRI), 

positron emission tomography (PET) and other medical imaging techniques provide 

critical information on structural anomalies for different types of tissues and have been 
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extremely successful in detecting pathological conditions such as neoplasms or 

aneurysms. In addition to being able to detect anomalies in prostate, these techniques 

allow the surrounding structures such as the seminal vesicles [94] and bladder [95] also 

to be examined.  However, they may not be appropriate for certain groups of patients such 

as pacemaker carriers or infants and it is often economically infeasible to apply them to 

large numbers of patients. Elastography (in the form of trans-rectal ultrasound) has also 

been widely used to help detect prostate cancer [13, 23, 96, 97] and is based on the relative 

displacements caused by the difference in stiffness in the tissue. However, it is still 

challenging to relate the elastographic image of the tissue to the underlying pathological 

conditions especially when multiple conditions such as in Benign Prostate Hyperplasia 

and cancer are present [98]. 

Biopsies are often used as the standard procedure to assess the presence and extent of 

different pathologies in soft tissues and have seen a significant improvement during the 

last three decades, e.g. in prostate cancer diagnostics. Prior to the 1980s, most prostate 

biopsies were performed using a needle which was directly guided by the clinician [99], 

largely relying on their experience of the anatomy. In the early 90s the technique was 

improved by the introduction of transrectal ultrasound (TRUS) and the sextant approach. 

The procedure is often repeated 10 to 12 times (up to 20) at different locations of the 

prostate, the samples then undergoing histological examination. Although increasing the 

number of samples and their coverage can lead to higher confidence levels  of around 

20% [100], biopsies can still give false negative results (as the TRUS does not necessarily 

identify all prostate cancer regions and the needle only samples small cores) [99, 101]. 

Other disadvantages such as pain and discomfort for the patient and the possibility of 

complications including rectal bleeding and haematuria [101] further reduce the 

effectiveness of such diagnostic methods. Fig. 2-4 shows the schema of this invasive 
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procedure, where the needle is often inserted close to structures such as the urethra or the 

sphincter, thus increasing the surgical risk to the patient. 

 

Figure 2-4. Schematic of the transrectal and transperineal approaches for prostate biopsy. Up to 

20 tissue samples are often collected from the sample. However the risk of false negatives is 

always present[102]. 

 

 

Palpation is widely used in primary diagnosis of conditions such as appendicitis, 

haemorrhoids and breast cancer as well as prostate and testicular cancer. However it 

remains a qualitative diagnostic method that largely relies on the practitioner’s 

experience, which often leads to subjective diagnosis greatly affected by inter-clinician 

variations. Such uncertainties result in less accurate diagnosis that may lead to suboptimal 

treatments, which can be critical for life threatening diseases such as cancer. Instrumented 

palpation would allow the recording of quantitative data and could also be more sensitive 

than traditional palpation. Therefore, disease could be diagnosed at an earlier stage before 

it spreads to other organs and, consequently, improved prognosis for the patient. 

Significant work has been done to improve the clinical efficacy of palpation-based 

diagnostic methods [8, 42, 44, 103-107]. This has led to the development of 
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methodologies to identify areas suspected of being malignant and to offer the possibility 

of diagnosing diffuse and/or indolent tumours  [108], which is indeed one of the 

motivations of this thesis.  

Efforts have also been made to develop palpation devices such as rolling and sweeping 

probes [109-111] to test elasticity [8, 42, 44, 112, 113] in a variety of tissues such as 

swine brain in vivo [114], porcine [115] and human liver and skin [116, 117], as well as 

soft tissue from lower limb extremities [118, 119]. Unfortunately, the effects of the depth 

and size of a nodule in the force feedback are coupled; a small nodule near the surface 

would result in a similar force feedback to a bigger one deeper inside. De-coupling these 

effects is of critical importance for clinical applications since depth and tumor location 

have been related to the progression of disease and therefore its prognostic outcome [120]. 

Furthermore, those aspects can affect the chosen treatment and the surgical margin in any 

intervention, and therefore should be considered before proceeding with any treatment. 

In some attempts at quantitative diagnosis using mechanical palpation,  only simple 

geometries of cancerous nodules such as cylindrical [43, 121] or rectangular [109] were 

considered. Artificial neural networks have also been employed to predict not only the 

size and depth of anomalies but also their mechanical properties [121]. However, such an 

approach relies on a priori knowledge of the stress distribution in the tissue, which 

remains a difficult (if not impossible) task, especially in biological tissues with rate-

dependent behaviour where loading history is usually unknown. More recently, 

viscoelasticity has been considered as a possible index for tissue quality assessment [7, 

44] in diseases such as breast cancer, prostate cancer (PCa) [122], benign prostate 

hyperplasia [40], liver fibrosis [123] and pancreatic diseases [124]. Fig. 2-5 illustrates a 

few examples of devices for instrumented mechanical palpation 
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Figure 2-5. (a) The e-Finger is an example of a soft tissue palpation device [125]. (b) Rolling 

indentation system proposed by Sangpradit et al.[43] (c) Indentation system described by Ahn et 

al.[126]. 

 

In addition to the aforementioned diagnostic methods, concentration of prostate-specific 

antigen (PSA) in blood is commonly used as a primary test for prostate cancer [127]. 

However, PSA levels vary in each patient subject to various factors such as prostate 

manipulation (for instance during digital rectal examination), ejaculation and certain 

drugs such as finestaride [128]. It has also been reported recently that the presence of 

certain tumours in the prostate does not influence the PSA levels [127], therefore making 

it an unreliable diagnostic index.  

2.7 Drug delivery  

Although the synergies of engineering and biomedical sciences have proven useful to 

improve soft tissue diagnosis, other fields, such as treatment optimization, offer further 

potential for enhancement. In particular, delivery of chemotherapeutic agents is 

challenging due to the need to administer the drugs at the highest possible concentration 

to eliminate the malignant cells without causing undesirable side effects. 
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 Solid tumours are often found in breast, colon, rectum, lung and prostate. The treatment 

options for such cancers include radiotherapy [87], surgery  [129], brachytherapy [130]  

and chemotherapy [131] among others. Compared to other types of cancers such as 

lymphoma or leukaemia, chemotherapy in solid tumours is less successful due to the 

different barriers the drug needs to overcome before encountering the cancerous cells, for 

example blood vessels and increased interstitial pressure. However chemotherapy is often 

used as a primary treatment when surgery or radiotherapy are not adequate or used as 

adjuvant treatment due to their prophylactic action against cancer progression [132]. Two 

medical approaches are commonly used to deliver drugs into these challenging tumours: 

oral and intravenous delivery where the drug travels through the bloodstream and bolus 

administration where the drug is directly inserted into the tumour. In the first case, the 

drug travels through the whole body thus interacting not only with the cancerous cells but 

also with the healthy ones. Other drug delivery methodologies include nanoparticles [133] 

and thermosensitive liposomes [134] as shown in Fig. 2-6.  

Independently of the method used to deliver the drug to the tumour site, it needs to reach 

the cancerous cells, often with diffusion as the main driving force, given the increased 

interstitial fluid pressure often found in solid tumours which  limits convection [135]. 

Diffusivity of drugs in solid tissues has been related to the molecular weight of the drug. 

However, it also depends on the pathophysiological conditions which influence vascular 

density, interstitial fluid pressure and tissue microstructure on a patient specific basis. 

Therefore such parameters need to be incorporated into any model that is aimed to be 

used in clinical practice due to the high accuracy required. 
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Figure 2-6.  Examples of  thermoliposomes, drug carriers activated by temperature [136]. 

 

Mathematical and numerical modelling has become a useful tool to investigate drug 

delivery in clinical practice and drug trials [15]. Traditional approaches to analyse drug 

delivery are based on in-vitro , in-vivo (in animals) observations and also those from 

human biopsies [137]. Compared to such approaches, mathematical and numerical 

modelling offers as the potential to reduce the amount of experimental work and/or 

reduced ethical compromises. However, many models do not consider the geometry of 

the underlying microstructure and use one dimensional models [16]. Also, the diffusivity 

and other parameters are estimated for bulk material and are often considered to be 

isotropic. Little experimental or computational validation is found in the literature and 

the underlying microstructure has proven to change under different physiopathological 

conditions [14]. 

Although tissue diffusivity plays a critical role in the efficacy of drug delivery, 

determining the effects of the drugs on the cells is crucial.  The mechanisms by which 

drugs interact with cancerous cells are complex.  Multiple mathematical models that 
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consider drug concentration and biological parameters such as cell replication and 

apoptosis rate have been proposed at cell [16] and tissue [138] scales to predict whether 

a cell population will proliferate or not. However, the input for such models does not 

consider patient-specific features such as tumour or blood vessel network topology. 

Therefore, obtaining a realistic, quantitatively accurate map of how the drugs travel 

through the tissue and interact with healthy and cancerous cells is a complex, possibly 

insurmountable task. Therefore, such techniques might not be appropriate for predicting 

the outcome of a treatment before actually administering it to the patient, making it 

unlikely that they can be used to optimise treatment. 

Finding a solution is critical due to the possible life threatening side effects of 

chemotherapy which can include cardiotoxicity, heptatotoxiticy and damage to bone 

marrow [139] . Such effects can limit drug dosage and can cause cancerous cells to 

develop resistance, mutating to adapt to their environment after repeated treatments [138], 

with potentially fatal consequences. Currently, chemotherapy treatments are often 

administered following rigid dose and schedule protocols, which are only changed in the 

event of cancer progression or unbearable toxicity for the patient [138]. Better analytical 

tools could illuminate the way towards optimal, patient-specific based drug protocols, 

which could replace the current approach, which essentially is based maximising, as 

opposed to optimising dosage in an attempt to avoid under-treatment.   

2.8 Bridging the gaps 

Considering the mission and objectives of this thesis and the literature review carried out 

in this chapter it is considered that the following topics require further investigation: 

 It is necessary to analyse systematically how the changes in the microstructure of soft 

tissues influence their properties at higher scales. This would allow measurements at 

organ scale (e.g. elastography, palpation) often done in clinical practice to be related 

to tissue condition, thus providing and invaluable tool for qualitative and quantitative 
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diagnosis. Such analysis will be carried out by investigating the mechanical 

properties of the tissue microstructures from various patients and at various length 

scales subject to different pathological conditions. This will provide a framework for 

qualitative tissue diagnosis (i.e. cancerous or healthy) with a certain degree of 

confidence. In addition, performing such analysis at different length scales could lead 

to an optimisation of the probe size and probed volume and therefore define the 

optimal probing parameters for novel diagnostic devices; 

 Less invasive, palpation-based methods for soft tissue diagnosis have proved to be 

promising in detection of prostate cancer. However, quantifying the size and depth 

of the nodules in soft tissues using palpation is still challenging without a priori 

knowledge of quantitative information such as geometry and topology. To illuminate 

this, different approaches will be investigated- i) Sweeping palpation to determine 

the location, size and depth of hard nodules in soft matrices; ii) dynamic palpation to 

perform quantitative tissue quality assessment and; iii) quasi-static probing to 

determine the cancerous volume fraction in tissue. This paves the way for a less 

invasive, and, more importantly, quantitative characterization of the pathological 

stage. 

 The importance of patient-specific modelling at various length scales is widely 

acknowledged, yet this is not often found in the contexts of prostate cancer diagnosis 

using palpation and treatment using drug delivery. A patient specific framework will 

be presented here to analyse the influence of inter-patient variation on the outcome 

of digital rectal examination. Furthermore, the importance of modelling certain 

components from the reconstructed MRI models will be discussed. The value of such 

work is that it can result in guidelines for the clinical and modelling communities on 

how they might optimize their procedures and computational efficiency, 

respectively. 



 

29 

 Different frameworks to analyse drug delivery into soft tissues have been proposed, 

but are often based on over-simplified geometries and do not consider critical patient 

specific features such as the microstructure or the blood vessel network. This lack of 

detail, coupled with the rigid, static medical protocols used for chemotherapy lead to 

suboptimal treatments of life threatening diseases such as cancer. To address this, a 

framework that combines a microstructural patient-specific model with a cell 

dynamics model will be presented to evaluate the efficacy of chemotherapeutic 

treatments in-silico before any drug is administered to the patient. The diffusivity of 

various drugs in soft tissues will be analysed in different patients and at various 

length scales.  

 

This thesis will address the aforementioned four topics which, together, lead to a novel 

computational framework that can provide less invasive, quantitative and optimal 

solutions to soft tissue diagnosis and treatment.  
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A novel palpation-based method to detect hard 

cancerous nodules in soft tissues – the computational 
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3.1 Summary 

Palpation has been successfully used for centuries as a diagnostic tool where the 

practitioner examines the tissue looking for lumps, changes in roughness etc. Recently 

the need of non-invasive, more effective early detection systems has led to the 

development of new medical devices that measure the force feedback during 

instrumented palpation. Recording the force feedback has various advantages such as 

allowing the analysis of tissue stiffness evolution over a certain period of time thus 

obtaining a quantitative diagnosis.  Although this represents a significant progress over 

manual palpation, determining the size and depth of nodules in soft tissues still remains 
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challenging. Several techniques have been proposed to address this problem, however, 

they require a priori knowledge of the mechanical properties of the tissues (e.g. healthy 

and cancerous), the geometry of the organ and either the size or the depth of the inclusion. 

A further constraint of these techniques is that they are limited to cylindrical nodules.  

This chapter presents a novel methodology using sweeping palpation that eliminates three 

of the limitations from most existing methods: the shape of the nodule can be unknown 

and even arbitrary and it is not necessary to know the size or depth of the nodule a priori. 

It is hoped that such methodology can be used to detect a wide range of diseases such as 

prostate or breast cancer. The chapter is organized as follows: first the existing 

methodologies in the literature are reviewed; the proposed methodology and validation 

procedure are then presented; finally the results of the numerical and experimental 

validation are shown. 

3.2 2D computational models 

A 2D in silico model is used to demonstrate the feasibility of the proposed methodology, 

as shown in Fig. 3-1(a). It consists of a 100mm sided square domain with a cancerous 

nodule located inside. Indentation is performed at the upper surface at 40 equally spaced 

locations, with depths of 1, 5 and 10mm, respectively. It should be noted here that the 

number of indentations along the surface and the depths of indentation would be 

constrained in the clinical framework. A high number of indentation points would result 

in long, uncomfortable and expensive procedures. Similarly very deep indentations would 

result in discomfort or pain for the patient or even damage to the organ. Therefore a 

balance needs to be found between the optimal parameters for the test (i.e. deep 

indentation for low signal to noise ratio) and the limitations imposed by patient discomfort 

(i.e. duration of the test).  The 10mm diameter probe used for performing such indentation 

is considered as a rigid body. A vertical displacement is applied on the indenter and the 

force feedback is recorded. The contact between the indenter and the tissue is considered 
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frictionless [109]. The bottom of the model is constrained to mimic an ex vivo experiment 

where the tissue sample lies on a flat testing platform [112, 121]. 

Similar to most biological tissues, prostate tissue exhibits certain viscoelasticity [40, 44], 

where its apparent stiffness depends on the loading rate [42, 44]. However, little data can 

be found in the literature since characterization of such rate dependent properties is rather 

difficult both in-vivo (due to patient discomfort, ethical requirements, patient specific 

anatomical features etc.) and ex-vivo (due to dehydration, cell death etc.). Compared to 

other biological tissues characterization of the mechanical properties of the prostate 

presents certain challenges. If the characterization is to be done in-vivo the rectal wall is 

a barrier if the transrectal approach is used. In the case of the transurethral approach the 

urethra would stop the direct testing of the tissue. Therefore invasive procedures where 

tissue is cut or destroyed would be required to directly test the tissue. However, they 

would represent a risk for the patient due to complications such as infections or urine 

retention after the procedure and therefore should be avoided.  Nevertheless, under certain 

loading conditions, the mechanical behaviour can be considered elastic and modelled 

using an equivalent modulus, especially when the strain rate (or frequency in dynamic 

characterization) is very low or very high. In those cases the viscous component becomes 

negligible and the behaviour can be modelled using either so-called long-term or 

instantaneous modulus. 
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Figure 3-1. The 2D plain strain computational model. Plain strain is chosen for the 2D models 

since they represent better the experiments often done to characterize anomalies within soft tissues 

using palpation [43, 111]. 

 

This approach, which simplifies the experiments and simulations, has been widely used 

in the literature [112, 140]. However, some studies have shown that for large strains the 

elastic behaviour of the prostate may no longer be linear [13], which has also been 

modelled for tissue diagnosis purpose [115]. Table 3-1 summarises the values of elastic 

properties of prostatic tissue reported in the literature, where the wide range is due to 

inter-patient variations and different experimental conditions. 

In this chapter, without loss of generality, healthy and cancerous tissues are modelled as 

incompressible homogeneous elastic materials, with Young’s moduli of 20kPa and 

40kPa, respectively. Such values are within the range often published as demonstrated in 

Table 3-1. The elastic behaviour of both tissues is fitted using the Levenberg-Marquardt 

algorithm with a second order Ogden strain energy density shown in Eq. 3-1 and finite 

strains are considered in the model solved in ABAQUS (Dassault Systemes, Vlizy-

Villacoublay, France).  The parameters used are shown in Table 3-2. 

 Ψ =∑
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The material parameters to be fitted are 𝜇𝑖, 𝛼𝑖 and 𝜆1̅̅̅, 𝜆2̅̅ ̅, 𝜆3̅̅ ̅ are the principal stretches. 

Table 3-1. Mechanical properties of the prostatic tissue reported in the literature. 

Young's 

Modulus (kPa) 

Healthy Tissue 

Young's 

Modulus (kPa) 

Cancerous 

Tissue 

Poisson’s 

ratio 

Reference Type of Study 

(C = Computational, 
E= Experimental) 

12 200 0.499 [109] C,E 

30 90 0.495 [140] C 

16±5.7 40±15.9 0.49-0.5 [44] E 

3 19  [110] C,E 

41 135  [42] C,E 

10 ~ 29 11-38  [126] E 

 

Table 3-2. Parameters of the second order model used to model the mechanical behaviour of the 

healthy prostatic tissue and the cancerous nodule. 

Tissue 𝝁𝟏 𝜶𝟏 𝝁𝟐 𝜶𝟐 𝑫𝟏 𝑫𝟐 

Prostate 0.02119 2.244 -0.01120 -1.081 0 0 

Cancerous 

Nodule 

0.04238 2.244 -0.02240 -1.081 0 0 

 

Four different geometries are considered in this study. First a geometry composed of two 

intersecting circles in different diameters is considered as shown in Figs. 3-2(a) and 3-

2(b). This is to model a scenario where tumour nodules appear from two different 

locations or grow around the urethra [141]. Then an arbitrarily shaped tumour is 

considered to test the ability of the method to diagnose diffused tumour [141], as shown 

in Fig. 3-2(c). Additionally an interfacial layer between the nodule and the healthy tissue 

is included, as shown in Fig. 3-2(d), where a solid tumour is surrounded by a mix of 

healthy and cancerous islands. Such a scenario is often found in clinical diagnosis, where 
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it is difficult to draw a clear boundary between healthy and cancerous tissue without 

histopathological analysis. Finally, a rectangular tumour is considered in Fig. 3-2(e) as 

scenario comparable to the 3D one used for validation. 

 

Figure 3-2. Different nodule topologies are considered to test the effectiveness of the proposed 

methodology. (a) and (b) are built from intersecting circle in different sizes; (c) tumour nodule is 

in a random shape; (d) represents a circular nodule of cancerous tissue surrounded by regions 

where the boundary between cancerous and healthy tissue is unclear; and (e) is an example 

comparable to the 3D validation test. 

 

3.3 Material characterization and validation 

A phantom made of gelatine which mechanically mimics the prostatic tissue is used to 

validate the proposed diagnostic framework. This material has been widely used for 

prostate surgery training [142] and ultrasound diagnosis [143] because of its similar 

mechanical properties to the prostatic tissue. To make the phantom a fixed amount of 

gelatine powder (36g) is mixed with different volumes of boiling water (e.g. 250ml for 

cancerous sample and 300ml for healthy) in a container. Red food colorant is used to dye 

the cancerous nodule to make it visible within the ‘healthy’ gelatine in light yellow. The 

mix is then slowly stirred to avoid bubble formation until it becomes transparent and 

homogeneous. After cooling to room temperature the samples are stored at 4°C for 18-20 
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hours. They are then removed from the container and cut into samples with dimensions 

of 100(length) × 31(height) × 60(width) mm. Before testing, the phantoms are left for 90 

minutes to reach room temperature. To fabricate the phantom with the embedded tumour 

nodule a first layer of gelatine is created following the procedure described above. Before 

the gelatine completely solidifies, a cancerous nodule (20 mm long, 12 mm wide and 12 

mm height) is placed in the middle of the healthy sample. The cancer volume results in 

2880 mm3 which is within the range of  nodule volume often found in prostate cancer 

patients[144]. It should be noted here that tumour shape is chosen so that it is relatively 

simple to manufacture and measure its volume so that it can be later modelled for 

numerical validation. The container is filled with liquid gelatine solution (i.e. healthy 

sample) and left to cool to room temperature. The surface of the cancerous nodule is 

located 10mm below the surface of the sample as tumours are often found near the 

posterior surface of the prostate[144]. Fig. 3-3(a) shows the positions where the samples 

are tested with an indentation system - Mach-1 V500css (Biomomentum Inc, Laval, 

Canada). Figs. 3-3(b) and 3-3(c) show the phantom where the ‘cancerous’ nodule (in red) 

is placed inside the ‘healthy tissue’. 

A 10mm diameter hemispherical indenter as shown in Fig. 3-3 (a) is used to indent the 

phantom sequentially at each position (10, 30 and 50mm from the side), with three 

different indentation depths (i.e. 2, 4 and 6mm), respectively. The force feedback during 

a 150s relaxation test is used to characterize the long term modulus. It should be noted 

here that the number of indentation sites and the depths of indentation are chosen within 

certain constraints. The indentation sites must be separated using a sufficient distance so 

that the influence of inelastic effects such plasticity or long term viscoelastic behaviours, 

which are not considered in the finite element model, are negligible. In clinical practice 

this criterion would also reduce the testing time which would help to reduce patient 

discomfort and testing costs. The range of useful indentation depths is constrained by the 
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ability of the system to detect contact reliably with an adequate signal to noise ratio for 

small depths of indentation and by patient discomfort for large depths of indentation. In 

the case of this particular phantom a further constraint is that no damage can be caused 

so that the mechanical properties remain constant. 

 

Figure 3-3. The tissue phantom and experimental set up. (a) The locations where palpation is 

performed. (b) The computational model of the palpation test with a circular nodule inside. A 

convergent mesh with over 300000 linear tetrahedral elements with hybrid formulation were used. 

(c) The nodule inside the phantom and (d) a view of the entire phantom. 

 

Symmetry boundary conditions are considered and only half of the sample is modelled to 

reduce both the experimental and computational effort as shown in Fig. 3-3(b). In total 9 

tests (i.e. using three different depths and three different indentation sites) are considered 

to fit the mechanical behaviour of the phantom. The indentation test is modelled with 

Abaqus (Dassault Systemes, Vlizy Villacoublay, France) using a material considered 

incompressible and neo-Hookean, for both mechanical characterization of gelatine and 

the proposed diagnostic framework. Because of material incompressibility, elements with 

hybrid formulation, where the hydrostatic pressure is also considered as a variable, are 

used. The material parameter  C1 that characterizes the incompressible neo-Hookean 
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material model (Eq. 3-1) is obtained from the minimization problem in Eq. 3-2. which is 

solved using Levenberg-Marquardt’s algorithm [145]. 

 Ψ = 𝐶1(𝐼 ̅ − 3) (3-1) 

 

 𝑚𝑖𝑛 ∑ ∑ (𝐹𝑝𝑜𝑠,𝑑𝑒𝑝𝑡ℎ 𝐹𝐸𝐴(𝐶1) − 𝐹
𝑝𝑜𝑠,𝑑𝑒𝑝𝑡ℎ 𝐸𝑥𝑝)

2
𝑚

𝑝𝑜𝑠=1

𝑛

𝑑𝑒𝑝𝑡ℎ=1

 (3-2) 

 

Levenberg-Marquardt’s algorithm is a non-linear least-squares method often used to fit 

experimental data to a given analytical equation. The algorithm is an improvement of the 

well-known Gauss-Newton non-linear least squares estimator shown in Eq. 3-3. 

