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Abstract: The study first identified fully efficient farmers and then estimated technical efficiency
of inefficient farmers, identifying their determinants by applying a Zero Inefficiency Stochastic
Frontier Model (ZISFM) on a sample of 300 rice farmers from central-northern Thailand. Next,
the study developed scenarios of potential production increase and resource conservation if technical
inefficiency was eliminated. Results revealed that 13% of the sampled farmers were fully efficient,
thereby justifying the use of our approach. The estimated mean technical efficiency was 91%, implying
that rice production can be increased by 9%, by reallocating resources. Land and labor were the
major productivity drivers. Education significantly improved technical efficiency. Farmers who
transplanted seedlings were relatively technically efficient as compared to those who practised
manual and/or mechanical direct seeding methods. Elimination of technical inefficiency could
increase output by 8.64% per ha, or generate 5.7–6.4 million tons of additional rice output for
Thailand each year. Similarly, elimination of technical inefficiency would potentially conserve 19.44%
person-days of labor, 11.95% land area, 11.46% material inputs and 8.67% mechanical power services
for every ton of rice produced. This translates into conservation of 2.9–3.0 million person-days of
labor, 3.7–4.5 thousand km2 of land, 10.0–14.5 billion baht of material input and 7.6–12.8 billion
baht of mechanical power costs to produce current level of rice output in Thailand each year. Policy
implications include investment into educating farmers, and improving technical knowledge of
seeding technology, to boost rice production and conserve scarce resources in Thailand.
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1. Introduction

The measurement of productive efficiency of a farm relative to other farms, or the “best practice”
for an industry, has long been of interest to agricultural economists. From an applied perspective,
measuring inefficiency or efficiency is important because this is the first step in a process that can lead
to substantial resource savings [1]. These resource savings have important implications for both policy
formulation and farm management [2]. On the other hand, for individual farms, gain in efficiency
is particularly important in periods of financial stress. Efficient farms are likely to generate higher
incomes, and thus stand a better chance of surviving and prospering.

Technical efficiency is the ability to produce a given level of output with a minimum quantity
of inputs, or a larger quantity of output from the same level of inputs [3]. The concept is conducive
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to obtaining sufficient food through sustainable agricultural production, or producing more from
the same land area, while conserving scarce resources. Therefore, improving production ability or
technical efficiency can have huge potential benefits, not merely in terms of generating higher output
and productivity, but also in conserving resources [4].

It is generally known that Thailand is a traditional rice producer, the second largest rice exporter
and the fifth largest cultivator of rice in the world. The National Statistical Office of Thailand noted
that 40% of Thais work in agriculture, 16 million of them as rice farmers. Rice plays an important
role in the Thai economy, but the sector is facing several serious challenges, such as water shortage,
shortage of agricultural labor, low productivity, high production costs, and price instability.

Challenges Facing the Thai Rice Economy

Thailand has long sustained its position as the world’s largest exporter for three decades, due
primarily to the high quality of its long-grain milled rice, and the unique qualities of Thai Hom Mali
rice (i.e., the Jasmine rice). However, Thailand’s competitive advantage has been steadily eroded in
the face of fierce commodity price competition from other exporters. Figure 1 displays rice exports
from the top four exporting countries, i.e., India, Thailand, USA and Vietnam. We see that India has
beaten Thailand to become the largest exporter of rice in the world since 2012. Thailand rice exports
reached 10.7 million tons in 2011, then dropped to 6.7 million tons in 2012 and 6.6 million tons in
2013 [5]. This was due to Thailand’s worst floods in half a century, and the-then government’s rice
scheme that adversely impacted rice production and export.
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Figure 1. Rice exports of India, Thailand, US and Vietnam from 2001 to 2015 (metric tons). Source:
Adapted from U.S. Department of Agriculture.

In 2012, India lifted its ban on rice exports, and 10 million tons of Indian rice flooded the market.
Global prices plummeted. Thus, the Thai rice scheme stockpiled 17–18 million tons of rice that could
not be sold, at prices that covered production-only costs [6]. Some researchers have found that Thailand
does not have the ability to influence the export price of rice. For example, John [7] found that the Thai
domestic pricing programs do not heavily distort world rice prices. Mahanaseth and Tauer [8] tested
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for the existence and extent of market power in a range of major Thai rice export destinations, and
found that Thailand’s ability to influence its export price is constrained by competition from Vietnam
and India, especially for low-quality and generic rice varieties.

Thailand is also facing severe water shortage, an essential input in rice production. Rice production
uses large amounts of water. For example, 1.432 L water is needed to produce 1 kg of rice in an
irrigated lowland production system [9]. The water shortage in Thailand is caused by the low level
of water in reservoirs and reduced rainfall capacity, which is an effect of extreme climatic conditions,
such as El Nino phenomenon. Major rice fields have been severely damaged by drought. If there is less
rainfall than predicted in the rainy season, billions of baht worth of damage in rice yield will reduce
Thai economic growth by 0.4%. Although El Nino is a global phenomenon, global rice prices may
increase only slightly as a result of a widespread fall in rice supply. Average rainfall in Thailand is
46% lower than normal, and water levels are at 45% of reservoir capacity. As a result, farm output has
declined by 7–8% in 2015 and 2016, and farmers’ debt to agricultural income has risen to 100% due to
the impact of drought [10].

