
This copy of the thesis has been supplied on condition that anyone who consults it

is understood to recognize that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the author’s

prior consent.

Simulation Tools for the Study of the Interaction between

Communication and Action in Cognitive Robots

by

Tomassino Ferrauto

A thesis submitted to the Plymouth University

in partial fulfillment for the degree of

Doctor of Philosophy

School of Computing, Electronics and Mathematics

ISTC-CNR PhD Node

April 2016

Acknowledgements

The years of my PhD have been full of events. I met a lot of people that helped me,

both in my doctoral studies and in everyday life.

I would like to thank my supervisor and my collegues at LARAL, they helped me grow

both as a researcher and as a person. I would also like to thank all the people with

whom I interacted during these years at ISTC-CNR.

I am also thankful to my Plymouth supervisor and the university staff. I did not spent

much time there, but I always received help when I was in need.

I would also like to thank all the participants to the ITALK project. I have fond memories

of project meetings, both for the stimulating scientific discussions and the leisure time

spent together.

I am grateful to all my friends for the time we spent together and the mostly unconscious

help they gave me during the difficult moments.

Finally, I would like to thank my parents Remo and Vincenzina, my sister Federica, my

wife Francesca and my children Giordano and Beatrice, for all their help and support.

v

Abstract

In this thesis I report the development of FARSA (Framework for Autonomous Robotics

Simulation and Analysis), a simulation tool for the study of the interaction between lan-

guage and action in cognitive robots and more in general for experiments in embodied

cognitive science. Before presenting the tools, I will describe a series of experiments

that involve simulated humanoid robots that acquire their behavioural and language

skills autonomously through a trial-and-error adaptive process in which random vari-

ations of the free parameters of the robots’ controller are retained or discarded on the

basis of their effect on the overall behaviour exhibited by the robot in interaction with

the environment. More specifically the first series of experiments shows how the avail-

ability of linguistic stimuli provided by a caretaker, that indicate the elementary actions

that need to be carried out in order to accomplish a certain complex action, facilitates

the acquisition of the required behavioural capacity. The second series of experiments

shows how a robot trained to comprehend a set of command phrases by executing the

corresponding appropriate behaviour can generalize its knowledge by comprehending

new, never experienced sentences, and by producing new appropriate actions.

Together with their scientific relevance, these experiments provide a series of require-

ments that have been taken into account during the development of FARSA. The ob-

jective of this project is that to reduce the complexity barrier that currently discourages

part of the researchers interested in the study of behaviour and cognition from initiat-

ing experimental activity in this area. FARSA is the only available tools that provide an

integrated framework for carrying on experiments of this type, i.e. it is the only tool that

provides ready to use integrated components that enable to define the characteristics

of the robots and of the environment, the characteristics of the robots’ controller, and

the characteristics of the adaptive process. Overall this enables users to quickly setup

experiments, including complex experiments, and to quickly start collecting results.

vii

Author’s declaration

At no time during the registration for the degree of Doctor of Philosophy has the author

been registered for any other University award without prior agreement of the Graduate

Committee.

This study was carried out in collaboration with the Istituto di Scienze e Tecnologie

della Cognizione (ISTC) - Consiglio Nazionale delle Ricerche (CNR), Rome. It was

financed by the EU project ITALK from the Framework Programme 7.

This thesis contains works which were the result of collaborations with other research-

ers. The author contribution to the reported works over the total was about 40% for

the work described in chapter 2, 50% for the work described in chapter 3 and 50% for

the work described in chapter 4. During the PhD period the author also contributed to

works which are not reported in the present thesis.

Relevant scientific seminars and conferences were regularly attended at which work

was presented; external institutions were visited for consultation purposes and several

papers prepared for publication.

Word count for the main body of this thesis: 32647

Publications

Ferrauto T., Tuci E., Mirolli M., Massera G., Nolfi S. (2009) Two examples of active

categorisation processes distributed over time, Proceedings of the Ninth International

Conference on Epigenetic Robotics (Epirob09)

Mirolli M., Ferrauto T., Nolfi S. (2010) Categorisation through evidence accumulation in

an active vision system, Connection Science, (22) 4:331–354.

Tuci E., Ferrauto T., Massera G., Nolfi S. (2010) Co-development of linguistic and be-

havioural skills: compositional semantics and behaviour generalisation, Proceedings

ix

of the 11th International Conference on Simulation of Adaptive Behavior (SAB2010)

Tuci E., Ferrauto T., Massera G., Nolfi S. (2010) The Evolution of behavioural and

linguistic skills to execute and generate two-word instructions in agents controlled by

dynamical neural networks, Proceedings of the 12th International Conference on the

Synthesis and Simulation of Living Systems (ALife XII)

Massera G., Tuci E., Ferrauto T., Nolfi S. (2010) The facilitatory role of linguistic instruc-

tions on developing manipulation skills, IEEE Computational Intelligence Magazine, (5)

3: 33–42.

Tuci E., Ferrauto T., Zeschel A., Massera G., Nolfi S. (2011) An Experiment on beha-

viour generalisation and the emergence of linguistic compositionality in evolving robots,

IEEE Transactions on Autonomous Mental Development, (3) 2: 176–189.

Massera G., Ferrauto T., Gigliotta O., and Nolfi S. (2013) FARSA: An open software

tool for embodied cognitive science, Proceedings of the 12th European Conference on

Artificial Life.

Massera G., Ferrauto T., Gigliotta O. and Nolfi S. (2014) Designing adaptive humanoid

robots through the farsa open-source framework, Adaptive Behavior, 22(4):255–265.

Attended Conferences, Workshops and Summer schools

The Ninth International Conference on Epigenetic Robotics (Epirob09), Venice, Italy,

November 12–14, 2009

ITALK European Project Meetings and Workshops 2010 – 2012

The RobotDoc Research Methods Workshop, University of Plymouth, Plymouth, United

Kingdom, March 9–11, 2010

The iCub Summer School (Veni Vidi Vici 2010), Sestri Levante, Italy, July 19–28 2010

The 12th International Conference on the Synthesis and Simulation of Living Systems

(ALife XII), Odense, Denmark, August 19–23 2010

The 12th European Conference on Artificial Life (ECAL 2013), Taormina, Italy, Septem-

ber 2–6, 2013

The Ninth International Conference on Swarm Intelligence (ANTS 2014), Brussels,

Belgium, September 10–12, 2014

Signed:

Date:

Contents

Acknowledgements v

Abstract vii

Author’s declaration ix

1 Introduction 9

1.1 Embodied Cognitive Science . 9

1.2 Language and the Symbol Grounding Problem 14

1.3 Tools for Embodied Cognitive Science 18

1.4 Thesis structure . 21

2 The Facilitatory Role of Labels on the Development of Manipulation Skills 23

2.1 Language as a cognitive tool . 24

2.2 Development of manipulation skills in humans and robots 26

2.3 Methods . 29

2.3.1 The Arm . 30

2.3.2 The Hand . 32

2.3.3 The Neural Controller . 33

2.3.4 The Adaptive Process . 36

2.4 Results . 40

2.4.1 Robustness & Generalisation . 44

1

CONTENTS

2.5 Conclusion . 46

2.6 The experiment and FARSA development 48

3 Behaviour Generalisation and the Emergence of Linguistic Composition-

ality in Evolving Robots 51

3.1 Background . 52

3.2 The agent structure and the task . 55

3.3 The agent controller . 59

3.4 The evolutionary algorithm . 60

3.5 The fitness function . 61

3.5.1 With-Indicate . 61

3.5.2 With-Ignore . 63

3.6 Results . 63

3.6.1 First post-evaluation test: Performances on experienced and non-

experienced linguistic instructions 64

3.6.2 Compositionality: Operational principles 71

3.7 Discussion: perspectives for research on child language acquisition . . 79

3.8 Conclusions . 82

3.9 The experiment and FARSA development 84

4 FARSA: An Open Source Software Tool for Embodied Cognitive Science 87

4.1 Introduction . 87

4.2 Related tools: robotic middlewares . 88

4.2.1 Player . 88

4.2.2 ROS . 90

2

CONTENTS

4.2.3 YARP . 91

4.2.4 Other Middlewares . 92

4.3 Related tools: robotic simulators . 93

4.3.1 Webots . 93

4.3.2 ARGoS . 94

4.3.3 USARSim . 95

4.3.4 Gazebo . 96

4.3.5 Stage . 97

4.3.6 Others . 97

4.4 FARSA objectives . 97

4.4.1 The Robots/Environment Simulator 98

4.4.2 The Sensor and Motor Library 99

4.4.3 The Controller Libraries . 99

4.4.4 The Adaptation Libraries . 102

4.5 Design and Working Principles . 103

4.6 Illustrative experiments . 107

4.6.1 Braitenberg Vehicles . 107

4.6.2 The Discrimination Experiment 107

4.6.3 Reaching and Grasping on a iCub humanoid robot 108

4.6.4 Collective Behaviour and Swarm Robotics 111

4.6.5 Sensory-Motor Coordination . 112

4.6.6 Body Evolution and Morphological Computing 114

4.6.7 Minimal Cognitive Behaviours . 115

3

CONTENTS

4.6.8 Learning by demonstration . 116

4.7 Customizing and Expanding FARSA . 117

4.8 Conclusions . 118

5 Conclusions 121

5.1 Contribution to knowledge . 123

A Customizing and Expanding FARSA 125

A.1 Plugins, components and resources . 125

A.1.1 Creating a plugin and registering components 125

A.1.2 Configuring components . 126

A.1.3 Declaring and accessing resources 128

A.2 Creating a new experiment . 129

A.3 Customizing the environment . 131

A.3.1 The Arena Component . 131

A.3.2 The Worldsim Library . 133

A.4 Robotic platforms . 134

A.5 Programming a fitness function . 137

A.6 Creating custom sensors or motors . 138

A.7 Implementing a new robot . 140

Bound copies of published papers. 155

4

List of Figures

2.1 The robot structure and its kinematic chain 30

2.2 An example of the force exerted by a muscle 32

2.3 The architecture of the neural controller 34

2.4 Initial positions of the arm and the sphere 37

2.5 Fitness of the all runs . 41

2.6 Fitness of the all runs . 42

2.7 Fitness of the best agents . 43

2.8 Results of post-evaluation tests . 45

3.1 The simulated robot . 55

3.2 The agent controller . 58

3.3 The fitness curve of the best agent . 63

3.4 The results of post-evaluation tests . 67

3.5 The results of action-transition testand object-transition test 75

4.1 Snapshots of the rqt_graph application 91

4.2 Snapshots of the 3D viewer . 100

4.3 Controller viewer . 101

4.4 The graphic widget of the adapting process 103

4.5 The total99 graphical interface . 106

4.6 The Braitenberg vehicles . 108

5

LIST OF FIGURES

4.7 A Khepera robot . 109

4.8 Screenshot from the GraspExperiment plugin 110

4.9 Screenshot from the CollectiveForagingExperiment plugin 111

4.10 Screenshot from the PassiveWalkerExperiment plugin 115

4.11 Screenshot from the MinimalCognitiveBehaviourExperiment plugin . . . 116

4.12 Screenshot from the KinestheticGraspExperiment plugin 117

A.1 A simulated Arena . 132

A.2 A simulated world . 133

6

List of Tables

3.1 The linguistic instructions . 57

3.2 Results of post-evaluation tests . 69

7

LIST OF TABLES

8

Chapter 1

Introduction

1.1 Embodied Cognitive Science

The study of cognition is undoubtedly one of the most fascinating areas of science.

Historically, the most widely accepted view of cognition has depicted it as the act of

manipulating a set of symbols using explicit rules. In cognitivist theories, mind is there-

fore modelled as an “inner arena” of symbol processing, separated from the external

world of meaning and action [1, 25].

The philosopher that is generally considered the most representative of the duality

between body and mind is René Descartes. One aspect of his thought that might have

had a great impact on the cognitivist theory is the discontinuity between human and

animals: in particular thought is considered a unique characteristic of the former that

is completely absent in the latter. This view is justified by the assumption that sensing

and acting in the world do not require thinking, which is identified with higher-order

reasoning and abstraction such as those required for language, which is missing in

animals [1].

With the appearance of computers, which are basically devices that manipulate sym-

bols, mind and cognitive processes started to be modelled as computers and computer

algorithms, respectively. In a conference in 1956 the term Artificial Intelligence was

coined to indicate an interdisciplinary research field that is interested in understanding

biological systems, abstract general principles underpinning intelligent behaviour and

applying those principles to build intelligent artefacts (the synthetic approach was a

distinguishing characteristic of the new discipline). At that time the cognitivist view of

9

1.1. EMBODIED COGNITIVE SCIENCE

intelligence was mainstream and consequently the efforts of the newly born discipline

were concentrated towards studying the high-level abilities of humans, such as playing

chess, solving abstract problems and proving mathematical theorems. This approach

to artificial intelligence was later termed GOFAI (Good Old Fashioned Artificial Intelli-

gence) by the American philosopher Haugeland [50].

The symbolic approach to artificial intelligence has been proven successful in creating

many algorithms used in computer software today, like those used in search engines,

natural-language interfaces, games, cameras, and many other electronic equipment.

Despite these undeniable results, there are also a lot of promises that GOFAI has

not been able to fulfill (at least not yet) [90]. There are many human capabilities that

are still unmatched by artificial agents, such as natural language processing and im-

age recognition. Although several algorithms have been successfully applied also to

these domains, these algorithms typically work only in constrained or simplified en-

vironments. Moreover, if one takes into consideration abilities that require a physical

interaction with the external environment, e.g. manipulation or locomotion, the dis-

tance between biological and artificial systems is even greater. Again, there are many

robots that outperform humans or animals in very specific tasks, but none possesses

the flexibility of natural systems. More in general, artificial intelligence has proven able

to solve problems that we humans find difficult (e.g. playing chess or proving math-

ematical theorems) while having serious difficulties in tasks we are able to solve with

minimal efforts (e.g. seeing, hearing, and walking).

The previous argument brings us to another major problem of GOFAI: it has failed in

deepening our understanding of natural intelligence [91]. One paradigmatic example is

the CYC project [46]. “CYC” stands for enCYClopedia and was an attempt at building

a database of “common sense or world knowledge, like knowing that people can read

books but books can’t read people, or that water flows downhill, or that things that hap-

pen later don’t cause things that happened earlier.”1. The problem with this and similar

approaches is that for humans this kind of knowledge is strictly tied to the experiences

1http://www.cyc.com/why-cyc/. Retrieved on January, 30th 2016

10

1.1. EMBODIED COGNITIVE SCIENCE

that we have of things in the world and this in turn is a consequence of having a physical

body [90]. The meaning to symbols employed by such systems needs to be provided

by a human being, which acts as the intermediary between the world and “CYC” [1].

The realization of the limitations of the cognitivist approach to intelligence has led, over

the past decades, to a significant shift in the study of cognition from purely abstract and

symbolic models to situated and embodied ones. Situatedness refers to the fact that

biological agents live in a physical environment and to the fact that the actions of the

agents modify the environment or their relative position in the environment that in turn

influence what they perceive; embodiment refers to the fact that agents are physical

entities with a given size and shape and to the fact that their physical characteristics

strongly influence the behaviour that they exhibit.

In the fields of robotics and artificial intelligence, one of the first researchers who ques-

tioned the GOFAI approach was Rodney Brooks [13, 14, 15]. In his works he advocates

a radical change in what should be considered “intelligent behaviours” and in the way

in which it should be studied. He starts by taking into account the evolutionary history

of humans. Human beings descend from simpler life forms that have less sophistic-

ated capabilities and have built upon such capabilities to develop their skills and to

reach their current level of intelligence. In light of this, he suggests to study intelligence

bottom-up: the study of low level abilities is considered necessary to understand high

level thought in humans [15].

More generally the embodied approach to cognitive science has been discussed in

many other fields (such as philosophy, psychology, neuroscience, linguistics, etc. [22,

23, 29, 57, 94, 119, 128]). All these diverse disciplines contributed to identify principles

that can be used to model biological systems and to design artificial ones. In [18]

the authors identify three key principles that characterize embodied cognitive science,

namely morphological computation, sensory-motor coordination and embodied cogni-

tion.

The realization of the importance of the body and of body-world interactions, lead to

11

1.1. EMBODIED COGNITIVE SCIENCE

taking into account the possibility to exploit these interactions in order to simplify control

policies. Take for example bipedal locomotion. In robotics this is generally considered

a complex task, and one that requires a very sophisticated control policy. In has been

shown, however, that a carefully designed body can lead even passive structures (i.e.

articulated entities without any controller nor actuators) to display “natural” walking be-

haviour [28, 66]. This is a rather extreme form of morphological computation, in which,

so to speak, all the computation is performed by the body. More recently researches

have exploited this principle to build bipedal robots with minimal actuation and con-

trol [27].

Despite the possibility to exploit the body dynamics to reduce the burden on a robot

controller has been demonstrated multiple times, the design of suitable morphologies

still remains a difficult problem. In [18] the authors argue that evolutionary robotics

techniques may prove successful in helping a human designer or even in autonom-

ously designing effective robot bodies (for examples of experiments of evolved body

morphologies see [3, 106]).

Another fundamental principle exploited by embodied and situated agents is sensory-

motor coordination. An agent, in general, can only perceive a limited portion of the

environment. While this is obviously a limitation, it is still possible to exploit this fact by

considering that the agent can co-determine what it perceives through its actions, i.e.

it can act so to perceive the appropriate information. One consequence of this is that

seemingly hard tasks may be simplified by selecting the relevant information through

suitable behaviours. A paradigmatic example is given in [78]. The task involves a

Khepera robot that is required to stay near to big cylindrical object and stay away from

small cylinders. Given the poor sensory information available to the robot (which only

has infrared distance sensors and wheel speed proprioception), trying to solve the task

relying only on sensory information is rather difficult, because the stimuli of the big and

small cylinder are very similar. When instead sensory-motor coordination is exploited,

a simple and robust solution becomes available. When the robot approaches a cylinder

12

1.1. EMBODIED COGNITIVE SCIENCE

it starts cycling around it and uses the difference between the speed of the left and right

wheels to reliably discriminate the size of the cylinder.

The use of actions to extract useful information from the environment is termed active

perception [4, 5, 83] and the actions whose only purpose is precisely to experience

useful sensory inputs are called epistemic actions [55].

So far we have shown the influence that having a body has on simple behavioural

capabilities, i.e. what Rodney Brooks called Cambrian Intelligence. Embodiment and

situatedness, however, also influence high level capabilities [87], such as, for example,

language acquisition and processing. In this regard neuro-scientific and psychological

experiments have shown how human beings performing linguistic tasks are influenced

by the action that they perform and by the posture that they assume (for a review,

see [35]). Evidence of this strict relation has been found by studies in difference discip-

lines. For example in a series of experimental psychological studies [42] the authors

measured the time it takes for human subjects to start a movement after a linguistic in-

struction is presented. They have shown how movements that were congruent with the

sentence being presented (like e.g. moving the arm towards one own body in response

to open the drawer) started in less time than movements that weren’t (like e.g. moving

the arm towards one own body in response to close the drawer). In neuroscience,

several studies have showed how activations in linguistic areas in the brain correlate

with activations in areas devoted to motor control. In [51], the analysis of fMRI images

of the brain of subjects that were asked to read sentences containing words related to

body actions shown how the perception of these words cause the activations of pre-

motor areas that trigger actions afforded by the words (e.g. the perception of a word

like pick activates the premotor area that activates the muscles of the arm).