 𝑥𝑛+1 = 𝑥𝑛 + (𝐽𝑓
𝑇 ⋅ 𝐽𝑓)

−1
⋅ 𝐽𝑓
𝑇 ⋅ (𝑦𝑖 − 𝑓(𝑦𝑖, 𝑥))  (3-3) 

 

where 𝐽𝑓 is the Jacobian of the analytical function to be fitted, 𝑓(𝑦𝑖, 𝑥). The superscript T 

denotes the matrix transpose, yi  denotes each experimental observation and x is the 

optimal set of parameters to be found. To improve the algorithm’s efficiency a 

modification is introduced so that larger steps are taken in the directions with lower 

gradients as shown in Eq. 3-4. 

 𝑥𝑛+1 = 𝑥𝑛 + (𝐽𝑓
𝑇 ⋅ 𝐽𝑓 + 𝜆 ⋅ 𝑑𝑖𝑎𝑔(𝐽𝑓

𝑇 ⋅ 𝐽𝑓))
−1
⋅ 𝐽𝑓
𝑇 ⋅ (𝑦𝑖 − 𝑓(𝑦𝑖, 𝑥)) (3-5) 

 

where 𝜆 is the damping parameters that has to be chosen specifically for each problem 

and, in this application, it is fixed at 10-6 which is proved to be both accurate and fast in 

benchmark tests. 

3.4 Nodule characterization: decoupling the size and depth  

The methodology proposed to determine the size and depth of a nodule is described in 

this section. It consists of two stages: nodule locating and nodule identification. To 

determine the location of the nodule it has been previously proposed [43, 109] to find the 
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location where the difference between the force feedback from the palpation and the force 

feedback from a healthy sample calculated, e.g. from a computational model, is 

maximum. It should be noted that this procedure only requires the force feedback at a 

single depth of indentation. However, as mentioned in the previous section, the force 

feedback would be recorded at multiple depths of indentation to allow, as it will be later 

explained, to determine the size and depth of a nodule. Although the force feedback 

curves are similar when far away from the nodule they become significantly different 

(leading to different curvature of the fitted force feedback curve) close to the nodule 

location, as shown in Fig. 3-4. It is hypothesized and later validated that such variations 

in the curvature of the force feedback profile can be affected by both nodule size and 

depth, thus making the diagnosis possible. 

 

Figure 3-4. Healthy and cancerous force feedback profiles obtained during the palpation 

experiment using a 10mm deep indentation.  The point where the difference is larger is used to 

locate the tumour. 

 

 

Once the location of the nodule (i.e. along horizontal axis) is known the nodule 

characterization process starts. The proposed methodology consists of reducing the space 

of possible solutions until the solution is found. The first limitation to the solution space 

is the geometry of the sample (i.e. a spherical nodule cannot have a larger radius than the 
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organ itself), which is self-explanatory. The solution space is further reduced using the 

second derivative of the force profile obtained from computationally probing a set of 

benchmark samples at multiple indentations depths. Such in silico tests are carried out 

with circular nodules of different sizes located at different depths where the nodule is 

located. In each test the force feedback is recorded at different indentation depths (i.e. 1, 

5 and 10mm), respectively. The second derivative (with respect to the indentation 

positions, i.e. horizontal axis) of the force feedback is then calculated from the force 

feedback data fitted using smoothing splines. The value of the second derivative at the 

position where the nodule is located (i.e. maximum force feedback) is plotted against the 

diameter of the nodule for different nodule depths at different indentation depths. Finally, 

the experimental value of the second derivative where the tumour is located is plotted 

against indentation depth in in silico models. The intersection points are then plotted in a 

depth-diameter diagram where that intersection indicates the depth and size of the nodule. 

For arbitrary nodule shapes, the proposed algorithm identifies the equivalent depth and 

radius of the circle (in 2D) or sphere (in 3D) that best represents the nodule (in terms of 

having equivalent force feedback). The equivalent radius of the nodule in 3D 

(𝑅𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡
3𝐷 ) and 2D (𝑅𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

2𝐷 ) are defined as 

 𝑅𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡
3𝐷 = √

3 ⋅ 𝑉𝑛𝑜𝑑𝑢𝑙𝑒
4 ⋅ 𝜋

3

 (3-3) 

 𝑅𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡
2𝐷 = √

𝐴𝑛𝑜𝑑𝑢𝑙𝑒
𝜋

2

 (3-4) 

where 𝑉𝑛𝑜𝑑𝑢𝑙𝑒 and 𝐴𝑛𝑜𝑑𝑢𝑙𝑒denote the nodule’s volume and area respectively.  Ideally the 

solution region would be a single point as shown in Fig. 3-5 (a). However, due to irregular 

geometries of the cancerous nodule and the prostate model, as well as the noise from 

computational and experimental tests, the possible solution space may not converge to a 

single point. In that case only an area of possible solutions (i.e. a few possible 

combinations of size and depth of the cancerous nodule) can be identified, as illustrated 
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in Fig. 3-5(b). Therefore instead of a single solution a few feasible solutions can be 

obtained using the proposed method. The proposed two-step diagnosis algorithm is 

summarized in Fig. 3-6.  

 

 

Figure 3-5. (a) Venn’s diagram of the procedure to identify the depth and size of the proposed 

methodology. In this case a single point is found as a solution. (b) When the areas of plausible 

solutions do not converge into a single point it is considered that the solution belongs to an area 

close to the three circles.  
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Figure 3-6. Schematic of the methodology proposed to identify depth and size of nodules in soft 

tissues. In the first phase the nodule is located comparing the force feedback with a computational 

one where the sample is considered to be healthy. The identification phase requires performing 

sweeping palpation at different depths of indentation and obtaining the second derivatives of the 

force feedback curves. The second derivative at the position where the nodule was located is then 

plotted against a set of benchmark simulations with nodules of different sizes located at different 

depths. The points where these curves intersect, which are represented by the symbols ■,▲ and● 

define a new set of curves that plotted in a Diameter-Depth graph allow to identify the size and 

depth of the nodule in the soft tissue. 
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3.5 Quantitative characterization of cancerous nodules: 2D analysis 

The aim of this section is twofold. It is firstly shown that a single depth measurement is 

insufficient to determine the size and depth of a cancerous nodule in soft tissue. Then an 

example that demonstrates the proposed methodology to estimate the depth and size of a 

nodule without a priori knowledge of nodule location and geometry is presented.  

One of the major challenges to identify the size and depth of nodules in soft tissue is that 

small nodules close to the surface subject to palpation would give similar force feedback 

to that of bigger ones located deeper inside. A parametric study with circular tumours 

with the maximum diameter allowable at each depth as shown in Figs. 3-7(a) and 3-7(b) 

is conducted to illustrate the coupling effect of size and depth (i.e. force feedback affected 

by both size and depth of the nodule). Such extreme scenarios allow to build the area of 

possible solutions for the force feedback. Fig. 3-7(c) shows the maximum force feedback 

‘envelope’ obtained from such simulations for different combinations of tumour depth 

and size subject to indentations depth of 1 and 10 mm on top of the tumour. For any given 

force feedback the solution of the nodule depth and size is not unique- different 

combinations of the depth and size exist that result in the same force feedback as 

illustrated in Fig. 3-7. Therefore it is not possible to know the size and depth of the nodule 

from a measurement using just a single indentation depth. These results highlight a critical 

problem associated with such measurements, especially when the ratio between nodule 

diameter and nodule depth is low. Large tumours located deep into the prostate, whose 

progression could be faster and therefore have a worse prognosis, could be identified as 

a smaller, superficial, more benign tumour. This could lead to overestimate, or even 

worse, underestimate nodule size and therefore provide an inadequate diagnosis and 

treatment. 
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Figure 3-7. The limitations diagnosis based on analysis of force feedback from a single 

indentation are illustrated here. (a) Example of nodules used to determine the region of feasible 

force feedback in the palpation test. The possible combinations of nodule depth and sizes are 

represented in (b) and the arrows show the path of Nodule Depth and Diameter follow to build 

the aforementioned envelope. (c) The envelope of reaction forces for a depth of indentation of 1 

mm and 10 mm is shown here. For any given force an infinite number of combinations of nodule 

diameter and depth exist, as shown in segment D, which result in the same force feedback. 

 

Two examples are shown here to demonstrate the proposed methodology as shown in Fig. 

3-8. First the location is identified at the point where the difference between measured 

force feedback and the force feedback calculated in a completely healthy in silico model 

is maximum. The second derivative of the force feedback is calculated and plotted against 

the second derivative of the force feedback calculated in silico for the benchmark tests as 

shown in Figs. 3-9 (a)-(c). Figs. 3-9(d) and 3-9(e) show the results of two examples that 

contain circular tumours in diameters of 16mm and 20mm located at 30 and 60mm depth, 
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respectively. It can be seen that all depth-size curves intersect at one point which indicates 

the predicted depth and size of the nodule.  

 

 

 

 

Figure 3-8. Two different scenarios are considered in this example with a 16mm diameter nodule 

located at 30 mm from the surface (a) and a 30 mm diameter one located at 50 mm from the 

surface (b). 
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Figure 3-9. Diameter of the tumour against the second derivative of the force profile at the centre 

of the tumour for a depth of indentation of 1 mm (a), 5 mm (b) and 10 mm (c). The different 

depths of the tumour are 30, 35, 40, 45, 50 and 60 mm. The point of intersection is (30, 16). The 

diameter of the tumour was 16 mm and the depth 30 mm. (d). The point of intersection is (50, 

30). The diameter of the tumour was 30mm and the depth 50 mm (e).  
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3.6 Feasibility study – tumour geometry 

In this section the proposed methodology to determine the depth and size of cancerous 

nodules in soft tissue is applied to tumours with different, even irregular, geometries 

which are more relevant to what can be found in clinical cases. Figs. 3-10 (a) and 3-10 

(b) show the results for the identification of nodules with shapes similar to those 

encountered in the prostate close to the urethra. The area is estimated with an error below 

25% and the error drops below 13% if the equivalent radius of the tumour is considered 

to evaluate the results defined in Eq. (3-2). It is worth highlighting that the estimated 

depth is close to the centre of the circular inclusions. In Fig. 3-10(c) a nodule with an 

irregular shape, as often found in prostate cancer, is presented.  In this example the area 

is estimated with a 10.23% error, demonstrating the applicability of the proposed 

methodology in diagnosis without a priori knowledge of the tumour geometry. In Fig. 3-

10(d), another scenario is considered where the tumour boundary is not well defined. The 

tumour area and depth are underestimated in this case. However, such a scenario is 

uncommon in prostate cancer [141]. Finally, a rectangular nodule is considered and the 

error in estimation is 12.58%. The solution for these cases is obtained using three different 

depths of indentation: 1, 5 and 10mm to show how they intersect at a single point. 

Literature shows that most tumours have an irregular shape due to the ‘stochastic’ 

distribution and growing patterns, which has been attributed to the complex topology of 

the stroma in the gland of prostate [141]. It should be noted here that the proposed 

algorithm identifies depth and radius of the circle that best represents the nodule inside 

the tissue. The aim of this methodology is not to recognize multiple nodules, instead it 

rather aims at early diagnosis which often starts with the appearance of a single nodule. 

Motivated by the work presented in this chapter, methods to quantify the volume fraction 

of cancerous tissue will be further developed and presented in Chapters 4 and 5.  
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Figure 3-10. Summary of the 2D shapes used to test the proposed methodology and the estimated 

nodule depths and sizes. Convergent meshes were used with over 40000 linear quadrilateral and 

triangular elements to model the different scenarios. It should be noted that the volume of the 

nodule does not seem to play a significant role in the accuracy of the predictions. 
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3.7 Experimental Validation 

In this section the methodology is validated with a gelatine phantom that mimics the 

mechanical properties of healthy and cancerous tissue. First the mechanical properties of 

the phantom which are required for the numerical models are obtained. Figs. 3-11 (a) and 

(b) show the force feedback obtained from the experimental palpation used to fit the neo-

Hookean model which results in a Young’s modulus of 28.1 𝑘𝑃𝑎 and 39.5 𝑘𝑃𝑎 for  the 

healthy and cancerous tissues, respectively. The parameters estimated with the 

methodology aforementioned and the errors are shown in Table 3-2. It should be noted 

that the maximum fitting errors (16.7% and 18.45% for healthy and cancer respectively) 

occur in both cases at the middle point of the sample subject to the lowest depth of 

indentation. The influence of finding the contact in low depth indentations and especially 

in soft materials should be noted here. The deformation and force feedback during the 

contact-finding step may be comparable to the total deformation thus leading to a source 

of error.  

Once the mechanical properties of the phantom are known, the process to identify the 

nodule size and depth begins. The force feedback of the sweeping palpation, where the 

cancerous nodule (20×12×12 mm located at a depth of 10 mm), is shown in Fig. 3-11(c) 

and compared with the healthy sample. It is necessary to note that the force feedback for 

the 2mm indentation is slightly higher for the healthy than for the cancer sample. This, as 

aforementioned, is attributed to the difficulties of robustly finding the contact in the 

indentation procedure. Such effect is less noticeable for cases using deeper indentation 

depths because the force feedback caused by the deformation is significantly larger than 

the forces recorded during the contact-finding step. This would be of critical relevance in 

clinical diagnosis and imposes a further constraint to the methodologies used to diagnose, 

especially during surgery when blood clots or other debris may complicate finding a 

robust contact detection. The next step to identify the nodule depth and size is to fit the 
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force feedback from the sweeping indentation with a smoothing spline and obtain the 

second derivative.  

 

Figure 3-11. Results of the sweeping palpation in the healthy (a) and cancerous (b) samples and 

the fitted neo-Hookean model. Comparison of the healthy sample and the sample with a nodule 

embedded (c).1  

 

Table 3-3. Results of material model characterization for the healthy and cancerous material 

phantoms when the units used are Newtons for force and millimeters for length and E is the 

Young’s modulus 

 C1 Max Error Min Error Mean Error E (kPa) 

Healthy 4.6898e-3 16.7% 0.6% 6.82% 28.1 

Cancer 6.5872e-3 18.45% 0.22% 6.65% 39.5 

                                                 
1 The palpation experiment shown here was performed by Mr Nasim Mammadov as part of his 4 th Year 

undergraduate project, of which I am a co-supervisor. I designed the experiments so that the results were 

reproducible in silico. 
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By comparing the healthy and cancerous force feedback from the sweeping palpation, the 

tumour nodule is calculated to be in position 3 as shown in Fig. 3-11 (c). The next step 

consists of performing multiple in silico sweeping indentation tests with spherical nodules 

of different sizes located in position 3 (i.e. the centre of the sample) at different depths 

(in this example  4, 8, 9, 10, 11 and 12 mm nodule depths are considered). The second 

derivative of the computed force feedback is then plotted in Figs. 3-12 (a), (b) and (c) for 

depths of indentation 2, 4 and 6mm respectively.  It should be noted here that the number 

of nodule depths considered for the benchmark tests is arbitrary. Increasing the number 

of depths chosen would result in an increased resolution of the diameter-depth figures 

(e.g. Figs 3.12 (a) and 3.12 (b)). However, the associated computational cost would 

significantly increase. Regarding the number of indentation depth used a similar situation 

is found. Increasing the number of indentation depths would result in improved accuracy 

with increased computation time. Therefore it is necessary to find a balance between 

accuracy and the applicability of the method in clinical practice where time constraints 

are imposed, among other, by the cost of examination. In this particular application using 

6 nodule depths and 3 depths of indentation was enough to define the solution area.  

In contrast to the results obtained with the spherical tumours in Section 3.5, the lines in 

the depth-radius figures do not intersect at one point. In this example two possible solution 

regions, highlighted in grey circles, are obtained where the three curves get closer as seen 

in Fig. 3-12(d). An average of such solutions is used as the prediction of the nodule depth 

and size. This leads to an estimated radius of 9.05mm, depth of 10mm, and volume of 

3115.1 mm3. For comparison the original volume of the ‘cancerous’ gelatine is 2880 mm3 

therefore the error is 8.16%.  It is important to remark some sources of uncertainty in 

numerical modelling. To reduce the computational cost, only a few benchmark scenarios 

(i.e. different depths and sizes of circular tumours) are modelled, and the results in the 2nd 

derivative-radius graphs interpolated linearly. Therefore, certain sensitivity in the 
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obtained depth and size is expected. For instance, at depth 11mm the three lines also get 

close. If that point is used, i.e. nodule radius of 10 mm, the nodule volume of 4188 mm3 

would be overestimated by 45%. If the lines do not intersect in a single point or do not 

intersect, the solution point is chosen as that point where the curves in the nodule radius-

nodule depth diagram become closer. When multiple solution points are identified then 

the average of such solutions could be considered as the predicted nodule depth and size. 
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Figure 3-12. (a), (b) and (c) show the results for the second derivative obtained with 

computational simulations where nodules of different sizes are located at different depths (4, 8, 

9, 10, 11 and 12 mm). (d) and (e) show the nodule depth and size identification in the real and 

simulated model respectively. It should be noted here that the prediction areas should be 

considered areas that provide the approximate depth and size of the nodule. The accuracy of the 

predictions will depend on a number of factors including the uncertainty during the 

characterization of the mechanical properties, the spatial resolution of the indentation procedure, 

which depends mainly on the number of indentations performed on the surface of the sample, and 

the number of computational benchmark tests used. As mentioned in section 3.2. the depths of 

indentation used are arbitrary; however it is limited by the signal to noise ratio for low depths of 

indentation and by patient discomfort and pain management for large depths of indentation. 

 

To summarise, different sources of uncertainty can be identified in the examples 

presented here. First, the inaccuracy in finding the contact point (i.e. when the indenter 
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‘feels’ the contact) leads to, to a certain extent, inaccurate measurement of the indentation 

depth. Secondly, in the in silico model the contact is considered frictionless, however it 

has been showed that friction between the indenter and the tissue influences significantly 

the force feedback in indentation experiments [146]. Therefore this parameter should be 

examined on a patient-to-patient basis. Thirdly, in the validation experiment, tumour 

location is not perfectly accurate due to the nature of how the phantom is made. 

Furthermore, as aforementioned the limited number of indentation sites may introduce 

error since the fitting of the force feedback data becomes worse conditioned. Reducing 

the size of the indenter could be a possible solution but in that case other problems may 

appear such as rupture of the tissue/phantom or localized stress that reduces the testing 

area therefore making deeper nodules undetectable. Lastly, compared to previous work 

in nodule characterization [43, 109, 121], the ratio between the cancerous and healthy 

stiffness considered in this paper is lower, thus making the diagnosis even more 

challenging.  

To eliminate the sources of error that the experimental set up introduces, a computational 

model of the sweeping palpation test is carried out to analyse the accuracy of the proposed 

methodology in a best case scenario without any of the uncertainty sources 

aforementioned, i.e. the indentation depth and the mechanical properties of the in silico 

phantom are obviously the same as in the computational models used in the benchmark 

tests.  The identification results of such in silico model are shown in Fig. 3-12(e). A depth 

of 11mm is obtained for an equivalent radius of 8.6733mm which leads to a volume of 

2733 𝑚𝑚3 and therefore an error of 5.1%. As in the previous case the reduced number 

of benchmark tests considered causes a relatively low number of points in the nodule 

radius- nodule depth graph. Therefore the resolution of the method is reduced. If the 

solution is considered to be depth 11.5 mm and radius 9.05 mm the estimated volume 

would be 3104 𝑚𝑚3 with an error of 7.78%.  
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3.8 Concluding remarks 

Literature shows the need of a diagnostic algorithm to determine the depth and size of 

hard nodules in soft tissues using instrumented palpation. A methodology based on 

sweeping indentation and finite element analysis to characterize the size and depth of 

cancerous nodules without a priori knowledge of their topology was proposed in this 

Chapter. This methodology could therefore be used as a diagnostic tool in a great variety 

of tissues such as breast, prostate, liver, kidney etc., not only useful for primary diagnosis 

but also capable of providing real-time solution to the nodule characterization during 

surgical procedures.  The methodology is validated using gelatine phantoms and both the 

size and depth of the nodule are estimated simultaneously. The methodology proposed 

here has certain limitations in its current form. First it is necessary to know the mechanical 

properties of healthy and cancerous tissues. Furthermore the magnitude of the errors 

caused by the uncertainties in tissue characterization needs further analysis. This can be 

problematic as it is subjected to inter-patient variation, i.e. patient-specificity. It is hoped 

to validate the methodology in-vivo once the instrumented DRE prototype becomes 

available. 
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CHAPTER   4 

Quantitative tissue quality assessment through 

viscoelastic characterization using instrumented 

palpation 
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4.1 Summary 

Qualitative and quantitative analysis of the elastic properties of soft tissue have been 

proven useful in clinical diagnosis as discussed in Chapters 2 and 3. However, the 

behaviour of most biological tissues has a viscous component which may change in the 

presence of various pathophysiological conditions. In this chapter a framework based on 

dynamic palpation for characterizing tissue viscoelastic properties as a diagnostic index 

of its pathological condition is presented. Compared to other methods that require 

parameters from different viscoelastic material models, a set of generalized and simplified 

parameters are adopted for quantitative tissue assessment.  One of the main advantages 

of this methodology is it is less influenced by the depth of the cancerous nodule compared 
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to those methodologies based on elastic indexes. Therefore, it is not required to have a 

priori knowledge of tissue microstructure from e.g. histology. The methodology and its 

sensitivity are explored using 2D prostate models. The proposed method is then applied 

to a 3D model obtained from an MRI scan of an excised prostate. It is expected that this 

methodology can be applied to diagnose a wide range of diseases which influence the 

viscoelastic properties such as multiple sclerosis, cancer and liver fibrosis. 

4.2 Viscoelastic modelling and characterization  

The Zener model is one of the simplest rheological models for characterizing both creep 

and stress relaxation of viscoelastic materials and is adopted here to demonstrate the use 

of time constants in characterizing rate-dependent behaviour for quantitative tissue 

diagnostics. The model consists of a spring in parallel with a spring-dashpot series couple 

[51, 147], and its stress (𝜎)-strain(𝜖) relationship can be expressed as 

 
𝑑𝜎

𝐸2 ⋅ 𝑑𝑡
+
𝜎

𝜂
= (1 +

𝐸1
𝐸2
) ⋅
𝑑𝜖

𝑑𝑡
+
𝐸1
𝜂
⋅ 𝜖 (4-6) 

where 𝐸1 denotes the stiffness of the single spring, and  𝐸2 and 𝜂 the stiffness and damping 

coefficients of the spring-dashpot couple, respectively. When the system is subjected to 

a uniaxial dynamic force F=sin(w·t), the stress σ is sin(w·t)/A, where A is the area, w the 

angular frequency and t the time. Eq. (4-1) then reads as 

 𝑐 ⋅ cos(𝑤 ⋅ 𝑡) + 𝑏 ⋅ sin(𝑤 ⋅ 𝑡) = 𝑠 ⋅
𝑑𝜖

𝑑𝑡
+ 𝑎 ⋅ 𝜖  (4-7) 

To simplify the notation: a=E1/η; b=1/(η·A); c=w/A·E2 and s=1+E1/E2. The solution of 

Eq. (4-2) becomes: 

 𝜖(𝑡) = 𝐾1 ⋅ 𝑒
−𝐸1⋅𝑡
𝜂⋅𝑠 + 𝑃 ⋅ sin(𝑤 ⋅ 𝑡) + 𝑄 ⋅ cos (𝑤 ⋅ 𝑡) (4-8) 

where 
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𝑃 =
𝑐 ⋅ 𝑠 ⋅ 𝑤 + 𝑏 ⋅ 𝑎

𝑎2 + 𝑠2 ⋅ 𝑤2
                          𝑄 =

𝑎 ⋅ 𝑐 − 𝑏 ⋅ 𝑠 ⋅ 𝑤

𝑎2 + 𝑠2 ⋅ 𝑤2
 

And K1 is to be obtained from initial conditions. It is important to note that if a dynamic 

displacement is used as the input, then the resulting differential equation is symmetrical, 

i.e. the typology of Eq. (4-2) is the same except the values of a, b, c and s therefore the 

solution of stress to a relaxation test will be of the same form as Eq. (4-3). 

Using Prony series, the transfer function of a viscoelastic material can be described as: 

𝜎(𝑡) = ∫ 𝐺(𝑡 − 𝜏) ⋅
𝑑𝑢(𝜏)

𝑑𝜏
⋅ 𝑑𝜏

𝑡

0

 
(4-9) 

𝐺(𝑡) = 1 −∑𝐷𝑖 ⋅ (1 − 𝑒
−
𝑡
𝜏𝑖)

𝑛

𝑖=1

  (4-10) 

which indicate that, to describe the behaviour of a viscoelastic material, it is necessary to 

know the stress history.  