The Thai agricultural sector is also experiencing labor shortage as farmers move into better-paid
manufacturing and services sectors, and those who remained in farming are older. Average farm
income is 14,211 baht per month, while the national average income is 21,566 baht per month, and
the professional, technical, and administrative workers have the highest income, of approximately
51,866 baht [11].

As mentioned, aging of the farmers is another issue. According to government statistics,
the average age of farmers jumped from 31 years in 1985 to 42 in 2010. Only 12% of the farmers
were under 25, as compared to 34% in 1985 [11].

With respect to the use of chemicals, the government has encouraged the intensification of
chemical fertilizers as the main approach to increase crop production. But increased fertilizer use
did not see a corresponding increase in yield, which may have been be due to a lack of knowledge
on the actual effectiveness of chemicals, resulting in technically inefficient use of chemicals in Thai
agriculture [12].

In addition, technological constraints like low-yielding varieties are other major threats. In recent
decades, Thai agriculture has shifted towards higher-value crops with increased mechanization,
in order to remain competitive and raise farmers’ incomes. However, it has appeared to have little
effect. We see that Thailand continues to lag behind its Asian neighbors on agricultural productivity,
as shown in Figure 2. Rice yield is not stable, and has showed only a moderate level of increase over
time. Price instability in the international rice market exerts a high level of influence on domestic
rice production. For example, Jasmine rice accounts for approximately half of rice export incomes in
Thailand—an important source of foreign currency reserves [13]. But the market value of Jasmine
rice has fallen over a third since 2013, and is at a nine-year low [13]. Thus, the current government
has proposed a 35.8 billion baht ($1.02 billion) loan scheme that is aimed at curbing an oversupply of
Jasmine rice in the market, and stabilizing prices [14].

All of these factors may prompt Thai farmers to give up rice planting and engage in rubber and
fruit tree plantations, fishery, and vegetable cultivation [15]. Therefore, Thailand urgently needs to
increase productivity and efficiency in rice farming, in order to not only to be competitive in the rice
export market, but also to sustain the nation’s food security and rural employment, and conserve
culture and tradition, which is largely linked to the rice economy.

Given this backdrop, the aims of the present study are to: (a) measure the existing level of
productivity and efficiency of rice farmers; (b) identify the determinants of inefficiency; and (c) estimate
potential productivity increase and/or resource conservation, once inefficiency of rice farmers can be
eliminated in Thailand.
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Figure 2. Rice yield (kg/ha) in Thailand and other Asian countries, 1980–2011. Source: Adapted
from FAOSTAT.

We undertook this task by applying a Zero Inefficiency Stochastic Frontier Model (ZISFM) on
a sample of 300 rice farmers from central-northern Thailand, which is the main rice growing area.
The contributions of our study to the existing literature were two-fold: first, we used a ZISFM, a recently
introduced but not commonly used method of efficiency estimation (discussed below). Second, we used
the parameters of the estimated model to develop scenarios of potential production increase per unit
of land and resource savings per unit of output in Thailand when technical inefficiency was eliminated,
which is not commonly seen in the literature. Such scenarios will provide compelling evidence leading
to the development of well-informed policies aimed at eliminating technical inefficiency to sustain
agricultural growth.

There are two primary methods of efficiency measures, namely stochastic frontiers and data
envelopment analysis (DEA), which involve econometric methods and mathematical programming,
respectively. Stochastic frontier models make assumptions about the functional form of production or
cost functions, and can deal effectively with the presence of noise in the data, whereas DEA models
make no assumptions about the functional forms, but cannot deal effectively with measurement
error [16]. Coelli [17] recommended the stochastic frontier method for use in most agricultural
applications, and also pointed out that the stochastic frontier model has the added advantage of the
ability to conduct statistical tests of hypotheses regarding the production structure and the degree of
inefficiency. Therefore, the stochastic frontier model is more suitable than DEA in this study.

The Stochastic frontier model (SFM) is usually used to measure technical efficiency or inefficiency
scores for each individual. It was proposed independently by Aigner et al. [18] and Meeusen and
Broeck [19]. This method has been widely used in many research fields for technical efficiency analysis,
particularly in agricultural economics. For example, Chen and Song [20] used the stochastic frontier
model to examine technical efficiency and the technology gap in China’s agriculture. Rahman et al. [21]
applied stochastic frontier model to model the technical efficiency of rice farmers in Bangladesh.
Yang et al. [22] investigated the presence of production risk and technical inefficiency for a sample
of rice farms in the Xiangyang City of China using a stochastic production frontier framework.
Kim et al. [23] utilized the stochastic production frontier model to examine productivity of inputs for
small and medium companies in Korea. Avea et al. [24] studied how NGOs and development agencies
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contribute to the sustainability of smallholder soybean farmers in northern Ghana by using a stochastic
frontier approach.

However, the commonly used stochastic frontier approach mentioned above assumes that all
individuals are inefficient. This is a strong assumption and potentially overstates inefficiency, or
underestimates efficiency, and is susceptible to bias in drawing policy implication. Kumbhakar et al. [25]
proposed ZISFM to relax this assumption. In this study, we applied the ZISFM to analyze technical
efficiency and inefficiency. The ZISFM successfully allows fully efficient firms to be accounted for,
from the onset of a stochastic frontier analysis, and the method can uncover anomalies that traditional
methods wash away with the rigid assumption of inefficiency of all observations in the sample.

