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Abstract

University courses in statistical modeling often place great emphasis on methodological
theory, illustrating it only briefly by means of limited and repeatedly used standard examples.
Unfortunately, this approach often fails to actively engage and motivate students in their
learning process. The teaching of statistical topics such as Bayesian survival analysis can
be enhanced by focusing on innovative applications. Here we discuss the visualization and
modelling of a data set of historical events comprising the post–election survival times of
popes. Inference, prediction and model checking are performed in the Bayesian framework,
with comparisons being made with the frequentist approach. Further opportunities for
similar statistical investigations are outlined.

1 Introduction

Often, data about historical events can provide an interesting and well-structured approach
to teaching statistical methodology. This paper discusses such a historical data set that
provides a teaching example of interest in three very popular areas of modern statistics:
data visualization, biostatistics and Bayesian modeling. We have successfully presented
this material in a module on data modeling, taught to final-stage undergraduates (that
is, students in the third year of full-time university study) in Mathematics and Statistics
at Plymouth University, UK. The students had a strong mathematical and statistical
background that included some experience of frequentist inference and of using R (R Core
Team, 2017) to perform a variety of analysis and modeling tasks. Students responded well
to the material with 88% agreeing with the statement ‘the teaching methods used helped
me to learn’ and 81% agreeing that ‘the use of technology enhanced my learning’. One
student stated that ‘it was fun and interesting to see this application of a different way of
doing statistics’. After exposure to this example, students were able to undertake a range
of Bayesian modeling tasks with little additional support.

In Section 2 we present a data set based on post–election survival times of Roman Catholic
popes from 1404 and show how to visualize the information that it contains using a Lexis
diagram. Section 3 discusses a survival analysis model for these data, with inference about
the model parameters being performed in the Bayesian framework using the JAGS program
(Plummer, 2003), and makes comparisons between the Bayesian and frequentist inferential
approaches. We also extensively discuss inference when some of the data are ‘censored’,
that is, when we only know a lower bound for some of the post–election survival times.
In Section 4 the predictive distribution is used to make statements about future survival
times, while simple diagnostics for model checking are presented in Section 5. Finally,
Section 6 discusses additional investigations that students may undertake, including those
based on other historical data sets, before presenting brief conclusions. Basic JAGS code
for Bayesian inference is presented in Appendix 1, while R code for frequentist inference is
given in Appendix 2.
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2 A Historical Data Set and a Lexis diagram

The Argentinian Jorge Mario Bergoglio was elected Pope of the Roman Catholic Church
on 13 March 2013 and took the name Francis. In August 2014, he jokingly announced
that he expected to live another two or three years, and that he may even retire within this
period (Guardian, 2014). Although like other populations it may be expected that popes
have experienced a generally increased longevity, a statistical question naturally springs to
mind: how many years can a pope such as the present one expect to live after his election?
A statistical answer to this question requires data, and these data can provide teachers with
considerable scope for discussion about visualization, biostatistics and Bayesian modeling.

To answer the above question we analysed data on the post–election survival times of
popes, starting with Pope Innocent VII, whose pontificate began in 1404. These data, which
are supplied online, were obtained from Wikipedia (2016) and confirmed using Kelly and
Walsh (2010). The beginning of the fifteenth century was chosen as the starting point,
as dates of birth, election and death (or resignation) are accurately documented from
then. The resulting data set is based on the 62 popes before Pope Francis. Apart from
Pope Gregory XII (resigned 1415, died 1417) and Pope Emeritus Benedict XVI (Joseph
Ratzinger, Francis’s predecessor, who resigned on 28th February 2013), all the popes
analysed died in office. Thus, except for these two popes, the post–election survival time is
the same as the pontificate duration. The median age at election of these 62 popes is 63.5
years (interquartile range 12.5 years), meaning that generally they have achieved a certain
maturity. The median post–election survival time of the 61 popes excluding Benedict XVI is
9 years (interquartile range 9 years); Benedict XVI’s survival time was 11.7 years on 25th
December 2016.

The post–election survival times of popes elected since 1404 are displayed in Figure 1 by
a Lexis diagram, produced in R using the Epi package (Carstensen and Plummer, 2011).
Benedict XVI and Francis were alive on 25th December 2016, and are indicated by grey
triangles. Francis celebrated his 80th birthday on 17th December 2016, while Benedict XVI
was 90 years old on 16th April 2017. A Lexis diagram provides an excellent visualization
of survival time data that can stimulate discussion. For example, in Figure 1 the lines are
longer and tend to finish on higher values in recent pontificates, confirming that popes have
experienced a generally increased life expectancy. This is investigated further in Section 3
using survival analysis.