Language acquisition is strongly influenced by the characteristics of the body as well.

The study on the acquisition of the first words by 18-month old children presented

in [107] has shown the effect of body posture: children are able to learn the name of

novel objects also in absence of the object itself if they are looking at the same location

13

1.2. LANGUAGE AND THE SYMBOL GROUNDING PROBLEM

where the object was first presented. These results have recently been reproduced

by a robotic model in [73] based on the iCub robot [99]. Finally, the importance of

embodiment has also been stressed in developmental psychology theories, e.g. in

Tomasello’s constructivist theory of language acquisition [121].

In this section we have discussed in general terms the role embodiment and situated-

ness in the study of behaviour and cognition. Before concentrating on the importance

of tools supporting research in Cognitive Science and their characteristics, in the next

section we will focus on one specific aspect of embodiment and situatedness, namely

the problem of how symbols can be grounded in the non-symbolic perceptual states

and in the sub-symbolic actions that are perceived and produced by embodied agents.

This aspects will be investigated by the experiments presented in chapters 2 and 3 of

the present thesis.

1.2 Language and the Symbol Grounding Problem

We have seen that one of the main problems of the symbolic approach to artificial in-

telligence is the “distance” between symbols and the real world. In [47] Steven Harnad

precisely defines the terms of this problem, naming it the symbol grounding problem.

In the paper he asks: “How can the semantic interpretation of a formal symbol sys-

tem be made intrinsic to the system, rather than just parasitic on the meanings in our

heads? How can the meanings of the meaningless symbol tokens, manipulated solely

on the basis of their (arbitrary) shapes, be grounded in anything but other meaningless

symbols?”. We have already given an example of symbols whose meaning is “parasitic

on the meanings in out heads” when we talked about the CYC project, in the previous

section.

Generally, in traditional AI systems, symbols are explained in terms of other symbols,

without any connection to the external world [90]. A famous challenge to this approach

was set forth by the American philosopher John Searle, with his “Chinese room argu-

ment” [104]. A common assumption in GOFAI is that a system that passes the Turing

Test (named after its proponent, Alan Turing) can be assumed to be as intelligent as a

14

1.2. LANGUAGE AND THE SYMBOL GROUNDING PROBLEM

human. The test involves a human player who communicates through a text interface

to another agent (who could be a human or a machine). If the player is not able to

distinguish the human from the machine, then the machine has passed the test. In this

case, it is generally assumed that the machine should “understand” what is being told

to it in the same way as a human does.

In his mental experiment, Searle imagines a Turing Test performed using the Chinese

language and a machine that is able to pass the test. Then he supposes that he himself

takes the part of the machine: he receives Chinese text and then, applying the same

rules the “intelligent” machine would use, he outputs an answer in Chinese. Searle,

however admits that he does not speak Chinese, thus he does not “understand” what

the conversation is about – and so neither can the machine. When an external observer

who knows Chinese looks at the answers of the system, they may make sense for him,

but again, as in the CYC example, meaning is extrinsic to the symbol system and thus

pure symbol manipulation cannot be a valid model for cognition.

Since the publication of the paper of Harnad in 1990, many researchers within Em-

bodied Cognitive Science attempted to tackle the symbol grounding problem. In 2008

Luc Steels wrote a paper entitled “The symbol grounding problem has been solved, so

what’s next?” [112] in which he claimed that the problem has been settled by his experi-

ments on language games [113, 114, 115, 116] in which a population of robots develop

on the fly a language system and use such language to successfully communicate

about an external world. For example, in [115] a population of robots autonomously

acquires a shared lexicon that identifies different objects. The experiment is made up

of several trials (games) involving two randomly selected robots. One of the agents

plays the role of the speaker, while the other is the hearer.

The speaker randomly selects an object or a topic in the environment and tries to draw

the attention of the hearer to the same object by saying a word or a sentence (which

is randomly generated the first time). The hearer tries to recognize the object on the

basis of previously experiences. If the game fails the speaker indicates the object and

15

1.2. LANGUAGE AND THE SYMBOL GROUNDING PROBLEM

the hearer stores associations between the perceived image and the heard word or

sentence. By repeated executions of these games the whole population develops a

shared lexicon and also internal categories that are connected to the objects’ percep-

tion. In this sense, the resulting symbols (i.e. words) are grounded in the sensory

experience of the agents.

In subsequent works, the same principles have been applied to show the emergence

of high level linguistic structures. For example in [10] the authors have reported the

results of experiments with artificial agents performing language games in which what

emerged were grammatical structures, such as small markers to indicate the gender,

number or the animate nature of a word associated to an object. This mimics what hap-

pens in various languages where adjectives take different forms depending on proper-

ties of the noun to which they refer. In the paper it is shown how such structures are

very useful to reduce the cognitive burden on the hearer and how they could evolve

from meaningful words (i.e. grounded words).

Despite these experiments constituting a significant progress in our ability to model how

language evolves and how linguistic symbols are grounded on sub-symbolic states,

the way in which the symbols of these robots are grounded on sub-symbolic states

does not agree very well with the way in which symbols in humans are grounded in

human experiences. More specifically, in those works words are associated to specific

sensory patterns, but that may not be sufficient for an effective grounding. An example

taken from [1] clarifies what is missing: “Grounding the symbol for ‘chair’, for instance,

involves both the reliable detection of chairs, and also the appropriate reactions to

them. [...] Thus is it possible for someone to ask, presenting a tree stump in a favourite

part of the woods, “Do you like my reading chair?” and be understood. An agent

who has grounded the concept ’chair’ can see that the stump is a thing for sitting, [...].

Simply having stored the fact that a chair is for sitting is surely not sufficient ground for

this latter capacity. The agent must know what sitting is and be able to systematically

relate that knowledge to the perceived scene, and thereby see what things (even if

16

1.2. LANGUAGE AND THE SYMBOL GROUNDING PROBLEM

non-standardly) afford sitting.”

What is clear from the cited example is that a key role in symbol grounding is played by

affordances (in the sense of Gibson [40]), which are, in turn, strictly connected to the

agent’s behavioural capabilities. In this regard, the psychological and neuroscientific

evidences of the strict relation between action and language that we have already

discussed in the previous section (e.g. [42, 51]) are yet another indication of the fact that

associating symbols to sensory patterns alone is not enough to explain the grounding

capabilities of human being.

In some works the possibility to observe the emergence of deeper forms of grounding

has been investigated [45, 80, 117]. In particular in [45] the authors described an ex-

periment in which a population of robots that had the possibility to produce and detect

sounds were evolved for the ability to perform a cooperative task. The agents are re-

warded to stay inside different areas (i.e. one robot in the white area and one in the

black area at the same time) and to switch areas as quickly as possible. A bidirection

communication channel is present that allows the exchange of a single numeric value

between 0.0 and 1.0 at each time step. The analysis of the evolutionary experiments

indicates that the robot evolve an ability to produce and understand symbolic signals to

effectively cooperate. The analysis of the way in which the signals are produced indic-

ates that they are grounded not simply in sensory states but also on specific behaviour

capabilities.

Another robotic experiment that explored the links between language grounding and

behaviour is [117], in which a mobile robot is taught to respond appropriately to two-

word instructions using a supervised learning technique. The experiment will be de-

scribed in more details in chapter 3. What is interesting to note here is that, as in

the previous example, there is no separation between a “linguistic process” and a “se-

mantic process”, both being part of a single dynamical system. In this dynamical sys-

tem view of cognition, thus, the main cause of the existence of the grounding problem

(i.e. the distance between symbols and their meaning) is removed.

17

1.3. TOOLS FOR EMBODIED COGNITIVE SCIENCE

1.3 Tools for Embodied Cognitive Science

Embodied Cognitive Science addresses the study of embodied and situated agents

and, in some cases, the study of how these agents develop their capabilities autonom-

ously while interacting with their physical and (eventually) social environment. For

many years, these studies have been confined to relatively simple agents and tasks.

Recent research, however, demonstrated how this method can be extended to stud-

ies that involve agents with complex morphologies and rich sensory–motor systems

mastering relatively hard tasks (see for example [6, 64, 95, 97, 101, 124, 137]).

From a modelling point of view complexity does not represent a value in itself. Indeed,

the Occam’s razor argument claims that given two explanations of the data, all other

things being equal, the simpler explanation is preferable. After all, one of the key con-

tribution of adaptive behaviour research consists in the demonstration of how complex

abilities can emerge from the interactions between relatively simple agents and the en-

vironment. On the other hand, the modelization of a given phenomenon necessarily

requires the inclusion of the characteristics that constitute key aspects of the targeted

objective of study. In some cases, therefore, the use of complex agents and/or tasks

is necessary. For example, the modelization of the morphological characteristics and

of the articulated structure of the human arm constitutes a prerequisite for modelling

human object manipulation skills. Likewise, the use of agents provided with rich sens-

ory systems constitutes a necessary prerequisite for modelling sensory integration and

fusion.

From a methodological point of view the Embodied Cognitive Science approach to the

study of cognition implies that models of behavioural and cognitive capacities should

take into consideration the characteristics of the agent’s nervous system, of the agent’s

body, of the environment as well as the properties that originate from the interaction

between these three components. This in turn requires the formulation of models that

are far more complex than their previous disembodied counterpart and that are not

constituted simply by static descriptions but rather by processes that run in the physical

18

1.3. TOOLS FOR EMBODIED COGNITIVE SCIENCE

world or in realistic computer simulations.

This new approach to cognitive modelling brought about the necessity to validate work-

ing hypotheses on a real device. Robots are the natural candidates, as they, like living

beings, have a physical body and can act in a physical environment. Nowadays there

are several robotic platforms which are more or less affordable yet complex enough

to be useful tools for cognitive scientists, such as the Khepera2 and the Nao3 robots.

There are also many robots which have been developed during research projects (such

as the MarXbot4 and the iCub5 robots) or are being developed at the time of writing

(such as Roboy6).

The new approach also requires the usage of sophisticated software tools. Some of

these tools are needed to enable the robotic model to operate. Others are required

to carry out experiments in simulations. Some models, in fact, are hard or impossible

to test on real robots, since the training phase of the robot would take too long or the

robots might damage themselves during long lasting operations or executing actions

during exploration. The cognitive models that will be presented in the chapters 2 and 3

of this thesis constitute an example. In fact they could have not been carried out entirely

on hardware exactly for the two reasons discussed above.

The possibility to create computer simulations of robotic experiments has been greatly

facilitated by the availability of libraries to simulate rigid body dynamics such as ODE7 [108],

Newton Dynamics8 [53] and Bullet Physics Library9. However, implementing experi-

ments through the usage of these libraries still requires a substantial amount of work.

Indeed, simulating the body of the robotic agents and the environment constitutes only

one of the components that need to be implemented in order to carry on an embodied

experiment. Other necessary components typically include:

2http://www.k-team.com/mobile-robotics-products/khepera-ii
3http://www.aldebaran-robotics.com/en/
4http://mobots.epfl.ch/marxbot.html
5http://www.icub.org/
6http://roboy.devanthro.com/
7http://www.ode.org/
8http://newtondynamics.com/forum/newton.php
9http://bulletphysics.org/wordpress/

19

1.3. TOOLS FOR EMBODIED COGNITIVE SCIENCE

• the sensors and the actuators of the agent. Some of them can be implemen-

ted using low level functions from the physic simulation libraries, others require

specific code (for example to simulate the communication between robots);

• the controller of the agent, e.g. the agent’s neural controller;

• the learning and/or adaptive process.

Overall this implies that the knowledge barrier that Embodied Cognitive Science re-

searchers should face to build and analyse their models is still very high.

FARSA (Framework for Autonomous Robotics Simulation and Analysis) aims at mit-

igating this problem. It is an open-source software tool that enables researchers

and students to easily and effectively carry out research in Embodied Cognitive Sci-

ence [62, 63]. FARSA combines the following features in a single framework:

• it is open-source, so it can be freely modified, used and extended by the research

community;

• it is constituted by a series of integrated libraries that allow to easily design the

different components of an embodied model (i.e. the agents’ body and sensory-

motor system, the agents’ control systems, and the ecological niche in which the

agents operate) and that allow to simulate accurately and efficiently the interac-

tions between the agent and the environment;

• it comes with a rich graphical interface that facilitates the visualization and ana-

lysis of the elements forming the embodied model and of the behavioural and

cognitive processes originating from the agent/environment interactions;

• it is based on a highly modular software architecture that enables a progressive

expansion of the tool features and simplifies the implementation of new experi-

ments and of new software components;

• it is multi-platform, i.e. it can be compiled and used on Linux, Windows, and

Mac OS X operating systems;

20

1.4. THESIS STRUCTURE

• it comes with a set of illustrative experiments, that can be used as a base for

running a large spectrum of new experiments, and with a synthetic but compre-

hensive documentation that should enable users to quickly master the tool usage;

• it allows to use both fast low-accuracy static simulation techniques and slower

high-accuracy dynamic simulation techniques. It permits to improve the simula-

tion speed by avoiding the usage of the graphic visualization when it is not needed

(e.g. during training processes). It also permits to increase speed through the us-

age of multi-threads simulations running on multi-core computers or on computer

clusters.

The tool will be extensively described in chapter 4

1.4 Thesis structure

This thesis is organized as follows. Chapters 2 and 3 describe experiments on the

relation between language and action in adaptive embodied and situated agents, i.e.

in robots that develop their cognitive and behavioural skills autonomously while they

interact with their physical and social environment. Along with the discussion of the

scientific relevance of the experiments, they also contain an analysis of the character-

istics of the tools that were employed to actually perform them.

Chapter 4, describes FARSA, the open source software tool that I developed together

with Gianluca Massera, Onofrio Gigliotta and Stefano Nolfi, that allows to easily set up

and carry out embodied cognitive science experiments on different simulated robotic

platforms. The tool was built taking into account the requirements gathered while work-

ing on the experiments described in the previous two chapters, as well as the useful

feedback from other researches in the LARAL laboratory, working on different exper-

imental setups. The chapter will also discuss how the developed tool might support

research in cognitive science, its limitation and the developments that are necessary

21

1.4. THESIS STRUCTURE

22

Chapter 2

The Facilitatory Role of Labels on the De-

velopment of Manipulation Skills

This chapter presents a series of experiments that aim to investigate whether the avail-

ability of labels provided by a caretaker facilitates the acquisition of object manipulation

abilities in a simulated humanoid robot [64].

The robot, which is provided with a neural network controller, is trained for the ability

to manipulate spherical objects located on a table by reaching, grasping, and lifting

them. The controller of the robot is trained through an adaptive process in which the

connection weights of the robot’s controller that regulate the fine-grained interaction

between the robot and the environment are varied, and in which variations are retained

or discarded on the basis of whether they lead to increased performance or not.

The experiments have been replicated in two experimental conditions. In a first ex-

perimental condition the robot only perceives the relative position of the target object

through its visual system and the current position of its arm through its propriosensors.

In the second experimental condition the robot also perceives an input provided by

a caretaker that indicates the action that the robot should exhibit in each successive

phase in order to perform the task. These labels for actions can be interpreted as a

very primitive form of language.

The obtained results shown that the presence of such labels facilitates the development

of the required behavioural skills.

The chapter is organized as follows. Section 2.1, reviews the literature that discusses

23

2.1. LANGUAGE AS A COGNITIVE TOOL

the cognitive tool function of language, i.e. the fact that language can support the

development of behavioural and cognitive skills. In this section we also review some

recent research that investigated this aspect through the usage of embodied simu-

lation experiments. Section 2.2, briefly reviews the literature on the development of

manipulation skills in humanoid robots. Section 2.3, describes the experimental setup

and section 2.4 the obtained results. Finally section 2.5 discusses the significance of

the obtained results and section 2.6 describes the influence of the experiments in the

present chapter on the development of the FARSA robotic simulator..

2.1 Language as a cognitive tool

It is evident from everyday life that language plays a fundamental role for human beings.

This capability is probably the most evident distinctive trait of humans when compared

with the other animals. Most, if not all, animals communicate. However, no species

posses a language with a complexity and a richness analogous to human language.

Such a powerful tool has a great impact on social life. With language humans can give

or receive commands, coordinate with peers during the execution of complex tasks,

inform each other, make plans with others and more.

In all the examples we have just given, language is used as a powerful communica-

tion tool. It has been shown, however, that the presence of language has beneficial

effects on cognition in general [70, 85]. It is even possible that the rich “mental world”

in which human beings live would not exist at all if we didn’t have language. There

are many capabilities that are influenced and enhanced by the presence of language.

Let me consider, for example, the ability to categorize (which is considered one of the

most fundamental cognitive process [48]). In [69] the authors have presented an artifi-

cial neural network experiment to verify to which extent language influence categorical

perception. What they found is that the categories acquired by the neural network

are influenced by the presence or the absence of accompanying linguistic stimuli. In

the presence of linguistic stimuli, the categories were more separated in the network in-

ternal space. This means that instances of the same category were perceived as “more

24

2.1. LANGUAGE AS A COGNITIVE TOOL

similar” and that instances of different categories were perceived as “more dissimilar”.

The role of language as a tool that augments human capabilities has been recognized

by various authors. The soviet psychologist Lev Vygotsky was one of the first who

pointed out this role of language. In his works [133, 134] he investigated two aspects

of child development: private speech and scaffolded actions. Often children receive

help by caretakers to execute difficult tasks. The term scaffolded actions thus refer to

the actions that rely on the help provided by the caretaker. This help from childhood

on is often provided through linguistic instructions that guide the actions of the child.

Eventually, the child then starts to perform the actions by speaking to her/himself, i.e.

by substituting the language provided by the caretaker with its own self-produced lan-

guage. As a result of this process, as argued by Vygotsky, language (eventually in the

form of an internal language) keeps supporting action production even into adulthood.

Despite the work of Vygotsky dating back to more than half a century ago, most of the

subsequent studies on language have focused on its communicative role. It is only rel-

atively recently that the interest in language as a cognitive tool has risen again (see for

example [20, 24, 30, 70]). Clark [24] discusses six domains in which language supports

the execution or the acquisition of behavioural and cognitive capabilities: (i) memory

augmentation, (ii) environmental simplification (e.g. the use of labels to provide percep-

tually simple clues), (iii) coordination and reduction of on-line deliberation, (iv) taming

path dependent learning (i.e. structuring the learning process in a pedagogical effective

way), (v) attention and resource allocation, (vi) data manipulation and representation.

Overall this implies that language deeply affects the cognitive and computational space

in which we live.

More recently in [70], the authors proposed to apply the aforementioned principles

to robotics. According to the authors, a proper exploitation of the cognitive-tool role

of language could enable robotics to properly address problems that are significantly

behind the state of the art in robotics, which for the moment is only able to appropriately

address low-level cognitive phenomena.

25

2.2. DEVELOPMENT OF MANIPULATION SKILLS IN HUMANS AND ROBOTS

Section 2.3 will describe a series of experiment in which we demonstrate, for the first

time, that the availability of labels, modelling a very primitive form of linguistic inputs,

produced by a caretaker, facilitates the development of manipulation skills in a simu-

lated humanoid robot that is trained through an evolutionary algorithm.