The rest of the paper is organized as follows: the methodology and the data are presented in
Section 2, empirical results in Section 3; and the conclusion and policy recommendations in Section 4.

2. Methodology

2.1. The Zero Inefficiency Stochastic Frontier Model (ZISFM)

Following Kumbhakar et al. [25] and Tran and Tsionas [26], a ZISF production model for
cross-sectional data was specified as

yi = x′i β + vi with probability p, (1)

yi = x′i β + vi − ui with probability 1− p

where the error term in the SFM is defined as εi = vi − ui, yi, which represents the output of firm i, xi
denotes a K× 1 vector whose values are functions of inputs and other explanatory variables, β is the
vector of parameters corresponding to explanatory variables, vi is assumed to be i.i.d random errors
and normal distribution with mean 0 and unknown variance σ2

v , ui are non-negative unobservable
random variables following a half normal distribution with mean 0 and unknown variance σ2

u ,
p is a function that represents the proportion of firms that are fully efficient, and p is specified as
p = exp(γ)/[1 + exp(γ)].

The density function of εi is a mixture between a normally distributed random variable, and a
convoluted density from a normal/half-normal SFM. The conditional probability density function of
εi can be expressed as

f (ε|x) =
(

p
σv

)
g
(

ε

σv

)
+ (1− p)[

2
σ

g(
ε

σ
)G(−ε

λ

σ
)] (2)

where σ2 = σ2
u + σ2

v , λ = σu/σv, g and G are normal probability density functions and normal
cumulative distribution functions, respectively. Then, the conditional log-likelihood is given by

log L =
n
∑

i=1
log( f (εi | xi)) =

n
∑

i=1
log
{(

p
σv

)
g
(

y−x′β
συ

)
+ (1− p)

[
2
σ g
(

y−x′β
σ

)
G
(
−(y− x′β) λ

σ

)]}
(3)

We resort to a pseudo-likelihood ratio (PLR) to test full efficiency following Kumbhakar et al. [25].
The PLR test is defined as PLR = −2(LN − LZI), where LN is the log-likelihood of the normal linear
regression, LZI is the log-likelihood of the ZISFM. The PLR test has an asymptotic distribution which
constitutes a 50:50 mixture of χ2

0 and χ2
1 distributions [27]. The null hypothesis is H0: σu = 0. Since we

are focusing on the probability of being fully efficient, a rejection of the null hypothesis implies that
fully efficient farms exist in correspondence with the proportion p. Kumbhakar et al. [25] provided
asymptotic critical values, 1.642, 2.7043, 5.4133, for 90%, 95%, and 99% , respectively. However, we
have to mention that PLR test is not perfect. For example, Rho and Schmidt [28], and Parmeter and
Kumbhakar [29] found that p is not identified with incorrectly skewed OLS residuals. However, PLR
is still the best compared with the Wald test, LM test, modified LM test, and Kuhn–Tucker test, and the
PLR test is reasonable when λ is large (for details please see [28,29]).
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2.2. Estimation of Farm-Specific Inefficiency and Technical Efficiency

The conditional density function of u given ε following Jondrow et al. [30] is 0 with probability
π(zi) and N+

(
µ∗, σ2

∗
)

with probability 1− π(zi), where N+
(
µ∗, σ2

∗
)

is expanded as follows:

f (u | ε) =
g((u− µ∗)/σ∗)

σ∗G(−ελ/σ)
, (4)

where µ∗ = −εσ2
u/σ2 and σ2

∗ = σ2
uσ2

v /σ2. Therefore, the conditional mean of u given ε = y − x′β,
technical inefficiency, is expressed as

E(u | ε) = (1− p)
σλ

1 + λ2

[
g(−λε/σ)

G(−λε/σ)
− λε

σ

]
(5)

An estimated technical inefficiency can be obtained by replacing all unknown parameters in
ZISFM and the estimated error term ε̂i. In addition, a flexible approach to measuring inefficiency can
be constructed by using posterior estimate of probability that takes the form:

p∗i =
p̂i/σ̂vg(ε̂i/σ̂v)

p̂i/σ̂vg(ε̂i/σ̂v) + (1− p̂i)(2/σ̂)g(ε̂i/σ̂)G(−ε̂iλ̂i/σ̂)
(6)

The posterior estimate of inefficiency is ũi =
(
1− p∗i

)
ûi, where ûi is the estimated inefficiency

from the ZISF. Thus, we call it posterior inefficiency. There are many studies considering technical
efficiency scores, such as [31–34] etc. Battese and Coelli [35] observed that the difference between the
two estimates reflects the inaccuracy of the approximation 1 − uit to exp(−uit). Therefore, we also
constructed the technical efficiency in ZISFM, following Battese and Coelli [35]. The technical efficiency
in ZISFM can be written as

E(exp(−(1− p∗i )Ui) | Ei = εi) =
∫ +∞

0
exp(−(1− p∗i )ui) fUi|Ei=εi

(ui)dui

=

[
1− G

((
1− p∗i

)
σ∗ − µ∗i/σ∗

)
1− G(−u∗i /σ∗)

]
exp
{
−(1− p∗i )µ∗i +

1
2
(1− p∗i )σ

2
∗

}
(7)

We used the posterior odd ratio to censor our sample. The posterior odd ratio is defined as
Ri = p∗i /

(
1− p∗i

)
. This ratio is greater than one for most of the censored (fully efficient) farmers.

