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Abstract

There is a paucity of information on the impacts of the 1997–8 El Niño event and subsequent climatic episodes on emergent
intertidal coral reef assemblages. Given the environmental variability intertidal reefs experience, such reefs may potentially
be more resilient to climatic events and provide important insights into the adaptation of reef fauna to future ocean
warming. Here we report the results of a 17-year (1995–2011) biodiversity survey of four emergent coral reef ecosystems in
Bahia, Brazil, to assess the impact of a major El Niño event on the reef fauna, and determine any subsequent recovery. The
densities of two species of coral, Favia gravida and Siderastrea stellata, did not vary significantly across the survey period,
indicating a high degree of tolerance to the El Niño associated stress. However, there were marked decreases in the diversity
of other taxa. Molluscs, bryozoans and ascidians suffered severe declines in diversity and abundance and had not recovered
to pre-El Niño levels by the end of the study. Echinoderms were reduced to a single species in 1999, Echinometra lucunter,
although diversity levels had recovered by 2002. Sponge assemblages were not impacted by the 1997–8 event and their
densities had increased by the study end. Multivariate analysis indicated that a stable invertebrate community had re-
established on the reefs after the El Niño event, but it has a different overall composition to the pre-El Niño community. It is
unclear if community recovery will continue given more time, but our study highlights that any increase in the frequency of
large-scale climatic events to more than one a decade is likely to result in a persistent lower-diversity state. Our results also
suggest some coral and sponge species are particularly resilient to the El Niño-associated stress and therefore represent
suitable models to investigate temperature adaptation in reef organisms.

Fauna to a Large-Scale El-Niño Southern Oscillation Event: Sponge and Coral Resilience. PLoS ONE 9(3): e93209. doi:10.1371/journal.pone.0093209

Editor: Richard K. F. Unsworth, Seagrass Ecosystem Research Group, Swansea University, United Kingdom

Received November 28, 2013; Accepted February 28, 2014; Published March 27, 2014

Copyright: � 2014 Kelmo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is funded by the corresponding author, Francisco Kelmo, with additional support from the Plymouth University Marine Institute to FK. The
funders coordinated the overall research objectives and organised the sampling, identification of organisms and data collation throughout the survey, developed
sampling methodology, input information on species biology and wrote the paper.

Competing Interests: Co-author James Bell is a PLOS ONE Editorial Board member, however, this does not alter the authors’ adherence to all the PLOS ONE
policies on sharing data and materials.

* E-mail: kelmo@ufba.br

Introduction

Coral reefs around the world have already been degraded as a

result human impacts from many local-scale and global scale

impacts [1,2,3], and there is now increasing interest in the

resilience of reef species to such stressors [4]. Of particular concern

are global-scale impacts such as ocean acidification, sea surface

temperature increase and the frequency of large-scale climatic

events (e.g. the El-Niño Southern Oscillation – ENSO). There has

been a recent focus on those organisms inhabiting marginal

habitats as they often survive under sub-optimal conditions close to

their physiological limits, and may therefore be adapted to higher

levels of physiological stress [5]. Organisms inhabiting such

environments have the potential to serve as models for

understanding the impacts of global climate change and large-

scale climatic events.

Emergent intertidal coral reefs are common around the world

[5], and organisms inhabiting these environments will be subject to

much larger fluctuations in temperature and solar radiation stress

compared to nearby subtidal organisms [6]. While this may mean

such communities are more resilient to climatic related impacts

than subtidal organisms, the reverse may actually be true,

communities may be less resilient to stressors as they are living

close to their physiological tolerance limits.