3 Bayesian Survival Analysis

3.1 A Data Model Based on the Weibull Distribution

The historical data set under consideration provides the teacher with an immediate
application of survival analysis to understand how the post–election survival time Ti of the
i -th pope, i = 1, . . . , 62, depends on the age at and year of election. For illustration
purposes, the Weibull distribution is used to model the positive times Ti . The Weibull
probability density function of Ti takes the form

fTi
(ti | r ,µi) = r µi t r−1i exp (−µi t ri ) , r ,µi > 0, for ti > 0, (1)

in which ti is the observed post–election survival time of the i -th pope. The associated
cumulative distribution function takes the form

Pr (Ti ≤ ti | r ,µi) = 1− exp (−µi t ri ) . (2)

The first parameter r of the Weibull distribution is a positive scale parameter. We model the
log of the second parameter µi > 0 as a linear function of the covariates age at election
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Lexis Diagram for Popes from 1400
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Figure 1: Post–election survival times of popes from 1404. The south–west end of each
line indicates the age at and year of election. The north–east end reports the age at and
year of death (black circle), or in the case of Pope Emeritus Benedict XVI and Pope Francis
their ages on 25th December 2016 (grey triangles).

x1i and year of election x2i , both of which were centered by subtracting the corresponding
sample means. Hence, our model takes the form:

Ti ∼ Weibull(r ,µi)
log(µi) = β0 + β1x1i + β2x2i , (3)

where log is to base e. In this model the scale parameter r is the same for all popes. The
Weibull parametrization adopted is the one used by BUGS (Lunn et al. (2013), page 346)
or JAGS. With this parametrization

median[Ti ] =

{
log(2)

µi

}1/r

, (4)

and

mean[Ti ] = Γ

(
1 +

1

r

)(
1

µi

)1/r

,

in which Γ is the gamma function. More generally it can be shown that the p-th quantile of
Ti takes the form

qp[Ti ] =

{
− log(1− p)

µi

}1/r

, p ∈ (0, 1). (5)

The Weibull distribution can provide a starting point for an interesting discussion. In addition
to properties of this distribution including its shape and use, the teacher could point out that,
if T ∼ Weibull(r ,µ), then

T
d
=

(
1

µ

)1/r

ε1/r , (6)
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in which
d
= means equal in distribution and ε ∼ Exp(1), that is ε is an exponential random

variable with rate parameter 1. It can immediately be seen from (6) that the exponential
distribution is a special case of the Weibull distribution. Students can then be asked to
derive that

log(T )
d
= − 1

r
log(µ) +

1

r
log(ε),

and hence, using (3), that

log(T )
d
= − 1

r
(β0 + β1x1 + β2x2) +

1

r
log(ε). (7)

The teacher can then help the students to understand that log survival time, which can
take any real value, is being modeled using a mathematical form that is very similar to that
adopted in the general linear model. In particular, log(T ) is modeled as a linear function
of the covariates plus a scaled random variable that can take any real value. This may
enhance their understanding of the model.

Further insight may be gained by asking students to show that the model formulation implies
that the log mean/median of Ti are also linear functions of x1i and x2i taking the form
α0 + α1x1i + α2x2i , where the coefficients αj = −βj/r , j = 0, 1, 2. They can also show
that, because of the logarithmic transformation, exp(α1) and exp(α2) are the multiplicative
scale factors of the mean/median post–election survival time for a unit increase in age at
and year of election. In fact, 100 {exp(α1)− 1} and 100 {exp(α2)− 1} represent the
percentage increases in mean/median post election survival time for a unit increase in age
at and year of election.

One feature of survival analysis emphasized in many biostatistics courses is ‘censoring’.
The data under consideration include one censored observation. This is because
Benedict XVI was still alive on 25th December 2016 and so his data provide a lower bound
of 11.7 years for his survival time. So, assuming that Benedict XVI is indexed by i = 1,
we know only that T1 > 11.7. This type of censoring is referred to as ‘right censoring’;
for a full discussion of the different types of censoring, see Cox and Oakes (1984), for
example. Francis is still alive but the data set is based on the 62 popes before him,
so that data on Francis do not feed into predictions related to him. The teacher could
expand the discussion of censoring by explaining its importance in a medical context and
showing how the associated data model or likelihood L(data | r , β0, β1, β2) can be modified
to take into account censored observations; see Cox and Oakes (1984) and Venables
and Ripley (2002) for more general discussions. In particular, when there is no censoring
L(data | r , β0, β1, β2) =

