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Abstract

Two different configurations of Liquid State Machine (LSM), a special type of Reservoir Computing with internal

nodes modelled as spiking neurons, implementing multiple columns (Modular and Monolithic approaches) are tested

against the decimation of neurons, connections and entire columns in order to verify which one can better withstand

the damage. Based on the neurorobotics outlook, this work is part of a bigger project that aims to apply artificial

neural networks to the control of humanoid robots. Therefore, as a benchmark, we made use of a robotic task where

an LSM is trained to generate the joint angles needed to command a simulated version of the collaborative robot

BAXTER to draw a square on top of a table. The final drawn shape is analysed through Dynamical Time Warping

to generate a cost value based on how close the produced drawing is to the original shape. Our results show both

approaches, Modular and Monolithic, had a similar behaviour, however the Modular was better at withstanding the

decimation of neurons when it was concentrated in a single column.

Index Terms

Liquid State Machine, Reservoir Computing, Robotics, Graceful Degradation, Neurorobotics.

I. INTRODUCTION

One of the problems we face when dealing with humanoid robots is the complexity of those systems. The

humanoid robot iCub [1] has more than fifty Degrees Of Freedom (DOF) and even the much simpler collaborative

humanoid robot BAXTER (Rethink Robotics Inc.) still has seven DOF on each arm. Both robots can be considered

redundant structures because there is an infinitude of possible ways to accomplish a certain task.

Combined efforts from neuroscience, robotics and artificial intelligence to answer this kind of questions helped to

develop a new field called Neurorobotics [2], [3]. Kaplan [2] defines neurorobotics as ”the science and technology

of embodied autonomous neural systems”. A neurorobotic system interacting with a real-world scenario, in order

to mimic what happens with a human being, needs to integrate a large set of input signals from the visual

system, vestibular system (balance), actuators (proprioceptive feedback), short term memory, long term memory
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and information from different parts of the neural system. Our neurorobotic solution makes use of a special type

of Spiking Neural Network (SNN), Liquid State Machines (LSM) [4], improved with an external feedback loop.

The work presented here started as part of the Bioinspired Architecture for Brain Embodied Language (BA-

BEL) project1, but with a focus on humanoid robot control using SNN. We aim to develop a system totally based

on SNN in order to implement it on the neuromorphic system SpiNNaker [5]. The humanoid collaborative robot

BAXTER will be controlled in such a way that the SNN actually can ”feel” the world through the proprioceptive

feedback received from the robot.

In a previous work [6], two different types of multiple columns LSM, Modular and Monolithic (see Section II

for a better definition), enhanced with external feedback connections (see Maass et al. [7] for more details) were

tested against noise injected directly into its artificial neurons2. The results confirmed both systems had a gracious

degradation, i.e. the performance decreased proportionally to the noise amplitude instead of a catastrophic failure,

but nothing was said about their behaviour in relation to damage to the internal nodes.

Here, those same LSM systems [6] were exposed to different types of decimation. They had their internal

connections (Section II-B), neurons (Section II-C and II-D) and whole columns (Section II-E) decimated whilst

they were benchmarked in a robotic task based on the collaborative robot BAXTER (Section II-F1) using Dynamic

Time Warping (Section II-F2).

A. Background

A Liquid State Machine is an Artificial Neural Network (ANN) composed of Leaky Integrate and Fire (LIF)

neurons connected in a distance-dependent probabilistic way. Another way of see it is as a recurrently connected

Spiking Neural Network (SNN). The LSM is considered part of a bigger class of ANN called Reservoir Computing

(RC). A group of neurons recurrently connected is what the literature calls liquid or reservoir. When first introduced

by Maass et al. [4], the LSM was already known to be computationally more powerful when multiple columns

were used instead of a bigger one, but it did not have the external feedback connection between the output and the

input [7]. When such a feedback connection is introduced, an LSM becomes capable of emulating arbitrary Turing

machines in an ideal situation.