After we formally classified farmers into censored and non-censored groups, the censored SFM
was constructed.

The prediction of the stochastic frontier output is important for farmers and policy makers. Based
on Equations (1) and (7), the stochastic frontier output can be expressed as

Y∗i = Yi/TEi =
exp(Xiβ + vi − ui)

exp(ui)
= exp(Xiβ + vi) (8)

Therefore, the averaged additional output, ∆ can be directly calculated by using 1/N ∑ N
i=1(Y

∗
i −Yi).

If the unit of output is ton/ha, the total additional output will be easy to compute by ∆ multiplied by
the total land area of rice grown.

In addition to being used to calculate technical efficiency and technical inefficiency, ZISFM and
posterior ZISFM can be used to measure resource saving as well. According to the estimates of technical
efficiency, the probability of full efficiency and the posterior odd ratios, we can identify efficient farms
and inefficient farms. Thus, the sample is separated into two groups: inefficient group and efficient
group. First, we calculated the input of actual production factors required to produce one ton of rice
for efficient farmers and inefficient farmers, respectively. The input of actual production factors for
efficient farmers and inefficient farmers,

.
xj and

..
xj, are given as follows
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s1 =
1

N1 × 1000 ∑ N1
i=1Yi

.
xj =

1
s1 × N1

∑ N1
i=1Xij, (9)

s2 =
1

N2 × 1000 ∑ N2
i=1Yi

..
xj =

1
s2 × N2

∑ N2
i=1Xij, (10)

respectively, where N1 is the number of efficient farmers, N2 is the number of inefficient farmers,
j = 1, 2, . . . , j represents the number of production factors. Second, the resource saving of producing
one ton of rice is defined as RSj =

..
xj −

.
xj. Last, the total resource saving can be computed as

TRSj = yield× (1− p)× RSj (11)

where yield is the annual rice production, p is the parameter in ZISFM.
The log likelihood function Equation (3) was computed using the BFGS algorithm in the maxLik

package of R software. Some starting values were obtained from the conventional SFM in the frontier
package in R software.

2.3. The Data

A total of 300 rice farmers from central-northern Thailand (Kamphaeng Phet province) constituted
the sample population of the study. The data were collected during the year 2012. A random sampling
procedure was employed. Details of output and input data were collected from these rice farmers, using
face to face interviews conducted by graduate level research students of the Chiang Mai University,
Chiang Mai, Thailand. Kamphaeng Phet province is one of the most important rice production areas
in the central north of Thailand. There are 2.29 thousand km2 for planting rice, which is 3% of total
rice area in Thailand. Also, the Ping river and Bhumibol dam on the Ping river provide convenient
conditions for planting rice. Farming is the most common economic activity for Thai workers in this
area, because of the abundance of lowlands, which are most suitable for agriculture. The central region
is often called the ‘rice bowl’ of Thailand, being the most fertile area of the country. This region also
enjoys the highest per capita income in the country after Bangkok Metropolitan Area.

Rice can be planted in several ways, but most commonly, it is divided into two categories,
direct seeding of rice (DSR) and transplanting seedlings. DSR can be done by hand or by machine.
The farmers can be separated into three categories based on their planting patterns: transplanting
seedlings, manual DSR, and mechanical DSR. Transplanting seedlings is the traditional planting
pattern, while manual and mechanical DSR are popular planting pattern in recent times. DSR is
an alternative option to for coping with the problems of water and labor scarcity associated with
conventionally flooded rice. We have 100 observations for each seed planting category.

2.4. The Empirical Model

The empirical model is specified with a Translog stochastic production frontier function:

Ln Y = α0 + ∑ 5
j=1αjLnXij + ∑ 5

j=1 ∑ 5
k=1β jk

(
LnXijLnXik

)
+ ∑ 2

m=1 ϕmRim + vi − ui, (12)

ui = ∑ 7
d=1δdZid + ei (13)

where Yi is the rice output; Xij is the jth input for the ith farmer; Rim is the dummy variable for farms
located in the plain land and farms located in slopes, vi is the two sided random error, ui is the one
sided half-normal error, ln natural logarithm, ei is the truncated random variable; α0, αj, βj, ϕm and δd
are the parameters to be estimated.

A total of five production inputs (X) and two regional dummies (R) were used in the production
function, and four variables representing socio-economic characteristics of the farmer (Z) were included
in the inefficiency effects model as predictors of technical inefficiency. The production inputs are: land
(m2), labor (person days), material inputs (which includes inorganic fertilizers, pesticides, and seeds)
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(baht), mechanical power (baht), and irrigation (baht). The factors influencing technical inefficiencies
were specified as: Educ1 = Dummy variable showing value of 1 if the farmer was at a primary
education level, otherwise zero; Educ2 = Dummy variable showing value of 1 if the farmer was at a
secondary education level, otherwise zero; Educ3 = Dummy variable showing value of 1 if the farmer
was at college education level and above, otherwise zero; Share = The share of hired labor used in
growing rice (proportion of total labor); Pattern1 = Dummy variable showing value of 1 if the farmer
used manual DSR to plant rice; Pattern2 = Dummy variable showing a value of 1 if the farmer used
mechanical DSR to plant rice; Pattern3 = Dummy variable showing value of 1 if the farmer used
transplanting seedlings to plant rice.