2.2 Development of manipulation skills in humans and robots

The control of arm and hand movements in human and nonhuman primates and in

robots is a fascinating research topic actively investigated within several disciplines

including psychology, neuroscience, and robotics. Modelling in detail the mechan-

isms underlying arm and hand movement control in humans and primates and building

robots able to display human-like arm/hand movements still represents an extremely

challenging goal [102]. Indeed, the development of robots with the dexterity and robust-

ness of humans still constitutes a long-term goal [41], despite the progress achieved in

robotics so far. These difficulties can be explained by considering the need to take into

account the role of several aspects including: the morphological characteristics of the

arm and of the hand, the bio-mechanics of the musculoskeletal system, the presence

of redundant degrees of freedom and limits on the joints, non-linearity (e.g., the fact

that small variations in some of the joints might have a strong impact on the hand pos-

ition), gravity, inertia, collisions, noise, the need to rely on different sensory modalities,

visual occlusion, the effects of movements on the next experienced sensory states, the

need to coordinate arm and hand movements, the need to adjust actions on the basis

of sensory feedback, and the need to handle the effects of the physical interactions

between the robot and the environment. The attempt to design robots that develop

their skills autonomously through an adaptive process permits, at least in principle, to

delegate the solutions to some of these aspects to the adaptive process itself.

In work reported in the following sections we take into account most of the aspects

discussed above, although often by introducing severe simplifications. More specific-

ally, the morphological characteristics of the human arm and of the hand are taken

into account by using the iCub robot, that reproduces approximately the morphological

26

2.2. DEVELOPMENT OF MANIPULATION SKILLS IN HUMANS AND ROBOTS

characteristics of a 3.5 years-old in term of size, shape, articulations, degrees of free-

dom and relative limits [100]. Some of the properties of the musculoskeletal system

have been incorporated into the model by using muscle-like actuators controlled by

antagonistic motor neurons. For the sake of simplicity, the segments forming the arm,

the palm, and the fingers are simulated as fully rigid bodies. However, the way in which

the fingers are controlled, enable a certain level of compliance in the hand. The role

of gravity, inertia, collision, and noise are taken into account by accurately simulating

the physics laws of motion and the effect of collisions (see Section 2.3 for details of the

model).

One of the main characteristics of the model presented in the following section is that

the robot controller adjusts its output on the basis of the available sensory feedback

by updating directly the forces exerted on the joints (see [103] for related approaches).

The importance of the sensory feedback loop has been emphasised by other work in

the literature. For example in [34] the authors describe an experiment in which a three-

fingered robotic arm displays reliable grasping behaviour through a series of routines

that keep modifying the relative position of the hand and of the fingers on the basis of

the current sensory feedback. The movements tend to optimise a series of properties

such as hand-object alignment, contact surface, finger position symmetry, etc.

In my experiment, the characteristics of the human brain that processes sensory and

proprio-sensory information and control the state of the arm/hand actuators are mod-

elled very loosely through the use of dynamical recurrent neural networks. The archi-

tecture of the artificial neural network employed is not inspired by the characteristics

of the neuroanatomical pathways of the human brain. Also, many of the features of

neurons and synapses are not taken into account (see [84], for an example of work

that emulates some of the anatomical characteristics of the human brain). The use of

artificial neural networks as robot controller provides several advantages with respect

to alternative formalisms, such as robustness, graceful degradation, generalisation and

the possibility to process sensory-motor information in a way that is quantitative both

27

2.2. DEVELOPMENT OF MANIPULATION SKILLS IN HUMANS AND ROBOTS

in state and time. These characteristics also make neural networks particularly suit-

able to be used with a learning/adaptive process in which a suitable configuration of

the free parameters is obtained through a process that operates by accumulating small

variations.

Newborn babies display a rough ability to perform reaching. This initial capability

evolves into effective reaching and grasping skills by 4/5 months, into an adult-like

reaching and grasping strategies by 9 months, up to precision grasping by 12/18

months [130, 131, 132]. Concerning the role of sensory modalities, the experimental

evidence collected on humans indicates that young infants rely heavily on somato-

sensory and tactile information to carry out reaching and grasping action and they use

vision to elicit these behaviours [96]. However, the use of visual information (employed

to prepare the grasping behaviour or to adjust the position of the hand by taking into

account the shape and the orientation of the object) starts to play a role only after

9 months [65]. For this reason the robot is provided with proprioceptive and tactile

sensors and with a vision system that provides information on the position of the object

only. Moreover, visual occlusions are not simulated assuming that the information con-

cerning the position of the object can be inferred in relatively reliable way even when

the object is partially or totally occluded by the robot’s arm and hand.

In accordance with the empirical evidence indicating that early manipulation skills in in-

fants are acquired through self-learning mechanisms rather than by imitation learning

[84], the robot acquires its skills through a trial and error process during which random

variations of the free parameters of the robots’ neural controller (which are initially as-

signed randomly) are retained or discarded on the basis of their effect at the level of

the overall behaviour exhibited by the robot in interaction with the environment. More

precisely, the effect of variations is evaluated using a set of utility functions that de-

termine the extent to which the robot manages to reach and grasp the target object

with its hand, and the extent to which the robot succeeds in lifting the object over the

table. The use of this adaptive algorithm and utility functions leaves the robot free to

28

2.3. METHODS

discover its own strategy to reach the goals set by the experimenter. This in turn allows

the robot to exploit sensory-motor coordination (i.e., the possibility to act in order to

later experience useful sensory states) as well as the properties arising from the phys-

ical interactions between the robot and the environment. In [123] it is shown how this

approach allows the robot to distinguish objects of different shapes by self-selecting

useful stimuli through action, and in [61] it is shown how this approach allows for the

exploiting of properties arising from the physical interaction between the robot body

and the environment for the purpose of manipulating an object.

2.3 Methods

The experiments involve a simulated humanoid robot that is trained to manipulate a

spherical object located in different positions over a table placed in front of the robot

by reaching, grasping, and lifting it. More specifically the robot is made up of an an-

thropomorphic robotic arm with 27 actuated degrees of freedom (DOF) on the arm

and hand, 6 tactile sensors distributed over the inner part of the fingers and palm,

17 propriosensors encoding the current angular position of the joints of the arm and

of the hand, a simplified vision system that detects the relative position of the object

(but not the shape of the object) with respect to the hand and 3 sensory neurons (la-

bels) that encode the category of the elementary behaviours that the robot is required

to exhibit (i.e., reaching, grasping, or lifting the sphere). The neural controller of the

robot is a recurrent neural network trained through an evolutionary algorithm for the

ability: (i) to reach an area located above the object, (ii) to wrap the fingers around the

object, and (iii) to lift the object over the table. The condition in which the labels are

provided has been compared with the condition in which the labels are not provided.

For each condition, the evolutionary process has been repeated 10 times with different

random initialisations. The robot and the robot/environmental interactions have been

simulated by using a very preliminary version of the FARSA tool, that will be described

in Chapter 4.

29

2.3. METHODS

activity of the corresponding motor neuron (α) on the current elongation of the muscle

(x) and on the muscle contraction/elongation speed (ẋ) which are calculated on the

basis of the following equations:

TA = α

(

−Tmax

(

x−RL

Lmax−RL

)2

+Tmax

)

TP = Tmax

exp
{

Ksh

(

x−RL
Lmax−RL

)}

−1

exp{Ksh}−1

TV = b · ẋ

(2.1)

where Lmax and RL are the maximum and resting lengths of the muscle, Tmax is the

maximum force that can be generated, Ksh is the passive shape factor, and b is the

viscosity coefficient.

The active force TA depends on the activation of muscle α and on the current elong-

ation/compression of the muscle. When the muscle is completely elongated/com-

pressed the active force is zero regardless of the activation α. At the resting length

RL, the active force reaches its maximum that depends on the activation α. The red

curves in figure 2.2 show how the active force TA changes with respect to the elonga-

tion of the muscle for some possible values of α. The passive force TP depends only

on the current elongation/compression of the muscle (see the blue curve in figure 2.2).

TP tends to elongate the muscle when it is compressed less than RL and tends to com-

press the muscle when it is elongated above RL. TP differs from a linear spring for its

exponential trend that produces a large opposition to muscle elongation and little to

muscle compression. TV is the viscosity force. It produces a force proportional to the

velocity of the elongation/compression of the muscle.

The parameters of the equation are identical for all 14 muscles controlling the seven

DOFs of the arm and have been set to the following values: Ksh = 3.0, RL = 2.5, Lmax =

3.7, b = 0.9 with the exception of parameter Tmax which is set to 3000N for joint J2, 300N

for joints J1, J3, J4, and J5, and 200N for J6 and J7.

Muscle elongation is computed by linearly mapping the angular position of the DOF,

on which the muscle acts, into the muscle length range. For instance, in the case of

31

2.3. METHODS

-50

 0

 50

 100

 150

 200

 250

 300

 1.5 2 2.5 3 3.5

α = 0.2

α = 0.4

α = 0.6

α = 0.8

α = 1.0

TP

Figure 2.2: An example of the force exerted by a muscle; the graph shows how the

force exerted by a muscle varies as a function of the activity of the cor-

responding motor neuron and of the elongation of the muscle for a joint in

which Tmax is set to 300N.

the elbow where the limits are [−170o,+0o], this range is mapped onto [+1.3,+3.7] for

the agonist muscle and [+3.7,+1.3] for the antagonist muscle. Hence, when elbow is

completely extended (angle 0), the agonist muscle is completely elongated (3.7) and

the antagonist muscle is completely compressed (1.3), vice versa when the elbow is

flexed.

The torque applied to an arm joint is the difference between the torques applied by the

two antagonist muscles of that joint. The resulting simulated arm movement is then

computed by the physics engine, taking into account both torque produced by muscles

and forces generated by the interaction with the external environment.

2.3.2 The Hand

The hand is attached to the robotic arm just after the wrist (at joint J7 as shown in

figure 2.1). One of the most important features of the hand is its compliance. In details,

the compliance has been obtained setting a maximum threshold of 300N to the force

exerted by each joint. When an external force acting on a joint exceed this threshold

32

2.3. METHODS

either the joint cannot move further, or the joint moves backward due to the external

force.

The robotic hand is composed of a palm and 15 phalanges that make up the digits

(three for each finger) connected through 20 DOFs, J8, . . . ,J27 (see figure 2.1).

Joint J8 allows the opposition of the thumb with the other fingers and it varies within the

range [−120°,+0°], where the lower limit corresponds to thumb-pinky opposition. The

knuckle joints J12, J16, J20 and J24 allow the abduction/adduction of the corresponding

finger and their ranges are [0°,+15°] for the index, [−2°,+2°] for the middle, [−10°,+0°]

for the ring, and [−15°,+0°] for the pinky. All others joints are for the extension/flexion

of phalanges and vary within [−90°,+0°] where the lower limit corresponds to complete

flexion of the phalanx (i.e., the finger closed).

The joints are not controllable independently of each other, but they are grouped. The

same grouping principle used for developing the iCub hand [100] has been used. More

precisely, the two distal phalanges of the thumb move together as do the two distal

phalanges of the index and the middle fingers. Also, all extension/flexion joints of

the ring and pinky fingers are linked as are all the joints of abduction/adduction of

the fingers. Hence, only 9 actuators move all the joints of the hand, one actuator for

each of the following group of joints: 〈J8〉, 〈J9〉, 〈J10,J11〉, 〈J13〉, 〈J14,J15〉, 〈J17〉, 〈J18,J19〉,

〈J12,J16,J20,J24〉 and 〈J21,J22,J23,J25,J26,J27〉. These actuators are simple motors con-

trolled by position.

2.3.3 The Neural Controller

The architecture of the neural controllers varies slightly depending on the ecological

conditions in which the robot develops its skills. In the case of the development sup-

ported by labels provided by a caretaker, the robot is controlled by a neural network

which includes 29 sensory neurons, 12 internal neurons with recurrent connections

and 23 motor neurons. In the case without the support of labels, the neural network

lacks the corresponding sensory neurons. Thus, it is composed of 26 sensory neurons

instead of 29. The sensory neurons are divided into four blocks.

33

2.3. METHODS

not been simulated) that computes the relative distance in cm of the object with respect

to the hand over three orthogonal axes. These values are fed into the networks as they

are without any normalisation.

The Label Sensors is a block of three neurons each of which represents one of the

commands reach, grasp and lift. Specifically, the vector 〈50,0,0〉 corresponds to the

instruction “reach the object”, 〈0,50,0〉 corresponds to the instruction “grasp the object”

and 〈0,0,50〉 corresponds to the instruction “lift the object”. The way in which the state

of these sensors is set is determined by equation 2.4 explained below.

Note that the state of the Label and Target Position Sensors varies on a larger in-

terval than the other sensors in order to increase the relative impact of these neurons.

Indeed, control experiments in which all sensory neurons were normalized within the

[0,1] interval led to significantly lower performance (result not shown).

The outputs Hi(t) of the Hidden Neurons are calculated on the basis of following equa-

tion:

yi(t) = σ
(

∑
29
j=1 w jiI j(t)+βi

)

Hi(t) = δi · yi(t)+(1−δi) · yi(t −1)
(2.2)

where I j(t) is the output of the jth sensory neuron, w ji is the synaptic weight from the

jth sensory neuron to the ith hidden neuron, βi is the bias of the ith hidden neuron, δi is

the decay-factor of the ith hidden neuron, and σ(x) is the logistic function with a slope

of 0.2.

The output neurons are divided into two blocks, the Arm Muscle Actuators and the

Finger Actuators. All outputs of these neurons are calculated in the same way using

the following equation:

Oi(t) = σ

(

12

∑
j=1

w jiH j(t)

)

(2.3)

where H j(t) is the output of hidden neuron j as described in 2.2, w ji is the synaptic

35

2.3. METHODS

weight from the jth hidden neuron to the ith output neuron and σ(x) is the logistic

function with slope 0.2. With respect to the hidden neurons, the output neurons do not

have any bias or decay-factor.

The Arm Muscle Actuators output sets the parameter α used in equation 2.1 to up-

date the force applied by muscles of the arm, while the Finger Actuators output sets

the desired extension/flexion position of the nine hand actuators. The state of the

sensors, the desired state of the actuators, and the internal neurons are updated every

10ms.

This particular type of neural network architecture has been chosen to minimize the

number of assumptions and to reduce, as much as possible, the number of free para-

meters. Also, this particular sensory system has been chosen in order to study situ-

ations in which the visual and tactile sensory channels need to be integrated.

2.3.4 The Adaptive Process

The free parameters of the neural controller (i.e., the connection weights, the biases

of internal neurons and the time constant of leaky-integrator neurons) are set using an

evolutionary algorithm [74, 138].

The initial population consists of 100 randomly generated genotypes, which encode

the free parameters of 100 corresponding neural controllers. In the conditions in which

Label Sensors are employed (hereafter, referred to as Exp. A), the neural controller

has 792 free parameters. In the other condition without the Label Sensors (hereafter,

referred to as Exp. B) there are 756 free parameters. Each parameter is encoded into a

binary string (i.e., a gene) of 16 bits. In total, a genotype is composed of 792 ·16= 12672

bits in Exp. A and 756 · 16 = 12096 bits in Exp. B. In both experiments, each gene

encodes a real value in the range [−6,+6], but for genes encoding the decay-factors δi

the encoded value is mapped in the range [0,1].

The 20 best genotypes of each generation are allowed to reproduce by generating

five copies each. Four out of five copies are subject to mutations and one copy is

36

2.3. METHODS

Figure 2.4: Initial positions of the arm and the sphere over imposed; the joints

J1, . . .J4 are initialised to 〈−73,−30,−40,−56〉, 〈−73,−30,−40,−113〉,
〈−6,+30,−10,−56〉 and 〈−73,−30,+45,−113〉; the initial sphere positions

are 〈−18,+10〉, 〈−26,+18〉, 〈−18,+26〉 and 〈−10,+18〉.

not mutated. During mutation, each bit of the genotype has a 1.5% probability to be

replaced with a new randomly selected value. The evolutionary process is repeated for

1000 generations.

The robots are rewarded for reaching, grasping and lifting a spherical object of radius

2.5cm placed on the table in exactly the same way in both Exp. A and Exp. B. Each

agent of the population is tested 4 times. Each time the initial position of the arm and

the sphere change. Figure 2.4 shows the four initial position of the arm and of the

sphere superimposed on one another. For each initial arm/object configuration a ran-

dom displacement of ±1o is added to each joint of the arm and a random displacement

of ±1.5cm is added on the x and the y coordinates of the sphere position. Each trial

lasts 6sec corresponding to 600 simulation steps. The sphere can move freely and it

can eventually fall off the table. In this case, the trial is stopped prematurely.

The fitness function is made up of three components: FR for reaching, FG for grasping

and FL for lifting the object. Each trial is divided in 3 phases in which only a single

fitness component is updated. The conditions that define the current phase at each

37

2.3. METHODS

timestep and consequently which component has to be updated are the following:

r(t) = 1− e(−0.1·ds(t))

g(t) = e(−0.2·graspQ(t))

l(t) = 1− e(−0.3·contacts(t))

Phase(t) =

reach r(t)> g(t)∨g(t)< 0.5

grasp otherwise

li f t g(t)> 0.7∧ l(t)> 0.6

(2.4)

where ds(t) is the distance from the centre of the palm to a point located 5cm above the

centre of the sphere. graspQ(t) is the distance between the centroid of the fingertips-

palm polygon and the centre of the sphere. contacts(t) is the number of contacts

between the fingers and the sphere. The shift between the three phases is irreversible

(i.e. the reach phase is always followed by the reach or grasp phases and the grasp

phase is always followed by the grasp or lift phases).

Essentially, the current phase is determined by the values r(t), g(t) and l(t). When r(t)

is high (i.e., when the hand is far from the object) the robot should reach the object.

When r(t) decreases and g(t) increases (i.e., when the hand approaches the object

from above) the robot should grasp the object. Finally, when l(t) increases (i.e., when

the number of activated contact sensors are large enough) the robot should lift the

object. The rules and the thresholds included in equation 2.4 have been set manually

on the basis of our intuition and have not been adjusted through an automated trial and

error process. In Exp. A, the phases are used to define which label the robot perceives.

38

2.3. METHODS

The three fitness components are calculated in the following way:

FR = ∑
t∈TReach

(

0.5

1+ ds(t)
4

+
0.25

1+ds(t)
(f Open(t)+ pRot(t))

)

(2.5)

FG = ∑
t∈TWrap

(

0.4

1+graspQ(t)
+

0.2

1+ contacts(t)
4

)

(2.6)

FL = ∑
t∈TLi f t

oLi f ted(t) (2.7)

where TReach, TWrap and TLi f t are the time ranges determined by equation 2.4. f Open(t)

correspond to the average degree of extension of the fingers, where 1 occurs when

all fingers are extended and 0 when all fingers are closed. pRot(t) is the dot product

between the normals of the palm and the table, with 1 referring to the condition in which

the palm is parallel to the table and 0 to the condition in which the palm is orthogonal to

the table. oLi f ted(t) is 1 only if the sphere is not touching the table and it is in contact

with the fingers, otherwise is 0.

The total fitness is calculated at the end of four trials as: F =min(500,FR)+min(720,FW)+

min(1600,FL)+ bonus, where bonus adds 300 for each trial where the agent switches

from reach phase to grasp phase only, and 600 for each trial where the agent switches

from reach to grasp phase and from grasp to lift phase.

During the reach phase the agent is rewarded for approaching a point located 5cm

above the centre of the object with the palm parallel to the table and the hand open.

Note that the rewards for the hand opening and the rotation of the palm are relevant

only when the hand is near the object (due to 0.25/(1+ ds(t)) factor); in this way the

agent is free to rotate the palm when the hand is away from the sphere allowing any

reaching trajectory.