Traditionally, an LSM experiment generates its final results averaging several trials. However, multiple trials

usually have different time delays and simply averaging them do not generate the best results. A solution for this

problem was presented by Azambuja et al. [8] where a parallel implementation yields better results than averaging

multiple trials. Furthermore, such a system was already tested against the effects of varying the noise injected

directly into the neuron model [6], showing a graceful degradation instead of a catastrophic failure.

B. The Problem

The Modular and Monolithic LSM approaches have been already tested in relation to their robustness when a

noisy current is injected directly into the neuron model [6], [8], still no experiments were done to verify their

1www.babel-project.org
2Preprint version of the paper and all the source code are available at github.com/ricardodeazambuja/ICONIP2016 [6]
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behaviour to internal damage. Also, it was not possible to find in the literature any work where an LSM using

multiple columns and an external feedback connection [7] was tested against internal damage. Schürmann et al. [9]

only mention their liquids shown robustness against faults introduced after the readout was trained, but no figures

or data was presented. Hazan and Manevitz [10] presented experiments with an LSM tested against damage and

noise, but their system was mono-column, it did not have the important external feedback connection (between the

readout output and the input) and the task was not a robotic one.

Since in our previous work [8] we only addressed the possibility of Single-Event Upsets (SEU) or soft-errors, it

was important to verify how the implemented LSM would react to more destructive events such as a Single-Event

Latchup (SEL), Single-Event Gate Rupture (SEGR), or Single-Event Burnout (SEB).

For this work, we simulated SEL, SEGR and SEB in a very simplified way by deactivating neurons or connections.

Four different possible scenarios were individually considered: decimation of internal connections (Section II-B),

decimation of individual neurons (Section II-C), decimation of individual neurons in a single column (Section II-D)

and decimation of entire columns (Section II-E). The verification was done using a robotic task (Section II-F1)

together with Dynamic Time Warping (Section II-F2) as a benchmark. The results were analysed with the help of

Welch’s t-test (Section II-F3).

II. MATERIALS AND METHODS

A. Modular and Monolithic Multiple Columns LSM

The Modular and Monolithic systems can be seen in the Figures 1 and 2. They have the same specifications

presented in Azambuja et al. [6]. They are composed of five columns (or liquids or reservoirs), each one including

six hundred artificial neurons (three layers, or a structure with 20x5x6 neurons), totalling three thousand neurons.

The neuron model is the LIF with exponential synapses. In addition, the artificial neurons have white Gaussian noise

(µ = 0 and σ = 1nA) directly injected as a current (this happens every simulation time step) and the membrane

voltage values are drawn from an uniform distribution (13.5mV to 14.9mV ) every time a new simulation starts.

Consequently, all trials are, by design, unique.

Figure 1. A Modular system is formed by multiple distinct complete LSM in parallel. They receive the same inputs (proprioceptive feedback)

and their readout outputs are averaged and only then sent to the robot.

A Modular system can be implemented and put together using different hardware, because it is a complete system

by itself and the training occurs individually. Even if one of the parallel pieces needed replacement, it would only
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require the connection of a spare one. In this work, it was implemented using a simulator running on a PC (see

Section IV for the link).

Figure 2. A Monolithic system is similar to the Modular one, since it has multiple columns (liquids). However, each column receives only part

of the inputs and there is only one readout output.

The Monolithic approach has only its columns implemented separately since the inputs each column receives

are not the same. For the experiments presented here, we employed the same columns from the Modular system

(this was guaranteed by the use of the same random seeds) and everything was simulated in a PC using the same

software mentioned earlier.

B. Decimation of Internal Connections

The experiments testing the effects of damages to the column’s internal connections were simulated using nine

different levels of decimation: 1%, 2.5%, 5%, 7.5%, 10%, 25%, 50%, 75% and 100% of connections. The same

number of connections was randomly decimated from all columns, therefore they are evenly distributed. Modular and

Monolithic systems were tested with one hundred trials each level (1800 trials in total). Both excitatory and inhibitory

connections were randomly pruned during each trial. The pruning was achieved by changing the connection weight

value to zero. Input and output connections were not changed.