3. Empirical Results

In this section, we report the parameter estimates and results of the technical inefficiency and
technical efficiency analyses. Starting with the parameter estimates, Table 1 shows parameter estimates
of the traditional SFM, the ZISFM and the censored SFM. It is clear that the PLR (Posterior Likelihood
Ratio) test in the ZISFM is statistically significant at 1% level, which means that there were some fully
efficient farmers present in the total sample. The probability of efficiency from the ZISFM was p = 0.1333,
and statistically significant at 1% level, which also showed that there are two classes, fully efficient and
inefficient farmers in this sample. The number of the cut-off sample was 22, and it accounted for about
7% of the total sample. Thus, we classified the farmers into censored and non-censored groups, and
estimated censored SFM and censored ZISFM. The probability of efficiency from the censored ZISFM
was 0.08, which was close to the proportion of censored sample and was expected.

Table 1. Parameter estimates of the conventional Stochastic Frontier models (SFM) and Zero Inefficiency
Stochastic Frontier models (ZISFM).

Parameters Traditional SFM ZISFM Censored SFM

Production Frontier

Constant
10.3247 *** 10.3298 *** 10.3613 ***

(0.1256) (0.1263) (0.0295)

ln Labor
0.0927 ** 0.0813 * 0.1576 ***
(0.0401) (0.0451) (0.0249)

ln Land
0.6835 *** 0.7096 *** 0.6376 ***
(0.2125) (0.2269) (0.1071)

ln Input 0.2163 0.1965 0.2031
(0.2047) (0.2140) (0.1301)

ln Mechanical power 0.0009 0.0048 0.0150
(0.0336) (0.0316) (0.0214)

ln Irrigation −0.0228 −0.0341 −0.0439 ***
(0.0659) (0.0654) (0.0001)

Slope 0.0042 0.0037 −0.0044
(0.0189) (0.0157) (0.0322)

Plain
0.0318 0.0274 0.0276

(0.0307) (0.0258) (0.0323)

0.5 × (ln Labor)2 −0.6943 *** −0.7098 *** −0.6365 ***
(0.0875) (0.0803) (0.0644)

0.5 × (ln Land)2 1.7191 *** 1.6421 *** 1.5963 ***
(0.3579) (0.3523) (0.4124)

0.5 × (ln Input)2 −0.1523 ** −0.1566 ** −0.0408
(0.0731) (0.0668) (0.1049)

0.5 × (ln Mechanical power)2 −0.0290 −0.0294 −0.0303
(0.0232) (0.0215) (0.0256)

0.5 × (ln Irrigation)2 −0.0031 −0.0048 −0.0061 ***
(0.0094) (0.0094) (0.0001)
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Table 1. Cont.

Parameters Traditional SFM ZISFM Censored SFM

ln Labor × ln Land
−0.4590 * −0.4208 * −0.4246 ***
(0.2395) (0.2277) (0.1591)

ln Labor × ln Input 0.7230 *** 0.6824 *** 0.7195 ***
(0.2531) (0.2405) (0.1632)

ln Labor × ln Mechanical power 0.0726 * 0.0766 * 0.0049
(0.0420) (0.0407) (0.0479)

ln Labor × ln Irrigation 0.0031 0.0029 0.0065 ***
(0.0021) (0.0022) (0.0019)

ln Land × ln Input −0.8664 *** −0.8213 *** −0.8659 ***
(0.1800) (0.1787) (0.2160)

ln Land × ln Mechanical power −0.8412 *** −0.8903 *** 0.4364
(0.3207) (0.2967) (0.3203)

ln Land × ln Irrigation −0.0231 * −0.0210 −0.0203 **
(0.0122) (0.0138) (0.0082)

ln Input × ln Mechanical Power 0.8722 *** 0.9255 *** 0.4608
(0.3099) (0.2879) (0.3121)

ln Input × Ln irrigation 0.0202 * 0.0184 0.0136
(0.0118) (0.0130) (0.0094)

ln Mechanical power × ln Irrigation −0.0010 −0.0009 0.0004
(0.0022) (0.0021) (0.0014)

Model diagnostics

p — 0.1333 ** —
(0.0599)

σ2 0.0202 ***
0.0195 0.0176(0.0033)

γ 0.9563 ***
0.9568 0.9992(0.0424)

σu 0.1388
0.1365 *** 0.1327 ***
(0.0032) (0.0035)

σv 0.0297
0.0290 *** 0.0037 ***
(0.0015) (0.0001)

λ 4.6806 4.7097 12.7535
PLR test — 13.2333 *** —

Inefficiency effect

Educ1
−0.0316 −0.0252 −0.0407 **
(0.0227) (0.0193) (0.0177)

Educ2
−0.0381 −0.0312 0.0507 **
(0.0250) (0.0212) (0.0212)

Educ3
−0.0689 *** −0.0542 *** −0.0981 ***

(0.0236) (0.0199) (0.0213)

Share of hired labor
0.0111 0.0105 −0.0131

(0.0166) (0.0142) (0.0189)

Planting pattern1 0.1959 *** 0.1568 *** 0.2164 ***
(0.0229) (0.0195) (0.0182)

Planting pattern2 0.1299 *** 0.0976 *** 0.1502 ***
(0.0233) (0.0198) (0.0189)

Planting pattern3 0.1012 *** 0.0763 *** 0.1157 ***
(0.0225) (0.0191) (0.0173)

R2 0.7696 0.7412 0.7622

Note: *** = significant at 1% level (p < 0.01); ** = significant at 5% level (p < 0.05); * = significant at 10% level (p < 0.10).

