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Abstract

Copulas and vines allow us to model the distribution of multivariate random vari-

ables in a flexible way. This article introduces copulas via Sklar’s theorem, explains

how pair copula constructions are built by decomposing multivariate copula densities

and illustrates vine graphical representations.
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1 Copulas

A copula is a multivariate distribution function with uniform marginals on the interval [0, 1].

According to Sklar’s theorem [25], given d continuous random variables X1, . . . , Xd, any joint

multivariate distribution F (x1, . . . , xd) of a random vector X = (X1, . . . , Xd) can be uniquely

determined as a copula C of its univariate marginal distributions F1(x1), . . . , Fd(xd), via the

expression

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd);θ),

where θ denotes the set of parameters of the copula, which we will omit in the remainder,

to simplify the notation (see stat00943).

Once applied to the univariate marginals, the copula returns the multivariate joint distri-

bution, enclosing all the information about the dependence structure of the variables [21],

[24].

The joint density function of a random vector X = (X1, . . . , Xd) is therefore,

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))× f1(x1)× . . .× fd(xd) (1)

where c(F1(x1), . . . , Fd(xd)) is the d-variate copula density.

For example, in the 4-dimensional case and the (1) becomes

f(x1, . . . , x4) = c(F1(x1), . . . , F4(x4))× f1(x1)× . . .× f4(x4).

Several families of copulas are available to capture different types of symmetric and asym-

metric dependencies among the marginals. The most popular families are the elliptical

<stat01214>, such as the Gaussian <stat01215> and Student’s t, and the archimedean cop-
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ulas, such as the Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7 and BB8 (see stat07523,

stat04393 and [5]).

Due to their flexibility in modelling the distribution of multivariate random variables, copulas

have become very popular and have been applied to a wide variety of fields, ranging from

finance [7], [8], [10], [11], [15], to social sciences [13] and engineering [19].

2 Pair Copula Constructions

In recent years, the literature on bivariate copulas (called pair copulas) has thrived, with

regular developments of new contributions. In contrast, the use to multivariate copulas has

been more limited, due to analytical and computational complexity. In order to overcome

these limitations, Bedford and Cooke [2], [3] introduced a flexible class of multivariate copulas

that is constructed using a set of bivariate copulas as building blocks. The decomposition

of a multivariate copula into bivariate copulas is called pair copula construction (PCC) and

it allows to express the multivariate density of a random vector as a product of pair copula

densities.

Assuming that f(x1, . . . , xd) is the joint density of a random vector X = (X1, . . . , Xd), then it

factorizes (uniquely up to re-labeling of the variables) into a product of conditional densities

f(x1, . . . , xd) = fd(xd)× fd−1|d(xd−1|xd)× . . .× f1|2···d(x1|x2, . . . , xd). (2)

For a 4-dimensional density, equation (2) takes the following form

f(x1, . . . , x4) = f4(x4)× f3|4(x3|x4)× f2|3,4(x2|x3, x4)× f1|2,3,4(x1|x2, x3, x4). (3)

By Sklar’s theorem the joint density of the subvector (Xd, Xd−1) can be expressed in terms
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of a copula density, as follows

f(xd−1, xd) = cd−1,d(Fd−1(xd−1), Fd(xd))× fd−1(xd−1)× fd(xd),

where cd−1,d(·, ·) is an arbitrary pair copula density. Hence, the conditional density of

Xd−1|Xd can be easily written as

fd−1|d(xd−1|xd) = cd−1,d(Fd−1(xd−1), Fd(xd))× fd−1(xd−1).

Then, the conditional densities of (2) can be decomposed into the appropriate pair copula

times a conditional marginal density. More precisely, for a generic element X of the vector

X we obtain

fx|v(x|v) = cx,v`|v−`
(Fx|v−`

(x|v−`), Fv`|v−`
(v`|v−`))× fx|v−`

(x|v−`), (4)

where v is the conditioning vector, v` is a generic component of v, v−` is the vector v without

the component v`, Fx|v−`
(·|·) is the conditional distribution of x given v−`, and cx,v`|v−`

(·, ·)

is the conditional pair copula density. For example, the second factor, f3|4(x3|x4), in the

right-hand side of (3) can be easily decomposed into the pair-copula c3,4(F3(x3), F4(x4)) and

a marginal density f3(x3):

f3|4(x3|x4) = c3,4(F3(x3), F4(x4))× f3(x3).

One of the possible decompositions of the third factor in the right-hand side of (3), using

the (4), is

f2|3,4(x2|x3, x4) = c2,3|4(F2|4(x2|x4), F3|4(x3|x4))× f2|4(x2|x4),
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for the appropriate pair copula c2,3|4, applied to the transformed variables F2|4(x2|x4) and

F3|4(x3|x4).