C. Decimation of Neurons

Following pilot experiments, not presented here, the number of decimated neurons per column was defined as: 6,

12, 18, 24, 30, 36, 42, 48, 54 and 60 neurons. Again, one hundred trials were executed for each configuration (2000

trials in total). During each trial, the same number of random selected neurons was deactivated in each column and,

therefore, those neurons did not generate spikes during that trial.

D. Decimation of Neurons in a Single Column

In these experiments, instead of deactivating the same number of neurons in all columns (Section II-C) the

decimation was concentrated in only one column. The number of neurons decimated were: 30, 60, 90, 120, 150,

180, 210, 240, 270 and 300 neurons. For each experiment, one hundred trials were executed (2000 trials in total).
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E. Decimation of Columns

After testing individual columns to partial damage (Section II-D), since the Modular approach has the possibility

of implementing hot swap for each parallel LSM, individual columns were totally disconnected. Because both,

Modular and Monolithic configurations, had a total of five parallel columns, we tested for the disconnection of 1,

2, 3 and 4 columns. One more time, one hundred trials were executed for each situation (totalling of 800 trials).

For the Monolithic system, all the neurons from the decimated columns stopped producing spikes and, con-

sequently, the readout units associated to those neurons output a zero value. The Modular configuration had entire

modules shut down and, therefore, those modules were not used for the generation of the final averaged output

value.

F. Benchmark task

1) Simulated Baxter Robot: Our benchmark task was based on the simulated version of the humanoid collab-

orative robot BAXTER drawing a square on top of a table. The controlled joints employed here can be seen in

Figure 3. In previous works [6], [8], all the simulations were executed using V-REP [11]. However, in this work,

Figure 3. Simulated version of the humanoid collaborative robot BAXTER inside VREP. The four revolute joints controlled in this work (S0,

S1, E1 and W1) are highlighted (green).

the testing phase was carried out with only a simplified model of the Inverse Kinematics (IK). Using this simplified

IK instead of the full V-REP simulator, more trials were generated in the same amount of time. The details and

source code for the IK can be found on the Github repository from the link provided in Section IV.

2) Dynamic Time Warping: The generated output from our robotic benchmark task (Section II-F1) can be seen

in two different ways: a time series formed by all points (X, Y, Z) or the final 2D drawing. Still, if one just

analyses the time series, e.g. a Mean Square Error comparing to the original one, time delays or changes on the

velocity profile could have a huge influence whilst the final drawing would look perfect. Using the cost generated

by the Dynamic Time Warping (DTW) method [12] it’s easier to compare the final generated 2D shape, still taking

into account the time dimension. This same idea, using DTW as a benchmark for a robotic task, has already

been discussed in Azambuja et al. [8]. All the DTW cost calculations were based on the algorithms available at

github.com/ricardodeazambuja/DTW.
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3) Welch’s t-test: The comparison between the DTW results from the Modular and Monolithic approaches were

made using the Welch’s t-test. This test is a variant of the famous Student’s t-test. The Welch’s t-test was created to

be applied when the variances of the two samples are unequal (heteroscedastic) [13]. We applied this test to verify

if two experimental results have equal means (null hypothesis). To calculate the Welch’s t-test, we have opted for

the Scipy package method ttest ind, with the option equal var=False and both the t-value and the p-value were

reported.

III. RESULTS AND DISCUSSION

The results presented in this section are the outcome of four experiments that generated in total six thousand and

six hundred unique trials. The data were analysed separately according to the type of decimation tested.

DTW results are presented in Figures 4 to 8. Each point represents the average of one hundred trials and the

bars the standard error.

Statistics comparing both approaches, Modular and Monolithic, are summarised in Tables I to IV. Results that

are statistically significant are shown in bold.