The effects of large-scale El-Niño Southern Oscillation (here-

after ENSO) events on coral communities have been well

described, particularly as a result of the 1997–8 event that had

devastating impacts on many coral reefs (e.g. [7,8]). However, the

influences of these large-scale events on other dominant reef

organisms are less well known. Such ENSO anomalies are

normally accompanied by reduced nutrient replenishment to

surface waters [9], with subsequent declines in phytoplankton

production [10,11] and the disruption of trophic links between

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e93209

Citation: K e l m o F , B e l l J J , M o r a e s S S , G o m e s RdCT, M a r i a n o - N e t o E , e t a l . ( 2 0 1 4 ) D i f f e r e n t i a l R e s p o n s e s o f E m e r g e n t I n t e r t i d a l C o r a l R e e f

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/82970976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0093209&domain=pdf


higher level consumers [12]; this has the potential to result in

irreversible damage to the coral reef-associated organisms and

result in changes to overall community structure.

During the 1997–8 ENSO period, the northeastern coast of

Brazil experienced sustained surface warming, causing prolonged

increased sea surface temperatures [13]. These environmental

changes had major impacts on the coral reef communities over

large spatial scales [14]. In northern Bahia seawater temperature

increased about 1uC above its previous maximum and, concur-

rently, there was reduced rainfall causing a decrease in the amount

of continental sediment transported to the sea from the local river

discharge. This resulted in reduced turbidity and subsequently

increased penetration of solar radiation, accompanied by the

prolonged warming of shallow waters. The impact of solar

radiation was accentuated further as a result of significantly

reduced cloud cover during the ENSO event, resulting in high

levels of ultra-violet radiation (UVR) potentially reaching the reef

community. Previous studies (e.g. [14,15,16,17]) of northern

Bahian subtidal reefs have described widespread coral bleaching

and mortality of reef-associated invertebrates following the 1997–8

ENSO event, which was associated with observed increases in

seawater temperature. These declines were considered most likely

a result of the combined and synergistic effects of elevated

seawater temperatures and changes in irradiance, sedimentation

and calm sea conditions that reduced wind driven water flow

patterns [18,19,20,21].

To provide a contrast to patterns observed in subtidal reef

systems, here we report the results of a 17-year study of the coastal

emergent reefs of Northern Bahia, and provide an overview of the

impacts of the 1997–8 ENSO on the intertidal reef-associated

fauna and their subsequent recovery trajectories. This habitat is

unusual in that coral species, and their associated community,

survive in a fully intertidal reef top environment and therefore

experience much greater variability in environmental conditions

compared with the local subtidal reef ecosystem. We hypothesise,

therefore, that the species here will be more tolerant to fluctuations

in environmental conditions and therefore the community will

show a less dramatic response to ENSO events than witnessed in

adjacent subtidal coral reef assemblages.

Methods

Study area
This study focused on four coastal emergent reefs in Bahia,

Brazil [Abaı́ (12u409370S/38u05923W), Guarajuba (12u399000S/

38u039430W), Itacimirim (12u389130S/38u029510W) and Praia do

Forte (12u349420S/37u589590W)]. These reefs run parallel to the

coastline and their dimensions vary from 20 m to 500 m wide

[22]. They occur in the fore reef zone in waters less than 14 m

deep, and their back zones usually slope downward into the beach,

which is comprised of quartz-sands. They have horizontal tops

that are uncovered during low tide, the sample habitat for this

study, their exposed surfaces, eroded due to Holocene sea-level

fluctuations, have irregular thin columnar structures, cavities,

meandering channels, and small caves, where small heads of living

coral andothers reef invertebrates exist along with green, red and

brown algae. These reefs are located on the narrowest part of the

Eastern Brazilian Continental Shelf (average width 15 km between

the Sao Francisco and Doce Rivers) and extend 20 km between

the beaches of Abaı́ and Praia do Forte (see Fig. 1 in [23]). The

tidal regime is semi-diurnal. The data available for tidal ranges are

from the Port of Salvador, the average range at spring tide is 2.4 m

and at neap tide 0.1 m. The tidal currents are fairly consistent,

though influenced by the strength and direction of the wind; the

average current velocity is approximately 1.5 ms21. For a full

description of the geological history and morphology of the reefs

see [24].