During the grasp phase, the centroid of the fingertips-palm polygon can reach the

centre of the sphere only when the hand wraps the sphere with the fingers, producing

a potential power grasp. During the lift phase, the reward is given when the agent

effectively moves the sphere upward of the table.

39

2.4. RESULTS

2.4 Results

For both Exp. A (with labels) and Exp. B (without labels), we run ten evolutionary sim-

ulations for 1000 generations, each using a different random initialisation. Figures 2.5

and 2.6 show the fitness curves of all runs of Exp. A and Exp. B respectively. Looking

at the fitness curves of the best agents at each generation of each evolutionary run, we

noticed that, for Exp. A, there are three distinctive evolutionary paths (see figure 2.7a).

The most promising is run 7, in which the last generations agents have the highest

fitness. The curve corresponding to run 2 is representative of a group of seven evolu-

tionary paths which, after a short phase of fitness growth, reach a plateau at F = 2000.

The curve corresponding to run 9 is representative of a group of two evolutionary paths

which are characterised by a long plateau slightly above F = 1000. Generally speak-

ing, these curves progressively increase by going through short evolutionary intervals

in which the fitness grows quite rapidly followed by a long plateau2. For Exp. B, all

the runs show a very similar trend, reaching and constantly remaining on a plateau at

about F = 3000 (see figure 2.7b).

Due to the nature of the task and of the fitness function, it is quite hard to infer from

these fitness curves what could be the behaviour of the agents during each evolution-

ary phase. However, based on what we know about the task, and by visual inspection

of the behaviour exhibited by the agents, we found out how the agents behave at dif-

ferent generations of each evolutionary run. In Exp. A, the phases of rapid fitness

growth are determined by the bonus factor, which substantially rewards those agents

that successfully accomplish single parts of the task. The first fitness jump is due to

the bonus factor associated to the execution of a successful reaching behaviour. This

jump corresponds to the phase of fitness growth observed in run 7 in correspondence

of label R figure 2.7a, and in run 2 in correspondence of label V figure 2.7a. The agents

generated after these fitness jumps are able to systematically reach the object. Run 9

does not go through the first fitness jump, and the agents of this run lack the ability to

2The fitness curves of the runs not shown are available at the supplementary web page

http://laral.istc.cnr.it/esm/linguisticExps.

40

2.4. RESULTS

Figure 2.5: Fitness of all runs of Exp. A. The first row shows run 0 and run 1, the
second row run 2 and run 3 and so on.

41

2.4. RESULTS

Figure 2.6: Fitness of all runs of Exp. B. The first row shows run 0 and run 1, the
second row run 2 and run 3 and so on.

42

2.4. RESULTS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 200 400 600 800 1000

run 7

run 2

run 9

R

S

V

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 200 400 600 800 1000

run 0

(a) (b)

Figure 2.7: Fitness of the best agents at each generation of (a) run 2, run 7, and run 9

of Exp. A, and (b) run 0 of Exp. B.

systematically carry out a successful reaching behaviour.

The second fitness jump is due to the bonus factor associated with the execution of

a successful grasping behaviour. Only in run 7 is it possible to observe a phase of

rapid fitness growth corresponding to a second fitness jump (see label S figure 2.7a).

The agents generated after this jump are able to successfully carry out reaching and

grasping. Note also that, in run 7, the fitness curve keeps on growing until the end

of the evolution. This growth is determined by the evolution of the capability to lift

the object. Thus, in run 7, the best agents following generation 400 are capable of

reaching, grasping, and lifting the object. The constant increment of the fitness is

determined by the fact that the agents become progressively more effective in lifting

the object. Run 2 does not go through a second fitness jump. The agents of this run

lack the ability to systematically carry out a successfully grasping behaviour.

In summary, only run 7 has generated agents (i.e., those best agents generated after

generation 400) capable of successfully accomplishing reaching, grasping, and lifting.3

The best agents of run 2, and of the other six runs that show a similar evolutionary

trend, are able to systematically reach but not grasp the object and completely lack

the ability to lift the object. The best agents of run 9, and of the other run that show

a similar evolutionary trend, are not even able to systematically reach the object. In

Exp. B, they are able to successfully reach and grasp the object, but not lift it.

3Movies of the behaviour and corresponding trajectories are available at the supplementary web page

http://laral.istc.cnr.it/esm/linguisticExps.

43

2.4. RESULTS

2.4.1 Robustness & Generalisation

In this section, we show the result of a series of post-evaluation tests aimed at estab-

lishing the effectiveness and robustness of best agents’ behavioural strategies of the

four runs show in figure 2.7. In these tests, the agents, from generation 900 to gen-

eration 1000 of each run, are subjected to a series of trials in which the position of

the object as well as the initial position of the arm are systematically varied. For the

position of the object, we define a rectangular area (28cm× 21cm) divided in 11× 11

cells. The agents are evaluated for reaching, grasping and lifting the object positioned

in the centre of each cell of the rectangular area. For the initial position of the arm,

we use the four initial positions employed during evolution as prototypical cases (see

figure 2.4). For each prototypical case, we generate 100 slightly different initial posi-

tions with the addition of a ±10◦ random displacement on joints J1, J2, J3, and J4. Thus,

this test is comprised of 48400 trials, given by 400 initial positions (4 ·100) for each cell,

repeated for 121 cells corresponding to the different initial positions of the object during

the test. In each trial, reaching is considered successful if an agent meets the condi-

tions to switch from the reach phase to the grasp phase (see equation 2.4). Grasping is

considered successful if an agent meets the conditions to switch from the grasp phase

to the lift phase (see equation 2.4). Lifting is considered successful if an agent man-

ages to keep the object at more than 1cm from the table until the end of the trial. In

this section, we show the results of a single agent for each run. However, agents be-

longing to the same run obtained very similar performances. Thus, the reader should

consider the results of each agent as representative of all the other agents of the same

evolutionary run.

All the graphs in figure 2.8, show the relative position of the rectangular area and the

cells with respect to the agent/table system. Moreover, each cell of this area is coloured

in shade of grey, with black indicating 0% success rate, and white indicating 100% suc-

cess rate. As expected from the previous section, the agent chosen from run 7 Exp. A

proved to be the only one capable of successfully accomplishing all the three phases of

44

2.5. CONCLUSION

the task. This agent proved capable of successfully reaching the object placed almost

anywhere within the rectangular area. Its grasping and lifting behaviour are less robust

than the reaching behaviour. Indeed, the grasping and lifting performances are quite

good everywhere except in two small zones located in the top left and bottom right of

the rectangular area in which cells are coloured black. The agent chosen from run 2

Exp. A proved to be capable of successfully performing reaching behaviour for a broad

range of object initial positions, and completely unable to perform grasping and lifting

behaviour. The agent chosen from run 9 Exp. A does not even manage to systemat-

ically bring the hand close to the object regardless of the object’s initial position. The

agent chosen from run 0 Exp. B, proved capable of successfully performing reaching

and grasping behaviour but not lifting behaviour.

2.5 Conclusion

We showed how a simulated humanoid robot controlled by an artificial neural network

can acquire the ability to manipulate spherical objects located over a table by reaching,

grasping and lifting them. The robot is trained through an adaptive process in which

the free parameters encode the control rules that regulate the fine-grained interaction

between the agent and the environment, and the variations of these free parameters

are retained or discarded on the basis of their effects at the level of the behaviour ex-

hibited by the agent. This means that the agents develop their skills autonomously in

interaction with the environment. Moreover, this means that the agents are left free

to determine the way in which they solve the task within the limits imposed by i) their

body/control architecture, ii) the characteristics of the environment, and iii) the con-

straints imposed by the utility function that rewards the agents for their ability to reach

an area located above the object, wrap the fingers around the object, and lift the ob-

ject. The analysis of the best individuals generated by the adaptive process shows that

the agents of a single evolutionary run manage to reach, grasp, and lift the object in

a reliable and effective way. Moreover, when tested in new conditions with respect to

those experienced during the adaptive process, these agents proved to be capable of

46

2.5. CONCLUSION

generalising their skills with respect to new object positions never experienced before.

By comparing the results of the experiments A and B in which the robots received or

not received action labels in input from the caretaker we observed that only in the first

case the robots were able to fully solve their task. This result confirms the hypothesis

that the availability of labels, a primitive form of linguistic instructions, that encode the

type of behaviour that should be exhibited in a given phase, promotes the development

of the corresponding behavioural skills and/or the development of the appropriate be-

havioural sequence. More specifically, the fact that the best agents of Exp. B succeed

in exhibiting the reaching and then the grasping behaviour but not the lifting behaviour

suggests that labels represent a crucial pre-requisite in situations in which the agent

has to develop an ability to produce different behaviours in similar sensory-motor cir-

cumstances. In fact, the transitions from reaching to grasping behaviours are marked

by well-differentiated sensory-motor states. This enables the adapting robots to de-

velop the two required differentiated behaviours and to switch from the former to the

latter behaviour effectively, even without the support of labels provided by a caretaker.

Instead, the transition from the grasping to the lifting behaviour is not characterised by

well-differentiated sensory-motor states. Consequently, in this case the availability of

an additional external cue (the labels) that support the development of differentiated

behaviour and facilitate the transition from the former to the latter behaviour constitutes

a necessary pre-requisite.

Overall these results extend the results reported in previous studies reviewed in Sec-

tion 2.1. In particular these results demonstrate how the exposure to language-like

inputs facilitates not only the development of categorization skills but also the develop-

ment of behavioural skills. Moreover these results demonstrate how even a simple for

of language can play a key role for the development of complex skills, such as object

manipulation.

The method presented in this chapter has been later extended in the work described

in [58]. In this work the authors demonstrated how, in agreement with Vygotsky’s hypo-

47

2.6. THE EXPERIMENT AND FARSA DEVELOPMENT

thesis, the possibility to utilize an inner language in which the robot talk to itself promote

the possibility to display complex behavioural capabilities.

2.6 The experiment and FARSA development

The experiment in the present chapter was realized using a rather complex software

tool. It constitutes a prototypical example of an embodied cognition experimental setup,

in which the interaction between the agent body and the environment plays a funda-

mental role for the acquisition of the required skills. The experiment also required the

use of a computer simulation: apart from the substantial increase in the time required

to run each replica, a real robot would have been easily damaged by the almost com-

pletely random movements during the initial phases of development.

To software needed to run the experiment had to integrate different components:

• a physics simulator;

• a library to build and run different kinds of neural networks;

• a library to build and run different kinds of genetic algorithms.

In section 4.3 we will review the robotic simulators that are currently available and

will explain why we decided to write our own. For this experiment we partially reused

pieces of software developed for previous studies. For the physics simulation we wrote

an higher level library in C++, wrapping a low-level C library, which would then be-

come worldsim in FARSA (details will be given in section 4.4.1). For neural networks

and genetic algorithm we expanded software developed at the LARAL laboratory and

connected it to the physics library.

The software developed for this experiment can be considered the first, very preliminary

version of FARSA. It contained the fundamental pieces needed for an evolutionary

robotics experiment, in a singular integrated tool. Yet, it still lacked most of what is

needed to easily setup an experiment. In particular it was not modular and the slightest

change to the experimental setup required changing to the source code, slowing down

48

2.6. THE EXPERIMENT AND FARSA DEVELOPMENT

the research process. Moreover the lack of modularity also made it difficult to share

code with other people in the laboratory.

Another fundamental problem of the simulator used to run this experiment was that

it was rather difficult to replicate the experiments. Replicability is one of the founding

principles of the scientific method, as it ensures that the results of an experiment can be

verified by other researchers. While it is indeed possible to replicate the experiments

described in this chapter, it can be problematic to run them for people that did not

participate in the development of the simulator. There are two main reasons: the

compilation process was not documented at all and the user interface was not designed

to be usable by other researchers, containing only the bare minimum needed to perform

the experiment.

In chapter 4 we will further discuss the importance of replicability and of the possibility

to share code. We will then show how the FARSA simulator aims at resolving these

issues.

49

2.6. THE EXPERIMENT AND FARSA DEVELOPMENT

50

Chapter 3

Behaviour Generalisation and the Emergence

of Linguistic Compositionality in Evolving

Robots

This chapter presents a robotic model designed to look at aspects related to the emer-

gence of compositional semantic structures in simulated agents [125]. The obtained

results demonstrate how the agents, trained to execute several actions by responding

to linguistic instructions, can generalise their linguistic and behavioural skills to never

experienced instructions through the production of appropriate behaviours. The ana-

lysis of the best agents and the comparison of different experimental conditions, in

which the representation of the linguistic instructions is the same but the set of actions

the agents has to perform is varied, demonstrates how the emergence of composi-

tional semantics is affected by the presence of behavioural regularities in the execution

of different actions. Post-evaluation tests also unveil further details of the behavioural

and linguistic strategies used by agents equipped with compositional semantics to ac-

complish the task.

The chapter is structured as follows. First the most relevant work in the literature is

reviewed and in particular those described in [2, 117, 118], which have been particu-

larly inspiring for the present work. Then the experimental problem, the characteristics

of the agents, the architecture of the agent’s control system, and the adaptive process

are described. Then the obtained results are illustrated, along with the analysis that

were performed in order to understand the mechanisms that are at the basis of the

51

3.1. BACKGROUND

capacity of the agents to comprehend new sentences and to produce new behaviours.

Afterwards the relation between the results obtained and the empirical results collected

in child language studies are discussed. Finally, the main implications of this work are

examined, both the scientific ones and the insights into the development of the FARSA

simulator.

3.1 Background

By the term “compositional semantics”, we refer to a functional dependence of the

meaning of an expression on the meaning of its parts. Compositional semantics in

natural language refers to the human ability to understand the meaning of spoken or

written sentences from the meaning of their parts, and the way in which these parts

are put together. For example, the meaning of an unknown sentence like “Susan likes

tulips” can be understood by learning the following three sentences: “Julie likes dais-

ies”, “Julie likes tulips”, and “Susan likes daisies”. In this example, the meaning of

the original sentence is achieved through compositional semantics by generalising the

meaning of single words from a known (already learnt) to an unknown (yet to be learnt)

context.

During the cognitivist era, compositionality was supposed to be underpinned by con-

catenative processes in which the tokens of an expression’s constituents (and the se-

quential relations among them) are preserved in the expression itself [37]. The diffi-

culties shown by classic symbolic AI in accounting for general associations between

semantic representations and sensory-motor profiles, and in particular in accounting

for the acquisition of linguistic semantics through behavioural experiences, determined

a paradigm shift in which an alternative perspective on compositionality emerged [49].

In the last decade of the previous century, the connectionist approach to cognition

proposed the idea of functional compositionality; that is compositional semantics sys-

tems in which the tokens of an expression’s constituents (and the sequential relations

among them) are not preserved in the expression itself [127]. Various connectionist

models proved that artificial neural networks can be employed to physically instantiate

52

3.1. BACKGROUND

functional compositional semantic structures [32].

More recently, autonomous (real or simulated) robots have been used to investigate

how a form of language can emerge and evolve in a population of robots interacting

between themselves and with the physical environment [16, 75, 111, 122]. Moreover,

several studies have investigated how a robot can acquire a language by interacting

with a human user. For example, in [88], the authors designed robotic experiments

with robots that, in addition to react to linguistic commands issued by the user are also

able to acquire both the meaning of new linguistic instructions and new behavioural

skills on the fly, by grounding the new commands in pre-existing motor skills. In [89] the

authors designed robots able to cooperate and to share attention with a human user in

a restricted experimental setting. This is achieved by allowing the robot to observe the

goal-directed behaviour exhibited by the user and to adopt her plan. In [136], the author

designed a developmental learning architecture that allows a robot to progressively

expand its behavioural repertoire while interacting with a human trainer that shapes

its behaviour. In [17], the authors studied how new, higher-order behavioural abilities

can be autonomously built upon previously-grounded basic action categories, acquired

through language-mediated interactions with human users.

In [2, 117, 118], the authors investigate the issue of grounding compositional semantic

structures in an agent’s sensory-motor skills in tasks that require the shift from rote

knowledge to systematised knowledge. In particular, in [2, 117] a robot learns to ex-

ecute actions in response to linguistic instructions consisting of two-words sentences.

The robots neural controller comprises a behavioural and a linguistic module. The

behavioural module is trained through a learning-by-demonstration method in which

the sensory-motor states experienced while the robot is moved by the experimenter,

through tele-operation or kinesthetic teaching, are used as a training set. The linguistic

module is trained to predict the next word of a two-word linguistic instructions in which

the words are provided to the agent sequentially. In [2] both the behavioural and the

linguistic module are trained only on a subset of all possible linguistic instructions res-

53

3.1. BACKGROUND

ulting from the combination of all possible objects with all possible actions. In [117],

the linguistic module is trained only on a subset of all possible linguistic instructions

whereas the behavioural module is trained to execute all the possible instructions. In

all three studies [2, 117, 118], the agent proves capable of performing actions associ-

ated with linguistic instructions not experienced during training. The authors claim that

behavioural and/or linguistic generalisation is achieved by “conceiving something not

experienced as a recombination of learnt examples” [117]. The contribution of these

works is in bringing evidence for a dynamical perspective on compositional semantic

systems, alternative to the one in which neural correlates of language are viewed as

atomic elements semantically associated to basic units of the linguistics system. The

authors show that compositional systems can be underpinned by neural structures in

which the neural correlates of the linguistic instructions are dynamically self-organised

topological properties of the neural substrate, induced by similarities among sensory-

motor sequences. Each instruction (i.e., action plus object) is represented in a two-

dimensional semantic space by a single point which lies in a grid-like geometrical struc-

ture in which one dimension refers to actions and the other to objects. The geometrical

arrangement of neural correlates that emerged during the simultaneous training of the

behavioural and linguistic modules, allows the agent to successfully respond to non-

experienced linguistic instructions.

In this chapter, we describe a series of simulations in which a robot is required to

perform a task very similar to the one described in [117]. As in [117], our goal is also to

investigate the emergence and the underlying properties of a functionally compositional

semantic system in a task that requires the shift from rote knowledge to systematised

knowledge. However, we look at the problem with different methods that, as we will

see, lead to a qualitatively different type of solution. In our case, a neural controller is

trained to execute a subset of possible linguistic instructions through an evolutionary

method in which the robot is rewarded for the ability to achieve a certain goal without

specifying the sequence of movements through which this goal should be realised. As

shown in Section 3.6, this allows the robot to co-develop linguistic skills to access the

54

3.2. THE AGENT STRUCTURE AND THE TASK

The best evolved controllers have been successfully ported on the iCub simulator1.

In the simple two-dimensional simulated world, an agent is composed of an arm with

two segments referred to as S1 (100 cm) and S2 (50 cm), and two degrees of freedom

(DOF). Each DOF comprises a rotational joint that acts as the fulcrum and an actuator.

The first actuator causes S1 to rotate clockwise or anticlockwise around joint J1, with the

movement restricted in the right (−30◦) and the left (210◦) bound. The other actuator

causes S2 to rotate clockwise or anticlockwise around joint J2 within the range [90◦, 0◦]

with respect to S1 (see Figure 3.1b). Friction and momentum are not considered.

In the environment there are three objects of different colours (i.e., a blue, a green, and

a red object). The objects are placed 150 cm from J1 with their centre placed anywhere

on the chord delimiting their corresponding Init. sector (see Figure 3.1b). The objects

do not move unless pushed by the arm. The agent is equipped with a linear camera

with a receptive field of 30◦, divided in three sectors, each of which has three binary

sensors (CB
i for blue, CG

i for green, and CR
i for red, with i ∈ [1,2,3] sectors). Each

sensor returns 1 if the blue/green/red object falls within the corresponding sector. If no

coloured object is detected, the readings of the sensors are set to 0 (i.e., the camera

perceives a black background). The camera and S1 move together. The experimental

set up is built in a way that at each time step there can be only one object in the camera

view.