Finally, the drawings generated during the experiments, where the two systems were tested for the decimation

of neurons in a single column (Section II-D and III-A3), are presented in Figure 7. These results are interesting

because they give an idea about what range of costs the DTW method generates since the values can be verified

in Figure 6.

A. Simulation Results

1) Decimation of Internal Connections: When an internal connection is decimated, even though the presynaptic

neuron is still active the postsynaptic one does not receive spikes from that connection reducing its computational

power. The readout is trained to generate values based on the column’s dynamics and if it changes too much the

readout loses its ability to generate the correct next joint values.

In the Figure 4, it’s possible to visualise, when the percentage of randomly decimated connections was below

5%, the Modular configuration was less affected by decimation - what can be also verified through Table I. Clearly,

from 5% both systems start converging to the same curve signalling there’s a threshold value where the Modular

approach can’t withstand this type of aggression.

2) Decimation of Neurons: The results from the experiments where neurons were randomly deactivated to

simulate a destructive event are presented in Figure 5 and Table II. The two configurations, Modular and Monolithic,

had approximately the same behaviour after 18 neurons (or 3% of the neurons) were randomly decimated inside

all available columns. Although, up to that point the Modular one suffered fewer effects from the damages.

When a neuron in our simulations is deactivated and stops producing spikes, all its postsynaptic connections

become inactive too. The main difference in relation to the results presented in Section III-A1 (Figure 4 and

Table I) is that even when some of the connections are broken the postsynaptic neuron still can produce spikes,

whilst here it stops supplying information to the low-pass membrane filter and, consequently, the readout. This

could explain why the decimation of connections generated a stronger reaction only when it reached 5% and the

decimation of neurons had a stronger destructive effect already at 3%.
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Figure 4. Decimated internal connections - Results from the experiments where a certain percentage of the internal connections between the

neurons inside each column, randomly selected, were decimated. The bars represent the standard error (total of 100 trials). Statistics are presented

in the Table I.

Table I

WELCH’S T-TEST RESULTS BETWEEN MODULAR AND MONOLITHIC APPROACHES - DECIMATED INTERNAL CONNECTIONS (100 TRIALS)

Percentage of decimated
t-value p-value

internal connections

1.0% 1.9750 0.0497

2.5% 2.8941 0.0042

5.0% -0.1803 0.8571

7.5% 0.2695 0.7878

10.0% 0.4656 0.6421

25.0% -2.5206 0.0125

50.0% -0.4167 0.6775

75.0% -2.0999 0.0370

100.0% -7.5188 0.0000

3) Decimation of Neurons in a Single Column: Sometimes, when a electronic system is affected by a Single-

Event Latchup, Single-Event Gate Rupture, or Single-Event Burnout, those events could generate a chain reaction

affecting components closely connected. Since the systems tested here are capable to be implemented in parallel, a

possible outcome would be a situation where only one column is affected. The results from Figure 6 and Table III

show exactly this situation and some of the trials are presented in the Figure 7.

To clarify, in Section III-A2 the same number of neurons, randomly chosen, would affect all five columns. Here,

the neurons were also randomly chosen, but only one random column was affected for each trial.

4) Decimation of Columns: The idea, when we initially presented our Modular system [8], was to be able to

distribute it among several different pieces of hardware in order to have more inspiration from nature where diversity

could help increasing the reliability. This would work similarly to a robotic system implemented using ROS [14]

or YARP [15] - since they enable modularity, and one node would be responsible to aggregate the outputs from all
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Figure 5. Decimated neurons - Results from the experiments where a certain number of neurons were randomly decimated from each of the

five columns. The bars represent the standard error (total of 100 trials). Statistics are presented in the Table II. The lower the DTW Cost, the

better are the results.