The mechanical properties of prostatic tissue are known to change in the presence of 

benign prostatic hyperplasia (BPH) and cancer [13]. For the sake of simplicity, 

mechanical properties of normal prostatic and cancerous tissue obtained from stress 

relaxation tests by Hoyt et al.[44] are adopted in this chapter. The relaxation curve is fitted 

using normalized Prony series as shown in Fig. 4-1, using least squares approximation 

with a sufficient number of points based on the Kelvin Voigt Fractional Derivative 

(KVFD) model [44]. The least number of terms in Eq. (4-10) to adequately fit the data is 

found to be two; using a single term only allows fitting to either short or long time but 

not both.  Table 4-1 shows the corresponding viscoelastic parameters, where 𝐷𝑖 and 𝜏𝑖 

are the constants to be determined in Eq. (4-10).  
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Figure 4-1. Prony series approximation of the normalized stress relaxation obtained from the 

model [44], using one or two terms.  It can be observed that results using two terms present better 

fitting for both short and long term behaviours simultaneously. 

 

 

Table 4-1. Material parameters for cancerous and healthy tissues fitted using Prony series. D1/τ1 

are related to the short-time behaviour and D2/τ2 to the long-term. 

 KVFD model [44] Prony Series (Fitted) 

 𝜂 (𝑘𝑃𝑎 ∙ 𝑠𝛼) 𝛼 𝐷1 𝐷2 𝜏1 (s) 𝜏2 (s) 

Healthy 8.7 ± 3.4 0.22 ± 0.04 0.4432 0.2182 13.87 187.6 

Cancer 3.6 ± 1.3 0.23 ± 0.03 0.63337 0.16144 5.4981 140.63 

 

Dynamic characterization of tissue viscoelasticity is usually performed by constructing 

phase and amplitude diagrams with respect to a range of frequencies and obtaining the 

parameters using a certain viscoelastic model [51, 148].  Alternatively, the storage and 
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loss moduli that relate to the elastic and viscoelastic components can also be obtained in 

the same way [143, 149].  

In its simplest form, mechanical palpation involves imposing displacement as an input 

from an indenter and measuring the corresponding reaction force. Without loss of 

generality, a sinusoidal displacement with a compressive mean position is chosen so that 

separation between tissue and indenter can be minimized. A smoothed mean value of the 

force signal f(t) is obtained using a weighted local regression algorithm (LOESS) [150]. 

By fitting f with a series of exponential functions as described below, a set of parameters, 

i.e. ai, ti, bi, can be obtained. 

 

 

𝑓(𝑡) = ∑(𝑎𝑛 ⋅ 𝑒
−
𝑡
𝑡𝑛 + 𝑏𝑛) + 𝑎𝑖 ⋅ 𝑒

−
𝑡
𝑡𝑖 + 𝑏𝑖 + ∑ (𝑎𝑛 ⋅ 𝑒

−
𝑡
𝑡𝑛 + 𝑏𝑛)

𝑁

𝑛=𝑖+1

𝑖−1

𝑛=0

 (4-11) 

  

 

The parameters ‘a’ and ‘b’ are related to the material elasticity; b, in particular, being an 

index for the long-term elastic modulus. It should be mentioned here that the duration of 

palpation is critical in determining the reduced set of parameters. From Eq. (4-6) it can 

be seen that, for a given time of palpation, a specific time constant (i.e. ti) will 

predominantly influence the viscous behaviour of the material. Time parameters 

significantly higher than ti (i.e. n≥i+1) can be considered constants since their behaviours 

over short testing time are indistinguishable from an instantaneous modulus. On the other 

hand, smaller time parameters (i.e. n≤i-1) will make the exponential term tend to unity 

which means those terms will be included in the behaviour described by the long-term 

modulus bi. In both cases, b becomes an important index for apparent elasticity of the 

tissue. 

𝑛 = 𝑖 

𝑛 ≥ 𝑖 − 1 𝑛 ≤ 𝑖 − 1 
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A 1D model is created first to conduct theoretical analysis that allows a better 

understanding of tissue viscoelasticity in both transient and steady state. A sinusoidal 

displacement is applied at one end of the model, which is fully fixed at the other.  The 

cross-sectional area is A, Young’s modulus E and the length L. For the sake of simplicity, 

it is assumed in this section that the viscoelasticity of prostatic tissue can be modelled by 

a Prony series with one time constant (𝜏1), which after normalization is given by: 

 𝐸(𝑡) = 1 − 𝐸1 ⋅ exp (−
𝑡

𝜏1
)    (4-12) 

where E1 is the fraction of stiffness lost after complete relaxation. When subjected to a 

certain displacement, the reaction force is described as 

  

      𝐹(𝑡) =
𝐴

𝐿
⋅ ∫ (1 − 𝐸1 ⋅ 𝑒

−
𝑡−𝜉
𝜏1 ) ⋅

𝑑(sin(𝑤 ⋅ 𝜉))

𝑑𝜉
⋅ 𝑑𝜉

𝑡

0

=
𝐴

𝐿

(

  
 
sin(𝑤𝑡) −

𝐸1𝜏1𝑤(cos(𝑤𝑡) − 𝑒
−
𝑡
𝜏1 + 𝜏1𝑤𝑠𝑖𝑛(𝑤𝑡))

1 + 𝜏1
2𝑤2

)

  
 

 

          

(4-13) 

Once the steady state is achieved the mechanical behaviour is then governed by two 

oscillatory terms: a sine and a cosine, the latter of which accounts for the phase shift 

between input and output signals. The amplitude of the oscillations in steady state can be 

calculated as: 

 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = √𝜓2 + 𝜉2 

 

  (4-14) 

where 𝜓 and 𝜉are the coefficients of the sine and cosine terms in Eq. (4-8) respectively, 

normalized with respect to E, A and L. The phase shift is calculated as 
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 Δϕ = arctan 
ξ

ψ
 (4-15) 

Finite element models are created to demonstrate the effectiveness of the proposed 

method in quantitative tissue diagnostics. A 2D model representing a cross-section of ex 

vivo prostate sample, which is constrained at the bottom surface, is created first, as shown 

in Fig. 4-4. An indenter with a 10 mm diameter hemispherical tip is modelled as a rigid 

solid, to which a sinusoidal displacement is applied. The prostate palpation is then 

modelled in ABAQUS (Dassault Systemes, Vlizy-Villacoublay, France). The material 

behaviour is adjusted with a second order Ogden strain energy density function to mimic 

a linear viscoelastic material with an elastic modulus of 17 kPa for healthy tissue and 34 

kPa for cancerous tissue. The mesh under the indenter is refined to allow a better solution 

to the contact problem and inertial effects are taken into account using a tissue density of 

1000 kg/m3 [151]. 

A 3D prostate model is also created to provide a more realistic evaluation of the proposed 

methodology. The model is based on a prostate specimen, excised using the laparoscopic 

radical prostatectomy approach, from a patient undergoing surgery for localized prostate 

cancer.2 After removal of the prostate, a 7-Tesla magnetic resonance imaging (MRI) is 

performed on the fresh specimen, where a resolution of 0.31 mm in the sagittal and 

coronal planes and 1.5mm in the axial plane is adopted. In total, 44 images are obtained 

to reconstruct the 3D model using Scan-IP (Simpleware Ltd., Exeter, UK).  

4.3 Finding the limits of dynamic characterization: the clinically significant range 

of testing frequencies 

Clinical tissue diagnostics is a major challenge due to various complex constraints such 

as time, available number of samples, patient discomfort and pathological conditions. 

                                                 
2 This is to acknowledge Dr. Maurits Jansen and Mr. Ross Lennen from the Edinburgh Preclinical Imaging 

magnetic resonance imaging facility at the University of Edinburgh/British Heart Foundation (BHF) Centre 

for Cardiovascular Science, for performing MRI scans on the prostates used in this study. 
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Therefore, it is critical to select the optimal measures (such as phase-shift and/or 

amplitude), and to choose the optimal parameters, such as frequency and number of 

measurement points. The 1D dynamic analysis is carried out using different time 

parameters across the available frequency range in order to identify the optimal range of 

frequency over which a dynamic measurement should be performed. The range of 

frequency starts at 1Hz, since lower values would lead to excessively long examinations. 

The upper limit is determined by those which produce undesirable dynamic behaviour 

and, in the extreme, data loss due to indenter lift-off if the sample is unable to recover 

back to its original shape when the indenter retracts.  

Fig. 4-2 shows the amplitude and phase response diagrams subject to a sinusoidal 

displacement over a range of frequency using various viscoelastic parameters. It can be 

seen in Fig. 4-2(a) that viscous behaviour is negligible at low frequencies and therefore 

the mechanical behaviour of the material becomes rate-independent. Under such 

conditions the behaviour can be characterized using the long-term modulus. Increasing 

the strain rate (frequency) increases the force amplitude and also the apparent stiffness 

until a plateau is reached. Materials with time constants τ in the range of 1 to 10s exhibit 

primarily the instantaneous modulus when subjected to frequencies in excess of 1Hz. The 

range of frequency where viscoelastic behaviour of such materials exhibits is found to be 

between 0.001 and 1 Hz, as shown in Fig. 4-2. Therefore, the identification of the tissues 

which exhibit time constants consistent with the measurements of Hoyt et al. (𝜏𝐻𝑒𝑎𝑙𝑡ℎ𝑦 =

5.49 𝑠  𝑎𝑛𝑑 𝜏𝐶𝑎𝑛𝑐𝑒𝑟 = 13.87𝑠)  would need to be based on their (quasi-)elastic behavior 

since frequencies lower than 1Hz are not clinically practical. Such quasi-elastic behaviour 

can also be observed in the phase lag diagram shown in Fig. 4-2(b), which tends to zero 

in the range of higher frequency (> 1 Hz). To distinguish materials using phase lag their 

time constants should be at least one order magnitude different. More importantly, to 
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observe a noticeable phase shift,  the material needs to have at least one time constant in 

the range of 0.001s to 1s.  

 

Figure 4-2. Mechanical behaviour of tissues with different viscoelastic parameters subjected to 

dynamic palpation. (a) Evolution of relative amplitude with respect to frequency; and (b) phase 

shift between displacement and force signals, where phase lag of prostatic and cancerous tissues 

are also shown.  

 

 

Fig. 4-3 shows the amplitude and phase lag behaviour of the prostatic and cancerous tissue 

when the dynamic behaviour is fitted using a Zener model. The parameters of the Zener 

model are estimated by least squares fitting, using the quasi steady-state solutions to the 

reaction force from input (displacement) frequency at 0.1, 1, 10 and 100Hz for both Prony 

and Zener models. Fitting the results, which are shown in Table 4-2, over a wide range of 

frequencies allows characterization of the dynamic behaviour with a reduced risk of 

overfitting.  

 

 

Figure 4-3. Amplitude and phase shift from Zener model using fitted parameters. 
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Table 4-2: Viscoelastic parameters of the equivalent Zener model. 

Zener Model Parameters (R2>0.99) 

 E1(N/m) E2(N/m) τ(s) η(N/m•s) 

Healthy 1.175 3.6985 4.9538 18.3216 

Cancer 1.2294 1.7239 10.2925 17.7432 

 

The viscoelastic behaviour predicted by the Zener model is similar to that obtained using 

Prony series, where a quasi-elastic response is evident at the extremes of high and low 

frequencies illustrated by constant amplitudes and negligible phase lag. The transition 

between the two states can be considered as the range of frequency in which dynamic 

measurements of viscoelastic properties can be made. The parameter that dictates this 

behaviour is the time constant τ=η/E2, so it can be seen that the ranges that give good 

sensitivity in dynamic palpation run between 0.001 Hz and 0.1Hz for the case of 

amplitude and between 0.001 and 1Hz for the case of phase lag. 

In this particular case, phase shift only becomes significant at frequencies below about 

1Hz using parameters from Hoyt et al. [44]. In that case, unfortunately, the reaction force 

obtained will only depend on the long-term modulus and therefore only elasticity will be 

measured, losing most of the viscous information that the material presents.  

4.4 Sensitivity analysis: size, depth and position 

In a practical application of tissue diagnostics using mechanical probing, it would be 

rather difficult to perform palpation across the entire surface. Therefore a grid of test 

points would normally be used to assess the accessible surface. It is useful to explore the 
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sensitivity of the proposed method with respect to various diagnostic indices, such as 

position, depth and size of the cancerous nodule. 

In this section the proposed method is applied to a 2D model with a representative cross-

section of prostate sample where size, depth and position of the cancerous nodule vary. 

The displacement is applied to the prostate through an indenter, as illustrated in Fig. 4-4, 

where stress distribution at different stages of indentation are plotted, including initial 

contact in Fig. 4-4(b), mean position of indentation in Fig. 4-4(c) and deepest indentation 

point in Fig. 4-4(d).  The stress becomes higher underneath the indenter and around the 

cancerous nodule when the indentation progresses, leading to higher stress over a larger 

area and hence a higher reaction force, although there is a limit of how deep an indentation 

can be made before discomfort occurs. Increasing the mean depth of indentation for a 

given nodule size and position also increases the measured apparent stiffness, b, due to 

the increased strain and also the larger contact area of the indenter. Finally, excessively 

deep indentation could cause an artificial increase in the measured stiffness due to the 

mechanical constraint at the bottom.  
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Figure 4-4. Sensitivity analysis of the proposed method. (a) Schematic diagram; (b) stress 

distribution when indentation occurs with a 2mm radius nodule located at the centre of the prostate 

12.5mm below its surface; (c) at mean depth; and (d) at maximum depth. Unit of plotted stress is 

MPa. To obtain these results a convergent mesh with 33826 linear quadrilateral elements and 

34277 nodes was used. 

 

Fig. 4-5 illustrates the changes in viscoelastic parameters a, b and τ when two different 

sizes of nodule (large, 6 mm in radius, and medium,  4 mm in radius, both located at 

12.5mm under the surface) shift horizontally in 5mm increments away from the indenter. 

The influence of nodule size to parameters ‘a’ and ‘b’ is smaller than with 𝜏 and therefore 

they become less adequate for the purpose of diagnosis. As shown, there is little 

discrimination when the nodule is far away from the indenter, which is to be expected 

since the influence to the stress distribution caused by a distant nodule is small. Therefore, 

in order to assess tissue quality, a sufficient number of indentations needs to be used for 

lateral resolution/discrimination. This also constraints the spatial resolution of the 

procedure since, in practice, only a limited number of palpations can be done to avoid an 

excessively long procedure. 
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Figure 4-5.  Sensitivity analysis for laterally-located nodules. 

 

 

 

The effects of size and depth of the cancerous nodule is explored in Fig. 4-6, and found 

to be substantial on both parameters a and b. The depth and size of cancerous nodule are, 

in fact, coupled in the elastic response, which means that a smaller nodule close to the 

surface will lead to similar force feedback to a larger nodule located deeper inside. 

Therefore, the elasticity itself in this case is unable to discriminate between size and 

depth, although changes in τ (from now referred as Tissue Quality Index or TQI in this 

chapter) remains less affected in both cases, which implies that using relative changes of 

both tissue elastic and viscous behaviours may lead to successful decoupling of depth and 

size of cancerous nodule, thus making quantitative diagnostics possible. 
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Figure 4-6. Sensitivity analysis: changing the depth, size and position of the cancerous nodule. 

(a) Evolution of model parameters when size of cancerous nodules varies. (b) and (c) show 

evolution of model parameters when depth of cancerous nodules varies in models with medium 

and big size nodule, respectively. 

 

 

4.5 An ex-vivo, patient-specific example 

In this section the proposed method will be applied to a 3D prostate model shown in Fig. 

4-7(a), which is reconstructed from an excised prostate with the cancerous nodule at the 

posterior side. The palpation area used in the model was at the posterior side of the 

prostate (to model digital rectal examination) and was sequentially indented at 8 sites as 

shown schematically in Fig. 4-7(b). These indentation sites were selected to maximize 

the area to be tested across the entire surface whilst maintaining good contact between 

indenter and prostate. The anterior surface was constrained to mimic the ex vivo boundary 

conditions during an actual mechanical indentation. Figs. 4-7(c) and (d) show the recorded 
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force in both healthy and cancerous samples and the fitted smoothed data used to 

determine the reduced set of parameters for tissue quality assessment. It is evident that 

the displacement and force signals are hardly distinguishable and the difference becomes 

negligible especially when steady-state is reached. This again indicates that only using 

phase shift and/or amplitude may not be sufficient for quantitative tissue assessment. 

 

Figure 4-7. 3D prostate model obtained from the excised prostate specimen. (a) 3D prostate 

model from MRI scan; (b) 8 indentation sites at posterior surface; (c) Force feedback recorded 

during the indentation of the healthy prostate and the one with a cancerous nodule; and (d) 

smoothed data where viscoelastic parameters are fitted and obtained. 

 

In order to examine the applicability of proposed method in 3D, two models are created 

here: one with cancerous nodule inside which has the same viscoelastic parameters used 

earlier in Fig. 4-4; another one which is fully healthy (i.e. material properties of healthy 

tissue assigned to the cancerous nodule). The resulting viscoelastic parameters (i.e. a, b 

and τ) of the entire prostate are shown for both cases in Table 4-3. It is important to note 

here that, even in the healthy case, the reduced set of parameters does not remain constant 

at all probe points due to the curvature of the surface which changes the contact area and 
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hence tissue response in the tissue-indenter contact zone, thus the force feedback. 

Nevertheless, at probe points 5, 6 and 8, close to the nodule, the viscoelastic properties 

results in a stiffer and slower response (i.e. with higher time constant) than when the 

prostate is considered to be completely healthy. It is worth highlighting that, as shown in 

Fig. 4-8, the tissue quality index offers a unique capability of quantitatively characterizing 

the location and extent of cancerous nodules inside the prostate.  

 

Figure 4-8. Tissue quality index (TQI) for the prostate with a cancerous nodule and the healthy 

one at 8 indentation sites. Convergent meshes with over 500000 linear tetrahedral elements were 

used to model the mechanical palpation
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Table 4-3. Viscoelastic parameters of the healthy and cancerous prostate at 8 indentation sites. The parameter τ serves as a better indicator of the tissue quality than a 

or b. 

Position Cancerous Prostate Healthy Prostate Relative Change (%) 

 a 𝜏 b a 𝜏 b 𝚫𝒂(%) 𝚫𝝉(𝐓𝐐𝐈)(%) 𝚫𝒃(%) 

1 0.30 5.88 0.35 0.30 6.25 0.34 1.52 -3.62 -2.04 

2 0.31 6.25 0.31 0.31 6.67 0.31 0.06 -1.10 -2.23 

3 0.29 8.33 0.27 0.29 9.09 0.26 1.32 -2.31 -3.51 

4 0.37 5.88 0.42 0.36 5.26 0.41 -2.22 11.41 -1.33 

5 0.26 7.14 0.44 0.25 6.67 0.27 -7.23 10.16 -38.35 

6 0.24 7.69 0.25 0.25 8.33 0.24 1.55 -7.43 -5.04 

7 0.31 6.67 0.32 0.28 5.88 0.31 -8.97 14.29 -3.96 

8 0.25 8.33 0.27 0.23 7.69 0.22 -5.16 10.71 -16.96 
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4.6 Concluding remarks 

Based on the strong evidence from literature that the viscoelasticity of soft tissue is often 

affected by pathological conditions such as cancer, this paper used published data of 

viscoelasticity of cancerous and healthy prostatic tissue, to establish a novel framework 

of quantitative diagnostics for soft tissue based on its viscoelasticity using dynamic 

palpation. 

The proposed method features diagnostic procedures that can be used to obtain elastic 

and viscous behaviours simultaneously, with the viscoelastic parameters being able to 

characterize the cancerous nodule, thus becoming a more reliable index for quantitative 

assessment of tissue quality. The method is illustrated in a 3D prostate model 

reconstructed from a MRI scan of an excised prostate specimen. It is shown that the 

change of viscoelastic time constant could be a key indicator for quantitative diagnostics 

of tissue pathological conditions, i.e. presence of cancerous nodule. It should be noted 

here that obtaining the mechanical properties of the healthy and cancerous tissue is a 

challenging task on a patient specific basis. Two approaches are proposed here. First a 

database with the mechanical properties of healthy and cancerous tissues for different age 

ranges could be created and used as benchmark values. To avoid the difficulties of 

obtaining the mechanical properties from in-vivo digital rectal examinations (i.e. patient 

discomfort, uncertainties caused by the rectal wall) the mechanical test could be 

performed, for instance, during surgery to remove the prostate. However, this approach 

would not be patient-specific and, therefore, would impact negatively on the accuracy of 

the methodology. Instrumented palpation offers the unique capability of recording the 

data from the patient over time. Therefore it would be possible to record and analyse the 

changes in the mechanical properties of the healthy tissue and use standard values for the 

cancerous tissue.  
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The method presented here has certain advantages in a clinical context such as reduced 

duration of examination and less invasiveness. Due to the reduced influence of tumour 

depth that the proposed methodology exhibits compared to the methodologies based on 

elastic indexes the method presented here could become useful to solve the curse of size 

and depth coupling. The proposed method is not limited to a particular material model or 

scale, thus becoming useful for tissue where defining a single time constant is not trivial. 

It is important to mention that the objective of this methodology is not to provide a 

detailed description of the viscoelastic behaviour. For that purpose frequency testing as 

well as stress relaxation should be undertaken. Instead this study aims at providing a 

methodology to identify the presence of cancerous nodule in the framework of tissue 

diagnostics. 

Assessment of other pathological conditions, such as benign prostate hyperplasia (BPH) 

and prostatitis, will depend on their elastic properties and also the difference in 

viscoelastic time constant in comparison to healthy tissue. Selection of the indenter size 

and shape as well as indentation depth also requires further investigation to maximize the 

capability to assess tissue quality with sufficient resolution whilst still satisfying clinical 

constraints. Although the proposed methodology is a clear step forward in quantitative 

analysis of tissue quality, estimating the volume fraction of cancerous tissue in tissue still 

remains challenging and critical in clinical practice. A methodology to address such 

challenge will be presented in next chapter.  

As it stands the proposed methodology has certain limitations. First healthy tissue is 

considered here as a homogenous media, however, certain heterogeneity is expected as 

shown in Chapter 7 which could introduce noise in the system thus hindering the 

diagnosis. That might be critical if the range of viscoelastic behaviours found in the 

healthy tissue overlapped with that of the cancerous tissue. Testing the proposed 

framework in more samples would allow a more in-depth analysis of the robustness of 
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the methodology. However, that is a complex task since obtaining MRI scans with the 

sufficient resolution is a complex and expensive task which is expected to be carried out 

in the future. A further limitation of this methodology for in-vivo prostate analysis is the 

presence of the rectal wall which, although thin, may influence the measurements. Testing 

of other organs such as the skin would not present such a challenge. 
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5.1 Summary 

Pathophysiological conditions such as cancer, sclerosis and inflammation have been 

shown to alter the tissue microstructure. Such changes influence the apparent properties 

of tissue and can be used for diagnostic purposes as demonstrated in previous chapters. 

Although different techniques have been proposed to detect anomalies within tissues 

using palpation, performing a quantitative estimation of nodules (e.g. volume and 

distribution) is still challenging and important for clinical diagnosis. It can be a 

particularly difficult task when procedures such as sweeping palpation, elastography or 
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MRI are not available. Various mathematical models have been proposed to estimate the 

apparent stiffness using the volume fractions of each phase and vice-versa. In particular 

some notable mathematical studies such as the Hashin-Shtrikman bounds have been 

found to effectively determine the space of apparent mechanical properties independently 

of the topology of each constituent. As discussed in the previous chapter viscoelasticity 

plays an important role in tissue diagnostics. Therefore, it could be of interest to determine 

the volume fraction of each phase (i.e. healthy and cancerous) in a tissue from the 

apparent viscoelastic properties. This would be relevant not only for quantitative tissue 

diagnostic but also for computational modelling of hierarchical viscoelastic materials. 

The methodology described in this chapter proposes that a creep or stress relaxation test 

of a biphasic material can be approximated by a biphasic simple system whose analytical 

solution is known. The problem is then reduced to finding the mechanical properties of a 

homogeneous material that mimics the behaviour of the heterogeneous one over a certain 

period of time. Solving such minimization problem for a number of volume fractions for 

each phase leads to a predicted ‘rule of mixtures’ between the apparent time constant and 

the volume fraction of each constituent. The methodology is further consolidated using 

histological samples of prostatic tissue with different nodule topologies and volume 

fractions. 