The agent has means to perceive whenever S1 reaches the right or the left bound

through the activation of the camera sensors. That is, when S1 reaches the right bound

CB
1 , CG

1
, and CR

1 are set to 1 (i.e., the first camera sector perceives a white background).

When S1 reaches the right bound CB
3 , CG

3
, and CR

3 are set to 1 (i.e., the third camera

sector perceives a white background). Finally, two binary touch sensors (i.e., T r, T l)

are placed on the right, and left side of S2. Collisions between the agent and an object

are handled by a simple model in which whenever S2 pushes the object the relative

contact points remain fixed.

1Movies and further methodological details concerning the porting can be found at http://laral.

istc.cnr.it/esm/tuci-etal-IEEE_TAMD2010/.

56

3.2. THE AGENT STRUCTURE AND THE TASK

To assess whether the composition of the behavioural set affects the developmental

process and the generalisation capabilities of the agents, we run two sets of evolu-

tionary experiments. In the With-Indicate experimental condition, the task consists

in the execution of the following instructions: TOUCH Blue object (InstT
blue), TOUCH

Red object (InstT
red), MOVE Green object (InstM

green), MOVE Red object (InstM
red), INDIC-

ATE Blue object (InstIN
blue), INDICATE Green object (InstIN

green), and INDICATE Red object

(InstIN
red). In the With-Ignore experimental condition, the action INDICATE is substituted

with the action IGNORE. Thus, InstIG
blue refers to IGNORE Blue object, InstIG

green refers to

IGNORE Green object, and InstIG
red refers to IGNORE Red object. For both evolution-

ary conditions, the linguistic instructions experienced during training are referred to

as experienced instructions, while the instructions TOUCH Green object (InstT
green) and

MOVE Blue object (InstM
blue), never experienced during training, are referred to as non-

experienced instructions (see also Table 3.1). The object-label and the action-label are

Table 3.1: The linguistic instructions. In grey the non-experienced instructions, that is,

those not experienced during training. The table also shows the notation

used in equation 3.1 to refer to each bit of the linguistic instructions.

MOVE InstM
o

Object Action

I13 I14 I15 I16 I17 I18

Blue 1 1 0 0 1 1

Green 1 0 1 0 1 1

Red 0 1 1 0 1 1

TOUCH InstT
o

Object Action

I13 I14 I15 I16 I17 I18

Blue 1 1 0 1 0 1

Green 1 0 1 1 0 1

Red 0 1 1 1 0 1

INDICATE InstIN
o - IGNORE InstIG

o

Object Action

I13 I14 I15 I16 I17 I18

Blue 1 1 0 1 1 0

Green 1 0 1 1 1 0

Red 0 1 1 1 1 0

57

3.3. THE AGENT CONTROLLER

Figure 3.2: The neural network. Continuous line arrows indicate the efferent connec-
tions for the first neuron of each layer. Underneath the input layer, it is
shown the correspondences between sensors/linguistic instructions, the
notation used in equation 3.1 to refer to them, and the sensory neurons.

given to the agent concurrently and for the entire duration of a trial.

TOUCH and MOVE require the agent to rotate S1 and S2 until S2 collides with the target

object. TOUCH requires an agent to remain in contact with the target object with the

right side of S2 (that is, by activating the touch sensor T r) for an uninterrupted interval

of 100 time steps. During this interval, S1 must not rotate. MOVE requires an agent to

rotate S1 more than 35◦ while S2 is touching the object with its right side. The rotation

of S1 while S2 is touching the object determines the movement of the object. INDICATE

requires an agent to rotate S1 until the angular distance between S1 and the object is

less than 30◦. INDICATE is correctly executed only if S1 remains at less than 30◦ from

the target object for more than 100 time steps. IGNORE requires the agent to look at

anything except the target object. The agent has to move away from positions in which

the target object falls within its visual field. During the execution of INDICATE and

IGNORE, an agent must not collide with any object. During the execution of TOUCH

and MOVE, an agent must not collide with the non-target objects (i.e., the objects not

mentioned in the current linguistic instruction).

After training, all the agents are evaluated for their capability to access experienced and

non-experienced linguistic instructions and to execute the corresponding behaviours.

58

3.3. THE AGENT CONTROLLER

3.3 The agent controller

The agent controller is composed of a continuous time recurrent neural network (CTRNN)

of 18 sensor neurons, 3 inter-neurons, and 4 motor neurons [8]. At each time step

sensor neurons are activated using an input vector Ii with i ∈ [1, ..,18] corresponding to

the sensors readings. In particular, I1 and I2 are the readings of touch sensors T r and

T l, respectively; I3 to I11 are the readings of the camera sensors; I12 is refers to the

normalised angular position of S2 with respect to S1 (i.e., β); I13 to I18 are the linguistic

input and their value depend on the current linguistic instruction. I13, I14, and I15 identify

the object, I16, I17, and I18 identify the action to execute (see Fig. 3.2).

The inter-neuron network is fully connected. Additionally, each inter-neuron receives

one incoming synapse from each sensory neuron. Each motor neuron receives one

incoming synapse from each inter-neuron. There are no direct connections between

sensory and motor neurons. The states of the motor neurons are used to control the

movement of S1 and S2 as explained later. The states of the neurons are updated using

the following equation:

∆yi =−yi +gIi; for i ∈ {1, ..,18}; (3.1)

τiẏi =−yi +
21

∑
j=1

ω jiσ(y j +β j); for i ∈ {19, ..,21}; (3.2)

∆yi =−yi +
21

∑
j=19

ω jiσ(y j +β j); for i ∈ {22, ..,25}; (3.3)

with σ(x) = (1+ e−x)−1. In these equations, using terms derived from an analogy with

real neurons, yi represents the cell potential, τi the decay constant, g is a gain factor,

Ii the intensity of the perturbation on sensory neuron i, ω ji the strength of the syn-

aptic connection from neuron j to neuron i, β j the bias term, σ(y j +β j) the firing rate

(hereafter, fi). All sensory neurons share the same bias (β I), and the same holds for

all motor neurons (β O). τi and βi with i ∈ {19, ..,21}, β I, β O, all the network connec-

tion weights ωi j, and g are genetically specified networks’ parameters. At each time

step the angular movement of S1 is 2.9H(f22 − 0.5)sgn(0.5− f23) degrees and of S2 is

59

3.4. THE EVOLUTIONARY ALGORITHM

2.9H(f24 − 0.5)sgn(0.5− f25) degrees, where H is the Heaviside step function and sgn

is the sign function. Cell potentials are set to 0 when the network is initialised or reset,

and equation 3.2 is integrated using the forward Euler method with an integration time

step ∆T = 0.1.

3.4 The evolutionary algorithm

A simple generational genetic algorithm is employed to set the parameters of the net-

works [43]. At generation 0, a random population of 100 vectors is generated by initial-

ising each component of each vector to a value chosen uniformly random in the range

[0,1]. Each vector comprises 84 real values (i.e., 75 connection weights ω ji, 3 decay

constants τi, 5 bias term β and 1 gain factor g shared by all the sensory neurons).

Hereafter, using terms derived from an analogy with biological systems, a vector is

referred to as genotype and its components as genes.

Generations following the first one are produced by a combination of selection with elit-

ism and mutation. For each new generation, the three highest scoring genotypes (“the

elite”) from the previous generation are retained unchanged. The remainder of the new

population is generated by fitness-proportional selection from the 50 best genotypes

of the old population. New genotypes, except “the elite”, are produced by applying

mutation. Mutation entails that a random Gaussian offset is applied to each gene, with

a probability of 0.4. The mean of the Gaussian is 0, and its standard deviation is 0.1.

During evolution, all genes are constrained to remain within the range [0,1]. That is, if

due to mutations a gene falls below zero, its value is fixed to 0; if it rises above 1, its

value is fixed to 1.

Genotype parameters are linearly mapped to produce network parameters with the

following ranges: β I ∈ [−4,−4], β O in[−5,−5], βi in [−5,−5] with i ∈ {19, ..,21}, ωi j ∈

[−8,8], with i ∈ {1, ..,18}, and j ∈ {19, ..,21}, ωi j ∈ [−10,10], with i ∈ {19, ..,21}, and

j ∈ {19, ..,25}, gain factor g ∈ [1,13]. Decay constants τi with i ∈ {19, ..,21}, are firstly

linearly mapped into the range [−1.0,2.0] and then exponentially mapped into τi ∈

[10−1.0,102.0]. The lower bound of τi corresponds to the integration step-size used to

60

3.5. THE FITNESS FUNCTION

update the controller; the upper bound, arbitrarily chosen, corresponds to about 4% of

the maximum length of a trial.

3.5 The fitness function

During evolution, each genotype is translated into an arm controller and evaluated

more than once for all the object-action experienced instructions by varying the start-

ing positions. The agents perceive experienced instructions and they are required to

execute the corresponding behaviours. Agents are evaluated 14 times initialised in the

left and 14 times in the right initialisation area, for a total of 28 trials. For each initialisa-

tion area, an agent experiences all the experienced linguistic instructions twice. The

non-experienced linguistic instructions InstM
blue and InstT

green are never experienced dur-

ing the training phase. At the beginning of each trial, the agent is randomly initialised

in one of the two initialisation area, and the state of the neural controller is reset. A trial

lasts 25 simulated seconds (T = 250 time steps). A trial is terminated earlier in case

the arm collides with a non target object. In each trial k, an agent is rewarded by an

evaluation function which seeks to assess its ability to execute the desired action on

the target object.

3.5.1 With-Indicate

In With-Indicate, the fitness F tot
k attributed to an agent in trial k is the sum of three

fitness components F1
k , F2

k , and F3
k , averaged over all trials. F1

k rewards the agent

for reducing the angular distance between S1 and the target object. F2
k rewards the

agent for performing the required action on the target object. F3
k rewards the agent

for extending S2 when it is perceiving the target object and it is required to touch or to

move it.

F tot = 1
K

K

∑
k=1

F tot
k ;

with K = 28; F tot
k = F1

k +F2
k +F3

k ;

(3.4)

61

3.5. THE FITNESS FUNCTION

F1
k , F2

k , and F3
k are computed as follows:

F1
k = max

(

0,
di −d f

di
·P1

k ,✶d f <4.6◦

)

; (3.5)

where di and d f are respectively the initial (i.e., at t = 0) and final (i.e., at the end of the

trail k) angular distances between S1 and the target object and ✶d f <4.6◦ is 1 if d f < 4.6◦,

0 otherwise. P1
k is the penalty factor. It is set to 0.6 if the agent collides with a non target

object, otherwise to 1.0. The angle between S1 and the target object o can be measured

clockwise (αclock
o) or anticlockwise (αanti

o). In equation 3.5, di and d f are the minimum

between the clockwise and anticlockwise distance, that is d = min
(

αclock
o ,αanti

o

)

.

F2
k =

steps-on-target

max-steps-on-target
·P2

k ;
for TOUCH

or INDICATE
(3.6a)

∆θ

max-angular-offset
·P2

k ; MOVE (3.6b)

where max-steps-on-target= 100, P2
k = 0 if F1

k < 1 otherwise P2
k = 1, max-angular-offset=

34.4◦. For the action INDICATE, steps-on-target refers to the number of time steps dur-

ing which F1
k = 1, and S2 does not touch the target object. For the action TOUCH,

steps-on-target refers to the number of time steps during which F1
k = 1, S2 touches the

target object by activating the touch sensor T r, and S1 does not change its angular

position. ∆θ is the angular displacement of the orientation of S1 recorded while F1
k = 1,

and S2 is touching the target object by activating the touch sensor T r.

F3
k = 1.0−

β

0.5π
; (3.7)

with β corresponding to the angular position of S2 with respect to S1. F3
k is computed

only when the target object is falling within the visual field of the agent and in those

trials in which the agent is required to touch or to move the target object. If the current

linguistic instruction requires the agent to indicate an object and during the time of a

trial in which the agent is not perceiving the target object F3
k = 0. A trial is terminated

62

3.6. RESULTS

(a) (b)

Figure 3.3: Graphs showing the fitness curves of the best agent at each generation of

ten evolutionary Runs in condition (a) With-Indicate; (b) With-Ignore.

earlier if steps-on-target = max-steps-on-target during the execution of INDICATE or

TOUCH and when ∆θ = max-angular-offset during the execution of MOVE.

3.5.2 With-Ignore

With-Ignore differs from With-Indicate only in the computation of F1
k and F2

k during

the execution of the linguistic instructions IGNORE Blue object InstIG
blue, IGNORE Green

object InstIG
green, and IGNORE Red object InstIG

red . During the trials in which an agent is

required to IGNORE an object F1
k = 1 if at the end of the trial the target object does not

fall within the visual field of the agent, otherwise F1
k = 0.

F2
k =

steps-out-of-target

max-steps-out-of-target
·P2

k ; for IGNORE (3.8)

where max-steps-out-of-target = 100, and steps-out-of-target refers to the number of

time steps during which F1
k = 1, and S2 does not touch the target object.

3.6 Results

For each experimental condition (With-Indicate, and With-Ignore), we run ten evolu-

tionary simulations for 6000 generations, each using a different random initialisation.

Recall that our objective is to generate agents that are capable of successfully access-

ing and executing experienced linguistic instructions. Moreover, we are interested in

investigating whether agents develop semantic structures that are functionally com-

63

3.6. RESULTS

positional. Agents endowed with functionally compositional semantics should be able

to successfully access and execute experienced linguistic instructions and to general-

ise their linguistic and behavioural skills to non-experienced instructions (i.e., linguistic

instructions never experienced during training). We run two different series of simula-

tions to test whether a different training bears upon the development of the required

mechanisms for compositional semantics.

Figure 3.3 shows the fitness of the best agent at each generation of ten evolutionary

Runs per condition. All the curves reach a stable plateau with fitness either firmly

fixed or progressing with small oscillation around the maximum score (i.e., F tot ≃ 2.57).

There are Runs in which the agents reach the maximum fitness very quickly (e.g., Run

n◦ 1 condition With-Indicate, or in Run n◦ 2 condition With-Ignore) other in which it

takes longer (e.g., Run n◦ 4 condition With-Indicate, or in Run n◦ 3 condition With-

Ignore). For all the Runs, before reaching the last fitness plateau, we have periods

of very rapid fitness growth induced by the acquisition of new skills to access and

execute either entire linguistic instructions or just single linguistic labels. These periods

are always followed by either long or short fitness plateaus characterised by rather

small oscillations. Just by looking at the fitness curves, we can say that, at the end of

the simulation, most of the best agents in both conditions looked capable of correctly

solving the linguistic task. However, to estimate the effectiveness and robustness of

some of the best evolved agents, with respect to the initial position of the arm, we

post-evaluated them for a larger number of trials.

3.6.1 First post-evaluation test: Performances on experienced and non-experienced

linguistic instructions

In the first post-evaluation test, the best 5 agents of each generation, from genera-

tion 4000 to generation 6000, of each evolutionary Run in both conditions, have been

repeatedly post-evaluated in each experienced and non-experienced linguistic instruc-

tion. We decided to test the best 5 agents instead of the best one of each gener-

ation, because, during evolution, the agents have been ranked according to their fit-

64

3.6. RESULTS

ness, which does not take into account the agent capability to access and execute

non-experienced linguistic instructions. Recall that non-experienced linguistic instruc-

tions have not been presented during evolution. Thus, with respect to the capability

to access and execute non-experienced linguistic instructions, the best agent of each

generation may not represent the most effective solution that appeared at each evol-

utionary time. Overall, 100000 agents per condition have been post-evaluated (i.e., 5

agents, times 2000 generations, times 10 Runs).

During this post-evaluation test, each agent is required to execute 80 times each of the

nine instructions (40 trials with the agents randomly initialised in the right initialisation

area and, 40 trials in the left one, see also Figure 3.1b). The position of the objects is

also randomly varied as explained in Section 3.2. In each trial k, an agent can be either

successful or unsuccessful. It is successful if F tot
k = 1, otherwise it is unsuccessful (see

equation 3.4, Section 3.5 for details on F tot
k). At the end of the post-evaluation test,

an agent capability to solve the linguistic and behavioural task is represented by nine

scores, one for each linguistic instruction. Recall that each score ranges from 0 to 80,

and it represents the number of times an agent is successful at the execution of the

corresponding linguistic instruction.

It is worth noting that, the results of this test gave us a rather heterogeneous picture,

with performances that, even for a single agent, vary remarkably from one linguistic

instruction to the other. We felt that readings and interpreting these data by only con-

centrating on general trends, it would have significantly impoverished the message or

this research work. Therefore, we chose a way of representing the results which gives

the reader a coherent and exhaustive, although a bit articulated, synthesis of what the

post-evaluated agents are capable of doing at the linguistic task. In particular, for each

condition, the performances of the agents are compared with respect to four different

sub-tasks. For each sub-task, the comparison were accomplished by grouping the

100000 agents in eleven different categories. We first describe what the sub-tasks are

and then we explain the meaning of each category.

65

3.6. RESULTS

Sub-task I takes into account only the seven scores recorded during the execution of

the experienced linguistic instructions.

Sub-task II takes into account the seven scores recorded during the execution of the

experienced linguistic instructions plus the score recorded during the execution of the

non-experienced linguistic instruction MOVE Blue object.

Sub-task III takes into account the seven scores recorded during the execution of the

experienced linguistic instructions plus the score recorded during the execution of the

non-experienced linguistic instruction TOUCH Green object.

Sub-task IV takes into account all the nine scores (i.e, seven of them for the experi-

enced instructions plus two for the non-experienced instructions).

For each sub-task, the agents are allocated to one of eleven possible performance cat-

egories (from Cat0 to Cat10). For a given sub-task, an agent is assigned to Catn with

n ∈ [0, ..,10], if its lowest score among those considered for that particular sub-task, is

within the interval (80 n−1
10

, ..,80 n
10

]. Cat0 comprises all agents that failed to complete a

single trial out of 80 attempts on at least one of the instructions. The higher the cat-

egory, the better the overall performance of the agent. For example, Cat6 subsumes

those agents for whom the lowest score among those considered in a given sub-task

is within the interval (40,48]. Cat7 subsumes those agents for whom the lowest score

among those considered in a given sub-task is within the interval (48,56], etc. Let’s

consider an agent whose performances at the post-evaluation test are represented by

the following nine scores vector (80, 80, 80, 80, 80, 80, 80, 52, 67), in which the first

seven scores refer to the performances while executing experienced instructions, the

eighth score refers to the performance while executing the non-experienced instruc-

tion TOUCH Green, and the ninth score refers to the performance while executing the

non-experienced instruction MOVE Blue object. This agent would be assigned to the

following categories: i) category Cat10 as far as it concerns sub-task I; ii) category Cat9

as far as it concerns sub-task II; iii) category Cat7 as far as it concerns sub-task III, and

sub-task IV.