Table II

WELCH’S T-TEST RESULTS BETWEEN MODULAR AND MONOLITHIC APPROACHES - DECIMATED NEURONS (100 TRIALS)

Number of decimated
t-value p-value

neurons per column

6 2.9848 0.0032

12 3.5899 0.0004

18 0.5569 0.5782

24 0.0574 0.9543

30 1.5051 0.1339

36 0.3256 0.7451

42 1.9258 0.0556

48 -1.9451 0.0532

54 0.3843 0.7012

60 0.2321 0.8167

columns (the avg node from Figure 1). In this situation, this aggregator node would be able to ignore a node that

started behaving erratically. The results in Figure 8 and Table IV show that case scenario.

A system following the Monolithic approach has its readout trained to receive inputs from all columns; therefore it

fails even when only one column is disconnected. The Modular configuration is composed of stand-alone modules,

consequently it withstands much better the disconnection of nodes and beats the Monolithic case in all tested

scenarios (Figure 8 and Table IV).
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Figure 6. Decimated neurons, single column - Results from the experiments where a certain number of neurons were randomly decimated

from only one (randomly chosen) of the five columns. The bars represent the standard error (total of 100 trials). Statistics are presented in the

Table III. The lower the DTW Cost, the better are the results.

Table III

WELCH’S T-TEST RESULTS BETWEEN MODULAR AND MONOLITHIC APPROACHES - DECIMATED NEURONS IN A SINGLE COLUMN (100

TRIALS)

Number of decimated
t-value p-value

neurons in a single column

30 2.1544 0.0324

60 2.3023 0.0224

90 3.3502 0.0010

120 2.9712 0.0034

150 2.6311 0.0092

180 1.7074 0.0894

210 1.2765 0.2033

240 2.5349 0.0120

270 0.5581 0.5774

300 3.2891 0.0012
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Figure 8. Decimated column - Results from the experiments where whole columns, randomly selected, were decimated. The bars represent the

standard error (total of 100 trials). Statistics are presented in the Table IV. The lower the DTW Cost, the better are the results. The lower the

DTW Cost, the better are the results.
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Figure 7. The final shapes that generated the DTW values in Figure 6 and Table III are presented here. It was also included one extra case

were the columns were intact, therefore the number of decimated neurons was zero. The abscissa shows the Number of Decimated Neurons per

single Column. All one hundred trials were plotted together.

Table IV

WELCH’S T-TEST RESULTS BETWEEN MODULAR AND MONOLITHIC APPROACHES - DECIMATED COLUMNS (100 TRIALS)

Number of decimated
t-value p-value

columns

1 38.7050 0.0000

2 28.3430 0.0000

3 29.9274 0.0000

4 21.9195 0.0000

IV. CONCLUSIONS AND FUTURE WORKS

Neurorobotic systems get inspiration from nature and also interact with the external world. To accomplish this,

it is at least necessary to withstand the inherent real-world uncertainty.

In this work, we presented a framework that not only is biologically inspired, but also does not catastrophic fails

when exposed to damage into its inner parts. Besides, we tested two different configurations in order to compare

and contrast them in relation to the decimation of neurons and connections as an extension of what was already

presented by Azambuja et al. [6].

Both approaches had quite similar behaviours when exposed to decimation in randomly chosen connections or

neurons. However, the Modular one was able to better withstand decimation concentrated on a single column, or

when an entire column was switched off, whilst the Monolithic catastrophic failed after only one column was

completely removed.

Considering what has been already presented in previous works [6], [8], there are some ideas we expect to explore

for future developments. First, because our system was only tested with tasks that kept the movement confined

into the XY plan (the Z-axis was always kept constant), the next step is to try to teach the system to move and

interact in the 3D space. Also, since BAXTER is a collaborative robot, it would be important to explore that with
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an experiment where the robot could interact with a person - like a industrial set-up. Finally, the implementation

of our neural networks directly using SpiNNaker instead of a normal PC is the oblivious next step to verify if it is

possible to increase the speed of the system enabling the use of more sophisticated scenarios.

All implementation details and source code necessary to reproduce what was presented here can be found on

github.com/ricardodeazambuja/IJCNN2017-2.
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