5.2 Effective viscoelastic properties 1D formulation 

A one-dimensional formulation of the rule of mixtures will be presented here to estimate 

the effective properties of heterogeneous viscoelastic tissue subjected to creep or stress 

relaxation over a specific range of time 𝑡𝑒𝑥𝑝 to determine one apparent time constant over 

that period by fitting a one term Prony series as shown in Eq. 5-1.  A creep test simulation 

on a biphasic (e.g. healthy and cancerous tissues) rod with unit length is considered as 

shown in Fig. 5-1(a),  the volume fractions of each material being represented by the 

lengths  𝑙 and 1 − 𝑙, respectively.  Although a number of models such as KVFD [152], 
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Zener [10], power laws [153] and recruitment models [57] have been used to model the 

creep and stress relaxation tests of soft biological materials this paper describes the 

material viscoelasticity, without loss of generality, using a single-term Prony series: 

 

𝐸(𝑡) = 𝐸0 (1 − 𝐷 ⋅ (1 − 𝑒
−
𝑡
𝜏)) 

 

(5-16) 

where 𝐸0 denotes the instantaneous modulus, τ the relaxation time and 𝐷 the fraction of 

stiffness loss over 𝜏. The displacement at the free end where a constant force F is applied 

is given by 

 

𝑢ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠(𝑡) =
𝐹

𝐴
(
𝑙𝑐

𝐸𝑐(𝑡)
+
1 − 𝑙𝑐

𝐸ℎ(𝑡)
) 

 

(5-17) 

where A is the cross-sectional area of the rod, 𝑙𝑐 the length (fraction) of the cancerous 

material,  𝐸𝑐(𝑡) and 𝐸ℎ(𝑡) the instantaneous effective moduli of the cancerous and healthy 

materials, respectively. The displacement of the equivalent homogeneous system shown 

in Fig. 5-1(b) is 

 

𝑢ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠(𝑡) =
𝐹

𝐴 ⋅ 𝐸(𝑡)ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠
 

 

(5-18) 

To determine the effective properties of the homogeneous system, the Hill principle needs 

to be satisfied [154], i.e. the strain energy must be equivalent to that in the heterogeneous 

system. 
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Figure 5-1. Illustration of the models used to derive and to test the framework. (a) Biphasic 

heterogeneous viscoelastic material and (b) the equivalent homogeneous material. (c) shows the 

2D heterogeneous viscoelastic material with a random distribution of cancerous tissue (red) with 

a volume fraction of 60%. 

 

Since the stress is constant along the rod, the problem is then to solve the minimization 

of the difference between displacements at the free end of the heterogeneous and 

homogeneous systems over 𝑡𝑒𝑥𝑝, 

 

min∫ (𝑢ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 − 𝑢ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠)
2
𝑑𝑡

𝑡𝑒𝑥𝑝

0

 

 

(5-19) 

where 𝐸0, 𝜏 𝑎𝑛𝑑 𝐷 are constrained to be positive. The proposed methodology assumes 

that the tissue behaviour is equivalent to a heterogeneous system whose analytical 

solution is known. The time of the experiment 𝑡𝑒𝑥𝑝, however, needs to be chosen ad hoc 

- it depends on the mechanical properties of each constituent and the practical application 

(e.g. taking into account such factors as patient discomfort and examination cost). In the 

exemplar case described here, the integral in Eq. (5-4) was evaluated numerically using 

the trapezoidal method with a time step of 50ms, and the minimization problem was 

solved using a sequential quadratic programming algorithm. The flowchart for 

quantifying the volume fraction of each material is summarized in Fig. 5-2.  
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Figure 5-2. Flowchart of the proposed methodology. First a creep or stress relaxation experiment 

is carried out and the displacement or force feedback fitted to obtain the apparent time constant. 

The rule of mixtures is obtained using the mechanical properties from the healthy and cancerous 

tissues. The volume fraction of healthy tissue is read directly from the graph for the apparent time 

constant.   

 

 

5.3 Tissue heterogeneity - quantitative cancer diagnosis  

In this section the methodology to predict the volume fraction of both cancerous and 

healthy prostatic tissues is presented. A 2D biphasic model is created and meshed with 

bilinear plane stress finite elements as shown in Fig. 5-1(c). Each element is randomly 

assigned with material properties that represent either cancerous or healthy tissue to 

estimate the possible bounds of effective properties. Specifically, 10 random samples 

were used and the simulated stress relaxation experiment performed using various volume 

fractions (20%, 40%, 60% and 80% healthy tissue). Different ratios between Young’s 

moduli and time constants of the two constituents were considered to evaluate the 



 

81 

algorithm subject to various experiment times, 𝑡𝑒𝑥𝑝. Stiffness ratios (i.e. 

healthy:cancerous) of 1:2 and 1:5 were selected as they are typical of those found in the 

literature [13]. For the time constant, ratios of 1:10 and 1:100 were used, which, although 

higher than those reported [44], give an opportunity to analyse the sensitivity of the 

procedure in scenarios where the changes of the tissue viscoelasticity under different 

pathological conditions are extreme (e.g. when stones are present in the gallbladder or 

kidneys [155]). 

To further evaluate the proposed methodology in the scenario of quantitative cancer 

diagnosis, a prostatic tissue model was reconstructed from an actual histological section 

prepared from a patient who had undergone a radical prostatectomy.3 The boundary 

between benign and malignant tissue was determined by the uropathologist. Histological 

images were segmented and the geometry was built and meshed using Scan-IP 

(Simpleware Ltd., Exeter, UK). To test the proposed framework in a clinically relevant 

scenario, samples from 3 different locations of the prostate are considered in this analysis, 

shown in Fig. 5-3. Sample 1 contains 28% of cancerous tissue and serves as a test for an 

extreme width-to-length ratio, whereas sample 2 consists of 81% of cancer. It is, in fact, 

a subdomain of Sample 1 with the same cancer inclusion but reduced fraction of healthy 

tissue. Both samples were chosen from the lateral side of prostate to represent the scenario 

of palpation during minimally invasive radical prostatectomy (MIRP).  In Sample 3 the 

malignant tissue accounts for 60% of the total tissue volume and was chosen to test the 

proposed methodology in a sample where no direct contact between the probe and the 

malignant tissue exists. Sample 4 was chosen from the posterior region and contains 47% 

of cancerous tissue, Samples 3 and 4 representing palpation at the posterior of the prostate 

which is the area accessible using digital rectal examination (DRE). Finally, the whole 

                                                 
3 This is to acknowledge Dr. M O'Donnell (Consultant Uropathologist, Western General Hospital, UK)  for 

the pathohistological analysis of the images used in this Chapter. 
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histology, which contains 87% of healthy tissue, was also tested. It should be noted that 

the histology has been simplified over how a pathologist would normally grade cancer to 

give a measure of cancerous volume fraction over a range from low to relatively high. 

This allows an evaluation of the proposed methodology for quantitative diagnosis in the 

biphasic case. More importantly, the samples are chosen in a way that the cancerous 

nodules have different geometries and topologies, which allows the effectiveness of 

volume fraction estimation of cancerous tissue to be assessed in real tissue scenarios. 

 

Figure 5-3. Five samples from prostatic tissue (including the whole prostate and surrounding 

fascia) are considered to analyse the proposed diagnostic methodology. Red and grey indicate 

cancerous tissue and healthy prostatic tissue respectively. The volume fraction of healthy tissue 

is 72% in Sample 1, 19% in Sample 2, 40% in Sample 3, 53% in Sample 4, and 87% in whole 

tissue sample. Convergent hybrid tetrahedral meshes with the number of elements ranging from 

65380 for the smallest sample (Sample 4) up to 1061676 elements for the complete prostate were 

used. 

 

DRE is a diagnostic procedure where the practitioner palpates the prostate through the 

rectum looking for lumps and assessing stiffness and motility. New devices that record 

the force feedback during DRE have been recently developed to perform quantitative 

tissue diagnosis [106, 109, 156]. To model instrumented DRE here, symmetry boundary 
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conditions were applied at the anterior and right boundaries and the sample was palpated 

from the posterior side. To simulate the wider implications of palpation diagnosis during 

a minimally invasive surgical intervention, symmetry boundary conditions were used at 

the anterior and right boundaries and the sample was palpated from the left side. Finite 

strains were considered and a neo-Hookean strain energy density function was chosen to 

model tissue elasticity with Young’s moduli of 17kPa and 34kPa for healthy and 

cancerous tissue, respectively [44]. Without loss of generality a ratio of 1:2 was 

considered for both the material time constant and Young’s modulus between healthy and 

cancerous tissue. Such a ratio concurs with elasticity reported for prostatic tissue [13, 42]. 

The model, as illustrated in Fig. 5-1(c), was solved using the finite element method in 

Abaqus (Dassault Systemes, Vlizy-Villacoublay, France). The proposed methodology 

allows the estimation of the viscoelastic properties of the equivalent homogeneous 

material. However, only the effective time constant is studied here for the purpose of 

quantitative diagnosis since it has already proven effective in assessing tissue quality [19, 

157].  

5.4 The rule of mixtures: 1D analysis 

In this section the 1D model is analysed and the rule of mixtures that relates the apparent 

time constant to the fraction of each constituent is presented. Fig. 5-3(a) shows the 

effective time constant of the heterogeneous material obtained from computational 

(observed) and mathematical (predicted) models, respectively.  The time constant found 

in the finite element analysis decays with the amount of cancerous tissue and only small 

variations are observed between results over times 𝑡𝑒𝑥𝑝 of 5 and 50s. However, the 

difference between the predicted and computational effective time constant increases 

when 𝑡𝑒𝑥𝑝 becomes longer. For shorter 𝑡𝑒𝑥𝑝, the predicted time constants are smaller than 

the observed ones because there is insufficient time for the exponential term in Eq. (1) to 

be significant for longer time constants.  Finding an optimal 𝑡𝑒𝑥𝑝 is therefore critical for 
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the purpose of diagnosis. Such optimization of 𝑡𝑒𝑥𝑝 would require a balance between the 

accuracy of the procedure and practicality such as patient discomfort and diagnostic 

constraints in clinical practice. It is worth pointing out that the example  𝑡𝑒𝑥𝑝 of 5s, which 

is a reasonable time for clinical use, predicts the effective time constant with a maximum 

error of 5.44% between the predicted and observed results.  
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Figure 5-4. Comparison of the average time constant values obtained for different materials and 

relaxation times. The error bars show the confidence interval for six standard deviations. (a) 

Average time constants for the 1D model with times of experiment of 50s and 5s for different 

volume fractions of healthy tissue. (b) Comparison of the rules of mixtures predicted by the 

proposed methodology and the results obtained from the computational models for the 2D sample. 

(c) Increasing the stiffness ratio between both materials causes a minimal variation in the 

calculated average properties for a time of experiment of 0.9s. (d) The rules of mixtures become 

steep for short 𝒕𝒆𝒙𝒑 when ratios of 100:1 in the time constants and 1:2 in the Young’s modulus 

are considered. (e) Increasing the Young’s modulus ratio to 5:1 requires shorter times of 

experiment to obtain better results. Ten time values on logarithmic timescale between 0 and 50s 

were used to analyse the effects of both shorter and longer testing times. 
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5.5 Parametric analysis: 2D heterogeneous materials 

5.5.1 Effect of texp 

In this section the influence of different relaxation times 𝑡𝑒𝑥𝑝 in the effective time constant 

is explored. Long testing times would be economically infeasible and may lead to patient 

discomfort. Very short testing times, especially if the sampling rate of the force feedback 

is low, would result in insufficient number of data, since there is a risk of overfitting 

which could reduce the accuracy and significance of prediction. Fig. 5-4(b) shows the 

effective time constants obtained from the observed and predicted models over a range of 

experimental 𝑡𝑒𝑥𝑝 and also illustrates the upper and lower limits of the effective time 

constants for each 𝑡𝑒𝑥𝑝  used. It is important to note here that the diagnostic sensitivity 

can be effectively improved by taking advantage of the shape of curve of the rule of 

mixtures. For longer 𝑡𝑒𝑥𝑝, the curve becomes concave thus allowing a better sensitivity 

for tissue quality prediction when small percentages of tumour is present, since small 

variations in the percentage of cancerous tissue will result in large changes in the observed 

effective time constant, and vice versa. This would offer the opportunity for more accurate 

diagnostic procedures by performing multiple consecutive tests using different 𝑡𝑒𝑥𝑝 to 

improve the diagnostic sensitivity. 

5.5.2 Effect of Young’s Modulus  

In this section the influence of the ratio between the Young's moduli of cancerous and 

healthy tissue is analysed. This is of special relevance to tissue diagnosis where it has 

been shown that different physiological and pathological conditions could give rise to 

changes in tissue elasticity [7, 27, 125] and is also important when taking into account 

patient-specificity and more complex tissue microstructures than the simple biphasic one 

considered here.  



 

87 

Fig. 5-4(c) shows the observed and predicted effective stiffness when the ratio between 

the Young's moduli of healthy and cancerous tissues is 2 and 5, respectively. This allows 

a better understanding of the capacity of the proposed methodology in quantifying the 

amount of cancerous tissue in organs when the stiffness ratio between the healthy and 

cancerous tissues is higher such as in breast carcinoma [13]. The predicted and observed 

effective time constants match well when the stiffness ratio is 2. However, when the 

stiffness ratio increases to 5, a difference of up to 50% can be seen between the estimated 

and observed effective time constants. Figs. 5-4(d) and (e) show the rule of mixtures when 

the stiffness ratio for healthy and cancerous materials is 2 and 5, respectively, and the 

time constant ratio between the healthy and cancerous tissues is 100  (𝐸ℎ = 20 𝑘𝑃𝑎,

𝜏ℎ = 1𝑠; 𝐸𝑐 = 40𝑘𝑃𝑎 or 100𝑘𝑃𝑎 , 𝜏𝑐 = 100𝑠 - the subscripts h and c indicating healthy 

and cancerous, respectively). In the first case (Eh:Ec=1:2) the observation and estimation 

match well in most cases, whereas a good match can only be found for smaller 𝑡𝑒𝑥𝑝 when 

the stiffness ratio increases as illustrated in Fig. 5-4(e). This is caused by the viscoelastic 

effects being indistinguishable from the long-term elastic modulus over short times of 

observation.  

5.6 Quantitative diagnosis of prostate cancer: a practical study 

In this section the proposed methodology is used to estimate the amount of cancerous 

tissue in a histological sample of prostatic tissue. The relaxation time observed from the 

FE analysis is compared with that calculated using the proposed rule of mixtures. The 

samples were tested along two different directions; the anteroposterior axis to model the 

DRE and the radial margin to simulate palpation conducted during the MIRP surgery. 

A summary of the results can be found in Table 5-1. Fig. 5-5(a) shows the observed 

volume fraction of cancerous tissue in all 5 samples through numerical tests, alongside 

predicted ones subjected to experimental times of 5 and 10s, respectively.  In Samples 1, 

2 and 3 the error between the real volume fractions of cancerous tissue and the predicted 
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ones with 𝑡𝑒𝑥𝑝 = 10𝑠 is smaller than those predicted with 𝑡𝑒𝑥𝑝 = 5𝑠, for both lateral and 

posterior testing. However, for Sample 4 and the whole prostate such trend is not clear. 

A possible reason for this behaviour is that the differences caused by tissue topology, 

direction of indentation, sample’s aspect ratio etc., to some extent, mask the influence of 

𝑡𝑒𝑥𝑝  in this particular example, where the time constant and Young’s moduli between 

healthy and cancerous tissue are relatively close. Therefore as opposed to the examples 

shown in the previous section where the cancer distribution was random and the 

differences between the mechanical properties of each tissue constituents were higher, 

determining an optimal time of experiment (𝑡𝑒𝑥𝑝) within a clinically relevant framework 

is complex in this particular scenario. Variations between the tissue volume predicted in 

the lateral and posterior examination are relatively close with a maximum difference of 

8% and a minimum of 0.5%. Figs. 5-5 (b) and (c) show the observed and predicted time 

constants for the samples considered. It should be noted that in both cases the lateral 

palpation better predicts the volume fraction of healthy tissue, which might be due to the 

fact that the cancerous tissue is closer to the probing sites therefore the influence of its 

presence is higher. In summary, the tests indicate that the best approach for diagnosis 

would be the one where the measurement is made as close as possible to cancerous tissue, 

regardless of the direction used to characterize the tissue. The possibility of examining 

the tissue from any direction would be of particular importance in interventions where 

only the diseased parts of the organ have to be resected, for instance in the liver, kidney 

and pancreas. The method would help identify the surgical margin if a test is done at those 

positions close to the area of suspected malignancy to maximize the sensitivity of the 

procedure.  
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Figure 5-5. Comparison of the observed time constants and volume fraction with the predicted 

ones. (a) Results from the volume fraction estimation of each phase in the different samples. (b) 

and (c) show the comparison between the predicted law of mixtures and the observed values for 

a relaxation time of 5s and 10s. 



 

90 

Table 5-1.Cancerous tissue volume fraction, observed time constants in the histological samples and predicted time constants using the proposed rule of mixture.  

Sample 𝝉𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅
𝟓𝒔 (𝒔) 𝝉𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅

𝟏𝟎𝒔 (𝒔) 𝑽𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅
𝟓𝒔 (%) 𝑽𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅

𝟏𝟎𝒔 (%) 𝑽𝑹𝒆𝒂𝒍(%) 𝑬𝒓𝒓𝒐𝒓
𝟓𝒔(%) 𝑬𝒓𝒓𝒐𝒓𝟏𝟎𝒔(%) 

Sample 1  

Posterior 

6.13 6.16 22.5 18.5 28 5.5 9.5 

Sample 1 

Lateral 

6.3 6.44 27.3 26.5 28 1.7 1.5 

Sample 2 

Posterior 

9.32 9.62 74.5 73 81 6.5 8 

Sample 2 

Lateral 

9.89 10.29 78 78.5 81 3 2.5 

Sample 3 

Posterior 

7.49 7.66 52.5 48.5 60 7.5 11.5 

Sample 3 

Lateral 

7.82 8.15 57 56.5 60 3 3.5 

Sample 4 

Posterior 

7.2 7.4 47 45 47 0 2 

Sample 4 

Lateral 

7.33 7.57 49 48.5 47 2 1.5 

Whole Prostate 

Posterior 

6.21 6.27 25 22 13 12 9 

Whole Prostate 

Lateral 

6.03 6.1 19 21.5 13 6 8.5 
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5.7 Concluding remarks 

Based on the work carried out in Chapter 4, this Chapter presents a quantitative 

framework of tissue diagnosis to predict the volume fraction of cancerous tissue in a 

sample where the underlying histology is unknown. The proposed framework is based on 

the hypothesis that the quasi-static behaviour of a complex viscoelastic heterogeneous 

sample can be approximated by a homogeneous system with a known analytical solution. 

From that solution, a rule of mixtures that quantify the relationship between the volume 

fraction of each tissue constituent and the apparent mechanical properties is obtained. 

Compared to the other tissue diagnostic techniques such as those based on the inverse FE 

analysis as reviewed in Chapters 2.5 and 2.6, the proposed method is significantly faster 

and subsequently more applicable particularly for clinical diagnosis and certain 

experimental purposes where testing duration is an important parameter. Considering a 

stress relaxation or a creep experiment leads to the same solution, so the practitioner may 

choose one to use depending on the tissue type and available equipment. The 

methodology has been tested using a wide range of mechanical properties through the 

rule of mixtures to validate its potential applicability for quantitative diagnosis of 

different biological tissues. Different aspect ratios of histological samples and volume 

fractions of tumour were considered and the methodology has proven robust to variations 

in such parameters. This methodology, based as it is on non-invasive mechanical 

palpation, could be used to assess the quality of a large variety of tissues reducing the 

necessity of invasive and expensive procedures such as biopsies, MRI scans and CT scans 

whose side effects are not negligible. More importantly, it could become a useful tool in 

early diagnosis of life threatening diseases that change the mechanical properties of the 

tissues, such as cancer, liver fibrosis or amyotrophic lateral sclerosis. The methodology 

presented here is, as it stands, limited since it requires an a priori knowledge of the 

mechanical properties of each component. Obtaining such mechanical properties could 
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become troublesome on a patient-to-patient basis. Future work will aim to provide 

benchmark values that could be used for different groups of patients as it has been done 

for other tissues such as the aorta [158].   
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6.1 Summary 

The influence in tissue diagnosis of the mechanical properties of tissue and organ 

structure has been discussed in previous chapters. However, other features such as the 

anatomical structure can also significant influence the outcome of a diagnostic procedure 

such as the digital rectal examination (DRE). A possible approach would be to model all 

the organs and interactions among them. This however can be a complex and time 

consuming task thus making the technique less useful for clinical practice. More 

importantly it could introduce a significant amount of uncertainty due to the large number 



 

94 

of parameters required for such models. As a result determining which organs and 

mechanical interactions should be modelled is critical - this has not been thoroughly 

explored in literature. Other parameters such as intrabladder pressure (IBP) can also 

influence the outcome of the procedure. IBP can be easily controlled during the patient 

preparation for the procedure therefore could be potentially used to improve the 

procedure’s sensitivity. The highlights of this chapter include: i) analysis of inter-patient 

variations in three patients whose structural features, diagnosis and previous treatment 

are significantly different; ii) evaluation of the influence of IBP in the outcome of digital 

rectal examination to provide guidelines to practitioners on how to improve the 

procedure; and iii) investigation of the influence of modelling the pelvic bone for the 

purpose of DRE.  

6.2 Selection of patients and their pathophysiological conditions 

Three male patients with different anatomical and pathological conditions were selected 

in this chapter to investigate how patient-specificity influences the outcome of the 

instrumented digital rectal examination for prostate cancer diagnosis.4 Fig. 6-1 shows 

representative MR images of all three patients. From Fig. 6-1(a) it can be seen that Patient 

1 has an enlarged prostate which suggests adenomatous hyperplasia. An imprecise 

marginal area suspected of being malignant was identified at the vertex and in the anterior 

zone. A distinctive anatomical feature of this patient is an enlarged prostate that 

compresses the bladder causing pollakiuria, a condition that results in high frequency of 

urination. The MRI scan of Patient 2 in Fig. 6-1(b) shows invasion of cancerous tissue 

into the peripheral and posteriocentral zones, which suggests a neoplastic process 

prolonged to the periurethral zone. Ganglionar and indeterminate iliac bone lesions can 

also be observed in the scan, although they are not modelled in this study. For Patient 3, 

                                                 
4 The MRI scans were kindly provided by Ms Elizabeth Jiménez Aguilar from the Department of Medical 

Oncology at Hospital 12 de Octubre in Madrid (Spain). The help of Dr. Ray Manneh is greatly appreciated. 
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the clinical history indicates that brachytherapy was conducted, where cancerous tissue 

was destroyed by the effect of radioactive seeds inserted into the tissue. The MRI scan 

shown in Fig. 6-1(c) indicates loss of central-peripheral differentiation of the gland as 

well as thinning of the posterior right capsular limits, continued with the seminal vesicles 

and neurovascular plexus. Ganglionar disease and right sacral bone lesions are also 

present but not modelled. These observations are consistent with recurrent prostate cancer 

with at least stage T3b (tumour spread to the seminal vesicles), N1 (cancerous cells 

present in the lymph nodes) and M1b (metastasis to the bone), using the TNM (Tumour 

size, nearby lymph node involvement, distant metastasis) classification [159]. T2-

weighted, 1.5-Tesla MRI scans, with a resolution of 3.0 mm in the axial plane (all 

Patients) and 0.7813 mm resolution  (Patients 1 and 2) and 0.651mm (Patient 3) in the 

sagittal and coronal planes were used to reconstruct the 3D model in ITK-SNAP [160].   

 

Figure 6-1.  Typical MR images of the three patients selected for the study, showing patient-

specific structural features. B and P indicate the location of the bladder and prostate, respectively. 

(a) Patient 1: an enlarged prostate compresses the bladder; (b) Patient 2: the inferior of the bladder 

is tightly wrapped around the superior part of the prostate; (c) Patient 3: prostate contains holes 

(H) due to brachytherapy treatment. 