In the traditional SFM, the variance of u was bigger than the other two models because the
probability of efficiency pulled down the variance of inefficiency. On the other hand, the variance
of v in the censored SFM was much lower than the traditional SFM and ZISFM, which implied that
the censored SFM fit very well. Following Battese and Coelli [36], the parameters (σu, σv) can be
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transformed to (λ, σ2) with λ = σu/σv and σ2 = σ2
u + σ2

v . The larger λ, the greater the inefficiency
component in the model. We also measured the global inefficiency by γ = σ2

u/σ2. The values of λ and
γ revealed whether inefficiency played an important role in the composite error term [37]. The estimate
of λ in the censored SFM was the greatest, as expected. The estimates of γ in three models were over
0.95, and were statistically significant at the 1% level. This indicated that farm productivity differentials
predominantly related to variations in management.

In the production frontier section, the coefficients of land and labor had positive signs as expected,
and were also statistically significant. All of the input variables were mean-corrected

(
Xik − Xk

)
so

that their averages were zero. This approach enabled the coefficients on the first-order terms to be
read directly as production elasticities for the individual inputs at the mean input values (see [33,38]).
In the ZISFM, land had the highest elasticity value of 0.70, implying that a 1% increase in land area
allocated to rice will increase production by 0.70%. This is not surprising and is similar to the results of
Rahman et al. [33] and Sriboonchitta et al. [34]. The estimated returns to scale parameters, computed as
the sum of estimated output elasticities of all inputs at their mean values, were 1.0066 for the traditional
SFM, 0.9892 for the ZISFM, and 0.9926 for the censored SFM. These estimates reflected the fact that
there are no scale diseconomies on the frontier. It also illustrated that the Thai farmers may increase
their rice production by improving technical efficiency rather than by increasing production scale.

3.1. Technical Efficiency Distribution and Their Determinants

The lower part of Table 1 shows the parameter estimates of the technical inefficiency function.
Since we used dummy variables for education and planting technology, we did not specify the
intercept/constant term in the inefficiency function, to avoid collinearity. We found that the parameter
estimates of the college education dummy variable carried a negative sign and was statistically
significant at the 1% level in all three models. This result very clearly demonstrates that farmers’
education emerges as an important factor in enhancing technical efficiency. In the censored SFM,
the parameter estimate of the college education dummy variable was much smaller than the other
two models, which implies that education is more important for inefficient farmers. Asadullah
and Rahman [39] also noted that education has a significantly positive influence on rice production
efficiency in Bangladesh. Educated farmers usually have better access to information about prices, and
the state of technology and its use [39]. Better-educated people also have a higher tendency to adopt
and use modern inputs more optimally and efficiently. It is more likely that educated farmers are more
perceptive to expert advice on agricultural production practices [21,40,41].

The parameter estimates for manually seed sowing, mechanical sowing, and transplanting
seedlings had a positive effect on technical inefficiency, whereas the parameter estimate of the manual
DSR was the largest, followed by mechanical DSR, and transplanting seedlings. The implication of this
result is that farmers who are transplanting seedlings are relatively more technically efficient, while
manual DSR is not a good planting technology, in Kamphaeng Phet province, Thailand. The reason
for this relationship may be due to Thailand’s situation, where the farmers do not have sufficient
technical knowledge about the use of modern planting techniques. Pandey et al. [42] also showed
that the yield of DSR under farmers’ field conditions tended to be lower than that of transplanted
rice. Poor and uneven establishment, and inadequate weed control were the major reasons for its
poor performance. Also, the traditional technique, transplanting seedlings, has generally been well
mastered by the farmers over time.

Figure 3 displays the cumulative technical inefficiency distribution based on the three methods.
The SFM overestimated the technical inefficiency scores compared to the ZISFM, which was expected.
The technical inefficiency scores from the posterior ZISFM and the ZISFM did not show much difference
between each other. Figure 4 displays the technical efficiency distribution from the three models.
The SFM technical efficiency scores were the exact opposite of inefficiency in Figure 3. Thus it can be
seen that the ZISFM is useful for amending technical efficiency or inefficiency scores, by relaxing the
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assumption of full inefficiency. We find that all the farmers have a relatively high technical efficiency,
between 0.7 and 1.Sustainability 2017, 9, 770  11 of 18 
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Figures 5 and 6 present histograms of technical inefficiency and efficiency distributions for the
sampled farmers, respectively. As previously seen, the technical inefficiency and efficiency distributions
reflected consistent results. About half of the farmers had high technical efficiency, or lower inefficiency.
Figures 7 and 8 show the differences of technical inefficiency and efficiency between ZISFM and
traditional SFM, and between posterior ZISFM and traditional SFM, respectively. As previously
shown, the traditional SFM overestimated farmers’ technical inefficiency, or underestimated farmers’
technical efficiency.