The coastal belt of the State of Bahia has a tropical humid

climate. Annual average rainfall ranges between 1,300 mm in the

north of the study area to 1,900 mm around Salvador City to the

south, with no marked seasonal rainfall pattern. Average daily air

temperatures range from 23uC (winter) to 28uC (summer), with

mean daily sea-surface temperatures ranging from 25uC (winter) to

28uC (summer); maximum SST occurs between December and

February. Annual average salinity is relatively constant (35–

36 ppt), although within emergent reef-top shallow pools, salinity

can range from 35 to 39 ppt (see [6]). The pH of seawater varies

between 8.1 and 8.2, with no clear seasonal patterns (see [15,23]).

The coast is influenced by winds arising from the NE and E during

the spring-summer, and winds coming from the SE and E during

the autumn-winter season. Moreover, during the autumn-winter

period, the winds coming from the SSE that are associated with

the periodic advance of the Atlantic Polar Front, reinforce the

trade winds from the SE [25]. This pattern of wind circulation is

disrupted by the quasi-cyclic environmental phenomenon known

as the El Niño/La Niña, combined as the El Niño Southern

Oscillation, with several major climatic perturbations having been

recorded in recent times [13,26].

Environmental data
Large-scale environmental parameters for the survey area (sea

surface temperature, solar irradiance, air temperature, rainfall,

and cloud cover) were obtained from the Brazilian Meteorological

Institute [INMET (http://www.inmet.gov.br/portal/index.

php?r = home/page&page = rede_estacoes_conv_graf)]. INMET

data are collected three times a day and the values presented in

this paper represent the annual average of these data. Local

physicochemical data (seawater temperature, salinity, pH, and

turbidity) were recorded at all four reefs (10 replicates/reef giving

40 measurements spread over the sampling period). Temperature,

salinity, and pH were recorded using a YSI63 (Yellow Spring

Industries) electronic field meter. Turbidity at high water was

assessed using a Secchi disk that was deployed from a boat for

coral reef walls (CRW) and shallow bank reefs (SBR) environ-

ments. From 2001, we recorded turbidity and other local data

using a Multiparameter Water Quality Meter (U5210); however,

based on the similarity in the results obtained from the different

methods we present the same type of measurement throughout the

years to ensure consistency (see Table S1 in [15]).

Sampling and identification
Density data on the associated invertebrate community

(Porifera, Cnidaria, Mollusca, Bryozoa, Echinodermata and

Ascidiacea) from the reef tops of the four different coastal

emergent reefs (Praia do Forte, Itacimirim, Guarajuba and Abaı́)

were collected annually (between April and May) from 1995 to

2011. Density estimates were taken within 35 1 m2 quadrats

positioned haphazardly on each reef, giving a total of 140 quadrats

per year and 2,380 quadrats in total over the survey period.

During the first two years of this investigation, samples of each

species were brought to the laboratory to confirm identity.

Additional samples were collected in subsequent years for

taxonomical purposes when necessary. The number of bleached

coral colonies was also recorded. A permanent license to collect

zoological material (Nu 37409-1) was provided by the Ministry of

the Environment, Chico Mendes Institute of Biodiversity Conser-

vation, Authorisation System and Information on Biodiversity

(Normative Instruction Nu 154/2007). Through the authentication
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code Nu 78456982, any citizen can check the authenticity or

legality of this document, by examining the Sisbio/ICMBio

information on the Internet (www.icmbio.gov.br/sisbio). No other

specific permissions were required as this was an entirely field-

based study with all data being recorded on site through the in-situ

identification and counting of invertebrates. None of the study sites

is privately-owned or protected. We did not remove or damage

any of the studied organisms beyond taking one or two specimens

or fragments from each species during the early years to confirm

species identity. The invertebrates were counted and only small

samples were taken for confirming field identification of any new

or uncertain individuals, so our methods represent no threat to the

species we assessed and none of the species is currently

endangered.