66

3.6. RESULTS

Cat0 Cat1 Cat2 Cat3 Cat4 Cat5 Cat6 Cat7 Cat8 Cat9 Cat10

Performance category (→ better)

100

101

102

103

104

105

106

Nu
m

be
r o

f a
ge

nt
s

(lo
g

sc
al

e)

Sub-task I

With-Indicate
With-Ignore

Cat0 Cat1 Cat2 Cat3 Cat4 Cat5 Cat6 Cat7 Cat8 Cat9 Cat10

Performance category (→ better)

100

101

102

103

104

105

106

Nu
m

be
r o

f a
ge

nt
s

(lo
g

sc
al

e)

Sub-task II

With-Indicate
With-Ignore

(a) (b)

Cat0 Cat1 Cat2 Cat3 Cat4 Cat5 Cat6 Cat7 Cat8 Cat9 Cat10

Performance category (→ better)

100

101

102

103

104

105

106

Nu
m

be
r o

f a
ge

nt
s

(lo
g

sc
al

e)

Sub-task III

With-Indicate
With-Ignore

Cat0 Cat1 Cat2 Cat3 Cat4 Cat5 Cat6 Cat7 Cat8 Cat9 Cat10

Performance category (→ better)

100

101

102

103

104

105

106

Nu
m
be

r o
f a

ge
nt
s
(lo

g
sc

al
e)

Sub-task IV

With-Indicate
With-Ignore

(c) (d)

Figure 3.4: The results of post-evaluation tests. Graphs (a) to (d) refer to the four

different sub-tasks. Bars represent the number of agents in each perform-

ance category Catn, with higher n corresponding to better performance.

Note that the y axis is in logarithmic scale. See text for details.

Table 3.2 shows the number of post-evaluated agents for each category and for each

sub-task, and Figure 3.4 shows the results divided by subtask, to be able to easily

compare the With-Indicate and With-Ignore conditions (black and white bars, respect-

ively). Please note that the y axis (i.e. the number of agents in each category) is in

logarithmic scale, to make it evident when the number of agents in a certain category

differ by one or more orders of magnitude in the two experimental conditions while also

allowing to plot on the same graph values that range from few units to thousands.

The results can be summarised in the following:

67

3.6. RESULTS

• for both conditions, more than half of the post-evaluated agents (about 60% of

the agents in With-Indicate, and about 66% of them in With-Ignore), are per-

fectly capable of accessing and executing the seven linguistic instruction experi-

enced during evolution (see sub-task I, Cat10, condition With-Indicate, and With-

Ignore). This is expected from what was previously observed in the fitness curves

shown in Figure 3.3.

• for both conditions, only a very small number of post-evaluated agents is perfectly

capable of accessing and executing all the experienced plus one single non-

experienced linguistic instruction, no matter which one of the two we consider

(see Table 3.2 and Figure 3.4, sub-task II, and III, Cat10, condition With-Indicate,

and With-Ignore). The great majority of the agents in sub-task II and III com-

pletely fails to access and execute exactly the single non-experienced linguistic

instruction included in the corresponding sub-task. This has been confirmed by

further checks on the data. However, it can also be inferred from the fact that the

same agents that are in Cat10 for sub-task I tend to be in Cat0 for sub-tasks II and

III.

• for both conditions, only a tiny fraction of the post-evaluated agents is perfectly

capable of accessing and executing both the experienced and non-experienced

linguistic instructions (see Table 3.2 and Figure 3.4, sub-task IV, Cat10, With-

Indicate, and With-Ignore).

From these results, it clearly emerges that only a tiny fraction of the post-evaluated

agents is capable of accessing and executing all the linguistic instructions, independ-

ently from the initial position of the arm. However, since the number of agents in

condition With-Indicate, Cat10, sub-task II, III and IV, is significantly different from the

number of agents in condition With-Ignore, Cat10, sub-task II, III and IV (pairwise Wil-

coxon test with 99% confidence interval, compare also the black and white bars for

Cat10 in Figure 3.4b, 3.4c and 3.4d), we conclude that condition With-Indicate facil-

itates the evolution of agents capable of accessing and executing both experienced

68

3.6. RESULTS

Table 3.2: Results of post-evaluation tests showing, for each evolutionary condition,

the number of agents for each performance category and for each sub-

task. The total number of post-evaluated agents per condition is 100000

(i.e., 5 agents, times 2000 generations, times 10 Runs).

With-Indicate

Sub-

task

I

Sub-

task

II

Sub-

task

III

Sub-

task

IV
Cat0 9408 75200 70787 90263

Cat1 1545 3962 5840 3313

Cat2 578 1252 2477 1092

Cat3 823 1314 2174 889

Cat4 1458 1703 2016 939

Cat5 3558 2161 8217 2430

Cat6 2483 2004 1493 346

Cat7 2780 2061 922 197

Cat8 5020 1668 957 174

Cat9 12116 1906 995 135

Cat10 60231 6769 4122 222

Total 100000 100000 100000 100000

With-Ignore

Cat0 8127 87238 92457 98516

Cat1 15 3502 2439 643

Cat2 26 1220 1069 218

Cat3 102 989 1021 220

Cat4 275 890 928 160

Cat5 15733 3836 1363 178

Cat6 451 382 208 15

Cat7 822 215 145 6

Cat8 2049 231 141 10

Cat9 6107 302 121 8

Cat10 66293 1195 108 26

Total 100000 100000 100000 100000

69

3.6. RESULTS

and non-experienced linguistic instructions. In other words, evolutionary pressures to

evolve a behavioural repertoire to execute the INDICATE behaviour seem to facilitate

the development of compositional semantics. In the next Section, we will further invest-

igate this issue and present a closer look at what makes condition With-Indicate more

suitable to the evolution of compositional semantic structures.

Obviously, it is important to emphasise the fact that the evolutionary conditions detailed

in previous Sections, and in particular those in condition With-Indicate, generate the

neural mechanisms required by the agents to go beyond what was experienced during

evolution. Nevertheless, the fact remains that in either condition, the agents capable of

generalising their skills are only a tiny fraction of the agents capable of successfully ac-

complishing the evolutionary task. This can be explained by the fact that: (i) evolution

only seldom produced agents fully capable of generalising their skills; (ii) the selective

process does not differentiate between compositional and non-compositional agents

since they tend to produce equally good performance with respect to the conditions

in which they are evaluated. We noticed that agents capable of generalising appear

only in six Runs out of ten, and they are never more than one or two per generation2.

When they appear, they generally have the highest fitness recorded at that particular

generation, which almost always is the highest possible fitness. However, they tend to

appear when there are already many more agents with the same fitness in the popu-

lation that are nevertheless not capable of generalising their linguistic and behavioural

skills to non-experienced linguistic instructions. The selection mechanism, which can

not distinguish on the basis of the fitness alone, agents capable of generalising from

those not capable of generalising, tends to favour the latter, to the detriment of the

former, simply because the latter are more frequent in the population.

A final point of minor significance is that generalisation capabilities with respect to the

MOVE Blue object instruction are more frequent than that with respect to the TOUCH

Green object instruction. That is, for both conditions, the number of agents in Cat10 sub-

2Data not shown in this chapter can be found at http://laral.istc.cnr.it/esm/

tuci-etal-IEEE_TAMD2010/.

70

3.6. RESULTS

task II is significantly different from the number of agents in Cat10 sub-task III (pairwise

Wilcoxon test with 99% confidence interval). Although we have no empirical explana-

tion for this finding, we know that the action MOVE, which requires the agents to rotate

both arms around their joints, is an action that, in evolutionary terms, appears earlier

than the capability to TOUCH an object, which requires the agents to stop rotating

both arms. At the beginning of the evolution, when the agents’ linguistic and beha-

vioural skills are rather simple, it pays more to be able to rotate the arms in order to

approach the target objects, rather than to be able to stop a not existing yet rotation

of the arms. This evolutionary progression of the behavioural skills may explain why

the non-experienced instruction which requires to MOVE a target object turns out to

be more easily accessible and executable than the non-experienced instruction that

requires to TOUCH a target object.

3.6.2 Compositionality: Operational principles

What kind of operational principles do agents employ to be able to access and execute

both experienced and non-experienced instructions? What are the mechanisms un-

derpinning compositional semantics? By visually inspecting the behaviour of some of

the agents, we notice that, contrary to the behaviour of the agents evolved in condition

With-Ignore, the behaviour of compositional agents evolved in condition With-Indicate

is the result of the combination of two types of elementary behaviour: an “INDICATE

Red object” or “INDICATE Green object”, or “INDICATE Blue object” behaviour pro-

duced during the first phase of the trial, eventually followed by a “TOUCH” or “MOVE”

behaviour, in the second phase of the trial. During the first phase of the trial, regard-

less of the action to be performed on the object, the agents search the target object

by rotating S1 in order to reduce the angular distance between the target object and

S1, keeping S2 bent as at start until the target object falls into the agent visual field.

During the second phase of the trial, regardless of the target object, the agents rotate

S2 without moving S1 if TOUCH is required. They rotate S2 until this segment collides

with the target object and then they start rotating S1 again if MOVE is required. They

71

3.6. RESULTS

keep S1 pointing to the object and S2 fully bent as at start if INDICATE is required. This

qualitative analysis of the behaviour of compositional agents suggests that the agents

have developed behavioural skills that, being independent from the particular nature of

the linguistic instructions in which they are employed, can be used in contexts already

experienced as well as in context not experienced during training.

From this observation, we hypothesised that compositional semantics is underpinned

by simple mechanisms by which, during the first part of the trial, the agents regulate

their actions on the basis of the object-label and not on the basis of the action-label,

and viceversa, during the second part of the trial. This quite intuitive hypothesis sug-

gests that, in any given trial, there may be a first temporal phase, which starts right

at the beginning of the trial, in which agents access the part of the linguistic instruc-

tion that defines the target object (i.e., the object-label) and act in order to execute the

appropriate search behaviour. During this phase, the other part of the linguistic instruc-

tion (i.e., the action-label) should not influence the agent’s behaviour. The first phase

would be followed by a second one, which begins roughly when the target object is

visually found. In the second phase, the agents regulate their behaviour on the basis

of the action-label only (i.e., the object-label does not have any influence) in case the

instruction is TOUCH or MOVE. In the case of INDICATE, instead, the agents keep pro-

ducing the same behaviour during the entire trial. On this account of compositionality,

linguistic instructions not experienced during training (i.e., MOVE Blue object, TOUCH

Green object), would be:

• accessed by exploiting the capability to extract from a non-experienced instruc-

tion already experienced linguistic labels (i.e., TOUCH, MOVE, Blue object, and

Green object).

• executed by calling upon known elementary behaviours associated to or triggered

by one or the other linguistic label.

In what remains of this Section, we show the results of two post-evaluation tests de-

72

3.6. RESULTS

signed in order to verify whether the agents temporally and functionally decompose the

linguistic and behavioural task into two sequential phases as suggested by our hypo-

thesis. These tests are referred to as the action-transition test and the object-transition

test. Both tests follow a similar logic. In the action-transition test, the action-label is

changed during the course of a trial, while in the object-transition test, the object-label

is changed during the course of a trial. In both tests, the change takes place in a

single time step randomly chosen within a 10 time steps interval which starts at the

time when the target object falls within an agent visual field. Based on our hypothesis,

agents equipped with compositional semantics are expected to execute the second

given action-label and neglect3 the first given one, at the action-transition test. This

is because the first given action-label is experienced during the first phase of a trial,

when the attention of the agents should be focused on the object-label. At the object-

transition test, these agents are expected to neglect the second given object-label. This

is because this object-label is experienced during a time in which the agents already

see the first given target. Consequently, they should pay attention only to the action-

label.

The action-transition test and the object-transition test have been run on a pool of

agents selected on their results at the first post-evaluation test (see Section 3.6.1). In

particular, for each evolutionary condition (i.e., With-Indicate, and With-Ignore), we

chose the agents that proved to be more than 75% successful at executing each ex-

perienced instruction. For the purposes of these tests, these agents have been further

selected, and the following three categories have been created: i) non-compositional

agents, referring to those agents that, at the first post-evaluation test, proved to be

less than 10% successful at executing each of the non-experienced instructions; ii)

partially-compositional agents, referring to those agents that, at the first post-evaluation

test, proved to be more than 75% successful at executing only one of the two non-

experienced instructions, and less than 10% successful at executing the other non-

3In this Section, we often take an anthropomorphic stance, by talking about agents that attend or

neglect linguistic labels. This is purely for ease of exposition. It is not our intention to claim that the agents

are cognitively rich enough to intentionally attend or neglect sensory stimuli.

73

3.6. RESULTS

experienced instructions; iii) fully-compositional agents, referring to those agents that,

at the first post-evaluation test, proved to be more than 75% successful at executing

each of the non-experienced instructions.

For both tests, the agents are evaluated 80 times (i.e., 80 trials) on each transition.

In half of the trials, the agents are randomly initialised in the right, and in half of the

trials, in the left initialisation area. In each trial k, an agent can either succeed, if

at the end of the trial F tot
k = 1, or fail, if F tot

k < 1. Following the logic of each test,

the fitness components F1
k , F2

k , and F3
k are updated with respect to the execution of

the second given action-label on the current target object, in the action-transition test,

and with respect to the execution of the current action-label on the first given target

object, in the object-transition test. For both tests, an agent’s overall performance

on each specific transition is considered a success if the agent successfully executes

the transition in more than 60 out of 80 trials (i.e., 75% success rate). Since both

tests are indiscriminately done on non-compositional, partially-compositional, and fully-

compositional agents, we removed from the two sets of possible transitions, those

which, assuming our hypothesis holds, require a response that non-compositional, and

partially-compositional agents are not capable of performing. That is, we remove those

transitions which require a MOVE Blue object, or a TOUCH Green object response4.

Figure 3.5a and 3.5b show the results of the action-transition test and of the object-

transition test, respectively. In both graphs, each bar indicates the percentage of agents

that managed to obtain a success rate higher than 75% in all possible transitions of the

corresponding test. Black bars refer to the agents evolved in condition With-Indicate,

white bars refer to the agents evolved in condition With-Ignore. Before commenting

the results, the reader should be aware of the following. These are quite severe tests

since they demands a high success rate on part of the agents on each experienced

transition. If our hypothesis on the mechanisms underpinning compositionality holds,

4In particular, in the action-transition test, the transitions experienced by the agents are those in which

the second given action-label in combination with the object-label does not produce a non-experienced

instruction. Similarly, in the object-transition test, the transitions experienced by the agents are those in

which the first given object-label in combination with the action-label does not produce a non-experienced

instruction

74

3.6. RESULTS

In spite of these limitations, these graphs tell us several important things. We first

concentrate on the results of the action-transition test. Figure 3.5a indicates that the

majority of fully-compositional agents evolved in condition With-Indicate, relies on

strategies in which the action-label does not influence the agents’ behaviour during the

first phase of the task (see Figure 3.5a, black bar on the left). This suggests that the

capability to neglect the action-label while searching for the target object is associated

with the presence of compositional semantic structures, since it tends to be observed

in fully-compositional agents. However, some of the partially-compositional and non-

compositional agents in condition With-Indicate proved also capable of accomplishing

their task without failing in any transition of the action-transition test (see Figure 3.5a,

central and right black bars). Thus, the first conclusion we draw is that neglecting the

action-label while reaching the target object is not sufficient to attain compositionality,

since it does not allow those partially-compositional and non-compositional agents that

possess it to access and execute non-experienced instructions.

Figure 3.5a also shows that the capability to cope with the action-label change is com-

pletely absent in the agents evolved in condition With-Ignore. This result seems to

suggest that the significant differences, illustrated in the previous Section, between

the two evolutionary conditions in the generation of agents capable of accessing and

executing non-experienced linguistic instructions, could be explained by the fact that

solutions based on the combination of independent elementary behaviours are more

rare in the With-Ignore condition. Thus, we further conclude that the condition With-

Indicate seems to contain the evolutionary pressures that facilitate the emergence of

compositionality by indirectly favouring those agents whose behaviour is not influenced

by the action-label while they reach the target object .

Figure 3.5b, which refers to the object-transition test, tell us that the capability to neg-

lect the object-label during the second phase of a trial, when the target object is already

within an agent’s visual field, is completely absent in agents evolved in condition With-

Indicate, and in particular is completely absent in fully-compositional agents. Only

76

3.6. RESULTS

some of the partially-compositional and of the non-compositional agents evolved in

condition With-Ignore seem to be able to cope with the object-label change (see Fig-

ure 3.5b, central and right white bars). How do we explain these results? As far as it

concerns the unexpected failure of the fully-compositional agents evolved in condition

With-Indicate, we found out that, contrary to what hypothesised by us, the agents use

the object-label during the second phase of the task to keep the target object within

their visual field. We observed that, when the object-label does not match what is

visually perceived, fully-compositional, partially-compositional, and non-compositional

agents perform a search behaviour, loosing visual contact with the object indicated

by the first given object-label. Thus, the object-label influences the agents’ behaviour

during both the first and second phase of a trial, by triggering the agents’ response

of searching and orienting toward the appropriate object. As far as it concerns the

performance of the agents evolved in condition With-Ignore, we think that their suc-

cesses at the object-transition test can be explained by considering the evolutionary

circumstances in which they evolved. In particular, the action IGNORE can be ac-

complished by executing a common act for all the objects. Behavioural inspections

have indeed demonstrated that partially-compositional and non-compositional agents

evolved in condition With-Ignore and capable of coping with the object-label change,

once required to IGNORE an object simply don’t move at all from their position. This is

a strategy which can be successfully applied to execute the action IGNORE regardless

of the target object. This may have facilitated the emergence of mechanisms to be

able to neglect the object-label while executing the required action. However, this is

speculative and further analyses are required to test it.

Overall, these tests indicate that in fully-compositional agents obtained in condition

With-Indicate, the “INDICATE Red object”, “INDICATE Blue object”, and “INDICATE

Green object” behaviours are executed during the entire trial, as demonstrated by the

fact that the agents are able to search for a new object and then keep indicating it when

the object-label is modified during the second phase of the trial. The execution of the

“INDICATE” behaviour during the second phase of the trial is not apparent in normal

77

3.6. RESULTS

condition (i.e., when the position or the colour of the objects do not change) simply be-

cause the execution of this behaviour do not produce any movement. Thus, during the

second phase of the trial, when the action label is “INDICATE”, agents keep producing

the same behaviour. When the action label is “TOUCH” or “MOVE”, the agents perform

the corresponding elementary behaviour that operates in parallel with the “INDICATE”

behaviour. The key mechanism that enables compositionality, therefore, is the fact that

the action-label does not affect the agents behaviour during the first part of the trial.

In other words, “TOUCH” and “MOVE” behaviours constitute independent behavioural

units realised through the execution of the same sequence of micro-actions irrespect-

ively from the object-label. Moreover, we can now state that a different training bears

upon the development of the required mechanisms for compositional semantics, and

that condition With-Indicate facilitates the emergence of compositionality by favouring

the emergence of the functional independence of the action-label from the behavioural

experience of searching for the target object.

Indeed, by looking at the phylogeny of fully-compositional and partially-compositional

agents in condition With-Indicate, we notice that in early stages of their evolutionary

history, one of the first behavioural skill to appear is indeed related to the capability of

these agents to systematically reduce the angular distance between S1 and the target

object regardless of what type of action the current linguistic instruction is demanding.

For example, the ancestors of fully-compositional agents, when required to MOVE or

to TOUCH an object, they successfully bring S1 in correspondence of the target object,

and they keep S2 bent until the end of the trial, by systematically failing to execute the

action MOVE and TOUCH. In other words, these agents proved to be capable of ac-

cessing the linguistic label that defines the object without being able to appropriately

execute the linguistic label that defines the TOUCH and MOVE actions. The ability

to handle these type of actions is developed later. This can be considered a further

evidence that, since the early generation of evolution in condition With-Indicate, fully-

compositional and partially-compositional agents learn to decompose the trial into two

parts, in the first one of which their behaviour is entirely triggered by the object-label.