 

6.3 Modelling the pelvic cavity 

The male pelvic cavity contains the end part of the large intestine, the urinary bladder, 

the prostate, the seminal vesicles and the pelvic bone plus some other, minor anatomical 

structures. Its patient-specific modelling presents various challenges, depending on the 
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clinical application, including decisions on; which organ(s) to model, how they interact 

with each other, and also the initial conditions of tissue (presence of disease, cavity filling, 

pre-stress etc.). The models proposed in this chapter aims to understand the effects of 

patient-specific features in IDRE and to present a diagnostic framework for patient 

specific modelling of prostatic diseases. Intrabladder pressure (IBP) and the pathological 

condition of the prostate are key parameters and their influence on the effectiveness of 

IDRE will be investigated in this study. Moreover, the effectiveness of inclusion of the 

pelvic bone in the in silico IDRE model will be assessed. It should be noted here that, 

although there are a few clinical parameters that can be used to optimize the procedure, 

such as the position of the patient during the examination, the margin of potential clinical 

usefulness is limited due to patient discomfort. IBP, however, can be easily managed 

during clinical examinations. This can be controlled by the patients themselves prior to 

the examination or with the help of a catheter. Table 6-1 shows the different IBPs that 

were adopted in this study to model a full and empty bladder [161], respectively. Bladders 

of all three patients were emptied prior to the MRI scan and the reconstructed 3D organs 

are considered as undeformed and unstressed.  

Table 6-1. Variation of intrabladder pressure (IBP) subjected to different volumes of urine. Data 

were taken from Chiumello et al. [161], where IBP was used as an indicator of intra-abdominal 

pressure. 

Volume of saline(ml) IBP (mmHg) IBP (MPa) 

50 9.5 1.267 ⋅ 10−3 

200 27.1 3.613 ⋅ 10−3 

 

In the rest of this chapter, the pressure corresponding to a bladder content of 50 ml urine 

will be referred to as low intrabladder pressure (LIBP) and the content of 200 ml as high 

intrabladder pressure (HIBP). During normal activities, the rectum is subjected to a 

certain internal pressure [162]. However, due to the insertion of the instrumented system 



 

97 

(or finger, in the case of digital rectal examination), it will be considered to be at ambient 

pressure during the procedure. 

Like most biological tissues, the fascia, bladder, prostate and rectum exhibit viscoelastic 

behaviour [44, 163-165]. Nevertheless, under certain loading conditions, their mechanical 

behaviour can be considered to be elastic; especially when the strain rate is very low as 

is the case for DRE, where the viscous component can be neglected. Subjected to such a 

quasi-static loading the observed stiffness is often referred to long-term modulus. This 

assumption, which simplifies the experiments and modelling, has been widely used in the 

literature [109, 121, 140] and will be used in this chapter. To ensure numerical stability, 

the mechanical properties of the tissues are modelled by non-linear hyperelastic strain 

energy density functions that mimic the behaviour shown in Table 6-2. 

Table 6-2. Mechanical properties and material models used for tissues considered in this study. 

 
Material 

Equivalent 
Young’s Modulus 

(kPa) 
Hyperelastic Model Reference 

 
Rectum 10 Neo-Hookean [166] 

 Healthy 
Prostatic Tissue 

17 Ogden 2nd order [44] 

 Cancerous 
Prostatic Tissue 

34 Ogden 2nd order [44] 

 
Bladder 15 Neo-Hookean [166] 

 
Fascia 15 Neo-Hookean [166] 

 
Bone ~6x106 Neo- Hookean [167] 

 

The organs in consideration are embedded in a ‘box’ of fascia. The size of this box 

(300×300×300 mm) is chosen to be comparable to the size of patient’s pelvic cavity, big 

enough so that the effect from boundary conditions that prevent rigid body motions 

becomes negligible whilst keeping the computational cost to a minimum. In this study, it 

is considered that the patient is bent at the waist over towards a table during examination. 
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Therefore, in the proposed model, the displacement at the anterior side of the box is 

constrained. Fig. 6-2 shows the organs of patient 2 embedded in the box and the anterior 

side that is constrained. 

 
 
Figure 6-2. Computational model where organs are embedded in a box of fascia. The 

displacement of the anterior side of the box is constrained. 

 

 

The patient-specific models were simulated in ABAQUS (Dassault Systemes, Vlizy-

Villacoublay, France). The organs were meshed with linear hybrid tetrahedral elements 

where the hydrostatic pressure is considered as an independent variable and coupled with 

the displacement using the constitutive model, which is required to model such quasi-

incompressible materials accurately and an implicit quasi-static solver was used. A 5mm 

radius spherical indenter as a part of the instrumented palpation system was modelled as 

a discrete rigid solid, meshed with 3 node triangular and 4 node bilinear quadrilateral 

facets as shown in Fig. 6-3. The connection of the indenter to other parts of the 

instrumented palpation system was not modelled in this study, since it often only consists 

of a cable in a small diameter [125]. Surface to surface contact considering finite strains 

was used to simulate the interaction between the indenter and the rectal wall. The 

palpation was simulated under displacement control with a maximum allowable 

displacement of 5 mm.   
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Figure 6-3. Schematic of the 3D reconstructed model of Patient 2. The arrow indicates the 

direction of indentation.  

 

Two modelling scenarios will be considered: completely healthy and completely 

cancerous prostate. This will allow the determination of two extreme cases of the force 

feedback diagrams in instrumented digital rectal examination as well as investigating how 

the resolution of the procedure (the distance between the force feedback curves for the 

cancerous and healthy scenarios) varies for different patients and IBPs. It should be noted 

here that considering intermediate scenarios where a cancerous nodule is present within 

the prostate would not help to provide general guidelines on how to improve the outcome 

of the diagnostic procedure due to the patient-specific nature of the nodule shape and 

location.  

 

6.4 Influence of subject-specific features in IDRE 

In this section, in order to isolate the anatomical and pathological patient-specificity, the 

presence of the pelvic bone is not considered (still illustrated). Fig. 6-4 shows the 

reconstructed 3D models of the three patients from the MRI scans. It can be seen in Fig. 

6-4 (a) that the bladder of Patient 1 wraps around the enlarged prostate. Patient 2 has a 
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different structure where the bladder sits above the prostate, as shown in Fig. 6-4 (b). 

Patient 3 has, again, different anatomy, where the bladder sits on top of the prostate with 

considerably less contact area, as shown in Fig. 6-4 (c). It should be noted here that the 

prostate of Patient 3 contains small holes (which are assumed to be filled with fascia in 

the FE model) due to the brachytherapy treatment, which would potentially reduce its 

overall strength.  

 

Figure 6-4. Reconstructed 3D models of three selected patients from MRI scans. (a) Patient 1; 

(b) Patient 2; and (c) Patient 3. Convergent hybrid, tetrahedral meshes were used in the model 

with 1198539 elements for Patient 1, 922988 for Patient 2 and 1022059 for Patient 3. 

 

 

Fig. 6-5 shows the force feedback from the instrumented digital rectal examination with 

low intrabladder pressure when the pelvic bone is modelled for each of the patients with 

each of the two prostate tissue conditions. The force feedback is significantly higher for 

patients 1 and 2 when the IBP is high. In patient 3 due to his unique anatomical structure 

where the bladder sits on top of the prostate the influence of IBP is minimized. In fact, 

the force feedback for Patient 1 and 3 become similar when IBP is reduced. The curves 

for the force feedback of the fully healthy and fully cancerous tissue act as the lower and 

upper bounds of possible outcome of an IDRE test. The result of any test on a prostate 

with a cancerous nodule inside would lie within these two bounds so it represents the 



 

101 

“diagnosis window” against which resolution of the volumetric fraction of cancerous 

tissue could be assessed. The results for Patients 1 and 3 are similar when the indentation 

depth is small, even though the overall stiffness of the prostate of Patient 3 is reduced due 

to the brachytherapy. This is potentially caused by the indentation being performed at the 

end part of the rectum, where only the inferior part of the prostate can be reached (even 

in DRE upper parts of the rectum are hardly reachable by the finger unless anaesthesia is 

used). For larger depths of indentation the palpation force in Patient 2 becomes higher 

since a thicker region of the prostate is palpated. It can be seen that, although the reaction 

forces in the cancerous scenario are higher than in the healthy case, the relative difference 

between the cancer and healthy results remains approximately constant between different 

patients. Such results could be due to the fact that the same mechanical properties are 

used for all three patients. However, the force feedback obtained during palpation does 

not depend only on the mechanical properties but also on the topology of the sample, 

especially in the cases where the cancerous nodules are close to the indenter. This 

suggests that the effects of inter-patient differences in the topology of the rectal wall (e.g. 

thickness) are negligible. When high intrabladder pressure is present, the differences 

between patients are intensified as shown in Figs. 6-5 (a) and 6-5 (b). It is important to 

note that the diagnostic distinguishability of cancerous nodules during IDRE can be 

estimated by the vertical gap of force data between healthy and cancerous cases at certain 

indentation depth. Further discussion is required here regarding the indentation depth. As 

previously described in Chapters 3 and 4 there are some limitations regarding the 

maximum depth of indentation which is constrained by patient discomfort and the 

possibility of causing damage to the tissue. However, very superficial indentations may 

lead to some uncertainties. First the indentation has to be sufficiently deep so that the 

prostate is felt and not only the rectal wall. Secondly, the force feedback recorded during 

the contact-finding phase may be comparable to that of the actual indentation and 
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therefore the signal to noise ratio would be unfavourable compared to deeper indentations. 

This problem would be further increased by any involuntary movements of the patient 

during the procedure. Therefore, it is clearly shown that the diagnosis would benefit from 

deeper palpation and also the presence of high intrabladder pressure. 

 

Figure 6-5. Changes in palpation force of three patients during IDRE subjected to (a) high 

intrabladder pressure and (b) low intrabladder pressure when the pelvic bone is considered.  

 

It should be noted here that, at the beginning of the modelling, the indenter is not 

necessarily in contact with the rectum. This can result in that, at the very early stages of 

the indentation, no contact is registered, especially in the case of low intrabladder 

pressure. This is why the final indentation depth from the rectum is less than the 5 mm in 

the case of patient 3. 

6.5 Influence of intrabladder pressure: is it possible to increase its sensitivity 

preparing the patient? 

In this section the role of intrabladder pressure (IBP) in the sensitivity of IDRE will be 

investigated. The displacement fields for the three patients in IDRE tests when the 

intrabladder pressure is high are shown in Fig. 6-6. It is therefore possible to explore how 

a change in IBP influences the interaction between organs thus affecting the outcome and 

sensitivity of IDRE. Patient 1 has an enlarged prostate with the bladder surrounding it. 

This pushes the prostate towards the rectal wall which improves the probing efficacy. A 
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similar phenomenon is seen in Patient 2, whose bladder surrounds the prostate which also 

results in a displacement towards the rectal wall when high intrabladder pressure is 

present. Patient 3 has a considerably different geometry where the bladder sits on top of 

the prostate without enveloping it. This causes a displacement of the prostate towards the 

anterior direction in the high intrabladder pressure condition. In all cases, the presence of 

IBP moves the prostate towards the inferior direction leading to an increased palpation 

area. For patients suffering from pollakiuria due to the enlargement of the prostate, 

performing the examination with higher IBP would be beneficial for the examination. 

More importantly, performing IDRE multiple times over a period of time with different 

IBP levels may help determine whether the bladder is being compressed by the prostate 

due to e.g. benign prostatic hyperplasia or a malignant neoplastic process, which may 

eventually have great influence in the sensitivity of IDRE.  

 

Figure 6-6. Displacement fields in mm of three patients subjected to IDRE when LIBP is present. 

(a) Patient 1; (b) Patient 2; and (c) Patient 3.  In these cases, the pelvic bone is not modelled and 

the prostate is assumed to be healthy and the pelvic bone is not modelled. 
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Fig. 6-7 shows the force feedback for the 3 patient models subjected to IDRE, comparing 

the healthy and cancerous states under either low or high IBP conditions. As might be 

expected, the palpation force increases when high intrabladder pressure is present. More 

significantly, the distance between force data in the cancer and healthy cases also 

increases when IBP becomes higher, leading to improved diagnostic distinguishability of 

the procedure. This is due to the structure of the pelvic cavity and interactions between 

organs which push the prostate against the rectal wall when the bladder is more inflated 

under HIBP condition. In contrast, the Patient 3 model exhibits a different behaviour, in 

which the reaction forces are lower under the high intrabladder pressure as shown in Fig. 

6-7 (b). Furthermore the resolution (i.e. the difference in force between the healthy and 

cancerous cases) shows a weak dependency on the IBP.  

 

 
Figure 6-7. Reaction forces of Patients 1 (a), 2 (b) and 3 (c) under LIBP and HIBP conditions 

without the presence of the pelvic bone. 
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6.6 The pelvic bone: to model or not to model 

The aim of this section is to understand the effects of presence of the pelvic bone in the 

prediction of the proposed patient-specific model and determine if there are 

circumstances under which it needs to be modelled to obtain more accurate results. In this 

way, it will be possible to reduce unnecessary numerical problems associated with the 

inclusion of a stiff material in a soft matrix as well as reducing the uncertainty in the 

model.   

Figs. 6-8 (a) and (b) show the displacement map of Patient 1 when the pelvic bone is 

present and absent, respectively. In this particular case the bladder sits on top of the pelvic 

bone therefore the anteroposterior axis is not highly constrained by the bone except in the 

inferior part. This is critical in this particular case, because the prostate is moved along 

the inferoposterior direction, whereas, without the pelvic bone, the prostate is pushed 

directly towards the rectum.  The effect of modelling the pelvic bone in Patient 2 is more 

significant in the inferior zone of the bladder that expands more freely when the pelvic 

bone is not considered. However, the deformation in the anteroposterior axis is not greatly 

influenced, due to the fact that bladder is located over the bone so that its expansion is 

not highly constrained. The bladder, which partially envelops the prostate, forces it to 

move towards the rectum, with little constraints from the bone, since the bladder and 

prostate interact along the craniocaudal and anteroposterior axes. Patient 3, again, has a 

different structure, where the bladder anterior side is surrounded by the pelvic bone, 

which hinders its movement and causes a larger displacement of the prostate towards the 

bottom of the pelvic bone, as shown in Figs. 8 (c) and (d). For this patient, it is important 

to note that weak bladder-prostate interaction in the anteroposterior axis causes only small 

displacements of the prostate along this axis. Figs. 6-9 (a) and (b) show the palpation 

force data for Patient 1 under high and low IBP conditions, respectively. The effect of 

modelling the pelvic bone is small, especially when the IBP is low, but becomes more 
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significant when high intrabladder pressure is present. For the Patient 2 little difference 

can be seen when the pelvic bone is not modelled as shown in Figs. 6-7 (c) and (d). 

Therefore, for this patient, in whom the bladder wraps around and on top of the prostate 

forcing it to move towards the area where palpation is performed, the presence of the 

pelvic bone would have little influence in the outcome of instrumented DRE, making it 

unnecessary to be taken into account in the patient-specific model.  
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Figure 6-8. Displacement fields of Patients 1, 2 and 3, comparing the influence of the pelvic bone 

in IDRE under HIBP condition. The prostate is assumed to be completely healthy. (a) and (b): 

Patient 1 with and without pelvic bone, respectively; (c) and (d): Patient 2 with and without pelvic 

bone, respectively; (e) and (f): Patient 3 with and without pelvic bone, respectively.  

 

Finally, for Patient 3 the differences are very small under the low intrabladder condition. 

On the other hand, for high intrabladder pressure, the force feedback of the instrumented 

DRE significantly increases due to the aforementioned effect of the pelvic bone hindering 

the expansion of the bladder along the anteroposterior axis. For the purpose of clinical 

practice it would be useful to determine a priori whether the pelvic bone needs to be 
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considered or not. Based on the evidence gathered in this section the pelvic bone should 

be modelled when high intrabladder pressure is considered especially if the prostate and 

pelvic bone wrap around the prostate.  

 

 

Figure 6-9. Comparison of the palpation forces of all three patients under low intrabladder 

pressure (left column) and high intrabladder pressure (right column) conditions. (a) and (b): 

Patient  1; (c) and (d): Patient 2; and (e) and (f): Patient 3. The results show a significant difference 

when the pelvic bone is not present.  
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6.7 Concluding remarks 

This Chapter aims to study the effects of patient specific features, e.g. organ geometry 

and intrabladder pressure, in the outcome of instrumented digital rectal examination. The 

following key conclusions are highlighted below: 

 Higher intrabladder pressure, which could be achieved by asking the patient to 

retain urine prior to the examination, would improve the sensitivity of the 

procedure;  

 The pelvic bone significantly affects the force feedback of the IDRE therefore 

needs to be modelled, especially when high intrabladder pressure is present; 

 Subject specific structural features (e.g. caused by previous treatments) could 

influence the outcome of diagnosis, and need to be accounted for in the framework 

of patient-specific modelling as well as quantitative diagnostic procedures; 

 The relative position of the bladder and prostate significantly affects the force 

feedback and, consequently, the sensitivity of the procedure, in particular when 

high intrabladder pressure is present. 

The proposed framework has certain limitations as it stands. Some organs, like the 

seminal vesicles, urethra and neuromuscular bundle were not considered because the 

resolution of the MRI images obtained from standard clinical protocol is insufficient to 

obtain an accurate representation of them. Complex interactions such as slip between fat 

and organs and muscle-bone connections are not taken into account due to the 

impracticality of doing so for the purpose of clinical diagnosis. Furthermore, it was 

assumed that the tissues are isotropic and the intra-patient variations of their properties 

are not taken into account in this chapter. It is hoped that, as a part of future work, the 

clinical validation of this framework will be conducted once all the data from the 

instrumented digital rectal examination has been collected. Ultimately, it is expected that 
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such an approach will allow a reduction in the number of expensive and invasive biopsies 

and clinical scans. 
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CHAPTER   7 

A multiscale, mechano-morphological approach to soft 

tissue mechanics: application in prostate cancer 
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7.1 Summary  

In previous chapters the importance of biomechanical features at different length scales 

within the framework of tissue diagnosis has been presented. However linking the 

changes in the microstructure caused by different conditions at lower length scale with 

the mechanical properties at higher length scales is still a complex task. This is of critical 

importance to diagnosis since probing is often made at higher length scale (i.e. organ or 

tissue). However, choosing the optimal probing method or sensor size to quantitatively 
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assess tissue quality is still challenging, especially considering constraints imposed by 

clinical practice: patient discomfort, testing times etc.   

In this chapter a deeper look into tissue microstructure is investigated to understand how 

the mechanical properties at the microstructure influence the macroscopic behaviour of 

tissue. In particular the mechanical properties are obtained using numerical 

homogenization applying periodic boundary conditions (PBC) to the regions of interest. 

First, computational models are built using histological samples of prostatic tissue from 

different patients. Due to the complexity of the finite element meshes obtained, applying 

periodic boundary conditions using the traditional approaches was impossible. Therefore 

a novel method to impose PBC on arbitrary meshes is proposed in this chapter. Then the 

statistical distributions of the mechanical properties of different tissue samples are studied 

for each patient. It is shown that there exists an overlap between the distribution of the 

mechanical properties of healthy and cancerous tissue that could potentially hinder the 

effectiveness of the diagnosis. To resolve this problem the use of Support Vector 

Machines (SVM) is proposed and tested for different sizes of samples. It is expected that 

these results will help to determine the optimal size of the probing so that specific devices 

and protocols can be optimized. It is also hoped to increase the number of patients in the 

database to improve the accuracy of the diagnosis and transfer the proposed technique 

into clinical practice in due course. 

7.2 Modelling patient histological data 

To compare the effects of inter-patient difference and various pathological conditions in 

the mechanical properties of prostatic tissue two patients were selected in this chapter. 

Histopathological samples were obtained from their prostate excised during total 

prostatectomy using the laparoscopic approach.5 The pathological analysis of Patient 1’s 

                                                 
5 This is to acknowledge Dr. M O'Donnell (Consultant Uropathologist, Western General Hospital, UK)  for 

the pathohistological analysis of the images used in this Chapter. 
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prostate revealed acinar adenocarcinoma with  Gleason 3+4 and a PSA of 10.1 𝑛𝑔/𝑚𝑙 

and a prostate volume of 158cc, whilst Patient 2 was diagnosed with a more aggressive 

acinar adenocarcinoma with a  Gleason 4+3 grade albeit a lower PSA level of 9.1𝑛𝑔/𝑚𝑙. 

Fig. 7-1 shows histological samples of both patients where the coloured region represents 

the solid phase and the white region the fluid phase. To generate the finite element model 

the geometry was reconstructed using Scan-IP (Simpleware Ltd., Exeter, UK). First, the 

images were converted to grayscale. Then a threshold of 0 and 180 was used to identify 

the solid and fluid phases, respectively. To remove noise from the image and obtain 

improved meshes a Gaussian recursive filter and island removal filter were used. In this 

analysis small strains were considered. The solid phase was modelled with an elastic 

modulus of 17kPa and a Poisson’s ratio of 0.3. For the liquid phase a softer and nearly 

incompressible material with a bulk modulus of 2GPa was considered [168]. 

Considering various RVE sizes allows the analysis of the changes in the apparent 

mechanical properties when the size of the RVE varies. Additionally it allows a 

quantitative analysis of acini volume which can be related to conditions such as BPH and 

prostate cancer. Three different sizes (i.e 0.68mm, 1.34mm and 2.68mm) were used to 

discretize the histological images into RVEs. It should be noted that the RVEs that contain 

the background of the histological image were discarded. With such considerations, a 

total of 1274 healthy and 290 cancerous samples for RVE size of 0.68mm (50×50 pixels), 

383 healthy and 59 cancerous samples for size 1.34mm (100×100 pixels),  89 healthy and 

11 cancerous samples for size 2.68 mm (200×200 pixels)  were obtained for patient 1. 

For patient 2 the sample numbers are 1966 and 997 (0.68mm), 443 and 217 (1.34mm) 

and 84 and 39 (2.68mm) for healthy and cancer, respectively. A summary of the RVE 

selections considered in the study is shown in Table 7-1.  
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Figure 7-1. The apparent mechanical properties are obtained for two different patients. (a) shows 

the a histological sample from Patient’s 1 prostate stained with haematoxylin and eosin (H&E). 

The cancerous nodule is located at the posterior left side and marked with ‘C’. NA indicates an 

example of an RVE which would not be unacceptable since it contains part of the background. 

(b) shows a histological images stained with H&E from Patient 2. This patient has two different 

cancerous nodules located in the left and right sides of the prostate. 

 

Table 7-1. Summary of the number of samples and sizes considered throughout the study. 

RVE Size 0.68 mm (50 × 50) 1.34 mm (100 × 100) 2.68 mm (200 × 200) 

Number Healthy Cancer Healthy Cancer Healthy Cancer 

Patient 1 1274 290 383 59 89 11 

Patient 2 1966 997 443 217 84 39 

 

7.3 Homogenization formulation  

Different boundary conditions have been proposed to obtain the apparent mechanical 

properties of an RVE. Kinematic uniform boundary conditions (KUBC) consist of a set 

of prescribed displacement fields and often provide upper bounds for the apparent 

stiffness, whereas static uniform boundary conditions (SUBC) often results in a lower 
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bound by imposing a stress field instead [169]. Periodic boundary conditions (PBC) 

constrain the displacement at the boundaries to be periodic and then strain fields in the 

vertical, horizontal and shear components are imposed  [63]. 

To impose periodicity at the boundary of RVE, meshes with matching nodes at opposite 

sides of the RVE are often used. However, obtaining such periodic meshes may be 

difficult or require extremely fine meshes especially when the geometry is reconstructed 

from medical images with complex topologies. Different methods that use, among others, 

Lagrange polynomials and spline interpolations have been reported in the literature to 

overcome such complication [79, 80]. However, they have certain constraints in the 

topology of the sample or in their compatibility with Finite Element Analysis codes where 

accessing the stiffness matrix is complex or impossible. Additionally they may 

significantly increase the number of variables and consequently the computational cost.  

The solution of a traditional finite element analysis is the displacement at each node of 

the domain. Using the interpolation functions it is then possible to obtain other variables 

(displacement, strain etc.) at any point over the domain and, in particular, at the 

boundaries. In this study it is proposed to consider a finite number of control points at 

each boundary located periodically but not necessarily corresponding with nodes from 

the Finite Element mesh. The constraints (see [63, 79] for details) that impose the periodic 

displacements at the boundaries are considered at these points instead of at the Finite 

Element nodes. Using the same interpolation functions as the ones used in the finite 

element analysis (linear in this example), the displacements at the control points can be 

expressed as a linear combination of the nodal displacements. Fig. 7-2 (a) shows a 

traditional periodic mesh where every node in the boundary (e.g. node ‘a’) has a matching 

node at the opposite boundary (e.g. node ‘b’). In arbitrary meshes as the one shown in 

Fig. 7-2 (b) that is not always the case as demonstrated by point ‘c’, which does not have 

a matching node at the opposite side. The following equations exemplify the boundary 
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conditions on nodes ‘a’ and ‘b’ of a periodic mesh when a vertical compression test is 

considered.  