∏62
i=1 fTi

(ti | r ,µi), where the probability density function fTi
is

defined in (1) and µi depends on the parameters β0, β1 and β2 through (3). When this
likelihood is modified to take into account the censoring of Benedict XVI’s survival time, it
becomes

L(data | r , β0, β1, β2) = Pr (T1 > 11.7 | r ,µ1)
62∏
i=2

fTi
(ti | r ,µi). (8)

The ‘survivor function’ Pr (T1 > 11.7 | r ,µ1) = 1 − Pr (T1 ≤ 11.7 | r ,µ1) =
exp (−µ1 × 11.7r) from (1). In a recent contribution, Kundu and Mitra (2016) construct
a likelihood in a similar way to (8) and perform Bayesian inference on the parameters of the
Weibull distribution for left truncated (survival times are observed only if they are greater
than a given value) and right censored data. Kundu and Mitra (2016) state that ‘it will be of
interest to consider the case when there are some covariates.... More work is needed along
that direction.’ This paper provides an example of such covariate modeling.
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3.2 Bayesian Inference

There are four parameters r , β0, β1 and β2 in our model about which to make inference.
Many traditional statistics courses would discuss inference about these parameters in
the frequentist framework based on the likelihood L, and this is briefly mentioned in
Section 3.3. Recently, however, more emphasis has been placed on inference in the
Bayesian framework, partly due to the availability of software to perform the associated
computations; see Ntzoufras (2009), Brooks et al. (2011), Gelman et al. (2013), Lunn et
al. (2013), Kruschke (2015), and Levy and Mislevy (2016) for example.

In the Bayesian framework, inference is based on the posterior distribution of the unknown
parameters given the data. In our case this can be written as π(r , β0, β1, β2 | data).
By Bayes Theorem, this posterior distribution is proportional to the likelihood of the data
multiplied by the prior distribution of the unknown parameters. This prior distribution
summarises what may be known about the model parameters before seeing the data. Here
prior parameter independence is assumed so that the posterior probability density function
takes the form

π(r , β0, β1, β2 | data) ∝ L(data | r , β0, β1, β2) π(r) π(β0) π(β1)π(β2). (9)

The assumption of prior parameter independence is often made to simplify the specification
of the model and its implementation. It does not imply posterior parameter independence.
The assumption could be relaxed, for example by adopting a multivariate normal distribution
for (β0, β1, β2), if there were specific prior knowledge about parameter dependence.

The following prior distributions for r , β0, β1 and β2 were adopted:

r ∼ Exp(rate = 0.001)
β0, β1, β2 ∼ N(mean = 0, variance = 10, 000).

These priors support a very wide range of possible parameter values and so represent
considerable uncertainty. In our case, it is reasonable to assume such uncertainty as it
reflects our lack of previous knowledge about the parameters. Kundu and Mitra (2016)
provide some discussion about the choice of the prior on r . Below we explore briefly
the sensitivity of the results to prior assumptions. As is now standard (Brooks et al.,
2011), inference proceeds by simulating values from the posterior probability density
function (9) using a Markov chain Monte Carlo algorithm. Our simulation-based inference
was implemented in JAGS (Plummer, 2003) using R2jags (Su and Yajima, 2015). Basic
BUGS/JAGS code is given in Appendix 1.

There are two approaches to handle censored observations in the Bayesian framework,
as discussed in Section 9.6 of Lunn et al. (2013). The first approach, described
briefly in Plummer (2003), treats unknown survival times as model parameters about
which to make inference. The second approach is similar in flavour to the one
used by Kundu and Mitra (2016) and is based on specifying in the BUGS/JAGS code
the contribution to the likelihood function (8) discussed in Section 3.1 from censored
observations. We now explain in detail the relevant parts of the code for the first
approach given in Appendix 1. The indicator variable censored takes the value 1 for
Benedict XVI whose survival time is censored and 0 for the other popes. The survival
times are stored in the variable survival, except in the case of censoring when NA (‘not
available’) is assigned: survival[1] = NA . The variable censoring limits is defined
as censoring limits[1] = 11.7 and censoring limits[i] = 32, i = 2, . . . , 62, in
which 11.7 is the censored survival time for Benedict XVI and 32 is an arbitrarily chosen
survival time that must be greater than or equal to all the non-censored survival times.
The function dinterval(s,c) takes the value 0 if s ≤ c and 1 if s > c. When
i = 1, the requirement censored[1] ~ dinterval(survival[1], censoring_limits[1])

becomes 1 ~ dinterval(NA, 11.7), which forces the unknown survival[1] to be
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simulated subject to the constraint that survival[1] > 11.7. When i = 2, . . . , 62, the
requirement censored[i] ~ dinterval(survival[i], censoring_limits[i]) becomes
0 ~ dinterval(survival[i], 32) which is automatically satisfied. In general, this
requirement would be automatically satisfied for any value greater than or equal to all the
non-censored survival times, so the actual value chosen is unimportant provided that it is
sufficiently large.