Data were collected on the color, shape and size of each species

in the field and photographs were taken. The identity of each

species was confirmed in the laboratory through morphological

and histological examination, based on authoritative keys and

texts. Where necessary samples of sponges, hydroids, bryozoans,

compound ascidians and other small organisms were brought to

the university laboratories and observed using a scanning

electronic microscope (SEM) Zeiss (DSM 940A).

Data analysis
The invertebrate density data are expressed as mean 6

standard error (SE). We performed a non-metric multidimensional

scaling (NMDS) on a Bray-Curtis dissimilarity matrix for each

invertebrate group (Porifera, Cnidaria, Mollusca, Bryozoa, Echi-

nodermata and Ascidiacea). Abundance data were log (x+1)

transformed and standardised by sample totals. The results were

visualised with a 2D ordination diagram with 95% confidence

ellipses around the multivariate centroid of samples from each

habitat type. We further used permutational multivariate analysis

of variance (PERMANOVA) to test the hypothesis of no

significant differences in invertebrate density between reefs (Praia

do Forte, Itacimirim, Guarajuba and Abai) and years (3 levels;

before, during and after 1997–8 ENSO event). PERMANOVA

allows multivariate information to be partitioned according to the

full experimental design. It makes no assumptions regarding the

distributions of the original variables. All P-values are obtained by

permutation tests. All tests were carried out using the type III sum

of squares and 4999 permutations under the reduced model

[27,28]. Given the high number of permutations, additional

Monte Carlo tests were not necessary to reinforce the permutation

P-values obtained [29].

We used the SIMPER procedure (similarity percentages) to

exam the contribution of species to dissimilarities between the

groupings observed in the ordination analyses. Finally, to

investigate the relationship between the measured environmental

variables (before, during and after 1997–8 ENSO event) and

invertebrate assemblage data the BIOENV routine (Spearman

rank correlation method) was used with biological and environ-

mental data collected during each sampling year. This method was

used as an exploratory tool and is analogous to multiple regression

[30]. BIOENV correlates the similarity matrix derived for the

invertebrate assemblages with an equivalent matrix for the suite of

environmental measurements collected at each site at each time

interval. Results are expressed as a Spearmans correlation

coefficient (r), ranked in the order that each single variable or

combination of variables best explains the observed assemblage

patterns [30]. The results (that can have a maximum value of 1)

indicate the proportion of variance in the community data

explained by these environmental variables (see [30] for full

details). All these analyses were performed with the software

package PRIMER (version 6.1.6; PRIMER-E, Plymouth, U.K.)

and the PERMANOVA+ module (version 1.0.1. PRIMER-E,

Plymouth, U.K.).

Results

Environmental data
All environmental variables, except pH and sea surface salinity,

were significantly different in 1998 compared with the non-ENSO

years (See Table S1 in [15]); there was significantly higher sea

surface, seawater, and average air temperatures in 1998. There

was lower sky cover and lower turbidity during 1998 compared to

other years, which correlated with higher levels of ultraviolet

radiation reaching the invertebrates in 1998. This year was also

characterized by warmer air and sea temperatures, reduced cloud

cover and rainfall, higher incoming solar radiation, and reduced

turbidity (mainly due to reduced river runoff following decreased

precipitation). There was no significant difference in any of the

parameters between the reefs, and within the first 2 years (non-

ENSO) there was little variability between months.

Coral species
The reef tops were colonised by two endemic coral species, Favia

gravida and Siderastrea stellata. Despite some evidence to support the

existence of other species of Siderastrea (S. radians, S. siderea and a

third unidentified species) along the coast of Bahia, we are

confident that only S. stellata occurs on the reefs we studied. These

species, each with a small polyp diameter, are able to cope with

daily aerial exposure and the associated variation in temperature,

sunlight, desiccation, and occasional salinity reductions during

heavy rain [6]. The densities of these two species were not

significantly different between 1998 and the earlier sampling years;

however, significant density increases (PERMANOVA, pseudo-

F = 3.124; P-perm,0.001) were observed from 2001 until the end

of the study (Fig. 1B). Bleached colonies of both species were

apparent during the whole investigation but was significantly

higher during the 1997–8 ENSO than in previous years

(PERMANOVA, pseudo-F = 3.852; P-perm,0.001; Fig. 2), reach-

ing 40% of total colonies.