𝑈𝑥
𝑎 = 𝑈𝑥

𝑏 (7-20) 

𝑈𝑦
𝑎 = 𝑈𝑦

𝑏  (7-21) 

 

 

Figure 7-2. (a) Example of a periodic mesh where nodes in all the faces have a matching node at 

the opposite faces. (b) shows an arbitrary mesh where some nodes (for instance c) do not have a 

matching node on the opposite face. 

 

With the proposed methodology the constraints are imposed at points ‘c’ and ‘d’  instead 

in Fig. 7-2 (b) as follows: 

𝑈𝑥
𝑐 = 𝑈𝑥

𝑑 (7-22) 

and 

𝑈𝑦
𝑐 = 𝑈𝑦

𝑑  (7-23) 

However, the displacements at the control point ‘d’ are not a variable of the FE problem, 

therefore is has to be expressed as function of those variables. In this particular case, 

without loss of generality, the same linear interpolation used in the FE analysis is 

considered  
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𝑈𝑥
𝑐 =

(𝑈𝑥
𝑑𝑢𝑝 − 𝑈𝑥

𝑑𝑑𝑜𝑤𝑛)

𝑙
⋅
𝑙

2
+ 𝑈𝑥

𝑑𝑑𝑜𝑤𝑛 (7-24) 

and similarly for the 𝑦 axis 

𝑈𝑦
𝑐 =

(𝑈𝑦
𝑑𝑢𝑝 − 𝑈𝑦

𝑑𝑑𝑜𝑤𝑛)

𝑙
⋅
𝑙

2
+ 𝑈𝑦

𝑑𝑑𝑜𝑤𝑛 (7-25) 

In general, however, the control points are not coincident with the Finite Element nodes 

and, therefore, the displacements at both controls points also need to be expressed as a 

function of the FE nodal values. 

(𝑈𝑥
𝑓𝑙𝑒𝑓𝑡 − 𝑈𝑥

𝑓𝑟𝑖𝑔ℎ𝑡)

𝑙
⋅
𝑙

2
+ 𝑈𝑥

𝑓𝑟𝑖𝑔ℎ𝑡 =
(𝑈𝑥

𝑔𝑙𝑒𝑓𝑡 − 𝑈𝑥
𝑔𝑟𝑖𝑔ℎ𝑡)

𝑙
⋅
𝑙

2
+ 𝑈𝑥

𝑔𝑟𝑖𝑔ℎ𝑡
  (26-7) 

 

and  

(𝑈𝑦
𝑓𝑙𝑒𝑓𝑡 − 𝑈𝑦

𝑓𝑟𝑖𝑔ℎ𝑡)

𝑙
⋅
𝑙

2
+ 𝑈𝑦

𝑓𝑟𝑖𝑔ℎ𝑡

=
(𝑈𝑦

𝑔𝑙𝑒𝑓𝑡 −𝑈𝑦
𝑔𝑟𝑖𝑔ℎ𝑡)

𝑙
⋅
𝑙

2
+ 𝑈𝑦

𝑔𝑟𝑖𝑔ℎ𝑡 + 𝜖0 

 (7-27) 

 

where 𝜖0 is the global displacement applied along the y axis. 

Using the same variables (i.e. nodal displacements) to impose boundary conditions in 

arbitrary meshes has the advantage of resulting in a reduced computational cost since only 

the linear constraints need to be calculated, which is negligible compared with the 

computational cost of increasing the dimension of the stiffness matrix of the FE problem. 

To test the methodology an RVE topology often used as a benchmark test for periodic 

structures is considered [79]. It consists of 4 circular inclusions embedded into a softer 

matrix. Different tests are considered here to demonstrate the robustness and accuracy of 

the method. First, a comparison of the stress fields obtained using the traditional and novel 

method is considered under the small strain hypothesis. The Young’s modulus of the 

matrix is 1MPa and that of the inclusion 100MPa. Such stiffness values are arbitrary and 
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the large stiffness ratio between the matrix and the inclusion only aims at creating a 

complex stress distribution to demonstrate the ability of the methodology.  Both materials 

have a Poisson’s ratio of 0.3. In this test the part is mesh with 100 nodes each side and 80 

controls points each side are considered. In order to derive the apparent stiffness tensor 

using homogenization, three tests were carried out: tensile tests in x and y axis and a shear 

test. In the small strain scenario a 10% strain was considered. In each test the average 

strain (𝜖𝑥𝑥 , 𝜖𝑦𝑦, 𝜖𝑥𝑦) and stress (𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑥𝑦) were calculated over the volume of the 

RVE. Thus to obtain the 9 components of the stiffness tensor shown below, a set of linear 

equations has to be solved so that Eq. (7-10) is satisfied: 

 

 〈𝜎〉 = 𝐶𝑖𝑗
𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒〈𝜖〉  (7-29) 

where  〈𝜎〉 is the average stress in the RVE, 𝐶𝑖𝑗
𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

 is the effective stiffness tensor and 

〈𝜖〉 the average strain in the RVE. Using the same methodology, the influence of the 

number of control points in the estimated apparent stiffness when finite strains are 

considered is analysed. In this case global tensile strains of up to 100%, larger than those 

often used in clinical diagnosis, are considered to validate the methodology. The 

mechanical properties of the matrix and inclusions are modelled as Neo-Hookean Eq. (7-

11) for both materials, 𝐶1=0.02, 𝐷1=0.001 and 𝐶2=0.06, 𝐷2=0.001, respectively. This 

leads to approximately 𝜈=0.5 ,𝐸1=120kPa and 𝐸2=360kPa.  𝐼 ̅is the first deviatoric strain 

invariant, 𝐽 is the elastic volume ratio and 𝐶 and 𝐷 are material parameters. 

 Ψ = 𝐶(𝐼 ̅ − 3) +
1

𝐷
(𝐽 − 1)2 (7-30) 

 

𝐶𝑖𝑗 = (

𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

) 

 

(7-28) 
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It should be noted here that the mechanical properties used in this example are arbitrary 

as the aim is to analyse the convergence of the method. For that reason a Neo-hookean 

material model, which is stable independently of the stress and strain state, is used. When 

large strains and non-linear materials are considered the 9 components of the stiffness 

tensor are calculated at different strain magnitudes (i.e. 1%, 2%, 5%, 10%, 15%, 20%, 

40%, 60%, 100% in this study). 

The aim of varying the size of RVEs is to determine whether there is a characteristic size 

(i.e. length scale) at which the mechanical characterization of tissue should be performed 

taking into account a balance between accuracy and computational cost.   

7.4 Tissue diagnosis using SVM 

Clinical practice often requires binary decisions: action or wait, treatment or palliative 

care, surgery or medications, which are often based on binary diagnosis: healthy or 

diseased, live or necrotic etc. However, obtaining such dichotomic diagnosis could be 

challenging and certainly subject to inter-clinician variation. Therefore a mathematical 

tool that is able to reliably determine whether a set of data corresponds to a certain class 

(i.e. healthy or diseased) would be useful for diagnostic purpose. 

Support vector machines (SVM) are a popular class of algorithms used for classifications 

and regression analysis. The objective of the algorithm is to find the hyperplane or 

hypersurface that maximizes the distance between the different classes, which are either 

quantitative or qualitative results from an experiment usually with multiple variables. 

First the SVM is trained with a set of data whose inputs and outputs are known (e.g. the 

cancerous or healthy diagnosis is known a priori for each stiffness tensor). Then the SVM 

can be used to predict the outputs for new inputs whose condition (i.e healthy or cancer) 

is unknown. To avoid overfitting without compromising the accuracy, data validation is 

required. 100-fold cross validation is used when the number of samples is greater than 
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100 and the hold-one-out approach otherwise [170]. Radial basis functions are used as 

the kernel of the SVM [171]. 

7.5 Comparison between the traditional and new method. 

The traditional method to impose periodic boundary conditions (PBC) requires identical 

meshes at opposite RVE faces. In this section a comparison study between the apparent 

properties of a RVE obtained using the traditional method and the proposed one, free 

from that meshing constraint, is carried out. Figs. 7-4(a) and (b) show the stress 

distribution in the RVE subject to the tensile test in the vertical direction when PBC are 

imposed using the traditional and the proposed methods, respectively. The main 

differences, although small, occur at the boundaries around the control points due to the 

stress concentration caused by the nodal forces required to enforce the periodic boundary 

conditions. However, to obtain the apparent properties, which is the main focus of the 

methodology, only the average stress and strains are critical. Fig. 7-5 shows the apparent 

properties obtained at different strains and the convergence towards the solution 

calculated using the traditional PBC method. Due to the symmetries of the RVE the 

material can be considered orthotropic therefore only some components of the stiffness 

tensor are shown. When a low number of points, compared to the 100 nodes per edge in 

this particular model, is used the resulting values of the different components, especially 

the diagonal ones, is lower than those calculated using the traditional method. This could 

be caused by the strain being applied effectively in a local manner where only a few 

boundary nodes are subjected to nodal forces rather than globally, when most (if not all) 

of the boundary nodes are subjected to nodal forces. Therefore the stiffer insertions, 

located relatively far away from the control points, would have little influence. Increasing 

the number of control points the solution converges to one obtained using the traditional 

method. 𝐶11 and 𝐶22 follow a similar trend and the error is within 5.2% when using 40 

control points (compared to 100 nodes per side in the mesh used in the traditional 
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method). The traditional solution and the new one are effectively the same when more 

than 80 control points are used.  𝐶21 , however, decays with increasing strains and needs 

more control points to achieve the same level of accuracy as 𝐶11 or 𝐶22. On the 

contrary 𝐶33 is less sensitive to changes in the number of control points. It can be seen 

that increasing the number of control points would further reduce error. However, the 

number of control points cannot be increased without a limit since only one control point 

between the nodes of an element should be selected. If a greater number of control points 

is used the resulting constraints become linearly dependent. This leads to numerical 

instabilities that cause the displacements to become zero or close to zero. As a result the 

stiffness of the sample is artificially increased. This imposes a constraint in the mesh on 

the faces where the aspect ratio of elements should be reasonably close to 1. In this 

particular example, without loss of generality, 3-node triangular plane stress elements 

with linear interpolation are used. However, it should be noted that the method would be 

also applicable with square elements or a mix of both. Such flexibility allows to use 

square elements in areas of simple geometry to increase the accuracy and efficiency and 

triangular elements areas of complex geometry without worrying about the type of 

element present on the surfaces. Therefore automatic meshing algorithms can be used 

with the associated advantages (i.e. reduction in pre-processing of simulations and cost). 

Such constraint, which may appear strict, is often satisfied since most meshing algorithms 

have elements with aspect ratios close to 1 to avoid numerical instabilities. It should be 

noted here that the number of control points could be less than the number of nodes at 

each side without compromising the accuracy. This would result in a lower number of 

constraints and therefore a lower computational cost, especially when nonlinear methods 

such as the Lagrange multipliers are used to solve the FE problem. More importantly, the 

same numerical method used to impose the constraints with periodic meshes (matrix row 

and column deleting, Lagrange multipliers etc.) can still be used and no further 
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mathematical manipulation of the stiffness matrix or load vector is required. This results 

in a simplification of the coding and a reduced computational cost.  

 

Figure 7-4. Von Mises stress distribution in MPa when the traditional method (a) and the new 

method (b) are used to impose periodic boundary conditions in a tensile test with 80 control points. 

 

 

 

Figure 7-5. Convergence results toward the traditional PBC solution for increasing number of 

control points. (a) shows the results for the component 𝑪𝟏𝟏 and (b)-(d) for  𝑪𝟏𝟐, 𝑪𝟐𝟐 and 

𝑪𝟑𝟑 respectively. 
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7.6 Effects of RVE size in the distribution of the mechanical properties 

The aim of this section is twofold: (i) to investigate the influence of RVE size and 

convergence of the mechanical properties at different length scales and (ii) to analyse the 

changes in the distribution of mechanical properties. First, the eigenvalues of all the 

stiffness tensors are calculated to ensure that they are positive thus physically feasible. 

Fig. 7-6 shows the components of the apparent stiffness tensor for both patients, with two 

categories, i.e. cancerous and healthy tissue. The results are also listed in Table 7-2. It 

should be noted that the average stiffness values of healthy tissues are always below those 

of cancerous tissue. This would imply that, on average, it is possible to distinguish the 

properties of both phases (i.e. cancer and healthy). However, the standard deviation is 

significantly higher in the healthy samples. In fact the standard deviation of the different 

components overlap in all cases except in one , 𝐶11 for size 1.34mm (100×100) in Patient 

1. This highlights that considering just one elastic constant and a certain threshold to 

distinguish between healthy and cancer may lead to inaccurate diagnosis. Therefore more 

sensitive techniques (such as support vector machines (SVM) which will be discussed 

later) should be used to discriminate between healthy and cancerous tissue. The average 

apparent stiffness observed in Patient 2 is slightly higher than Patient 1 (measured by 𝐶11, 

𝐶22 and 𝐶33), which suggests a lower amount of acini and potentially a more aggressive 

cancer in Patient 2 [41].  In the case of Patient 1 the average values of the stiffness tensor 

components tend to converge when the size of RVE is greater than 1.34 mm. Patient 2 

shows a similar trend although interestingly the difference between the distribution of the 

stiffness components of RVEs with sizes of 0.68 mm and the 1.34 mm is smaller. This 

can also be observed in Fig. 7-1 where a greater number of smaller acini in Patient 2 than 

in Patient 1 can be seen.  

Most tissue samples present a high degree of anisotropy, close to orthotropic with a lower 

stiffness in the y-axis. Such difference is rather obvious in the case of the healthy tissue, 
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particularly for samples in size of 0.68mm. It has been found, in literature, the stromal 

fibres present certain directionality in prostatic tissue [141], which suggests a certain 

degree of anisotropy the healthy tissue possesses. This correlates well with the 

aforementioned results. However, in the cancerous case, the tissue appears to be isotropic 

since the average values of the diagonal components 𝐶11 and 𝐶22 become equal. This 

would indicate that the stroma is randomly oriented and has little directionality. Such 

disorganized structure could be directly linked to Gleason score assigned to the 

histopathological samples. The detailed results for the average mechanical properties can 

be found in Tables 7-2 and 7-3.  

 

 
Figure 7-6.  Average mechanical properties of the healthy and cancerous RVE’s from patient 1(a) 

and 2(b) and their respective standard deviations. 
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Table 7-2.  Results of the average stiffness tensor for different RVE sizes in Patient 1.  All the 

elements are shown to depict the quasi orthotropic behaviour of the material. Terms C31,C32, 

C13 and C23 are much smaller than the rest and close to zero. 

 
Cancer 

(0.68mm) 

Cancer 

(1.34 mm) 

Cancer 

(2.68mm) 

Healthy 

(0.68 mm) 

Healthy 

(1.34mm) 

Healthy 

(2.68mm) 

c11 1.55E-02 1.60E-02 1.46E-02 1.17E-02 7.33E-03 6.25E-03 

c21 4.29E-03 4.44E-03 3.89E-03 3.37E-03 1.85E-03 1.65E-03 

c31 3.21E-05 1.82E-05 -3.66E-05 3.93E-05 -3.52E-05 -1.56E-05 

c12 4.30E-03 4.44E-03 3.93E-03 2.37E-03 1.84E-03 1.63E-03 

c22 1.50E-02 1.51E-02 1.39E-02 9.59E-03 7.19E-03 6.71E-03 

c32 5.52E-05 2.89E-05 -1.97E-05 -3.22E-05 -5.28E-05 -4.64E-05 

c13 3.23E-05 1.71E-05 -2.21E-05 -3.47E-05 -3.52E-05 -1.46E-05 

c23 5.65E-05 2.70E-05 -1.89E-05 -3.48E-05 -5.59E-05 -4.92E-05 

c33 5.18E-03 5.40E-03 4.84E-03 2.93E-03 2.25E-03 2.05E-03 

 

Table 7-3.  Results of the average stiffness tensor for different RVE sizes in patient 2.  All the 

elements are shown to depict the quasi orthotropic behaviour of the material.  

 
Cancer 

(0.68mm) 

Cancer 

(1.34 mm) 

Cancer 

(2.68mm) 

Healthy 

(0.68 mm) 

Healthy 

(1.34mm) 

Healthy 

(2.68mm) 

c11 1.46E-02 1.38E-02 1.19E-02 1.14E-02 9.40E-03 8.40E-03 

c21 4.07E-03 3.72E-03 2.98E-03 3.08E-03 2.38E-03 1.87E-03 

c31 -4.07E-05 -1.10E-04 -9.02E-05 1.65E-05 -7.55E-06 -3.53E-06 

c12 4.06E-03 3.73E-03 2.99E-03 2.87E-03 2.38E-03 1.89E-03 

c22 1.47E-02 1.37E-02 1.11E-02 1.07E-02 9.12E-03 7.22E-03 

c32 -4.00E-05 -1.10E-04 -9.68E-05 -6.45E-05 -2.65E-05 -3.41E-05 

c13 -3.93E-05 -1.10E-04 -9.91E-05 -4.55E-06 -6.32E-06 1.24E-05 

c23 -4.01E-05 -1.00E-04 -9.93E-05 -1.16E-05 -2.74E-05 -2.46E-05 

c33 4.96E-03 4.71E-03 3.91E-03 3.47E-03 2.90E-03 2.31E-03 

 

Fig. 7-7 shows the relative frequency of the magnitude of components 𝐶11, 𝐶22 and 𝐶33 

of the apparent stiffness tensor of tissue samples from Patient 1 when different RVE sizes 

are considered. Monotonic convergence of the mechanical properties is not observed in 

the healthy samples when the RVE size varies. For the smallest sample size a wide range 

of apparent stiffness is observed as shown in Figs. 7-7(b). However, Fig. 7-7 (a) shows a 

peak around 15 kPa which is not present at the higher scales. Such peak is related to areas 
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with lower concentration of acini which are more compliant than solid areas. For the 

cancerous tissue their stiffness tensors are significantly different. For RVE sizes smaller 

than 1.34mm the mechanical properties are similar, especially for higher stiffness values 

as seen in Figs. 7-7(c) and (d) which show that the stiffness of cancerous tissue tends to 

be higher. It should be noted here that the distribution of the tissue stiffness could be 

correlated to the statistical distribution of acini size in the tissue microstructure. Both the 

stroma (i.e. solid part of the tissue) and acini (i.e. fluid phase) contribute to the apparent 

tissue stiffness, and it would be interesting, as a potential future work, to quantitatively 

relate the apparent tissue stiffness to the volume fractions of both phases for diagnosis 

purpose.  

 

Figure 7-7. Comparison of the relative frequency of the magnitude of components 𝑪𝟏𝟏 and 𝑪𝟐𝟐 

of the stiffness tensor for different RVE sizes and different conditions: healthy and cancer for 

Patient 1. 
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7.7 Inter-patient difference in tissue elasticity 

Figs. 7-8 and 7-9 show the relative frequency of the three diagonal terms of the stiffness 

tensors of tissue samples from both patients when three different RVE sizes (i.e. 0.68, 

1.34 and 2.68 mm) are considered.  The distribution of apparent stiffness is similar for  

𝐶11 and 𝐶22 especially when the smallest RVE is used. A similar trend is observed for the 

intermediate RVE size. However when the largest RVE is used, the distribution of their 

stiffness components is considerably different. It should be remarked that in the healthy 

case the mechanical properties for the medium RVE are significantly different as opposed 

to the cancerous case. This could be related to a different pathophysiological condition 

(i.e. prostatitis, BPH etc.) or to inter-patient variability. Patient 2, who had a more 

aggressive adenocarcinoma (Gleason 4+3 as opposed to Gleason 3+4 for Patient 1) has a 

wider range of stiffness values which suggests a less organized tissue microstructure 

associated with a higher Gleason score.  

 

Figure 7-8. Inter-patient comparison of the relative frequency of the apparent mechanical 

properties of RVE for different sizes when only cancerous tissue is considered. 
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Figure 7-9. Inter-patient comparison of the relative frequency of the apparent mechanical 

properties of RVE for different sizes when only healthy tissue is considered. 

 

It is worth highlighting that the structural features in tissue at lower length scale (i.e. 

0.68mm size) are more affected by the pathology, whereas at higher length scale (i.e. 

2.68mm size) the difference in tissue microstructure is mainly caused by inter-patient 

variation. This would imply that a measurement at a larger scale could provide useful 

information about unique features such as the presence of BPH or variations in the volume 

of stroma which can be related to the shape of acini [172]. On the other hand a lower scale 

measurement could be more useful to assess tissue quality where patient specific features 

may be less relevant when the mechanical properties are considered as a continuum, as in 

elastography or palpation. These results suggest that with a sufficiently large database it 

would be possible to construct benchmark histograms for different types of pathologies 

at lower scales, against which clinical measurements could be employed to determine the 

presence of certain diseases.  

7.8 Support Vector Machines: A tool for quantitative tissue diagnosis. 

In the previous sections it is shown that the mechanical properties of both cancerous and 

healthy tissues spread over a wide range. At the same time they have certain overlap in a 
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certain range of stiffness over which diagnosis is difficult to carry out. The aim of this 

section is to evaluate the feasibility of using Support Vector Machines (SVM) to 

determine whether diagnosis can be conducted using the apparent stiffness tensor of the 

tissue sample. 

Fig. 7-10 shows the diagnosis results obtained using SVM. First a dummy case is 

considered, where the classified dataset is also used for training. Results from this case 

provide a qualitative insight to the differences between the mechanical properties of 

healthy and diseased tissue. If an accuracy of 100% is obtained then the classes (healthy 

and diseased) could be perfectly distinguished from each other. Figs. 7-10(a) and (b) show 

the results for this scenario which are below 100%, especially for the cancerous tissue in 

Patient 2 when the size of the RVE tested and the one used to train the SVM are different. 

This is caused by an overlap in the distribution of the mechanical properties of healthy 

and cancerous samples as previously shown in Figs. 7-8 and 7-9. Figs. 7-10(c) show the 

results where Patient 1 is diagnosed by the data trained from Patient 2 and Fig. 7-10(d) 

where Patient 2 is diagnosed with data trained from Patient 1. In healthy tissue the results 

for the largest RVE have an accuracy of over 70% however, for the medium size RVE 

the diagnosis is significantly worse, especially for Patient 2. Finally a database with data 

from both patients is constructed to train the SVM. Characterization of healthy tissue is 

performed with an accuracy of over 80% except in one scenario, which corresponds to 

training the learning machine with data from the smallest RVE (1.34mm) to diagnose the 

biggest one (2.68 mm). This means that knowing the size of the sample being tested is 

critical. The largest RVE appears to be preferable for diagnosis as its accuracy is higher 

in most of the scenarios attempted. However in diagnosis of cancer tissue the accuracy is 

less. As a result a diagnosis using SVM based on healthy tissue could provide a higher 

level of confidence. 
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Figure 7-10.  Results from the SVM prediction using the stiffness tensor as input. X-axis shows 

the dataset used to train the SVM and the Y-axis the results of the classes correctly predicted. 

 

7.9 Concluding remarks 

The objective of this chapter was threefold: (a) to propose a novel method to impose 

periodic boundary conditions on arbitrary meshes, (b) to analyse how changes in the 
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microstructure of prostatic tissue influence its apparent stiffness and (c) to investigate the 

possibility of using support vector machines as a diagnostic tool.  