To implement the second approach based on specifying the contribution to the likelihood
function from censored observations, we use the ‘zeros trick’ of Section 9.5.1 of Lunn et
al. (2013). In particular, we invent an observation z = 0 (referred to as z censored in the
code) which is assumed to be drawn from a Poisson(φ) distribution. Since Pr(z = 0) =
exp(−φ), the likelihood contribution of z will be exp(−φ). Setting this to the required
contribution exp (−µ× 11.7r), in which µ is the value of the Weibull parameter µ for
the censored observation, means that φ = µ × 11.7r > 0. We found that the results
from the two approaches were very largely the same. Lunn et al. (2013) point out that the
second approach requires the survivor function to be known, so is less generally applicable,
although computationally more efficient, than the first approach.

Traceplots of simulated r , β0, β1 and β2 values, together with a variety of convergence
diagnostics (Ntzoufras, 2009), suggested that 500,000 simulated values were sufficient.
Posterior summaries are given in Table 1. The teacher can explain how the inference
procedure is based on hypothetical popes simulated in the light of the observed data
and the modeling assumptions. There is much scope for additional discussion including
experimentation about the sensitivity of the results to prior assumptions. The prior
probability density functions of β0, β1 and β2 adopted above do not have a strong
influence on the posterior as they are essentially flat. The effect of specifying stronger
prior distributions, such as β0, β1, β2 ∼ N(0, 1) and r ∼ Exp(1) that give more weight to
smaller parameter values, can be investigated by easily modifying the code. The 2.5% and
97.5% quantiles reported in Table 1 generally change a little to reflect these modifications
(r : (0.840, 1.277); β0: (−2.950,−1.758); β1: (0.005, 0.057) and β2: (−0.003, 0.000).)

In the context of our historical data the posterior distribution of the median post–election
survival time given by (4) is more interesting than inference about the parameters
themselves. One of the beauties of the BUGS/JAGS simulation-based approach is that
it is easy to transform values of r , β0, β1 and β2 simulated from the posterior distribution
into a sample from the posterior distribution of any function of those parameters simply
by computing the values of that function. Here, the values of β0, β1 and β2 are used to
compute µi through (3), from which the median post-election survival time can be obtained
through (4) using the values of r . Code for this is provided in Appendix 1. Figure 2 shows
posterior densities, based on 500,000 draws, of the median post–election survival time
for hypothetical popes elected in 1750 and 1950, aged 60 and 80 at the time of election.
Figure 2 suggests that, as the years have passed, the median survival time has increased.
Naturally, popes who are older when elected tend to have shorter pontificates. This can also

Mean Standard Quantiles
Deviation 2.5% 5% 50% 95% 97.5%

r 1.151 0.127 0.914 0.947 1.147 1.366 1.412
β0 −2.623 0.347 −3.334 −3.209 −2.612 −2.071 −1.975
β1 0.033 0.014 0.006 0.011 0.034 0.056 0.060
β2 −0.002 0.001 −0.003 −0.003 −0.002 −0.001 0.000