78

3.7. DISCUSSION: PERSPECTIVES FOR RESEARCH ON CHILD LANGUAGE

ACQUISITION

It is important to note that the early appearance of the capability to decompose the

task into two parts is not enforced by any means by the design of the fitness function,

it emerges through the dynamics of evolution, and it is facilitated in condition With-

Indicate by the presence of the instruction INDICATE. However, in the absence of

further tests, we can not exclude that these phenomena are induced by design con-

straints, such as the fact that the segment S1 and the vision system are bound together.

This is because, this particular constraint makes it impossible for an agent to develop

a visual search strategy without concurrently acting as required by the instruction IN-

DICATE.

3.7 Discussion: perspectives for research on child language acquisition

Computational approaches to language learning are an intensely researched topic in

several disciplines (for recent reviews, see [33, 54, 60]). As yet, however, there is still a

marked gap between language learning research in cognitive robotics on the one hand

and language acquisition studies in computational linguistics on the other. One reason

for this is the different thrust of typical research in the two disciplines: in robotics, the

focus is commonly on semantic issues to do with the grounding of individual linguistic

symbols in agents’ sensory-motor experience [31]. In computational linguistics, the

focus is usually on structural issues to do with the induction of complex grammars from

unrestricted text [21, 109]. In a nutshell, roboticists tend to concentrate on words as

carriers of meaning (but neglect their combinatorial properties), while linguists tend to

concentrate on their grammar (but neglect their meanings).

Given this apparent opposition, it is interesting to note that a currently influential the-

ory of child language acquisition assumes both a phenomenological continuum and

a developmental connection between these two seemingly complementary learning

targets (i.e., meaningful “words” and meaningless “rules” in traditional terminology).

In usage-based models of language learning, children are assumed to acquire lin-

guistic “rules” (i.e., grammatical categories and constructional patterns thereof) through

piecemeal abstractions over utterance-length concrete “words” (i.e., unanalysed holo-

79

3.7. DISCUSSION: PERSPECTIVES FOR RESEARCH ON CHILD LANGUAGE

ACQUISITION

phrastic strings like “there+you+go” and “look+at+this” that are associated with a hol-

istic communicative intention, see [121]). Learners’ discovery of the internal structure

of these units, coupled with the realisation that the segmented building blocks can be

productively recombined within the abstracted constructional patterns, marks the cru-

cial transition from finite lexicons to open-ended grammars. From this perspective,

the above experiment is therefore concerned with the emergence of a genuine break-

through on the way to language.

Needless to say, both the learning target and the learning architecture are substantially

less complex here. However, most computational models of language acquisition do

not purport to provide an accurate representation of the precise learning mechanisms

and processes at work in human children. Rather, the more modest aim is usually to

show that it is possible to solve a given task through learning at all (i.e., without innate

domain-specific biases). In this way, computational models have made an important

contribution to the debate over language learnability, innateness and the purported

“poverty of the stimulus” (e.g. [52, 93]). However, none of the models in these debates

is grounded in the way that human children’s internal representation of language is. In

other words, such research has focused on the combinatorial dimension of language

alone, but has ignored the additional challenge of linking linguistic structures to the

embodied conceptualisations that constitute their meanings. The present study takes

steps towards closing this gap, and several of its findings can indeed be related to

similar observations made in empirical studies of child language learning.

To better appreciate these connections, it will be helpful to translate aspects of the

design into the terminology of usage-based models of child language acquisition. Agents’

capacity to correctly access and execute a non-experienced linguistic instruction cor-

responds to their acquisition of an “item-based construction”, for example, [move N]

in the sense of [121]. As the term “item-based” implies, the generalisations that child

language learners have acquired at this developmental stage do not apply across the

board. For instance, they may begin to use grammatical marking on some verbs but

80

3.7. DISCUSSION: PERSPECTIVES FOR RESEARCH ON CHILD LANGUAGE

ACQUISITION

not on others, indicating that the more inclusive generalisation that both items belong to

the same overall category has not yet been formed. Empirical evidence for such item-

specific effects in early language acquisition is abundant (cf. [121]), and the theoretical

vision of a transition from holophrastic units over networks of item-specific “islands” to

ever more schematic grammars has also received support from different computational

simulations of (non-grounded) language learning [135]. From this perspective, agents’

differential performance on the two non-experienced instructions in the present exper-

iment does not come as a surprise: also in child language acquisition, the transition

from holophrases to compositional grammars is not instantaneous.

Similarly, also the second major finding of this study, that is the significant effect of

learning condition (With-Indicate vs. With-Ignore) on agents’ generalisation perform-

ance readily translates into a concept of usage-based models of child language learn-

ing: if the above assumptions about what makes the behaviour INDICATE more similar

to MOVE and TOUCH than IGNORE are plausible, agents’ poorer generalisation per-

formance in condition With-Ignore would be said to be the outcome of a lower cue

consistency (i.e., regularity of form-function mapping) of the category “Verb” in this

condition. Furthermore, since such constellations of inconsistency, competition and

syncretism are in fact taken to be the norm in natural language processing and learn-

ing, a look to usage-based acquisition models in linguistics could also suggest certain

useful extensions of the present approach that might be worthwhile to explore in fu-

ture work (e.g., studying agents’ generalisation performance across more than one

construction, with or without semantic similarity between actions and/or referents, with

balanced or statistically skewed training input, etc.). In other words, further studies

should investigate the characteristics that favour the emergence of compositional solu-

tions (i.e., that ensure behavioural generalisation) and/or that reduce the chance to

converge on non-compositional solutions. Additionally, further work could investigate

the possibility to scale the model with respect to the number and the complexity of the

linguistic/behavioural repertoire of the agent.

81

3.8. CONCLUSIONS

3.8 Conclusions

In this chapter, we described a robotic model that allows a simulated robot to inter-

act with three coloured objects (a Red, a Green, and a Blue object) located in its

peripersonal space by executing three actions (INDICATE, TOUCH, and MOVE) dur-

ing a series of trials. In each trial, the agent receives as input a linguistic instruction

and is rewarded for the ability to exhibit the corresponding behaviour. The results of

this study show that dynamical neural networks designed by artificial evolution allow

the robot to access and correctly execute the linguistic instructions formed by all the

possible combinations of the three action-labels and the three object-labels with the

exception of the instructions “TOUCH Green object” and “MOVE Red object”, which

are non-experienced during training. Post-evaluation tests showed that some of the

evolved agents generalise their linguistic and behavioural skills by responding to the

two non-experienced instructions with the production of the appropriate behaviours.

Our study shows that behavioural and linguistic competences can co-evolve in a single

non-modularised neural structure in which the semantics is fully grounded in the sensory-

motor capabilities of the agents and fully integrated with the neural mechanisms that

underpin the agent’s behavioural repertoire. Owing to the use of artificial evolution,

we leave the agents free to determine how to achieve the goals associated to each

linguistic instruction. This allows the agents to organise their behavioural skills in ways

that facilitate the development of compositionality thus enabling the possibility to dis-

play a generalisation ability at the level of behaviours (i.e., the ability to spontaneously

produce behaviours in circumstances that have not been encountered or rewarded

during training).

The comparison between two experimental conditions, in one of which the action-label

INDICATE is substituted with the action-label IGNORE, shows that the composition of

the behavioural set significantly influences the development of solutions that generalise

to non-experienced instructions. Only individuals evolved in condition With-Indicate

are characterised by a particularly successful linguistic and behavioural organisation

82

3.8. CONCLUSIONS

based on the decomposition of the task into two phases, each of which can be as-

sociated with the execution of an elementary behaviour. In the first phase only the

object-label bears upon the agents’ behaviour by triggering the object search strategy.

In the second phase, both the object-label and the action-label determine the agents’

response. In particular, the object-label keeps an agent eliciting the same behaviour

produced during the first phase (i.e., the agent keeps on searching/pointing the target

object with the first segment of its arm). At the same time, the action-label triggers a

different behaviour that consists in bending the second segment of the arm so to touch

or move the object. The capability to decompose the task into two sequential phases

as described above, and the use of elementary behaviours employed in different cir-

cumstances, are features that, although not sufficient per se to explain compositional

semantics, they certainly facilitate its evolution.

The use of elementary behavioural skills to generate instructions denoting complex ac-

tions resembles the process described in [17], in which the ability to execute more com-

plex linguistic commands, such as GRAB, is acquired by associating two or more previ-

ously acquired elementary behaviours (e.g., CLOSE-LEFT-ARM and CLOSE-RIGHT-

ARM). However, in [17], the relation between complex and elementary behaviours is

established through explicit teaching (i.e., through linguistic input such as: GRAB is

CLOSE-LEFT-ARM and CLOSE-RIGHT-ARM). By contrast, in the experiments repor-

ted in this chapter, behavioural decomposition emerge as a side effect of the need to

acquire the ability to execute several related linguistic commands. Moreover, the way

in which the agents accomplished the required functionality (i.e., by combining in se-

quence or in parallel relatively independent behavioural units) represents an important

prerequisite for the emergence of compositionality. Therefore, leaving the agents as

free as possible to organise how they produce the required skills might be advantage-

ous since it might allow them to decompose the problem in a way that maximise skills

re-use. This in turn implies that methods such as the evolutionary method that rewards

the agent on the basis of the ability to achieve a given functionality without specifying

in details the behaviour that should be produced might be advantageous with respect

83

3.9. THE EXPERIMENT AND FARSA DEVELOPMENT

to alternative methods in that respect.

3.9 The experiment and FARSA development

The main experiment described in this chapter is, from a technical point of view, less

complex than the one presented in chapter 2: the environment is a bidimensional plane

and the interaction with objects is less accurately simulated.

As in the previous experiment we at first adapted code that had been used in our labor-

atory for other experiments. We experienced problems similar to those described in

the previous chapter, such as the lack of modularity, of configurability and the difficulty

for researchers not actively involved in the development of software to replicate the

experiment.

This experiment, in general, reinforced the lessons drawn from the experiment in chapter

2 about the importance of having a modular software tool that is easily configurable to

be able to test various hypothesis about, e.g. the effect of different sensors or effectors.

An additional requirement of this experiment was that of validating the results obtained

in a bidimensional environment on a simulated iCub robot, as explained in section 3.2.

To do this we use an expanded version of the simulator developed during the experi-

ments in chapter 2, which included the model of the iCub robot. Despite the simulator

was already available, however, testing the model required a substantial amount of

work. This was due to the fact that the code developed to perform the bidimensional

experiment was completely disconnected from the iCub simulator and, on the other

hand, the simulator was not modular enough to be easily coupled with an external

neural network library.

The possibility to use the same tool for both the bidimensional, kinematic setup and the

tridimensional, dynamic setup would have greatly reduced the technical effort needed

to complete this experiment. More in general being able to select different levels of

accuracy and to consequently vary the computational cost of a simulation (and con-

sequently the time it takes to run it) is an important property of a simulator. In fact it

84

3.9. THE EXPERIMENT AND FARSA DEVELOPMENT

may allow to perform relatively quick experiments during the initial phase of a research

(when there might be a number of hypothesis to test) and then to increase the accuracy

to study only few, promising hypothesis.

In chapter 4 we will describe in details how we aimed at solving there issues in FARSA.

We will also give examples of experiments at different levels of accuracy, from simple

kinematic setups to dynamical simulation in which different objects interact and collide

with each other in a realistic way.

85

3.9. THE EXPERIMENT AND FARSA DEVELOPMENT

86

Chapter 4

FARSA: An Open Source Software Tool for

Embodied Cognitive Science

4.1 Introduction

In this chapter we will introduce the robotic simulator developed at LARAL1 during

the past years. The FARSA (Framework for Autonomous Robotics Simulation and

Analysis) software was born to address the need for a common code base shared

among all people in the LARAL laboratory, which was nevertheless as customizable

as possible. The tool was then released as an open source project with the hope of

being useful to other researchers in the same area. Moreover the use of a tool which

is multi-platform and can be easily installed, makes it possible to release the binary or

source code of published experiments so that they can be easily replicated.

In addition to my own research laboratory, FARSA has already been used in the follow-

ing research laboratories:

• Laboratory of Prof. Fernando M. Montes González2, Departamento de Inteligen-

cia Artificial, Universidad Veracruzana, Mexico;

• Laboratory of Prof. Andrea Sterbini3, Dipartimento di Informatica, Università La

Sapienza, Italy;

• Laboratory of Computational Embodied Neuroscience (LOCEN4), Institute of Cog-

1http://laral.istc.cnr.it/
2http://www.uv.mx/fmontes/
3http://twiki.dsi.uniroma1.it/twiki/view/Users/AndreaSterbini
4http://www.istc.cnr.it/group/locen

87

4.2. RELATED TOOLS: ROBOTIC MIDDLEWARES

nitive Sciences and Technologies, National Research Council (ISTC-CNR), Italy;

• Human Evolutionary Biology group5, Institute of Evolutionary Sciences, National

Center for Scientific Research (ISEM-CNRS), France;

as well as in an undergraduate course by Prof. Marco Mirolli, at the University “Sour

Orsola Benincasa” in Napoli, Italy.

FARSA is a re-engineered and extended version of a tool that has been developed

since the 1995 by Stefano Nolfi and then by Onofrio Gigliotta [77, 82] which has been

used for research and education purposes by more than 50 research laboratories and

universities.

The chapter is structured as follows. Sections 4.2 and 4.3 describe the related tools.

Section 4.4 illustrates why we decided to develop FARSA. Section 4.5 describes the

tools and its features. Section 4.6, describes some of the available illustrative experi-

ments. Section 4.7, describes how to customize and expand FARSA. Finally, conclu-

sions are drawn in section 4.8.

4.2 Related tools: robotic middlewares

Before introducing robotic simulators available today, this section we will present sev-

eral robotic middlewares. These software abstraction layers are often used with both

real robots and simulated robots. We will briefly introduce them mainly to show what

is the software architecture generally used in robotic today. We will see in section 4.4

which are the critical aspects of this architecture and why we had to use a different

approach when developing FARSA.

4.2.1 Player

Player6 [39] is a network server that runs on a robot, providing a network interface

to access sensor data, configure devices and send commands to actuators. Player

permits to use the same interface for accessing different devices. This enables the user

5http://www.evolutionhumaine.fr
6http://playerstage.sourceforge.net/index.php?src=player

88

4.2. RELATED TOOLS: ROBOTIC MIDDLEWARES

to access to data in the same way independently from the particular type of hardware

used. For example the user can access in the same way the video stream extracted

from the camera regardless of the underlying hardware and low-level software.

The project aim is to create free software for research into robotics and sensor sys-

tems [38]. Today, Player, together with the Stage simulator, is one of the most popular

open-source robot interface in research [26], as can be appreciated from the number

of scientific papers published every year that acknowledge the use of this tool. This

remarkable achievement has been reached thanks the robustness of the tool that has

been reached during years of continuous and collaborative development. The source

code of Player is released under the GNU Public License.

The core of the Player framework is the Player network server. The server runs on

Linux, Solaris and BSD and is designed to be executed on the robot. Internally, the

server runs a set of drivers, one for each sensor, actuator, or control algorithm. Each

driver implements one or more standard interfaces and the same interface used by

similar devices. Consequently, the user can access to sensory information or set the

state of the actuators by using the high-level command provided by the interface without

accessing the drivers directly.

The robot resources are typically accessed through a network connection. Consequently

the controller of the robot can be implemented in different programming languages (e.g.

C, C++, Python, Ruby, Java, and Tcl) and can run on computers that use different types

of operating systems. The framework does not impose any constraint on the architec-

ture of the control software, that can consist of a simple read-think-act loop, a complex

multithreaded program, an interactive client, etc.

The main advantage of Player is that it potentially enables to reuse the same control

software on different hardware or simulated platforms. Moreover it allows to access the

same device by multiple clients, thus enabling the possibility to use different programs

that, for example, control the robot and monitor the state of the robot’s sensors.

89

4.2. RELATED TOOLS: ROBOTIC MIDDLEWARES

4.2.2 ROS

ROS7 (Robotic Operating System) is a software framework which provides services

normally available on an operating system, on a computer or on a computer cluster.

Such services include hardware abstraction, low-level device control, implementation

of commonly used functionality, message-passing between processes, and package

management. The broader aim of the project is to encourage collaborative develop-

ment of robotic software through the adoption of a common standards and through

collaborative development.

The project started in 2007 under the name switchyard at the Stanford Artificial In-

telligence Laboratory as part of the STAIR project [59]. From 2008 until 2013, the

development of ROS was carried out primarily by Willow Garage8, a robotics research

institute. From February 2013, ROS was taken over by the Open Source Robotics

Foundation9. The core libraries and tools of ROS are released under the BSD license,

which permit to use the ROS resources both in open source and proprietary projects.

Most ROS modules are released under open source licenses.

The main functionality of ROS is to enable communication of loosely coupled pro-

cesses. On the basis of the ROS terminology, each process performing computations

is a node and different nodes can run on different physical machines. Nodes commu-

nicate using messages, which are basically data structures with typed fields. There are

basically two kind of communication mechanisms: topics and services. Topics imple-

ment a publish/subscribe protocol, in which some nodes produce data that is read by

other nodes. In general nodes that publish or read data in a topic are not aware of each

other. Services, instead, implement a request/reply communication scheme. A central

element of the ROS network is the ROS Master that is responsible of keeping track of

all nodes, topics and services. Nodes query the ROS Master to be able to connect to

other nodes, subscribe to topics and request services. Figure 4.1 show a typical small

7http://www.ros.org/
8http://www.willowgarage.com/
9http://www.osrfoundation.org/

90

4.2. RELATED TOOLS: ROBOTIC MIDDLEWARES

designers is to facilitate the usage of other middleware, such as ROS (see [36]). YARP

development started in 2002. To date it has been used extensively to run experiments

with the iCub humanoid robot [99] and with other humanoid platforms.

Like ROS, YARP facilitates the development of distributed robotic software components

that can run on a cluster of computers and that can communicate with each other

through different protocols. In the case of YARP different protocols can be used, i.e.

tcp, udp, multicast, shared memory, MPI, XML/RPC, etc.

Data is exchanged through ports. Each process can open one or more input and

output ports that can be accessed or set by multiple clients. Each connection can

use a different communication protocol. Moreover, the type of the connection can be

decided at runtime. A central process, called the YARP server, is in charge of keeping

track of all the ports and connections that have been created.

4.2.4 Other Middlewares

Several other robotic middleware with similar functionalities has been developed. The

RT-middleware11 (Robotics Technology Middleware) has an architecture that is sim-

ilar to ROS and YARP but consists only of a standard that has been realized into a

series of different implementations using different programming languages. For ex-

ample OpenRTM-aist is a specific implementation realized by using CORBA that has

been developed by the National Institute of Advanced Industrial Science and Techno-

logy in Japan.

Microsoft Robotic Studio12 developed by Microsoft is another middleware that permits

the creation of Decentralized Software Services (DSS) that can eventually run on mul-

tiple computers. This software suite, which runs on the Windows operating system only,

initially gained a significant popularity. However, its development and update stopped

in 2012.

11http://openrtm.org/
12http://www.microsoft.com/robotics/

92

4.3. RELATED TOOLS: ROBOTIC SIMULATORS

Finally, OpenRDK13 is still another robotic middleware characterized by a centralized

blackboard-type communication system.