Associated invertebrate community
In addition to the corals, the associated invertebrate community

comprised sponges (12 species), non-coral cnidarians (12 species),

bryozoans (25 species), molluscs (34 species), echinoderms (6

species) and ascidians (11 species). The most noteworthy impact of

the 1997–8 mortality event on the structure of various reef-

associated assemblages was the sudden overall loss of species and

subsequent decline in species richness (Fig. 1). For all taxa

combined, species richness declined significantly on the reef tops

from 1998 (PERMANOVA, pseudo-F = 5.336; P-perm,0.002),

with no indication of recovery during the subsequent two years

(Fig. 1A). However, richness recovered markedly in 2001,

although by 2011 the overall number of species still remained

lower than before the ENSO event.

Overall, while we recorded significant decreases in the densities

of the reef-associated invertebrates (PERMANOVA, pseudo-

F = 4.504; P-perm,0.001 – see table S1 for complete post-hoc

PERMANOVA results), some phyla appeared more affected than

others or responded at different times to the stress imposed during

the ENSO event. Densities of molluscs decreased significantly

(Fig. 1C) in the post-ENSO years (PERMANOVA, pseudo-

F = 2.288; P-perm,0.001) and the lowest mean density (0.1560.01

ind m22) was recorded in 2000; richness showed a similar pattern

(PERMANOVA, pseudo-F = 3.913; P-perm,0.001), with no live
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molluscs found on the top of the Abai reef during 2000 survey.

The density of bryozoans (Fig. 1D) declined significantly in 1998

(PERMANOVA, pseudo-F = 3.137; P-perm,0.001) and continued

to decline until 2000, with recovery evident from 2001. The

densities of ascidians (Fig. 1E) dropped significantly in 1998 and

again in 1999 (PERMANOVA, pseudo-F = 15.686; P-

perm,0.001), when the lowest density (0.5460.01 ind m22) was

recorded for this group. The density of non-coral cnidarians

(Fig. 1F) did not decline significantly in 1998, but their densities

have progressively increased, reaching values by the end of the

study significantly above those previously recorded (PERMA-

NOVA, pseudo-F = 4.640; P-perm,0.001). Echinoderm density

increased from the start of the study until 1998 (Fig. 1G), when the

highest abundance was recorded; however, densities significantly

reduced between 1998 and 2000 (PERMANOVA, pseudo-

F = 3.032; P-perm,0.003); densities then remained relatively

constant. By 2011, molluscs, bryozoans and ascidians have not

recovered to diversity levels observed at the start of the survey pre-

ENSO, whereas the number of echinoderm species recovered

from 2002 after a major diversity crash (Fig. 1G); only Echinometra

lucunter was found on reefs in 1999. Sponges (Fig. 1H) did not show

any change in density as a result of the ENSO, and they were one

of the few groups that became more abundant post-ENSO,

compared with pre-ENSO years.

Multivariate analysis of the assemblage composition for each

phylum (Fig. 3A–F) clearly demonstrates that the invertebrate

community suffered intense modifications throughout the 17-year

study, experiencing a dramatic change following the 1997–8

ENSO event. Whilst the community appears to have stabilized

since 2001, with an overall greater similarity of all samples taken

Figure 1. Assemblage metrics from faunal surveys across coastal emergent reefs in Bahia. (A) all invertebrates, (B) corals, (C) molluscs (D)
bryozoans, (E) ascidians, (F) cnidarians, (G) echinoderms, (H) sponges. N Density, & Species Richness (additional y-axis). Coloured bars indicate the
period of stress.
doi:10.1371/journal.pone.0093209.g001

01

Figure 2. Proportion (%) of coral bleaching and mortality of the scleractinian species from the emergent intertidal reefs of
Northern Bahia throughout the 17-year investigation: (A) coral bleaching and (B) coral mortality; (&) Siderastrea stellata and (N) Favia
gravida (additional y-axis). Coloured bars indicate the period of stress.
doi:10.1371/journal.pone.0093209.g002
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since this year compared with previous years, it is clear that the

new stable assemblage is different from that found prior to 1998,

indicating a different rather than a fully recovered community

(Fig. 4).