We present minimum values, maximum values, and the quartiles, as well as mean and standard
deviation of farmers’ technical inefficiency and efficiency in Table 2. As expected, the traditional
SFM overestimated inefficiency in each quartile compared with the ZISFM and the posterior ZISFM.
This result was consistent with Kumbhakar et al. [25]. However, our censored SFM conditional
mean estimates of inefficiency were higher than the traditional SFM conditional mean estimates.
The technical efficiency also showed similar results to technical inefficiency. These results once again
suggest that ZISFM and posterior ZISFM should be used to estimate inefficiency or efficiency behavior
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instead of traditional SFM. According to the summary statistics of technical efficiency, we saw that
more than half of the farmers operated at a relatively high level of technical efficiency—beyond 0.9.
These results were consistent with the findings in Figure 6.
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Figure 7. The differences of inefficiency between the ZISFM and the traditional SFM, between the
posterior ZISFM and the traditional SFM.
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Figure 8. The differences of efficiency between the ZISFM and the traditional SFM, between the
posterior ZISFM and the traditional SFM.

Table 2. Summary of technical inefficiencies and efficiencies.

Inefficiency Min Q25 Median Mean Q75 Max SD

SFM 0.0116 0.0439 0.0963 0.1121 0.1665 0.3709 0.0775
ZISFM 0.0084 0.0282 0.0673 0.0864 0.1331 0.3045 0.0657

Posterior ZISFM 0.0024 0.0207 0.0667 0.0835 0.1331 0.3045 0.0684
Censored SFM 0.0008 0.0597 0.0926 0.1188 0.1746 0.3757 0.0827

Technical Efficiency Min Q25 Median Mean Q75 Max SD

SFM 0.6904 0.847 0.9086 0.8969 0.9574 0.9885 0.0673
ZISFM 0.7377 0.8756 0.9352 0.9194 0.9724 0.9917 0.0586

Posterior ZISFM 0.704 0.8579 0.9263 0.9112 0.9765 0.9972 0.0695
Censored SFM 0.6868 0.8398 0.9115 0.8910 0.9421 0.9991 0.06957
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Table 3 displays the top five and bottom five technical efficiency scores of individual farmers
based on the SFM, ZISFM, and posterior ZISFM. We found that the ZISFM and the posterior ZISFM
gave consistent ranks in the top five and bottom five technical efficiency scores, thereby confirming the
trends shown in Figures 3 and 4. Moreover, most of the farmers who practiced manual DSR scored
high inefficiency or low technical efficiency, whereas farmers who transplanted seedlings scored high
efficiency or low inefficiency levels. This was consistent with the results of the parameter estimates of
technical inefficiency function.

Table 3. Top five and bottom five technical efficiency scores of the individual farmers based on SFM,
ZISFM, and posterior ZISFM.

Rank
SFM

TE
ZISFM

TE
Posterior ZISFM

TE
Farmer ID Farmer ID Farmer ID

1 38 0.9885 38 0.9917 38 0.9972
2 69 0.9875 69 0.9908 69 0.9967
3 58 0.9874 58 0.9907 58 0.9966
4 70 0.9867 70 0.9900 70 0.9961
5 34 0.9851 68 0.9893 68 0.9955

. . . . . . . . . . . . . . . . . . . . .
296 195 0.7315 195 0.7717 195 0.7415
297 173 0.7291 173 0.7681 173 0.7376
298 185 0.7137 185 0.7514 185 0.7191
299 178 0.6941 42 0.7403 42 0.7068
300 42 0.6904 178 0.7377 178 0.7040

3.2. Scenarios of Potential Production Increase and Resource Conservation

Table 4 reports on the prediction of stochastic frontier output and total additional output that can
be produced in Thailand based on the results of ZISFM and posterior ZISFM. Total rice output could
be increased by 8.64% on average, based on the results of ZISFM. Farmers practicing manual DSR have
the biggest room to enhance rice production, followed by those who practice mechanical DSR, followed
by farmers transplanting seedlings. Thailand has approximately 9.2 million hectares of rice growing
area [43]. Therefore, we estimated the potential additional output that can be obtained by eliminating
technical inefficiency (Table 4). The total additional output was estimated at approximately 5.6 million
tons and 6.4 million tons, corresponding to the results of ZISFM and posterior ZISFM, respectively.
The potential for increasing the total rice production by practicing manual DSR was high because these
farmers were the least efficient, which implies that the technological knowhow of manual DSR must
be improved. Although these production figures were substantial, they were expected.

Table 5 presents potential resource savings in producing one ton of rice, and the total resource
savings of Thailand for the year 2016 based on the results of ZISFM and posterior ZISFM. Webb [44]
showed that Thailand aimed for 25 million tons of rice output in 2017. Based on ZISFM results,
19.44%, 11.95%, 11.46% and 8.67% of labor, land, material inputs and mechanical power respectively
could be saved to produce one ton of rice if technical inefficiency is eliminated. This translates into a
resource conservation of 2.97 million of labor days, 3.74 thousand km2 of land area, 10.05 billion baht
of material input and 7.57 billion baht of mechanical power costs for one year in Thailand, which is
substantial. The corresponding figures are similar and/or higher based on the results from posterior
ZISFM (Table 5). Such prediction of scenarios provides compelling evidence to undertake policy
decisions aimed at eliminating technical inefficiency in agriculture.