In this chapter it has been shown that the proposed methodology to impose periodic 

boundary conditions on arbitrary meshes results in similar accuracy as the traditional one 

where symmetric meshes are enforced at the boundaries. This result has been validated 

under the hypothesis of small and finite strains. By using the aforementioned 

methodology to analyse the apparent mechanical properties of tissues, it has been shown 

that cancerous tissue appears to be, on average, statistically isotropic although each 

different region of interest may have certain anisotropic behaviour. On the other hand 

healthy tissue shows a certain degree of anisotropy which could be related to stroma 

orientation and could be further correlated to the pathophysiological conditions. The size 

of the sample being tested has been proved to be critical. At higher length scale (i.e. when 

the RVE size is larger), inter-patient variation has more dominant influence than 

pathological conditions in the apparent tissue stiffness. However, results from lower 

length scales (i.e. when the RVE size is smaller) better describe tissue quality. In the case 

of cancerous tissue the statistical distribution of mechanical properties is similar for RVE 

sizes of 0.68mm and 1.36mm. This suggests that an RVE or a set of RVEs with 

mechanical properties that mimic such statistical distribution could be defined as a 

benchmark result for tissue stiffness for the purpose of diagnosis. Finally, Support Vector 

Machines have been adopted to perform quantitative diagnosis based on the apparent 

mechanical properties of tissue samples. In the analysis carried out in this chapter SVM 

have been used to classify the data into two classes: healthy and cancer. However, it 

would be even more beneficial for clinical use to differentiate between multiple 

pathologies such as BPH or the Gleason score of a certain sample. To predict such details 

the SVM should be trained with a larger database with data from multiple pathologies. It 

could be further enriched with other data such as PSA level. 
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The methodology presented here has some limitations as it stands. First both tissues 

phases (solid and liquid) are considered as a continuum solid. Although this assumption 

has been thoroughly used in literature it is hoped to perform a similar analysis using a 

realistic fluid structure interaction analysis. The number of patients in this study is limited 

due to the complexity of obtaining complete histological images from patients that have 

undergone a complete prostatectomy. It is expected to increase such database which 

would result in a better understanding of the changes in the mechanical properties caused 

by different diseases at different stages, which would subsequently allow a better training 

of the Support Vector Machine. The ultimate objective would be to increase the 

understanding of the changes in the mechanical properties of tissues so that improved 

early diagnostic techniques can be put in place to improve the life expectancy and quality 

of patients with reduced medical costs. 
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8.1 Summary 

In previous chapters novel techniques have been proposed to perform soft tissue diagnosis 

considering the mechanical behaviour of the tissue at organ scale (Chapters 3, 4, 5 and 6) 

and also at the microscale (Chapter 7). In fact, in the preceding chapter the apparent 

mechanical properties of soft tissue at organ scale have been linked to the underlying 

microstructures of the tissue. In particular it has been shown that pathological conditions 

influences the tissue microstructure thus subsequently vary the mechanical properties of 

the tissue. However, the changes in the microstructure of the tissue not only affect the 

mechanical properties but also drug diffusion. It is therefore critical to quantify such 
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changes to evaluate the efficacy of a treatment so it can be tailored in a patient-to-patient 

basis. 

In this chapter changes in the diffusivity of two drugs, commonly used as 

chemotherapeutic agents (i.e. doxorubicin and paclitaxel), caused by the various 

conditions of the tissue (i.e. cancer and healthy) and by the inherent properties of the drug 

(i.e. molecular weight) are analysed. The apparent diffusivity is obtained using numerical 

homogenization with periodic boundary conditions (PBC) to the different regions of 

interest from two selected patients. Due to the complex topology of soft tissue 

microstructures obtaining periodic meshes is complex and inefficient. Therefore the same 

methodology used in Chapter 7 to impose PBC with arbitrary meshes is adopted in this 

chapter. The statistical distributions of the tissue diffusivity are analysed for each patient 

and drug. To evaluate the impact of the drug in the population of healthy and cancerous 

cells a competition model that considers biological factors such as cell cycle arrest and 

replication rate is employed. This framework, which brings together patient-specific drug 

diffusivity and pharmacodynamics, would allow to determine the outcome of a 

chemotherapeutic treatment before drug is administered to the patient. A patient specific 

model of a third patient obtained from a histological sample where the blood vessel 

network was visible was used  to illustrate the proposed framework in different scenarios 

where different drugs were administered intravenously or via a bolus injection following 

multiple drug concentration profiles. It is hoped that this platform will allow to optimise 

the treatment of soft tissue diseases especially those such as cancer where the 

aggressiveness of the drugs limits the maximum dose. 

8.2 Histology modelling: homogenisation of diffusivity 

Diffusivity of drug in tissues is influenced by different factors such as its molecular 

weight [173] and its solubility in fat and water [174]. In this study two drugs often used 

in chemotherapy treatments are considered: paclitaxel and doxorubicin, with molecular 
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weights of 853.906 𝑔/𝑚𝑜𝑙 and 543.52 𝑔/𝑚𝑜𝑙, respectively. Swabb et al. [173] 

experimentally determined a relationship to estimate the diffusivity of drugs with 

different molecular weights in tissues.  In this chapter the diffusivity of drugs in the solid 

phase of prostatic tissue (i.e. stroma) is estimated using that relationship, showed in Eq. 

(8-1). 

 𝐷𝑡𝑖𝑠𝑠𝑢𝑒 = 1.778 ⋅ 10
−4 ⋅ 𝑀𝑊−0.75 (8-31) 

 

where 𝐷𝑡𝑖𝑠𝑠𝑢𝑒  is the drug diffusivity in 𝑐𝑚2/𝑠 and 𝑀𝑊 is the molecular weight of drug 

in 𝑔/𝑚𝑜𝑙. It is important to note here that the Eq. (8-1) is only used to estimate the drug 

diffusivity in the solid phase of the tissue. The estimated values of the diffusion 

coefficient in the solid phase of the tissue for Doxorubicin and Paclitaxel are 1.58 ⋅

10−6 𝑐𝑚2/𝑠 and 1.13 ⋅ 10−6 𝑐𝑚2/𝑠, respectively. The drug diffusivities in water  (4 ⋅

10−6 𝑐𝑚2/𝑠) and in blood vessels (5 ⋅ 10−7 𝑐𝑚2/𝑠) are adopted from [175] and [15] 

respectively. The diffusivity of drug in blood is assumed to be the same as in water. The 

apparent diffusivity of the drugs in tissue will be calculated from numerical 

homogenisation using patient-specific histological models, which later will be 

demonstrated. 

Three patients are considered in this study. Histopathological analysis of Patient 1’s 

prostate revealed acinar adenocarcinoma with Gleason 3+4 and a PSA of 10.1 𝑛𝑔/𝑚𝑙 

and a prostate volume of 158cc. Patient 2 was diagnosed with a more aggressive acinar 

adenocarcinoma with a Gleason 4+3 grade albeit a lower PSA level of 9.1𝑛𝑔/𝑚𝑙. Finally 

Patient 3 has a prostate specific antigen (PSA) concentration of 4.72 𝑛𝑔/𝑚𝑙. Histological 

analysis of the prostate revealed acinar adenocarcinoma with a Gleason score of 7 (3+4) 

which invades 5% of the prostate volume and is present in both lobes and the apex. Fig. 

8-1 (a) and (b) show the histological samples of the patients, which will be later used to 

estimate the diffusion properties. A high resolution image of Patient 3 is shown in Fig. 8-

1(c) where the blood vessels are visible. 
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To estimate the local diffusive properties in soft tissues the histological samples of Patient 

1 and Patient 2 are discretised into square representative volume elements (RVE) of two 

different sizes: 1.34mm and 2.68mm, respectively. Samples that contain the background 

of the image are discarded as shown in Fig. 8-1. A summary of the number of samples 

obtained from each patient is shown in Table 8-1.  

 

 

Figure 8-1. The histological samples of patient’s 1 and 2 used to estimate the apparent tissue 

diffusion are shown in (a) and (b). NA indicates an unacceptable area to calculate the apparent 

diffusion tensor since it contains part of the background. C indicates the cancerous areas. 
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Table 8-1. Summary of the number of samples and sizes considered throughout the study. 

RVE Size 1.34 mm (100 × 100) 2.68 mm (200 × 200) 

Number Healthy Cancer Healthy Cancer 

Patient 1 383 59 89 11 

Patient 2 443 217 84 39 

 

 

 

Periodic boundary conditions (PBC) are applied to each RVE to obtain their effective 

diffusivity tensor. Although periodic meshes are often used to apply PBC they are 

difficult or impractical to when the models are reconstructed from biological images as 

in prostatic tissue as shown in Fig. 8-1.In this chapter the methodology proposed in 

Chapter 7 is used to impose PBC on arbitrary meshes to obtain the effective diffusivity 

tensor shown in Eq. 8-2. The procedure of applying numerical homogenisation in the 

framework of FE analysis, is summarised in [63]. For clarity the procedure is illustrated 

with a periodic mesh as shown in Fig. 8-2. 

 

 𝐷 = [
𝐷11 𝐷12
𝐷21 𝐷22

] (8-32) 
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Figure 8-2. The histological samples are divided into regions of interest to be analysed. Acini are 

clusters of cells that contain fluid. For the purpose of the analysis in this chapter the diffusivity 

properties of such fluid are considered like those of water. The diffusivity properties of the solid 

phase are calculated from Eq. 8-1. 

 

Two tests are performed to obtain the apparent diffusion properties. First a gradient is 

imposed in the vertical direction. Periodic boundary conditions require the difference 

between the values in opposite nodes to be constant (i.e. the concentration gradient 

Δ𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛) as shown in Eq. 8-3. 

 𝑛𝑖
𝑢𝑝 − 𝑛𝑖

𝑑𝑜𝑤𝑛 = Δ𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (8-33) 

In the vertical faces the concentration in nodes located at symmetrical position have to be 

equal as illustrated in Eq. 8-4. 

 𝑛𝑗
𝑙𝑒𝑓𝑡

− 𝑛𝑗
𝑟𝑖𝑔ℎ𝑡

= 0 

 

(8-34) 

Next, a gradient is imposed in the horizontal direction which results in an equation parallel 

to Eq. 8-3 as seen below in Eq. 8-5 
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 𝑛𝑗
𝑙𝑒𝑓𝑡

− 𝑛𝑗
𝑟𝑖𝑔ℎ𝑡

= Δ𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

 

(8-5) 

The equations to impose the periodic boundary conditions in the horizontal faces read 

now 

 𝑛𝑖
𝑢𝑝 − 𝑛𝑖

𝑑𝑜𝑤𝑛 = 0 (8-6) 

Finally the components of the diffusivity tensor in Eq. 8-1 are obtained so that Eq. 8-7 is 

satisfied where 〈𝐽〉 is the average flux and 〈∇𝐶〉 the average concentration gradient. 

 

 〈𝐽〉 = 𝐷𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 ⋅ 〈∇𝐶〉 (8-7) 
 

 

8.3 Formulation of pharmacodynamics – modelling of tissue response 

The efficacy of a chemotherapy treatment depends on various biophysical factors such as 

blood vessel density, interstitial fluid pressure and tissue diffusivity as well as 

biochemical factors such as cell drug-resistance and ECM pH. The aim of this chapter is 

to investigate the role of tissue microstructure (in particular its heterogeneity) in the 

efficacy of drug delivery. To evaluate  how drug influences the population of cancerous 

and health cells, in this study, the model proposed by Komarova and Wodarz [176] is 

considered and summarised below: 

 �̇� = 𝑟𝑠𝑆(1 − 𝑢 + 𝛽𝜖𝑠𝑢) + 𝛼𝑢𝑟𝑠𝑆(1 − 𝜖𝑠) − 𝜙𝑆 

 

 (8-8) 

 �̇� = 𝑟𝑚𝑀(1 − 𝑢 + 𝛽𝜖𝑚𝑢) + 𝛼𝑢𝑟𝑚𝑀(1 − 𝜖𝑚) − 𝜙𝑀 

 

(8-9) 

𝜙 = 𝑆𝑟𝑠[1 − 𝑢(1 − 𝛽𝜖𝑠 − 𝛼(1 − 𝜖𝑠))] + 

+𝑀𝑟𝑚[1 − 𝑢(1 − 𝛽𝜖𝑚 − 𝛼(1 − 𝜖𝑚))] 

 

(8-10) 

where 𝑆,𝑀 represent the fractions of healthy and cancerous (mutated) cells and �̇�, �̇� are 

the temporal derivatives, respectively. 𝑟𝑠 and 𝑟𝑚 are the replication rates of healthy and 

mutated cells and the probability of a mutant being viable is 𝛼. 𝑢 is the probability of a 

genetic alteration occurring during replication. This parameter is controlled by the 
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treatments used to combat the disease such as chemotherapy and radiotherapy. In this 

study the pharmacodynamics parameter, u, is considered to be equal for paclitaxel and 

doxorubicin although in practice they may be different, since the main aim of this chapter 

is to investigate the effects of drug diffusion in heterogeneous soft tissues rather than the 

different pharmacodynamics properties of the drugs.  𝜖𝑠, 𝜖𝑚 are the probabilities that a 

genetic alteration is repaired in the healthy and diseased cells, respectively. 𝛽 is associated 

to the cost (or probability) associated with cell repair. When 𝛽 = 0 the repairing cells 

never replicate and when  𝛽 = 1 there is no cell cycle arrest. 𝛼 is the probability of a 

mutant being viable. Arbitrary values consistent with the dynamics are found in the 

literature [176].  

In this chapter a modification to the model is introduced and cell cycle arrest of healthy 

and cancerous cells becomes different so that 𝛽𝑚 < 𝛽𝑠 . Eqs. 8-8 to 8-10 then become: 

 �̇� = 𝑟𝑠𝑆(1 − 𝑢 + 𝛽𝑠𝜖𝑠𝑢) + 𝛼𝑢𝑟𝑠𝑆(1 − 𝜖𝑠) − 𝜙𝑆 (8-11) 

 

 

 
�̇� = 𝑟𝑚𝑀(1 − 𝑢 + 𝛽𝑚𝜖𝑚𝑢) + 𝛼𝑢𝑟𝑚𝑀(1 − 𝜖𝑚) − 𝜙𝑀  (8-12) 

 
𝜙 = 𝑆𝑟𝑠[1 − 𝑢(1 − 𝛽𝑠𝜖𝑠 − 𝛼(1 − 𝜖𝑠))] + 

+𝑀𝑟𝑚[1 − 𝑢(1 − 𝛽𝑚𝜖𝑚 − 𝛼(1 − 𝜖𝑚))] 
(8-13) 

Two drug delivery scenarios are considered in this study: an intravenous delivery and a 

bolus injection directly into the tissue. In the first scenario a sinusoidal profile of drug 

infusion following the equation: sin (
2𝜋𝑡

25
) + 1 is used.  In the case of bolus injection, a 

single dose and a sinusoidal profile are considered. To model different concentrations of 

the drug being delivered the parameter 𝑢 is multiplied by various amplification factors 

(𝐴𝑓) accordingly in order to explore how tissue responds to various resulting drug 

concentrations.  

Fig. 8-3 (a) shows a histological sample from Patient 3 where the blood vessels are visible. 

The cancerous nodule is characterised by small irregular acini compared to the bigger 

ones in the healthy part. The homogenised model, where healthy and cancerous tissues 
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are considered as continuum solid materials, is shown in Figs. 8-3 (b) and in 8-3(c) with 

the area where the bolus is injected highlighted. 

 

Figure 8-3. The histological sample from patient 3 used to illustrate the proposed framework is 

presented here. (a) shows the histological slice of patient 3 with visible blood vessels. The image 

shows the multiscale nature of the tissue and therefore the need to obtain apparent mechanical 

properties to reduce computational time. Images (b) and (c) show the homogenized model and 

the position of the blood vessels. In (c) the area where the bolus injection is applied is highlighted. 

Convergent meshes with 156225 3-node linear diffusion elements are used to model the drug 

diffusivity. 

 

8.4 Numerical homogenization of tissue diffusivity 

In this section the influence in drug delivery efficacy of RVE size, administered drug, 

pathological condition and inter-patient variability is analysed. Fig. 8-4 (a) shows the 

average apparent diffusivities and the standard deviation obtained for Patient’s 1 and 2 

from the histological images considering RVE sizes of 1.34 and 2.68mm, respectively. 

Only the main diagonal components 𝐷11 and 𝐷22 are plotted here. The minor diagonal 

elements 𝐷12 = 𝐷21 are orders of magnitude lower (~104 times lower) and therefore of 

limited significance in the results. The effective diffusivity of Doxorubicin in tissue is, as 

expected, higher than that of Paclitaxel due to its higher molecular weight. The inter-
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patient differences are small especially when the healthy smaller RVE (i.e. 1.34 mm) is 

considered. This result emphasises the hypothesis previously described in Chapter 7 that 

smaller RVE may contain information relevant to the pathological condition and larger 

ones to the patient-specific features such as the topology of the tissue microstructure. It 

should be noted here that major differences are related to the drug being administered and 

tissue pathological condition rather than inter-patient differences. In fact the influence of 

using paclitaxel instead of doxorubicin is higher than the changes caused by pathology. 

On the other hand, the sample size has a small impact in the estimated apparent 

diffusivity, for both healthy and cancerous tissues. The standard deviation is smaller in 

the larger samples than in smaller samples in healthy tissue, however the standard 

deviation becomes considerably higher in the larger RVE than in the smaller ones in 

tumour tissue. Although there is a clear trend depicted by the current data set, it should 

be emphasized here that the number of large samples is relatively small therefore there is 

a need of carrying out studies on tissue samples from more patients in order to add to the 

confidence of the statistical analysis.   

 
Figure 8-4. Statistical distribution of the diffusivity results for the different sizes of RVE 

considered (i.e. small and large), conditions (i.e. cancer and healthy), drugs (i.e. Paclitaxel and 

Doxorubicin), patients (Patient 1 and Patient 2) and diffusivity tensor components (𝑫𝟏𝟏 and 𝑫𝟐𝟐). 
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Figs. 8-5 (a) and (b) show, when Doxorubicin is administered, the distribution of the 

components 𝐷11 and 𝐷22 of diffusivity for Patient 1 when RVE sizes of 1.34 mm and 

2.68mm are considered , and Figs. 8-5(d) and (e) for Patient 2. Independently of the RVE 

size the cancerous diffusivity mainly ranges between 1.5e-6 and 2e-6 𝑐𝑚2/𝑠 whereas the 

healthy one is dispersed in the range 1.5e-6 to 4e-6 𝑐𝑚2/𝑠. Such different distributions 

may lead to potential diagnosis techniques based on measurement of tissue diffusivity. 

Results show that cancerous tissue has a lower degree of anisotropy since most samples 

have similar diffusivity along both axes. The healthy samples present higher degree of 

anisotropy, especially in the case of Patient 2. This, in addition to a drift of the diffusivity 

toward higher values, can be linked to the health condition of the patient which has bigger 

acini. Such a high fraction of fluid phase in tissue microstructure increase the effective 

diffusivity of drug in tissue. This would be of critical importance in older patients who 

are prone to suffer from BPH. Lower doses of chemotherapy could be given to achieve 

similar drug concentration in tissue. On the contrary, patients with larger cancerous 

nodules, whose diffusivity is significantly lower, may require higher drug doses or 

different drug delivery methods to achieve a sufficient drug concentration to eliminate 

the malignant cells. The similar results for Paclitaxel are obtained, as shown in Fig. 8-6, 

where the effective diffusivity is lower than Doxorubicin. 
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Figure 8-5. Comparison of the diagonal components of the effective diffusivity tensor and their 

distribution for two different RVEs Patient 1(a-b) and Patient 2(c-d) when the drug used is 

Doxorubicin. Although the results are anisotropic the distribution along the symmetry line (where 

𝑫𝟏𝟏 = 𝑫𝟐𝟐) is relatively symmetric. This suggests that the average behaviour of the tissue could 

be approximately isotropic. 
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Figure 8-6. Comparison of the diagonal components of the effective diffusivity tensor and their 

distribution for two different RVEs Patient 1(a-b) and Patient 2(c-d) when Paclitaxel is used as a 

chemotherapeutic agent. The results are qualitatively similar to those shown in Fig. 8-5 for 

Doxorubicin. Although the results are anisotropic the distribution along the symmetry line (where 

𝑫𝟏𝟏 = 𝑫𝟐𝟐) is relatively symmetric. This suggests that the average behaviour of the tissue could 

be approximately isotropic. 

 

 

8.5 Sensitivity analysis  

8.5.1 A preliminary analysis of diffusion in soft tissues. 

In this section a preliminary analysis of the drug diffusion and drug efficacy problem is 

presented in a simplified model to better describe and understand why the cancer volume 

is approximately the same when two different drugs with the same diffusivity are used. 

Fig. 8-7 (a) shows a 1 cm-sided rectangle with a single point source of drug located in the 

centre. An initial concentration is considered at t=0h. The concentration profile after 100h 
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along the analysis line is shown in Fig. 8-7 (b) for the average diffusivities obtained in 

section 8.4 for Paclitaxel and Doxorubicin.  

 
Figure 8-7. A simple model (a) is used to illustrate how drugs with different apparent diffusivities 

may influence significantly the profile of the drug concentration along the Analysis Line (b) but 

cancer volume fraction evolution remains similar (c) over time. 

 

 

Drug concentration is significantly different far away from the source. However, the 

evolution of the cancerous cell population (the initial condition considered for the 

cancerous cell population was 10% and 𝐴𝑓 = 0.1 ) is very similar as shown in Fig. 8-7 . 

This is caused by the cancerous cells having an insufficient drug concentration when far 

away from the drug source and, therefore, growing without control. It is therefore 

necessary to improve the diffusivity of the drug so that areas far away from the delivery 

point receive a sufficient dose to eliminate the cancerous cells and prevent the cancer 

from spreading and eventually causing the death of the patient. 
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A second simple model is created to highlight the role of the diffusivity of blood vessels 

in the drug delivery. Fig. 8-8 (a-b) shows the model with and without blood vessel 

respectively. The drug source is a 0.05cm radius circle in the middle of the model and the 

thickness of the vessel is 0.05 cm. Fig. 8-8 (c) shows the drug concentration profile from 

the centre point. The drug concentration is significantly higher in the tissue (i.e. in the 

distance of 0.1-0.5 cm) when no blood vessel is present. This implies a better drug 

transportation into the tissue, hence a higher efficacy of such drug treatment. The 

evolution of the cancerous volume fraction is shown in Fig. 8-8 (d). When the blood 

vessel is present with a drug dose of 𝐴𝑓 = 0.8 the evolution of tumour fraction is similar 

to the scenario when it is not present during the first 40 hours of the treatment. This result 

highlights the role of the blood vessel in the dynamic behaviour of the system – to get 

similar efficacy of drug treatment in both scenarios (i.e. bolus injection and intravenous 

delivery), drug concentration needs to be 8 times higher to compensate the hindering 

effect of drug diffusion through blood vessel. 
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Figure 8-8. Simplified model to illustrate the role of the diffusivity of blood vessels in drug 

delivery efficacy. The models with and without the blood vessel are depicted in (a) and (b) 

respectively. The drug concentration along the analysis line is significantly greater when no blood 

vessel is present (c) which results in a reduced population of cancerous cells (d). 

 

8.5.2 Intravenous drug delivery – sensitivity analysis 

In this section the influence of different parameters involved in drug delivery is analysed 

when the drug is administered intravenously. A sinusoidal profile of drug concentration 

in the blood vessel through intravenous delivery is considered, as shown in Fig. 8-9. The 

subsequent tissue response is illustrated in the same figure, when 𝐴𝑓 (i.e. the amplification 

factor of the drug concentration) equal to 0.2 and 0.8 respectively are considered for both 

drugs. 
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Figure 8-9. The drug profile considered is sinusoidal. The results for Paclitaxel and Doxorubicin 

are very similar independently of the concentration used. 

 

 

 It can be seen that the tumour cells are reduced when highest concentration (i.e. 𝐴𝑓=0.8) 

of drugs is used, however cancer progress is predicted when the lowest drug concentration 

(i.e. 𝐴𝑓=2) is applied. Results show a minimum difference between the tissue responses 

subject to different drugs. That is due to drug diffusivity into tissue being controlled 

mostly by the diffusion through blood vessels as previously discussed in section 8.5.1 

(illustrated in Fig. 8-8). 

Fig. 8-10 shows the influence of the initial concentration of cancerous cells in the healthy 

part of the tissue on the tissue response to drug delivery. This parameter, which is the 

initial value of variables 𝑆 and 𝑀 in Eqs. 8-11 and 8-12 respectively, can be interpreted 

as the probability of cancer spreading into healthy tissue. The two lower concentrations 

of drug (i.e. Af  = 2 and 4) do not serve as a prophylactic measure against cancer growing 

or to kill the existent cancerous cells. Therefore ultimately the cancer spreads to the organ. 

However, when initial concentration of cancerous cells is reduced to 0.001 chemotherapy 

is able to stop the tumour from spreading, resulting in much lower tumour fraction 

compared to other cases where the initial concentration of cancerous cells is higher 
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Figure 8-10. Evolution of cancer volume fraction for different initial concentration of cancerous 

cells. The prophylactic effect of chemotherapy is only visible for the highest concentration. 

 

 

 

Increasing the replication rate of cancerous cells, on the other hand, has a negative effect 

on the prognosis of the patient, especially when low doses of drug are given to the patient 

as illustrated in Fig. 8-11.  

 

Figure 8-11. Evolution of cancerous cell population when the replication rate of cells is increased. 