Table 1: Summaries of the posterior density π(r , β0, β1, β2 | data). The posterior mean,
standard deviation and selected quantiles including the median are shown. 95% credible
intervals can be obtained from the 2.5% and 97.5% quantiles.
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be seen from Figure 3 in which we have added to the Lexis diagram shown in Figure 1 the
posterior means of the 0.05, 0.5 and 0.9 quantiles of end of pontificate age corresponding
to popes aged 55 and 65 years at election. These ages were chosen because there
are several popes who began their pontificate at 55 or 65 years. The life trajectories for
these popes have been highlighted in Figure 3. Apart from two popes who had very short
pontificates, these quantile curves suggest good posterior support for the highlighted data.
Popes with very short pontificates are discussed in more detail in Section 5. The fact that the
upper quantiles shown in Figure 3 take rather high values is in part due to the assumptions
about the right tail made by our parametric Weibull model.
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Figure 2: Posterior distributions of the median post–election survival time for popes elected
in 1750 and 1950, aged 60 and 80 when elected.
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Figure 3: The posterior means of the 0.05 (lower curve), 0.5 (middle curve) and 0.9 (upper
curve) quantiles of end of pontificate age corresponding to popes of 55 (left panel) and 65
(right panel) years at election added to the Lexis diagram of Figure 1. The dashed horizontal
lines are drawn at 55 and 65 years and popes of this age when elected are highlighted.
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We can further quantify Figure 3 by considering the multiplicative scale factors exp(α1)
and exp(α2) of the mean/median post–election survival time for a unit increase in age
at and year of election. Posterior means and 95% highest posterior density credible
intervals for these quantities and the associated percentage increases 100 {exp(α1)− 1}
and 100 {exp(α2)− 1} are shown in Table 2. The highest posterior density credible
intervals were calculated using the function HPDinterval available from the coda package
(Plummer et al., 2006). The posterior means for exp(α1) and exp(α2) are 0.971 (less
than 1) and 1.002 (greater than 1), meaning that a higher age at election leads to a
reduced mean/median post election survival time, while a later year of election leads to an
increase. Similarly, the posterior means of 100 {exp(α1)− 1} and 100 {exp(α2)− 1}
are−2.860% and 0.163%, meaning that an additional year of age leads to a considerable
percentage decrease in these survival times, while the passing of a further year leads to
a smaller percentage increase. These quantities can be linked to Figure 3. For example,
the posterior mean of the median survival time (the gap between the middle curve and
the dashed horizontal line in Figure 3) is approximately 16/12 for popes aged 55/65 years
when elected in 2000, so that the ratio between these two approximate survival times is
16/12 = 0.75 for ages that differ by 10 years. This corresponds well to the posterior mean
of exp(10α1) which is 0.753. Similarly, the changes in the posterior mean of the median
survival times over the 600 year period between 1400 to 2000 are 6.2 to 16/4.4 to 12 years
for popes elected at 55/65 years. The ratios 16/6.2 ≈ 2.6 and 12/4.4 ≈ 2.7 correspond
well to the posterior mean of exp(600α2) of around 2.8.

3.3 The Frequentist Alternative

As our emphasis in this paper is on inference in the Bayesian framework, we only
briefly discuss the frequentist alternative. If students wish to make comparisons with
frequentist-based maximum likelihood estimation results, they could be directed towards
the function survreg of the survival package (Therneau, 2015). It should, however, be
pointed out that the model fitted by survreg takes the form

log(T ) = α0 + α1x1 + α2x2 + σ log(ε),

which is parametrized in a different way from (7); see Section 13.2 of Venables and
Ripley (2002). In particular, αj = −βj/r , j = 0, 1, 2, and a simple comparison with (7)
tells us that σ = 1/r . We provide R code in Appendix 2 for performing inference about
these parameters, for making predictions and for extracting residuals. Note that standard
errors are available for log(σ) rather than for σ. Censoring is handled by creating a

Quantity Interpretation Posterior 95%
Mean Credible Interval

exp(α1) Multiplicative scale factor 0.971 (0.950, 0.994)
for age

exp(α2) Multiplicative scale factor 1.002 (1.0003, 1.0030)
for year

100 {exp(α1)− 1} Percentage increase −2.860% (−5.039,−0.589)%
for age

100 {exp(α2)− 1} Percentage increase 0.163% (0.030, 0.298)%
for year

Table 2: Posterior means and 95% highest posterior density credible intervals for the
multiplicative scale factors and percentage increases for the mean/median post–election
survival time for a unit increase in age at and year of election.
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survival object using the Surv function that contains information about censoring. Table 3
presents a comparison between Bayesian and frequentist inference for these parameters,
and differences are seen to be small. An advantage of using a simulation approach in the
Bayesian framework is the ease with which the distributions of parameter transformations
such as α0, α1, α2 and log(σ) can be obtained. For a recent, excellent discussion of the
Bayesian and frequentist inference approaches see Efron and Hastie (2016), for example.

4 Predictive Distribution

Francis was 76 years old when elected in 2013. His pontificate has lasted 3.79 years as
of 25th December 2016. The future survival time T new of a pope such as Francis can be
understood by considering the predictive distribution and in particular the probability density
function:

π (T new | data,T new > 3.79) , (10)

in which 3.79 years is the assumed current pontificate length. The sample from the
posterior density π(r , β0, β1, β2 | data), together with simulations from an appropriate
Weibull distribution, can be used to generate values from this predictive distribution. All this
can be done in a straightforward way in BUGS/JAGS and code is supplied in Appendix 1.
Kundu and Mitra (2016) perform inference about probability density functions such as (10),
although not in the presence of covariates.