Sustainability 2017, 9, 770 15 of 18

Table 4. Prediction of stochastic frontier output and total additional output in Thailand.

Total Sample ZISFM (ton/ha) Posterior ZISFM (ton/ha)

Stochastic frontier output 7.7390 7.8146
Actual output 7.1234 7.1234

Additional output 0.6155 0.6912
Increasing rate 8.64% 9.7%

Total additional output 5,663,217 tons 6,359,295 tons

Planting Pattern 1 ZISFM Posterior ZISFM

Stochastic frontier output 7.3006 7.4450
Actual output 6.3890 6.3890

Additional output 0.9115 1.0560
Increasing rate 14.27% 16.53%

Total additional output 2,795,414 tons 3,238,462 tons

Planting Pattern 2 ZISFM Posterior ZISFM

Stochastic frontier output 7.8210 7.8810
Actual output 7.2843 7.2843

Additional output 0.5366 0.5966
Increasing rate 7.37% 8.19%

Total additional output 1,645,684 tons 1,829,760 tons

Planting Pattern 3 ZISFM Posterior ZISFM

Stochastic frontier output 8.0953 8.1178
Actual output 7.6968 7.6968

Additional output 0.3985 0.4210
Increasing rate 5.18% 5.47%

Total additional output 1,222,120 tons 1,291,073 tons

Table 5. Resource savings in rice production of one ton, and total resource savings of Thailand in 2016,
based on ZISFM and posterior ZISFM.

ZISFM Labor
(Person Days) Land (m2)

Material Inputs
(Baht)

Mechanical Power
(Baht)

Efficient farmers
0.5671 1267.52 3570.936 3662.076(N1 = 40, 13%)

Inefficient farmers
0.7040 1439.52 4033.14 4009.931(N2 = 260, 87%)

Resource saving per ton 0.1369 172.00 462.2044 347.8546
Resource saving % 19.44% 11.95% 11.46% 8.67%

Total saving in Thailand 2,978,334 3,741,513,600 10,052,945,485 7,565,837,280

Posterior ZISFM

Efficient farmers
0.5637 1236.00 3390.375 3452.244(N1 = 22, 7% of total)

Inefficient farmers
0.6939 1429.44 4014.93 4003.066(N2 = 278, 93% of total)

Resource saving per ton 0.1301 193.44 624.5557 550.8216
Resource saving % 18.75% 13.53% 15.55% 13.76%

Total saving in Thailand 3,026,106 4,499,564,800 14,520,920,054 12,806,601,503

4. Conclusions

The main objectives of this paper were to estimate technical efficiency, and their determinants on
rice farmers from central-northern Thailand, and then to develop scenarios of potential production
increase and resource savings in rice production for Thailand. We did this by applying a recently
introduced and less commonly used ZISFM, which allowed us to determine fully efficient farmers
from the sample, and then estimate inefficiency of inefficient farmers. This addressed the potential
overstatement of inefficiency arising from applying conventional SFM, which assumes that all farmers
are inefficient.
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Results revealed that 13% of the farmers were fully efficient in the sample, thereby justifying the
use of ZISFM approach in our study. Land was the most important driver of rice production, followed
by labor, which had a relatively smaller impact on rice productivity. Although the mean level of
technical efficiency of the rice farmers was estimated at 91%, we still can improve technical efficiency
in order for sustained agriculture to continue. Amongst the determinants of technical inefficiency,
results revealed that the college-level education had the highest impact on improving efficiency. Seed
planting technology also significantly influenced technical inefficiency. Farmers who transplanted
seedlings were relatively more technically efficient compared to those who practiced manual DSR
and mechanical DSR. The technical efficiency level of manual DSR was the lowest and was evaluated
as not a good planting technology. Use of DSR is still a new experience for farmers who have been
practicing conventional methods of sowing for centuries. Also, the traditional technique, transplanting
seedlings, is well mastered by the farmers.

Finally, our calculations showed that elimination of technical inefficiency could potentially
generate an additional rice output of 5.68–6.35 million tons. Also, elimination of technical inefficiency
could potentially conserve 2.9–3.0 million person days of labor input, 3.7–4.5 thousand km2 of land
area, 10.05–14.52 billion baht of material input and 7.56–12.81 billion baht of mechanical power costs,
at the current level of annual rice production in Thailand; these are substantial savings.

The following policy implications can be drawn from the results of this study. Investments in
education targeted for farmers will significantly improve technical efficiency. Although all categories
of education have significant influence, the impact is highest for farmers attaining tertiary education;
this requires policies that enable the promotion of higher levels of education for farmers. Next,
the government should provide support for the introduction of advanced technology for DSR. DSR
technology is practiced successfully in many parts of the world, such as China, Australia, Malaysia,
the USA, and Sri Lanka [45]. Many researchers believe that DSR technology can improve yields,
with less water and labor requirements. However, our results showed that this technology did not
perform well in Thailand. Thus, we suggest that the government acquires the relevant knowledge
and expertise from successful countries, by dispatching training programs for agricultural technicians
and/or representative model farmers, on the use of modern planting technologies, and the acquisition
of advanced equipment. Along with the aging Thai population, and water resource shortages, DSR
is becoming increasingly important as a sustainable technology to replace traditional transplanting
technology, although the latter is currently more efficient.
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