 

The effect of increasing the ability of cancerous cells repairing themselves, regulated by 

parameter 𝜖𝑚 in Eqs. 8-11 and 8-12, is shown in Fig. 8-12. As opposed to the results in 

Fig. 8-11, the effects are amplified when higher doses of drug are used. A similar trend is 
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observed when the arrest cost of cell cycle of cancerous cells is lower than healthy cells, 

as shown in Fig. 8-13.  

 

Figure 8-12. Evolution of the population of cancerous cell when the ability of cancerous cell to 

repair, 𝝐𝒎, is increased. 

 

 

Figure 8-13. Evolution of cancer volume fraction for different cell cycle arrest for cancer and 

healthy cells. 

 

 

In summary the choice of all these parameters as discussion in this section, specific to the 

tumour, its development stage and the immune system of the patient, is therefore crucial 

and needs to be carefully tuned to obtain prediction and subsequently the optimisation of 

drug delivery with the accuracy required in clinical practice. 
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8.5.3 Bolus injection – sensitivity analysis 

In this section two types of bolus injection are considered. Firstly the case of delivering a 

single dose is considered. Fig. 8-14 shows the evolution of tumour volume when 

paclitaxel and doxorubicin are administrated using two amplification factors of drug 

concentration (i.e. 2 and 8), respectively. In both cases the tumour grows and spreads. It 

is noted that the tissue response using both drugs is similar and the difference between 

using a higher or lower dose is less significant than in the previous scenarios when an 

intravenous treatment was considered. Such finding is believed to be due to diffusion 

pathway of the drug in tissue since the dose is comparatively low and takes longer to 

arrive to the rest of the tumour via diffusion, firstly through the blood vessel then through 

the tissue, therefore the regions of tumour more distant from the injection site have more 

time to grow before the drug concentration is built up to a critical amount that would 

hinder the tumour growth. Such hypothesis is in fact in line with what has been shown 

and discussed in section 8.5.1, in particular Fig. 8-7(c), where it can be seen that the 

difference in the drug diffusivity is unable to make a notable difference in tumour 

treatment due to the delay in drug diffusion in comparison to the tumour growth. 
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Figure 8-14. Comparison of cancer volume fraction evolution over time when two different 

amplification factors and drugs are considered 

 

Fig. 8-15 shows the influence of reducing the initial amount of cancerous cells present. 

Such hypothesis is further strengthened by the results shown in Fig. 8-15, where the drug 

is administered directly into the tissue thus avoiding the hindrance of the blood vessels. 

The difference between the effects of both drugs is made clear when the bolus treatment 

lasts longer. In particular it is shown that a higher replication rate of cancerous cells 

further increases the benefits of the drug with low molecular weight (i.e. Doxorubicin) 

with respect to the one with higher MW (i.e. Paclitaxel) since the reduced diffusivity 

allows the drugs to diffuse faster into the tumour nodule.  
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Figure 8-15. A comparison of the influence of the initial concentration of cancerous cells in 

cancer volume fraction over time. 

 

Little difference is observed when the tumour repairing parameter εm, in Fig. 8-16, when 

a single bolus injection is considered between use of paclitaxel and doxorubicin. 

However, the difference is notably higher when a sinusoidal bolus injection is used, as 

shown in Fig. 8-17 where the cell replication rate parameter rm is varied. The difference 

between the sinusoidal and the single injection cases is that tissue receives more sustained 

drug dose when sinusoidal drug profile is present, consequently leading to a lower tumour 

volume at t=100 h. 

 

The comparison between the results obtained using the bolus and intravenous delivery 

reveal the critical role of drug diffusivity in tissue and the limiting role to drug diffusion 

that the low diffusivity of blood vessels plays. In fact drug diffusivity appears to be the 

most critical factor in the outcome of the treatment compared to the biological parameters. 

Higher drug diffusivities are therefore preferred and result in better clinical outcomes ( 

measured in this chapter by the evolution of cancer volume fraction) especially in bolus 

treatments. However, the high diffusivity would also cause the drug administered via 

bolus to reach the bloodstream easily and therefore distribute across the body which could 

result in worsened side effects. Such result strengthens the hypothesis that to predict the 
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outcome of the treatment a priori and to chose the optimal chemotherapeutic agent the 

diffusivity of the tissue has to be determined either by experimental or computational 

approaches. 

 

 

 

 

 
 
Figure 8-16. Impact on cancer volume fraction evolution over time of the ability of cancerous 

cells to repair themselves when Paclitaxel and Doxorubicin are administered. 
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Figure 8-17. Comparison of cancer volume fraction evolution over time when two different drugs 

and cancerous cell replication rate, 𝒓𝒎 are considered. 

 

 

8.5.4 Influence of drug profile in treatment efficacy 

A different drug profile is considered in this section as shown in Fig. 8-18 (a), in addition 

to the sinusoidal profile used in section 8.5.2, to compare the influence of the drug 

concentration profile administrated in blood stream.  To enable such comparison, both 

profiles have the same total amount of drug over the time of 100 hours (i.e. the areas 

under two profiles are the same). Compared to the sinusoidal drug profile the one 

proposed here has 5 cycles instead of 4 and a more aggressive dosage. Fig. 8-18 (b) shows 

the comparison of both drugs at the highest concentration considered in this study 

delivered using the method of bolus injection. Although the final tumour progression is 

very similar due to the same amounts of drug administered, the evolution is considerably 

different. In fact the rate at which cancerous cells are killed is significantly different. The 

exponential drug profile used in this study allows the drugs to reach the tumour nodule 

faster therefore leading to a faster establishment of effective drug concentration in tumour 

nodule. This trend is amplified when the drug is administered intravenously as shown in 
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Fig. 8-18(c). However such behaviour may not be true for high drug dosage rate that is 

arbitrary, since the diffusivity may become non-linear (i.e. diffusivity may vary 

depending on local condition) due to saturation, clogging etc. Therefore high doses may 

become less effective even if they were not toxic for the patient. The higher killing rate 

has implications regarding the ability of cancerous cells to become immune to 

chemotherapeutic agents since less malignant cells are given the opportunity to replicate. 

 

Figure 8-18. (a) A different drug concentration controlled by two exponentials is considered in 

this section. Evolution of cancerous volume fraction when the drug is following a sinusoidal or 

exponential law via a bolus (b) or through the blood vessels (c).  

 

 

The evolutions of drug concentration profile and tissue response are illustrated in Fig. 8-

19, when a bolus injection of Doxorubicin with sinusoidal drug profile (𝐴𝑓 = 0.8) is 

considered. In particular Fig. 8-19(a) shows the concentration of Doxorubicin 4 hours 

after the beginning of the treatment. It should be remarked here that high concentrations 
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are achieved on the healthy and cancerous parts of the tissue. However, the left side of 

the tumour receives a lower dose at later stages. Therefore cancerous receive less amount 

of drug and can replicate faster. Fig.8-19 (c) shows the volume fraction of tumour 4 hours 

after the start of the drug treatment, where it can be seen how cancerous cells start to die 

from the location where the bolus was injected. The distance that drugs need to travel is 

critical since longer times may result in ineffective treatment.  Figs. 8-19 (b) and (d) show 

the evolution of the treatment (i.e. drug concentration and tumour status, respectively) 

after 80 hours. It can be seen that the tumour at the location where the bolus is injected 

has been successfully treated, as well as much lower fraction of tumour found in other 

regions. However, if the cancerous cells replicate faster the delay of the drug to get to all 

the cancerous cells may be critical in determining the success of the treatment. 

 

Figure 8-19. Drug concentration is shown in (a) and (b) 4 hours and 80 hours after the beginning 

of the treatment when a sinusoidal bolus injection is considered. The evolution of the cancer status 

is shown in (c) and (d) after the same period respectively. The area where the bolus sinusoidal 

injection was applied is identified by the high concentration in (a-b) and by a large reduction in 

the population of cancerous cells in (d) compared to the same area in (c). 
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8.6 Concluding remarks 

Determining the optimal delivery, including the delivery methods and drug concentration 

profile, of chemotherapy agents such as doxorubicin or paclitaxel is critical. This chapter, 

closely linked with previous chapters in the concept of tissue microstructural 

heterogeneity, presents a computationally framework to evaluate the outcome of a drug 

treatment using data from a biopsy prior to drug being administered to the patient. 

First a methodology to calculate the apparent drug diffusivity tensor in soft tissue due to 

presence of cancer is presented. These results are then used as ‘material properties’ into 

the patient-specific model that incorporates the blood vessel network to estimate the tissue 

response using a modified competition model.  

The main conclusions of this study are: 

 Inter-patient variation, which appears to be less influent in the drug diffusivity 

than the molecular weight of the drug, is still notable in affecting the efficacy of 

drug delivery.  

 The apparent drug diffusivity in tissue remains approximately constant for the 

different RVE sizes chosen. This suggests the existence of an RVE that can be 

used to model the tissue using its effective properties from the information at 

lower length scale, thus simplifying the model and reducing the computational 

cost to make the method easier to implement in clinical practice.  

 The profile of drug concentration delivered by either intravenous or bolus 

injection has significant impact on the rate at which malignant cells are killed. 

This may lead to a more ideal outcome where tumour nodule becomes less 

resistant to chemotherapeutic treatment due to the short period of time being 

treated. This is of critical importance in the success of the treatment and therefore 

needs further investigation. 
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 The proposed framework would be of particular importance not only to the 

evaluation of the capability of a chemotherapeutic treatment but also to predict its 

prophylactic function. 

As it stands the proposed methodology has certain limitations: the capillary which also 

influences the pathway of drug delivery is not considered; the diffusivity of healthy and 

cancerous tissue are not updated over time and the immune response of cancerous cells 

is not taken into account in the competition model. It is hoped to overcome this constraints 

in the future once histological images are available in higher resolution that is able to 

capture the topological features of capillary vessels. In this chapter it is assumed that 

Doxorubicin and Paclitaxel, which are widely used in the treatment of solid tumours in 

breast and prostate, have the same pharmacodynamics properties. However, that is just 

an assumption since the main objective of the analysis performed in this chapter was to 

analyse the influence of drug diffusivity. Therefore, to transfer the proposed methodology 

into clinical practice it would be necessary to quantitatively determine those parameters.   

A further limitation is that the transport of drug from tissue into the blood vessels when 

the bolus approach is used is not considered. However, taking into account the relatively 

low diffusivity of blood vessels the effects of such phenomenon are expected to be 

negligible. In this chapter bidimensional models are considered as it is hoped that the 

methodology proposed here can be validated performing drug diffusion analysis in 

histological samples. However, the methodology is general and could be applied to model 

drug diffusion in three dimensional geometries. Nevertheless, obtaining such geometries 

from excised samples is a challenging task at the moment because of two main reasons. 

First it is complex and expensive to stain and cut in a sufficient number of samples a 

complete organ. Second pathologists require the organ to be cut in very specific areas and 

geometries for clinical diagnosis. It is expected to increase the database of patient tissue 

samples to improve the understanding of inter-patient differences when different grades 
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of cancer are present. It is hoped that the framework presented here will serve as a basis 

for a platform that allows predicting and optimising the outcome of a chemotherapeutic 

treatment before aggressive drug is given to the patient, towards the ultimate goal of 

personalised medicine. 
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CHAPTER   9 

Looking back and working forward 

Contents 
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9.1 Looking back 

As mentioned at the outset, the synergy between engineering, medical and biological 

sciences has already led to significant advances in clinical practice such as diagnosis, 

image guided surgery and reduction of side effects in aggressive treatments such as 

radiotherapy. It is expected that such multidisciplinary research will continue to increase 

in pursuit of the aims of improving quality of life and life expectancy. This doctoral thesis 

aimed to contribute towards deepening such synergies in the areas of soft tissue diagnosis 

and treatment and also serve as a basis for further interactions between engineering and 

clinical diagnosis and treatment. In particular, the main aim was to investigate how 

changes in tissue microstructure caused by various pathophysiological conditions 

influence the mechanical properties at organ scale, and, more importantly, how to take 

advantage of these changes for diagnostic purposes using mechanical palpation. 

Analysing the influence of patient specificity not only in diagnosis but also in drug 

delivery aspects of treatment is also a major objective of the thesis. Tumour drug delivery 

is closely linked to the rest of the thesis since both are influenced by changes in the 

underlying microstructure due to pathological condition, and both need to recognise that 
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the microstructure and its response to disease are patient-specific.  The final goal of this 

research is therefore to establish a framework that allows accurate, non-invasive, 

efficient, cost-effective diagnosis that allows planning an adequate and optimized drug 

delivery treatment. 

The specific contributions and conclusions that have been made in this thesis are 

summarized as follows: 

Chapter 3: A novel palpation-based method to detect hard cancerous nodules in soft 

tissues – the computational framework and experimental validation 

 First work to propose a method for estimating the size and depth of a cancerous 

nodule using palpation, without a priori knowledge of its topology. 

The advantage of the framework is that it eliminates the limitations of previous methods 

that required the knowledge of either the nodule size or depth prior to examination. 

Furthermore, the methodology is not restricted to idealised cylindrical or circular nodules, 

but can be applied to nodules with any geometry. This generality is of critical significance 

in opening up the opportunity for non-invasive palpation-based assessment of a wide 

variety of tumours, such as colorectal, breast and even liver cancers. 

Chapter 4: Quantitative tissue quality assessment through viscoelastic 

characterization using instrumented palpation 

 Systematic study of the effectiveness of dynamic instrumented palpation on soft 

tissue, taking into account its viscoelastic behaviour; 

 First work to characterize the viscoelasticity of prostatic tissue, in the presence of 

cancerous nodules reconstructed from MRI scans, to quantitatively assess the 

tissue quality using viscoelastic response from dynamic palpation; 

 First work to propose a novel tissue quality index for soft tissue diagnostics, based 

on its viscoelastic behaviour.  
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Compared to previous approaches for soft tissue diagnosis which are mainly based on the 

tissue elasticity, the methodology presented here showed that the viscoelastic response is 

an adequate index for quantitative assessment of tissue quality, and, more importantly, is 

less sensitive to changes of nodule depth. Furthermore, is the method does not require  a 

priori knowledge of the topology of the cancerous nodule, making it potentially more 

efficient in terms of the number of medical procedures involved. Consequently, the 

proposed methodology is seen as a reliable tool for quantitative tissue diagnosis. 

Chapter 5: A novel method for rapid, quantitative, mechanical assessment of soft 

tissue for diagnostic purposes – a viscoelastic ‘rule of mixtures’ 

 A novel method is proposed to obtain the apparent viscoelastic properties of 

biphasic materials or tissues 

 A fast mathematical methodology is proposed to relate such apparent properties 

to the volume fraction of each phase in soft viscoelastic materials with random 

microstructure. 

 First work to propose a methodology based on realistic mechanical testing 

scenarios to estimate the cancerous volume fraction in tissue without a priori 

knowledge of nodule topology. 

The concept of ‘the rule of mixtures’ has been widely used for heterogeneous engineering 

materials. However, they are not applicable to estimating the apparent time constants of 

heterogeneous viscoelastic tissues. The fast numerical rule of mixtures presented here 

allows an estimation of the volume fraction of each phase regardless of the topology of 

the inclusion. This implies that, compared to previous methodologies, the framework 

presented here does not require any complex finite element simulation. Thus the method 

is particularly attractive for use in clinical practice due to ease of use and fast outcome. 

Furthermore the proposed methodology could be also applied in other fields such as 

structural health monitoring (SHM) of heterogeneous engineering materials. 
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Chapter 6: Patient Specific Modelling of Palpation-based Prostate Cancer 

Diagnosis: Effects of Pelvic Cavity Anatomy and Intrabladder Pressure 

 Systematic study of patient-specific modelling (PSM) in biomechanical 

modelling of the male pelvic cavity; 

 First work to propose a framework for PSM applied to the example of the male 

pelvic cavity for the purpose of prostate cancer diagnosis using palpation; 

 First work to investigate the effects of changing the intrabladder pressure during 

palpation-based prostate cancer diagnosis when patient-specificity is considered; 

Results show that it is possible to increase the sensitivity of the procedure by 

regulating the bladder content, which can be implemented in clinical practice; 

 First work to explore the effectiveness of incorporating the pelvic bone into the 

proposed PSM framework for prostate cancer diagnosis.  

Compared to previous efforts to model the male pelvic cavity, the framework established 

here takes into account patient specificity including not only the actual local anatomy but 

also the outcome of previous treatments to the prostate. The recommendation provided in 

this chapter for patient preparation prior to digital rectal examination (instrumented or 

not) would improve the outcome of the procedure. Furthermore the modelling community 

would benefit from the findings from the study including the pelvic bone, thus reducing 

the computational cost of future models. More importantly, this work emphasises the 

benefits of patient specific modelling in general clinical practice. 

 

Chapter 7: A multiscale, mechano-morphological approach to soft tissue mechanics: 

application in prostate cancer diagnosis 

 First work to systematically analyse the influences of the changes in the 

mechanical properties of prostatic tissue due to the presence of a cancerous 

nodule; 
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 Novel methodology to impose periodic boundary conditions on arbitrary meshes; 

 First work to introduce the use of support vector machines to classify the apparent 

mechanical properties of soft tissue in terms of its pathological condition. 

Two main contributions are made here. First a novel method involving the imposition of 

periodic boundary conditions on arbitrary meshes is proposed. This is of special relevance 

when working with models reconstructed from images obtained from biological samples 

with highly complex geometries such as histological images, where periodic meshes are 

complex or even impossible to obtain. More importantly, the method is well suited to 

commercial software where the stiffness matrix is inaccessible. The second contribution 

is in the analysis of the changes in the effective properties of soft tissue subjected to 

different patho-physiological conditions and the associated diagnosis using soft 

computing techniques. This allows a qualitative diagnosis (i.e. either cancerous or 

healthy) to be made directly from the mechanical tests performed on the sample, 

essentially using pattern recognition. Compared to previous methodologies that extract a 

single feature based on elasticity, e.g. the Young’s modulus, the proposed methodology 

allows improved the diagnosis by introducing more components of the stiffness tensor, 

thereby acknowledging the significance of tissue anisotropy and its influence on the 

proposed diagnostic methods. 

 

Chapter 8: Heterogeneity in Tissue Diffusivity: An Application in Drug Delivery 

  First work to analyse the changes in the apparent drug diffusivity in tissue 

microstructure due to the changes caused by cancer 

 First work to introduce a patient-specific framework that considers drug 

diffusivity from the local blood vessels and pharmacodynamics to predict the 

evolution of cancer under drug treatment 
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In this chapter, two main contributions are made. First, a methodology is presented for 

calculating the apparent drug diffusivity tensor in soft tissue under various physiological 

conditions. These results are then transferred into a patient-specific model which, in 

contrast to to previous work, incorporates the vessel network. This enhanced model 

estimates cancer progression under different treatment strategies using a modified 

competition model. It is hoped that the framework presented here will serve as the basis 

for a platform that allows the prediction and optimisation of the outcome of a proposed 

treatment before any aggressive drug is given to the patient.  

9.2 Working forward 

It is hoped that the methodologies proposed in this thesis will serve a long term goal in 

the development of healthcare technology that improves cancer diagnosis and treatment 

ultimately improving the care, quality of life and life expectancy of patients. The 

following work is proposed to further advance this thesis to an even higher level that takes 

into account not only the uniqueness of each patient and pathological condition but also 

the constraints of the clinical practice (e.g. patient discomfort, economic feasibility). 

Mechanics-based soft tissue diagnosis: 

Use of novel diagnostic devices: The work presented in Chapters 3, 4 and 5 has been 

based on the use of a single sensor (although in silico) to perform the mechanical 

characterization of the tissue. However, this limits the variety of tests that can be 

simultaneously performed. It might be of interest, for instance, to pinch, stretch or 

compress the tissue before performing any palpation to obtain further measurements that 

would enhance the diagnosis.  Such devices would provide the opportunity to improve 

the diagnosis with novel testing methodologies and data analysis. More importantly they 

could be introduced into current surgical devices such as pincers, thus facilitating the 

translation into medical practice. A further challenge that novel diagnostic devices could 

help to address is quantitatively assessing the need for tissue pre-conditioning under 
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different loads, especially in-vivo. This is of critical relevance to obtain accurate patient-

specific mechanical properties. 

Miniaturized sensors: Although, for the purpose of digital rectal examination, the use 

of finger-sized probes has proven to be useful, as discussed in Chapters 2, 3, 4 and 5, 

miniaturising the sensors would give rise to new opportunities such as increasing the 

sensitivity, maybe even to cellular scale, or accessing other internal organs such as the 

intestines, lungs, heart and brain. As discussed in Chapters 7 and 8, the mechanical 

properties may vary significantly in a rather small length scale depending on the 

pathological conditions. Testing at lower scales would allow a higher resolution diagnosis 

thus providing much more useful information for certain conditions where 

microstructural changes associated with the early stage of diseases often occur locally. 

However, the diagnostic procedures should be extremely sensitive to avoid detecting 

normal heterogeneities in healthy tissue as abnormalities. The process of classifying such 

data as healthy or cancerous could be done, for instance, using artificial neural networks 

(ANN) or Support Vector Machines (SVM). More importantly, it could provide an insight 

into the vascularization and diffusivity of the tissue, thus paving new roads to 

optimization of diagnosis and tailoring the treatment on a patient-specific basis. 

Larger database of histological and MR images: In Chapters 4, 5, 6, 7 and 8,  data from 

different patients have been used to test the proposed computational models either at the 

microscopic or at organ scale. It is expected that an increase in the database would 

improve the accuracy of the models, e.g. support vector machines used in Chapter 8, and 

provide a deeper understanding of the changes in the microstructure caused by various 

conditions. Morphometric indices could be derived, which could be useful for both 

clinical diagnosis and multiscale modelling. This objective is undoubtedly ambitious and 

the cost of performing MRI scans to a large group of patients could be prohibitive. 

Therefore, it would certainly require a much wider collaboration to obtain such data from 
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patients with different genotypes and phenotypes. As a result building such database will 

be a long-term project. 

Multiphase Multiscale models: The models in this work assume that the tissue 

behaviour can be modelled as a continuum solid. However, tissues are multiphase 

materials with solid and aqueous phases. Therefore, using multiphase models including 

such effects as fluid-structure interaction would allow a better understanding of the 

influence of the aqueous phase in tissue mechanics. However, such models are 

computationally expensive and have various limitations. Drug delivery research would 

also benefit from such models to account for such variables as interstitial fluid pressure 

that have been reported in cancerous tissue. This would require characterization of such 

properties, for instance using miniaturized sensors as mentioned above, which represents 

a challenge in itself. However, a balance between the complexity of the model and its 

applicability in clinical practice, where constraints such as time-per-patient are critical, 

has to be considered. 

Drug delivery: 

Diffusivity estimation from mechanical properties: Current diagnostic techniques 

require a biopsy to ascertain the presence and grade of a disease. However, the advances 

in palpation will hopefully reduce the need for such procedures. Although avoiding a 

biopsy would be advantageous for the patient, the lack of histological images would 

hinder the estimation of drug diffusivity on a patient-specific basis. Therefore, to avoid 

invasive procedures and the risks associated with them, it would be necessary to estimate 

the diffusivity during the palpation procedure. This is directly linked with the need for 

miniaturized sensors to measure the properties with the required resolution and to the 

work carried out in Chapters 7 and 8. 

Patient-specific model reduction: To obtain clinically significant data, it is necessary to 

include patient-specific information in the drug delivery model. Multiscale modelling has 
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proven a useful technique to reduce the complexity of such models, but patient-specific 

models are still complex, laborious to create and therefore adapting them into clinical 

practice is challenging. It is therefore necessary to reduce their complexity without 

compromising the accuracy to make computational models readily available in clinical 

practice. In this regard, it would be especially interesting to reduce the complexity of 

multiphysics models, for instance using model order reduction techniques, which would 

improve the analysis of drug delivery into solid tumours. 

Personalized drug delivery optimization: Current protocols for treatment of diseases 

such as cancer are very strict regarding dosage and timing and the peculiarities of each 

patient are not considered. As a result, the opportunity of providing an optimal treatment 

is lost. Chemotherapy is specially challenging due to the multiple biological constraints 

in place, such as cardiotoxicity, hepatotoxicity and drug resistance. Therefore it would be 

critical to establish a platform to predict the outcome of drug treatment and its possible 

optimization (e.g. design of drug or dosage procedure) before giving any drug to the 

patient as personalised medicine. 

 

From the proposed ideas for future work and given the opportunity to follow one of them 

with the adequate support it is believed that personalized drug delivery optimization has 

the potential to create a higher, long-lasting impact in society within a reduced time frame. 
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