Current
Pontificate
length
3.79 years

Median
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95% quantile
22 years
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Figure 4: The predictive probability density function of the post–election survival time
for a hypothetical pope elected in 2013, aged 76, who, like Francis, has already served
3.79 years, presented as a histogram of simulated future survival times. 50% of simulated
times lie below the median of 10.5 years, while 95% of them are below (and 5% are above)
the 95% quantile of 22 years.

Figure 4 shows the predictive distribution of the post–election survival time for a pope
such as Francis. The median survival time is 10.5 years, with the 95% quantile being
approximately 22 years. The corresponding ages at death are approximately 86 and 98
years, leading to the conclusion that the forecast made by Francis in 2014 about his own
survival was rather pessimistic: based on the post–election survival of past popes, he can
expect to live around 10 years with probability 50%, and 22 years with probability 5%.

This example should provide students with a basic understand of the use of the predictive
distribution to make statements about future survival times. Students can then use this
methodology to say something about the future survival of hypothetical popes with different

10



Bayesian Frequentist

Posterior Posterior Posterior Approximate
Mean Standard 95% Credible Parameter Standard 95% Confidence

Deviation Interval Estimate Error Interval
log(σ) −0.133 0.111 (−0.343, 0.092) −0.133 0.112 (−0.357, 0.090)
σ 0.881 0.099 (0.709, 1.097) 0.875 (0.700, 1.094)
α0 2.276 0.118 (2.044, 2.508) 2.271 0.116 (2.045, 2.498)
α1 −0.029 0.012 (−0.053,−0.006) −0.027 0.011 (−0.050,−0.005)
α2 0.002 0.001 (0.000, 0.003) 0.002 0.001 (0.001, 0.003)

Table 3: A comparison between Bayesian and frequentist inference. The posterior
means, standard deviations and 95% credible intervals for the parameters log(σ), σ,
α0, α1 and α2 are presented. Frequentist estimates, standard errors and approximate
95% confidence intervals are also given. R does not provide a standard error for the
estimate of σ. The approximate 95% confidence interval for log(σ) was calculated using
parameter estimate ± 2 standard errors. The confidence interval for σ was obtained by
applying the exponential function to the resulting values.

covariate values. They can, for example, investigate how year of election, age and present
pontificate length affect the distribution of future survival times.

5 Diagnostics for Model Checking

A routine part of any statistical analysis should be to use some kind of diagnostics to check
the reasonableness of the model. An extensive discussion of Bayesian model checking is
given in Chapter 10 of Ntzoufras (2009). Many of the diagnostic techniques described
there are based on the predictive distribution, discussed in Section 4. Here a simple
approach, based on the posterior distribution of specially defined residuals and motivated
by Section 10.3.5 of Ntzoufras (2009), is used to check model (3) . From equation (6)
it is easy to show that µT r = ε ∼ Exp(1). Students can be asked to establish that
the cumulative distribution function of ε takes the form 1 − e−ε, that 1 − e−ε ∼ U[0, 1]
and that Φ−1 (1− e−ε) ∼ N(0, 1), in which U[0, 1] is the uniform distribution on (0, 1),
N(0, 1) is the standard normal distribution, Φ is the cumulative distribution function of
a standard normal random variable and Φ−1 is the associated quantile function. They
can then modify the basic BUGS/JAGS code in Appendix 1 to sample from the posterior
distribution of the ‘transformed residuals’ Φ−1 (1− e−εi ), in which εi = µiT

r
i . It should be

noted that the JAGS function qnorm needs to be supplied with all its arguments: qnorm(1 -

exp(-epsilon[i]), 0, 1). A plot illustrating the posterior distribution of these transformed
residuals is shown in Figure 5, together with guide limits at −2 and 2. Five mainly
16-th Century and one 20-th Century pope have been highlighted as they have posterior
distributions that give considerable support to very low residual values. These popes had
very short pontificates ranging from around 0.03 to 0.17 years. Students could be asked
to remove these popes from the data set, to repeat the above analyses and to comment
on the differences in results. They may find, for example, that there are some noticeable
changes to the results presented in Table 1, that the median post–election survival time
for a pope such as Francis increases from around 10 years to considerably more than 11
years, but that the 95% quantile of this survival time remains at around 22 years. As well
as these transformed residuals, we also worked with standardized residuals defined as
(Ti − E[Ti ])/sd[Ti ]. These standardized residuals were less sensitive to the data from
popes with short pontificates than the transformed residuals.
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Figure 5: The posterior median and 95% credible interval of all the transformed residuals
against year of election. A cross and thicker line is used when the posterior median of the
residual is less than −2. The triangle indicates that the corresponding survival time for
Benedict XVI is censored.
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6 Further Investigations, Different Data and Conclusions