The similarity percentages procedure (SIMPER) indicated that

Stenoplax purpurascens (1.98), Lissoclinum perforatum (1,64), Fissurella

nimbosa (1.29), Pseudoactinia melanaster (1.11) and Tridentata marginata

(0.96) contributed most to the dissimilarities between pre- and

post-ENSO years (Table S2). A number of previously ubiquitous

species of molluscs, bryozoans, echinoderms and ascidians

disappeared from the reef environment during the ENSO period

[16,17,31,32]. Several of these had still not returned 13 years after

the impact including: ascidians - Echinoclinum verrilli, Clavelina

oblonga, Phallusia nigra and Botryllus schlosseri; bryozoans - Buskia

repens, Cupuladria canariensis and Discoporella buski; echinoderms -

Ophioderma cinereum and Ophiocoma wendtii; and particularly molluscs

Figure 3. MDS ordinations of the reef-associated invertebrate community data from the emergent intertidal reefs from northern
Bahia throughout the sampling period, 1995–2011, based on [ln (x + 1)] transformed species densities and Bray Curtis similarities.
(A) ascidians; (B) bryozoans; (C) cnidarians; (D) echinoderms; (E) molluscs; (F) sponges.
doi:10.1371/journal.pone.0093209.g003
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- Ischnochiton dorsuosus, Ischnochiton erythronotus, Ischnochiton Ischnochiton

edwini, Ischnochiton Ischnochiton pectinatus, Diodora listeria, Fissurella

nimbosa, Fissurella clenchi, Cymatium corrugatum, Coralliophila aberrans,

Coralliophila caribaea, Leucozonia ocellata and Bullata bullata.

High levels of mortality were observed for several prominent

space occupiers and grazers (polyplacophorans, archaeogastropods

and gastropods), which was followed by increased densities of

clioniid sponges (Cliona celata complex and C. delitrix), the echinoid

Echinometra lucunter and the boring ascidian Lissoclinum perforatum.

A dramatic change in the reefscape, from a predominantly live

reef in 1996 to a sea urchin dominated community had occurred

by 1999 (Fig. 5). However, the increased densities of sea urchins

did not occur over the entire reef substratum; they were patchily

distributed. Echinoid densities slowly decreased to pre-ENSO

levels from 2000, but the reef had suffered major bioerosion

during the years of elevated grazing pressure (Fig. 5).

The highest correlation identified using the BIOENV analysis

on the reef of interest was found for salinity, sunlight irradiation

and seawater temperature (r = 0.442).

Discussion

There is considerable interest in the impacts of global climate

change and extreme climatic events on coral reef organisms [4].

Here we documented the impacts of the 1997–8 ENSO event on

emergent intertidal systems. Given these communities are

regularly exposed at low tide and experience extremes of

temperature, we hypothesised that they would be relatively

unaffected by the 1997–8 ENSO event. Despite this expectation,

the reef-associated populations on Bahia’s emergent intertidal

systems were dramatically impacted; however, this disturbance

had a differential effect on components of the examined

communities. The highest mortalities post-ENSO were suffered

by the mobile organisms (molluscs and echinoderms), whilst coral,

sponges and bioeroders were little affected or showed increases in

abundance. We also observed that species that were previously

unrecorded prior to the ENSO event (e.g. Didemnum granulatum, D.

perlucidum, Aplidium lobatum, Stenoplax purpurascens and Smittipora

tuberculata) are now part of the reef associated biota.