Any d-dimensional joint multivariate distribution function can thus be expressed as a product

of pair copulas by recursively plugging equation (4) in equation (2). Since in the (4) the

conditional distributions of the form Fx|v(·|·) are not directly observable, they are calculated

using Joe’s result [20]

Fx|v(x|v) =
∂Cx,v`|v−`

(F (x|v−`), F (v`|v−`))
∂F (v`|v−`)

. (5)

If the conditioning set v is univariate, v = v and expression (5) can be written as

F (x|v) =
∂Cx,v(x, v,θ)

∂v
= h(x, v,θ), (6)

where θ denotes the set of parameters of the copula, and F (x|v) is named the h function.

The forms of the h functions for the main classes of copulas are given in [1] and in [4]. For

example, F3|4(x3|x4) can be determined using expression (6) as follows

F3|4(x3|x4) =
∂C3,4(F3(x3), F4(x4))

∂F4(x4)
.

3 Vines

PCCs can be represented through a graphical model called regular vine (R-vine). An R-vine

V(d) on d variables is a nested set of trees T1, . . . , Td−1, where the variables are represented

by nodes linked by edges, each associated with a certain pair copula in the corresponding

PCC. The edges of tree Tι are the nodes of tree Tι+1, ι = 1, . . . , d− 1. In an R-vine, if two

edges of tree Tι share a common node, they are represented in tree Tι+1 by nodes joined



5

by an edge. Note that there are many different orderings of the variables yielding different

R-vines. We can distinguish two special subclasses of regular vines, canonical or C-vines

and drawable or D-vines, each of them giving a specific way of decomposing the density. A

C-vine is an R-vine where each tree Tι has a unique node that is connected to d− ι edges [6].

Conversely, a D-vine is an R-vine where all nodes in tree Tι are adjacent to at most two other

nodes [9]. A pair copula density is associated to any edge, with the edge label indicating the

subscript of the pair copula density [12]. An example of a 4-dimensional D-vine is provided

in Figure 1. The vine consists of three trees Tι, ι = 1, . . . , 3, where each edge corresponds to

a pair copula density. Each edge may belong to a different copula family and the edge label

corresponds to the subscript of the pair copula density, e.g. edge 14|23 corresponds to the

copula density c14|23(·).

<Figure 1 near here>

The joint density of the D-vine represented in Figure 1 is given by

f(x1, . . . , x4) =
4∏
j=1

fj(xj)× c12 × c23 × c34 × c13|2 × c24|3 × c14|23,

where cab = cab(F (xa), F (xb)).

More generally, the joint density of a D-vine of dimension d takes the form

f(x1, . . . , xd) =
d∏
j=1

fj(xj)×

d−1∏
ι=1

d−ι∏
i=1

ci,i+ι|i+1,...,i+ι−1(F (xi|xi+1, . . . , xi+ι−1), F (xi+ι|xi+1, . . . , xi+ι−1))

which is the product of d marginal densities fj and d(d − 1)/2 bivariate copulas

ci,i+ι|i+1,...,i+ι−1(·, ·) evaluated at the conditional distribution functions F (·|·).
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4 Vines Inference

Inference on R-vines involves the specification of the vine structure, the choice of the copula

family for each pair copula and the estimation of their parameters.

In order to select a suitable R-vine decomposition, a sequential “top-down” approach is

commonly adopted, specifying the structure of the first tree and then proceeding similarly for

higher-order trees [1]. This approach is based on the definition of a tree on all nodes (named

spanning tree), which maximizes the sum of absolute pairwise dependencies, measured, for

example, by Kendall’s tau [14]. The subsequent trees are are built in a similar way, under

the additional restriction that the proximity condition must be fulfilled. This specification

allows to capture the strongest dependencies in the first tree, thus obtaining a parsimonious

model. An alternative “bottom-up” strategy starts by selecting the weakest conditional

dependencies in higher-order trees and then specifying lower-order trees analogously [23].

Given the selected tree structure, copula families for each pair of variables are generally

selected one by one, using the Akaike Information Criterion (AIC), the Bayesian Information

Criterion (BIC) or the Copula Information Criterion (CIC) [17]. This choice is made amongst

a large set of families, comprising elliptical copulas as well as archimedean copulas and their

rotated versions, to cover a large range of possible dependence structures.

Note that conditional independence between variables may reduce the number of levels of

the pair copula decomposition, and hence simplify the construction. From a graphical point

of view, conditional independence removes edges in the R-vine, performing the so-called

“pruning”. Pruning may be implemented using a copula goodness-of-fit-test [16] or, more

generally, the Cramér-von Mises test [18].

After the specification of the vine structure and the pair copula families, the copula param-

eters θ are then generally estimated using the maximum likelihood method [1]. The most
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computationally efficient approach is the sequential method, for which the R-vine estimation

procedure is performed level by level for all trees, until the R-vine is completely specified.

Alternatively, Bayesian inference can be adopted to estimate the copula parameters [22].

5 Related Articles
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de l’Institut de Statistique de l’Université de Paris, 8, 229–231.
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Figure 1: 4-dimensional D-vine graphical representation