The historical data set used and the problem of quantifying Francis’s statement about his
own longevity can open up various additional avenues for discussion. For example, our
analysis does not take any account of Francis’s particular state of health. His life expectancy
may be somewhat reduced as he is missing part of a lung (BBC, 2014) and has walking
difficulties that have led to falls (BBC, 2016, for example), though one should balance this
by his having access to excellent medical care.

There is considerable scope for discussion of the modeling that has been performed. For
example, model (3) could be extended to include a multiplicative term β3x3i , in which x3i
is the product of the age at and year of election of the i -th pope centered to have mean 0
and scaled to have standard deviation 1 to prevent numerical problems. The posterior
support for β3 could be investigated by students, who would find that there is some support
around zero. 95% credible intervals for the other model parameters r , β0, β1 and β2 and
their widths are given in Table 4, together with the widths of the corresponding intervals
for model (3) given in Table 1. It can be seen that the credible interval widths for the
extended model are larger than those for model (3), indicating that the additional term has
increased posterior uncertainty. In addition to this investigation, alternative models could
also be considered.

Actuarial type tables such as WorldLifeExpectancy (2016) suggest that an 80 year old
Argentinian man has a life expectancy of 87.2 years (the corresponding figures for an
Argentinian woman, and a US man and woman are 89.5, and 88.7 and 90 years,
respectively). Hence our prediction for Francis of 86 years is slightly lower than that given in
the published life table, possibly because popes have particular life courses. However, our
Bayesian approach offers the full predictive distribution and our modeling provides some
historical insights. Such a comparison can introduce students to the use of actuarial tables
and can lead to some fun investigations.

Extrapolating conclusions from data based on just popes to the whole male population
may be dangerous because of the particular life courses of popes and the fact that their
median election age of over 63 years means that they have generally achieved a certain
maturity. However, Hanley, Carrieri and Serraino (2006) made a very careful comparative
study of the longevity of popes and artists between the 13-th and 19-th century. For each
pope they considered artists born in the same year who were still alive when the pope was
elected. They found that from the 14-th until the 18-th century artists tended to outlive
popes. Again, the class could be engaged in a discussion about how these comparisons
could be made, perhaps referring again to Lexis diagrams such as Figure 1; see Hanley,
Carrieri and Serraino (2006) for a very interesting discussion.

A similar analysis could be conducted for individuals comprising special populations such
as presidents, monarchs and other heads of state. These data are readily available.
When analysing populations that include females, a covariate indicating gender should be

Extended Model Model (3)
95% Credible Intervals Width Width

r (0.937, 1.464) 0.527 0.498
β0 (−3.434,−2.017) 1.417 1.359
β1 (−0.494, 0.108) 0.602 0.054
β2 (−0.023, 0.001) 0.024 0.003

Table 4: 95% credible intervals and their widths for the parameters r , β0, β1 and β2 when
model (3) is extended by the addition of β3x3i . The width of the corresponding intervals for
model (3) given in Table 1 are also reported.

13



included. Discussion about this could be motivated by consideration of the actuarial tables
mentioned above. Similar analyses could be conducted for subpopulations with particular
mortality schemes, for example people in specific professions. Britton and Shipley (2010)
found that among British civil servants ‘those reporting being bored are more likely to die
younger than those who are not bored’. The class could be asked to discuss how they could
investigate whether job interest is a protective factor for people in stressful occupations.

In conclusion, we believe that using historical data provides ample scope for enhancing the
teaching and discussion of a range of issues such as data visualization, survival analysis,
and Bayesian statistical modeling. It therefore has considerable potential for improving the
student learning experience.
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Appendix 1: BUGS/JAGS Code

First Approach: treat the unknown survival time as a model parameter

model{

for(i in 1:n){

#

# Likelihood part

#

censored[i] ~ dinterval(survival[i], censoring_limits[i])