Given that sponges are suspension feeders, we might have

expected that a decline in plankton production, which has been

previously documented for ENSO events [10,11], might disrupt

sponge trophic links resulting in a decline in the sponge

populations; however, this was not observed, even though

functionally similar taxa such as bryozoans and ascidians were

severely affected. This suggests that sponges have some differential

ability to deal with increased temperature (and other stress

resulting from the ENSO event) compared to these other groups

and may potentially use other food resources compared with

bryozoans and ascidians. Recently, there has been increased

interest in sponges as there is mounting evidence that they may be

tolerant to increased sea surface temperature and ocean acidifi-

cation, and that coral reefs might be increasingly dominated by

sponges [33]. Our results provide further support for this

hypothesis and demonstrate the resilience of sponges to climatic

anomalies and is consistent with results found for subtidal

communities in the same area [34].

Most ascidian species were affected by the ENSO conditions

[32], however, the boring species Lissoclinum perforatum increased its

density throughout the post-ENSO period. We propose that this is

due to its ability to reproduce both sexually and asexually [35] and

therefore take advantage of the newly available space once other

species had declined. This species also possesses chemical defenses

against predators [36,37], which supports its domination of the

reef tops when other food resources for predators and grazers are

declining.

In contrast to sponges and corals, the decrease in density of

molluscs was accompanied by a reduction in diversity as species

became progressively less abundant after the 1997–8 ENSO event.

Molluscs have the capacity to migrate to sheltered subtidal zones

Figure 4. MDS ordination of the reef-associated invertebrate assemblage data from the emergent intertidal reefs in northern Bahia
throughout the sampling period, 1995–2011, based on [ln (x + 1)] transformed species densities and Bray Curtis similarities
(Average dissimilarity: pre-ENSO6ENSO = 21.86; pre-ENSO6Post-ENSO = 21.24; ENSO6Post-ENSO = 28.18). Arrows indicate the
direction of change.
doi:10.1371/journal.pone.0093209.g004
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during the thermal stress and avoid prolonged exposure to

excessive heat. However, the species that declined were not

recorded within other reef habitats such as reef walls and shallow

banks [17,32], suggesting migration from the intertidal was not a

viable strategy available to these species.

The severe impact on the echinoderm community was

particularly surprising. All six species recorded are regarded as

relatively resistant to extremes of temperature as they are exposed

on a daily basis during low tide to variation in temperature, solar

radiation exposure, desiccation and salinity oscillations (especially

during the rainy season; see [6]). However, all but E. lucunter

disappeared from the reef top fauna following the ENSO event

and were not seen again until 2002. It is therefore possible that

these species (as well the other invertebrates that declined in

abundance) are at the very edge of their range of physiological

tolerance to temperature within these intertidal reef systems and

the severe conditions recorded during the ENSO period proved

too great a stress. In addition, the reef top echinoderm assemblage

appeared to be much more dramatically impacted than those from

the subtidal reef walls and shallow banks (see [38]).

In 1995, when the monitoring program began, a rich

community (95 species) was present in the northern Bahian

intertidal reefs; however, in 2000, this was reduced to only 39

species, mostly sponges and cnidarians (12 each). By the end of the

survey 82 species inhabited the studied area, equating to a

diversity still 13.7% lower than before the ENSO event. This does,

however, indicate that diversity can recover following such high

temperature events. The few colonies of S. stelatta that suffered

partial mortality or died in 1997–8 had been subject to intense

bioerosion (Figure 5E), although the densities of the opportunistic

echinoids partly causing this bioerosion has reduced since 2000;

however, they are still more abundant than recorded in 1995.