# To deal with censoring:

# censored equals 1 for Benedict XVI as of 25/12/2016,

# 0 for the other popes.

# survival equals NA for Benedict XVI,

# and the survival times of the other popes.

# censoring_limits equals 11.7 for Benedict XVI,

# and values (e.g. 32) greater than or equal to

# the survival times of the other popes.

survival[i] ~ dweib(r, mu[i]) # Basic Weibull assumption

mu[i] <- exp(beta[i]) # Defining beta as log(mu)

beta[i] <- beta_0 + beta_1*x_1[i] + beta_2*x_2[i]

# beta = log(mu) is a linear function of the covariates

}

#

####################################################

#

# Priors

#

beta_0 ~ dnorm(0.0, 1.0E-4) # Prior on beta_0 is normal with low precision

beta_1 ~ dnorm(0.0, 1.0E-4) # Prior on beta_1 is normal with low precision

beta_2 ~ dnorm(0.0, 1.0E-4) # Prior on beta_2 is normal with low precision

#

r ~ dexp(0.001) # Prior on r

#

####################################################

#

# Define the alphas

#

alpha_0 <- - beta_0 / r

alpha_1 <- - beta_1 / r

alpha_2 <- - beta_2 / r

#

# Percentage increases

#

percentage_increase_age <- 100*(exp(alpha_1) - 1)

percentage_increase_year <- 100*(exp(alpha_2) - 1)

#

####################################################
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#

# Posterior median at various covariate values

#

beta_med <- beta_0 + beta_1*x_1_new + beta_2*x_2_new

# New values need to be supplied

t_median <- pow(log(2) * exp(-beta_med), 1 / r)

#

####################################################

#

# Predictive distribution of age at the new values

#

beta_Francis <- beta_0 + beta_1*age_Francis + beta_2*year_Francis

# Values of age_Francis and year_Francis need to be provided

mu_Francis <- exp(beta_Francis)

survival_Francis~ dweib(r, mu_Francis)T(present_length, upper_length)

# Take into account the current pontificate length

# Also specify a sensible upper bound

age_Francis_predictive <- age_at_election + survival_Francis

# Work also with age

}
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Second Approach: specify the contribution to the likelihood function
from the censored observation

model{

#

####################################################

#

# Likelihood contribution from censored survival time

#

# z_censored takes the value 0

# z_censored is assumed to follow a Poisson distribution

# with parameter phi_censored

#

z_censored ~ dpois(phi_censored)

#

# Required form of phi_censored, in which

# t_censored takes the value 11.7, censored survival time for Benedict XVI

#

phi_censored <- mu_censored * pow(t_censored, r)

#

# Usual form of mu for mu_censored

# x_1_censored and x_2_censored

# are the corresponding covariate values

#

mu_censored <- exp(beta_censored)

beta_censored <- beta_0 + beta_1*x_1_censored + beta_2*x_2_censored

#

####################################################

#

# Likelihood contributions from non-censored observations, as before

#

# We loop over the 61 non-censored observations

# Previously indexed i in 2:62

#

for(j in 1:n_non_censored){ # n_non_censored is 61

survival_non_censored[j] ~ dweib(r, mu[j])

mu[j] <- exp(beta[j])

beta[j] <- beta_0 + beta_1*x_1_non_censored[j] + beta_2*x_2_non_censored[j]

}

#

##############################################

#

# Priors

#

beta_0 ~ dnorm(0.0, 1.0E-4)

beta_1 ~ dnorm(0.0, 1.0E-4)

beta_2 ~ dnorm(0.0, 1.0E-4)

#

r ~ dexp(0.001)

#

}
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Appendix 2: R code for Frequentist Inference

require(survival)

#

# Censoring is handled by creating a survival object:

Surv(survival_raw, censored == 0)

# survival_raw contains all the survival times.

# censored equals 1 for Benedict XVI as of 25/12/2016,

# 0 for the other popes.

# The condition is TRUE for popes who are no longer alive or not censored

#

# Fit the model

#

s <- survreg(Surv(survival_raw, censored == 0) ~ x_1 +x_2)

summary(s) # Estimates and standard errors

confint(s) # Approximate 95% confidence intervals

#

# Predictions at the original data points

#

predict(s, se.fit = TRUE) # See ?predict.survreg

#

# Predictions at a combination of age and year values

#

age_new <- c(60, 80, 60, 80)

x_1_new <- age_new - mean(popes$Age.Election) # Centered

year_new <- c(1750, 1750, 1950, 1950)

x_2_new <- year_new - mean(popes$Year.Elected) # Centered

#

predict(s, newdata = data.frame(x_1 = x_1_new, x_2 = x_2_new))

#

# Residuals

#

residuals(s, type = "response") # See ?residuals.survreg
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