Figure 5. Opportunistic behaviour of Echinometra lucunter on the emergent intertidal reefs from northern Bahia after the 1997–8
ENSO event. (A) The reef top of Itacimirim before the ENSO event (April 1996). (B) The same reef area one year after the end of the stress period
(April 1999). (C) A quadrat showing the coastal emergent reef top of Praia do Forte before the ENSO event (April 1996). (D) A quadrat of the reef top
of Praia do Forte one year after the end of ENSO event (April 1999). (E) Colonies of Siderastrea stellata being attacked by echinoids grazing on the top
of Guarajuba reef in April 1999. (F) The reef top of Praia do Forte in April 2011. Quadrats: 1 m2.
doi:10.1371/journal.pone.0093209.g005
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While coral bleaching in response to changes in global climate is

a major concern worldwide, not all corals respond to temperature

stress in the same way. In an earlier study, Jokiel and Coles [39]

showed that individual coral colonies living in high temperature

environments can survive and their symbionts photosynthesise at

temperatures at several degrees higher than their congeners living

at lower temperature environments [40,41]. Depending upon the

location, these species were able to withstand sustained temper-

atures of 30uC for several weeks [42,43] and 32–34uC from several

days to a few weeks [44]. Clausen and Roth [45] suggested that

many species are able to physiologically acclimatise to increased

temperatures, which has been validated by a number of more

recent studies (e.g. [46,47]) and by the response displayed by F.

gravida and S. stellata in our study. These species were resistant to

the elevated temperatures recorded in northern Bahia during the

ENSO period. In fact densities of both these species increased over

the study period and significant change was noticed neither

between 2001 and 2005, when further thermal anomalies varying

from 0.25uC to 0.75uC were reported for the coast of Bahia [48],

nor during the 2009–10 ENSO that caused bleaching in other

regions [49]. This reinforces the hypothesis of heat-adaptability

[47,50] and that the studied corals are locally adapted to

temperature fluctuations [6,16] and should be considered as

models for further study of local temperature tolerance in corals.

The recovery of the organisms that suffered partial mortality in

1997–8 was further inhibited by the delayed effects of the intense

solar radiation in the study area [15,16]. For example, this may

have compromised the sexual reproduction and larval settlement

success in future seasons [51,52], and may explain the absence of

coral recruits during 1999–2000. Therefore, initial recolonisation

of northern Bahian emergent reefs was result of new-born

colonies. Juvenile colonies, particularly of the endemic Siderastrea

stellata, were apparent for the first time in May 2001 [14].

Similarly, there was a marked recovery in the diversity and density

of the invertebrate fauna from 2001 (Fig. 1A) after a continued

decrease in 1997–2000. Despite the dramatic impact on the

Bahian reef fauna, there was, therefore, no evidence of a longer-

term shift to a macroalgal dominated state as seen in parts of the

Caribbean.

Given that it took 13-years for the reefs we studied to recover to

a stable community from the 1997–8 ENSO event, it is reasonable

to assume that if ENSO events occur more regularly with periods

of persistent sea warming, then surviving coral populations, reef

associated invertebrates and framework structures would be

subject to increasing levels of predation and bioerosion. We

propose that if the frequency of extreme ENSO events increases,

then the recovery capacity for coral reef assemblages will be

progressively diminished with each ENSO event. Given that

ENSO phenomena are cyclical and that strong events can

generate extreme disturbance resulting in the mortality of both

symbiotic and non-symbiotic reef organisms, if global sea

temperatures increase to levels comparable to the 1997–8 event,

mortality of corals and other reef associated organisms is more

likely as species will be even closer to their thermal maxima. In

addition, from our results there are also likely to be increases in the

abundance of predators and bioeroders. This would further

increase reef-mortality and bioerosion, potentially leading to a

rapid destruction of the reef framework, and a reduced capacity

for subsequent recovery.

In conclusion, we found differential effects of the 1997–8 ENSO

event on the fauna of the emergent reefs in northern Bahia. Corals

and sponges appeared to be particularly resilient. Importantly, our

study demonstrates that even 13-years after the event, the

communities had not returned to their original state and overall

diversity was lower. It is unclear if the community will continue to

recover given more time, but our study highlights that any increase

in the frequency of large-scale climatic events to more than one a

decade is likely to result a persistent lowered diversity state. Finally,

we showed that the corals and sponges in these environments

appeared relatively unimpacted by the ENSO event, and therefore

represent future models for understanding the potential resilience

of marine organisms to climate change.
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