4.3 Related tools: robotic simulators

This section presents, simulators and associated software tools. It will be shown that

none of these tools aims to provided a complete set of libraries, fully integrated, as in

the case of FARSA.

4.3.1 Webots

In this and in the following subsections we will describe a series of simulators, i.e.

software tools that enable to simulate robotic agents, environments, and robots/en-

vironmental interactions. Webots14 [68] is probably the most influential and popular

simulator that has been developed. It was initially created by Olivier Michel at the

Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland, and then com-

mercialized by a spin-off company led by the software creator. The simulator runs on

Microsoft Windows, Linux and Mac OS X and is available in different versions, which

vary with respect to the price and the features available. The tool has been used by

more than 1200 universities and research centres worldwide.

Webots contains a rich library of robots that can be simulated: Aibos, Bioloids, Boe-Bot,

e-puck, HOAP-2, iRobot Create, Katana, Khepera, Koala, Kondo KHRs, Nao, Pioneer,

Shrimp III, Surveyor SVR-1 and others. It also contains an extensive set of objects that

can be used to build a simulated world (e.g. boxes, doors, walls, lights and so on).

Finally it contains an extensive set of examples and tutorials. The simulator is based

on ODE15, a well known open source library that enable to simulate the dynamics of

rigid bodies.

To run an experiment the user should program at least two software components that

implement the architecture of the environment and the robot controller (each robot is

13http://openrdk.sourceforge.net/
14https://www.cyberbotics.com/
15http://www.ode.org/

93

4.3. RELATED TOOLS: ROBOTIC SIMULATORS

provided with an independent controller). Eventually the user can implement a su-

pervisor software component that can be used to modify the environment during the

experiment.

The functionalities of Webots can be extended by realizing software plugins, i.e. soft-

ware components that are compiled independently and loaded at runtime. Plugins can

be used for example to create additional display windows (that can be used, for ex-

ample, to visualize the state of the robot’s sensors) or to create additional types of

simulated sensors and actuators.

A shortcoming of Webots is that it can only operate with the graphical interface on. This

prevents the possibility to speed up the simulation by avoiding the usage of the graphic,

a feature that is particular important for speeding up time-consuming experiments, e.g.

experiments that require long training phases.

4.3.2 ARGoS

ARGoS16 [92] is a 3D physic simulation tool targeted particularly at swarm robotics

research. It is an open source tool that was developed during the Swarmanoid17

European project. It was then used in the following others European projects: AS-

CENS18, H2SWARM19, E-SWARM20 and Swarmix21.

The simulator is written in C++ and has a highly modular architecture. Every compon-

ent can be implemented as a separate plugin and loaded at runtime, so that all the

relevant aspects of a simulation can be overridden. This potentially enables to extend

the tool in any possible direction. A special kind of plugin, called loop function, can be

used to implement custom-made simulation-specific extensions.

The most distinctive feature of ARGoS is the possibility to partition the simulated space

16http://www.argos-sim.info/
17http://www.swarmanoid.org/
18http://ascens-ist.eu/
19http://www.esf.org/coordinating-research/eurocores/running-programmes/

eurobiosas/collaborative-research-projects-crps/h2swarm.html
20http://www.e-swarm.org/
21http://www.swarmix.org/

94

4.3. RELATED TOOLS: ROBOTIC SIMULATORS

into sub-spaces and to assign a different physics engine to each of them. The sub-

spaces must be non overlapping and it is possible to use different kinds of engines

(e.g. kinematic, 2D, 3D, etc.). This allows to optimize the simulation speed by tuning

the accuracy of the simulation in an appropriate manner. The simulator is also based

on a multi-thread architecture that supports the utilization of computer cluster and/or

multi-core CPUs.

The main drawback of ARGoS is that it does not work under Microsoft Windows.

Moreover the usage of the tool requires a significant programming effort due also to

the lack of an integrated graphical user interface.

4.3.3 USARSim

USARSim [19] is another open-source simulator that was initially developed by the

National Science Foundation (NSF) as a research tool for Urban Search And Rescue

(USAR) scenarios. The simulator was later extended toward a more general use. It

is the official simulator of the RoboCup Rescue Virtual Robot Competition22, in which

teams of robots are placed in a simulated USAR scenario and are evaluated for how

many people they manage to find and the portion of the environment they explore.

USARSim is based on Unreal Engine23, a physics and graphic engine developed by

Epic Games24. Despite being targeted mainly towards the realization of computer

games, Unreal Engine can also be used to simulate robotic platforms. In fact it can

be extended by using a proprietary programming language called Unrealscript and an

interface called Gamebots25. The robots’ controllers can be programmed using any

programming language thanks to the possibility to use TCP sockets.

The simulator supports a wide range of robotics platforms (humanoids, wheeled, vehicles,

etc.) and can be extended to support additional robotic platforms, sensors, and actuat-

ors. Extensions can be implemented through the Unrealscript programming language.

22http://www.robocuprescue.org/virtualsim.html
23https://www.unrealengine.com/
24http://epicgames.com/
25http://sourceforge.net/projects/gamebots/

95

4.3. RELATED TOOLS: ROBOTIC SIMULATORS

The implementation of the environment can be realized through the use of a graphical

tools distributed together with the Unreal engine.

USARSim is an open source project but is based on a proprietary engine (i.e. the Un-

real engine). This limits the inspection and the customization of the tool and imposes

the use of the Unrealscript proprietary language for the implementation of certain com-

ponents.

4.3.4 Gazebo

Gazebo26 is a general purpose open-source simulator [56] that has been developed

from 2002 at the University of Sourthern California. From 2009 it become the refer-

ence simulator for the ROS community. From 2012 it became a project of The Open

Source Robotics Foundation. In 2013 the simulator was used to run the Virtual Ro-

botics Challenge, one of the DARPA Robotics Challenge. A new major version of the

simulator is released every 6 months.

Gazebo has a client-server structure: the server performs the actual simulation and has

no graphical user interface, while the client connects to the server and has a graphic

interface (GUI) that can be used to display the world and the robot. The 3D render-

ing of the scene is performed by using OGRE27, a high quality open-source graphics

rendering engine. It supports different physical engines (currently ODE, Bullet28, Sim-

body29 and DART30). The characteristics of the world and of the robot are described in

SDF files31 by using a XML format. Plugins programmed by the user can be used to

implement the robots’ controllers and/or to extend the simulator.

Gazebo is often used in combination with ROS, YARP and Player to enable the pos-

sibility to test the robots’ controller both in simulation and in hardware.

26http://gazebosim.org/
27http://www.ogre3d.org/
28http://bulletphysics.org/wordpress/
29https://simtk.org/home/simbody/
30http://dartsim.github.io/
31http://sdformat.org/

96

4.4. FARSA OBJECTIVES

4.3.5 Stage

Stage32 [129] was initially developed at the University of Southern California as part

of the Player Project (see sec. 4.2.1). It is a simulator targeted toward the realization

of experiments involving large number of robots. For this reason it relies on simulation

techniques that have a limited accuracy but that are fast.

Stage can operate as a standalone program. In this modality the characteristics of the

environment can be specified in a configuration file, and the controller of the robot can

be implemented by using the C++ programming language. However, it can also be

used in combination with Player. Moreover, it can be embedded directly into a program

developed by the user in C++.

Stage runs on Linux and Mac OS X and it is released under the GPL open source

license. However, it does not run on Microsoft Windows.

4.3.6 Others

Other available simulators include: (i) the iCub simulator developed by Tikhanoff et

al. [120] that is based on YARP; (ii) a 3D physical simulator based on the NVIDIA PhysX

Technology that is included in the Microsoft Robotics Developer Studio middleware

described in section 4.2.4, (iii) the MORSE33 simulator that is implemented in Python

and that is targeted toward the academic research community and (iv) the V-REP34

simulator that is multiplatform and multilanguage and is free to use for researchers and

hobbists.

4.4 FARSA objectives

The primary objective of FARSA is to provide an integrated tool that has all the key

components that are necessary for carrying out research in Embodied Cognitive Sci-

ence and that can enable also users with limited technical expertise to set-up and to

carry on embodied experiments.

32http://playerstage.sourceforge.net/index.php?src=stage
33https://www.openrobots.org/wiki/morse
34http://www.coppeliarobotics.com/features.html

97

4.4. FARSA OBJECTIVES

FARSA differs significantly from the tools reviewed in sections 4.2 and 4.3. It is not

a middleware and it does not natively allow accessing remote robotic resources or

communicating with remote processes. However, it is not simply a simulator since it

does not only consist of a tool for simulating robot/environmental interactions. It is an

integrated software environment that provides also tools for building and training robot

controllers, and a tool for visualizing and analysing the behaviour of the robots.

FARSA also has limitations with respect to the other tools reviewed above. In particular

it currently supports a small number of robotic platforms, it does not provide tools that

support the realization of highly distributed applications (as some of the middleware

described above), and it only provides libraries that support the utilization of certain

type of control architecture (e.g. neural network architecture) and of certain type of

adaptive algorithms (e.g. evolutionary algorithm, and supervised learning algorithms).

The tool is constituted by a series of integrated software libraries that we will briefly

review in the next sections.

4.4.1 The Robots/Environment Simulator

The robots/environment simulator (worldsim) is a library that allows to simulate the

robot/s and the environment in which it/they operate. The library supports both indi-

vidual robot simulation and collective experiments in which several robots are placed

in the same environment. The physical and dynamical aspects of the robots and of

the robots/environment interactions can be simulated accurately by using a 3D dynam-

ics physics simulator or by using a faster but simplified kinematic engine. For what

concerns the dynamics simulation, FARSA relies on the Newton Game Dynamics en-

gine [53] that enables accurate and fast simulations. The underlying dynamic engine

has been encapsulated so to enable the inclusion of alternative engines in future.

Currently, FARSA supports the following robotic platforms: the Khepera [72], the e-

Puck [71], the marXbot [11] (see Figure 4.2, bottom) and the iCub [100] (see Figure 4.2,

top). These robots have been designed by assembling a series of building blocks

(physical elements, sensors, and motorized joints) that users can re-use to implement

98

4.4. FARSA OBJECTIVES

alternative, not yet supported, robots.

In the case of the iCub, the simulator supports the same YARP interface as the real

robot. This strongly facilitates the possibility to port results from simulation to reality

and the possibility to integrate into FARSA projects the software modules available

from the iCub software repository35.

4.4.2 The Sensor and Motor Library

FARSA also includes a library of ready-to-use sensors and motors. In some cases,

sensors and motors include software routines that pre-elaborate sensory or motor in-

formation (e.g. to reduce its dimensionality) and/or integrate different kinds of sensory-

motor information (as in the case of motors that set the torque to be produced by a joint

motor on the basis of the current and desired position of the controlled joint).

Wheeled robots are provided with infrared, ground, traction force, linear vision, and

communication sensors, among others. Moreover, they are provided with wheels, grip-

pers, LEDs, and communication actuators.

The iCub robot is provided with proprioceptors that measure the current angular po-

sition of the robot’s joints, tactile sensors, and vision sensors among others and with

actuators that control all the available DOFs.

The state of the robot’s sensors and motors, as well as the state of selected variables

of the robot’s control system, can be graphically visualized while the robot interacts

with the environment (see Figure 4.3). This provides an useful analysis and debugging

tool.

4.4.3 The Controller Libraries

These libraries enable the user to design, modify and visualize the robot’s control

system. Currently FARSA includes two libraries that support the design of neuro-

controllers. Users willing to use other architectures or formalisms can integrate into

FARSA alternative libraries (see section A).

35http://wiki.icub.org/iCub_documentation/

99

4.4. FARSA OBJECTIVES

Figure 4.2: Snapshots taken from the 3D robot/environment renderer of FARSA. Top:

A simulated iCub robot that reaches and grasps a spherical object loc-

ated over a table. Bottom: A simulated marXbot robot that navigates in a

structured environment containing walls and colored objects.

100

4.4. FARSA OBJECTIVES

Figure 4.3: Top: the controller graphic widget that allows to visualize, modify, and an-
alize the robot’s neural architecture, the strenght of the connection weights
and biases, and the properties of the neurons. Bottom: the controller mon-
itor that displays the activation state of the sensory, internal, and motor
neurons while the robot interacts with the environment.

101

4.4. FARSA OBJECTIVES

Evonet is an easy-to-use library that enables users to graphically design, modify and

visualize the architecture of the robot’s neural controller as well as the properties of the

neurons and of the connection weights (see Figure 4.3). The library supports logistic,

leaky integrator, and threshold neurons. NNFW is an alternative object-oriented library

that provides a larger variety of neuron types and output functions (Gaussian, winner-

take-all, ramp, periodic, etc.) and supports the use of radial basis function neural

network.

Thanks to the integration between the controller and the sensory and motor libraries,

the sensory and motor layer of the neural controller is automatically generated on the

basis of the selected sensors and motors. Moreover, the update of the sensory neur-

ons and the update of the actuators on the basis of the state of the motor neurons is

handled automatically.

Finally, the graphic viewer of the robot’s controller (see Figure 4.3) also enables users

to lesion and/or to manually manipulate the state of the sensors, internal, and motor

neurons in order to analyse the relationship between the state of the controller and the

behaviour that originates from the robot/environmental interaction.

4.4.4 The Adaptation Libraries

These libraries enable the user to subject a robot or a population of robots to an adapt-

ing process (i.e. to a evolutionary and/or learning process during which the character-

istics of the robots are varied and variations are selected so to improve the abilities of

the robots to cope with a given task/environment).

The adaptation libraries that are currently available support the use of evolutionary al-

gorithms (including steady state, truncation selection, and Pareto-front algorithms) and

supervised learning algorithms (i.e. back-propagation). The evolutionary algorithms

are parallelized at the level of the individual’s evaluation and can therefore run signific-

antly faster in multi-core machines and computer clusters.

In the case of evolutionary and supervised algorithm, the variation in performance dur-

102

4.5. DESIGN AND WORKING PRINCIPLES

Figure 4.4: The graphic widget of the adapting process. In this example, the widget

is used to show the best, average and worst fitness of an evolutionary

experiment through out generations.

ing the adaptation can be monitored and analysed in the associated graphic renderer

(see Figure 4.4).

4.5 Design and Working Principles

The architecture of FARSA is based on four key ideas: components, configuration file,

plugins and resources.

The components are software modules that implement a given object or process. They

can be organized in a hierarchical manner. For example, a project might include

an evolutionary process component, that includes as subcomponent an experimental

component, that includes as subcomponent an iCub robot component, a neural net-

work controller component, and several sensors and motors components. The main

characteristic of components is that they can be automatically instantiated and con-

figured from the content of a configuration file (i.e. they have a direct relation to groups

of parameters in a configuration file, as explained below). Components might also in-

clude associated commands (e.g. “evolve”, “stop”, “test” in the case of an evolutionary

103

4.5. DESIGN AND WORKING PRINCIPLES

component), and graphical widgets that can be accessed by the FARSA main graphic

interface (see next section).

The configuration file is a text file that specifies the components (e.g. the robotic plat-

form, the robots’ sensors and the motors, the robots’ controllers, and eventually the ro-

bots’ adapting process) that are going to be used in a particular experiment. Moreover

the configuration file include configurable parameters (e.g. the number of robots situ-

ated in the same environment, the length of the testing period etc.) that are used to

configure them. The file has a hierarchical structure analogous to the hierarchical or-

ganization of components. The configuration file is a human readable text file (in .INI or

.XML format) that can be edited through the Total99 graphic interface (described in the

next section) or directly through a standard text editor. This enables users to configure

and run experiments on remote machine (e.g. computer clusters) that do not have

a graphical environment. The modular and hierarchical organization of components

combined with the configuration file has several advantages:

• it allows to instantiate at runtime only the components that are needed in a par-

ticular experiment;

• it gives the possibility to re-use the same components in different projects;

• it enables a progressive expansion of the tool with the development of additional

components;

• it simplifies the tool usage through the visualization of only the parameters, the

commands, and the graphic widgets that are relevant for a given project/experi-

ment.

A plugin contains compiled code of new components or features created by users. It

might contain subclasses of existing components (e.g. a subclass of an evolutionary

experiment with a new implemented fitness function or a new subclass of the sensor

class implementing a new type of sensor not available in the sensor library) or of com-

pletely new components (e.g. a behaviour-based controller tool with associated para-

104

4.5. DESIGN AND WORKING PRINCIPLES

meters, commands and graphic widgets). The plugins, which are loaded and instan-

tiated at run time, are totally equivalent to the other native components of FARSA for

what concern the functionalities and use (e.g. they can be configured and commanded

in the same manner and through the same graphic interface of the native components).

Plugins provide several advantages:

• they enable users to neatly separate their new code from the main library;

• they facilitate the distribution and sharing of additional components and feature

within the FARSA community;

• they enable users to get access to a number of illustrative experiments that in-

crease over time;

• they allow authors of scientific papers to provide an easy way to replicate their

work.

Overall the workflow in FARSA is as follow: the project configuration file and the re-

quired plugins are loaded, the required components are created and configured on the

basis of the configuration parameters, the associated commands and graphical widgets

are created and made available to the user through the graphic interface.

Resources are another useful component of FARSA that enable to share data among

different components of an experiment, without the need to rely on complex interfaces

or type casts. As explained above, the components that make up an experiment in

FARSA are specified in a configuration file, that is loaded at runtime. This means that

a component does not know which other components are part of the experiment until

all components are loaded and the experiment is running. Yet it is sometimes useful to

share data among different components.

The graphical interface, that is named total99, can be used to configure experiments,

to instantiate the required software components, and to use the associated commands

and graphic widgets. total99 can also operate in batch mode without graphics if re-

quired. It can be used to create, view, or modify a configuration file (Figure 4.5). This

105

4.5. DESIGN AND WORKING PRINCIPLES

Figure 4.5: The total99 graphical interface. The menu bar (blue), the toolbar

(magenta), the project information bar (brown), the project parameters
widget (orange), and the status bar (red) have been highlighted with col-

oured rectangles.

can be done by loading or creating a configuration file (through the use of the com-

mands available in the File menu) and by setting the configuration components and

parameters through the parameters widget (see the orange rectangle in Figure 4.5).

More specifically, the left part of the parameters widget is used to display the hierarch-

ical organization of the components and the right part is used to display the paramet-

ers of the currently selected component and/or to add or remove sub-components and

parameters (these can be selected from automatically generated lists that include only

the parameters that belong to the current component and the subcomponents that can

be instantiated from the current component).

Once the configuration file has been set up, the user can run the project through the

menu or the tool bar. As we mentioned above, this initiates the loading of the selected

plugins, the instantiation of the software components specified in the configuration file,

106

4.6. ILLUSTRATIVE EXPERIMENTS

and the configuration of the components on the basis of the parameters specified in

the configuration file. At this point, the commands associated to the components that

have been instantiated and the associated graphic widgets can be executed from the

Action and Views folders of the menu bar.

4.6 Illustrative experiments

In this section we briefly illustrate the available illustrative experiments. These ex-

amples and the associated documentation enable user to familiarize with the tool.

Moreover they can be used as starting point for creating new experiments.

4.6.1 Braitenberg Vehicles

Braintenberg vehicles consist of a series of minimal embodied and situated agents of

increasing complexity described by Valentino Braitenberg in his very influential book [12].

These vehicles are provided with few sensors and motors and with minimal brains real-

ized by simply connecting sensors and motors through wires. Braitenberg vehicles

were meant to be through experiments. However, some of them can be easily imple-

mented in physical robots.

The BraitenbergExperiment plugin enables to experiment with Braitenberg vehicles 2

and 3. In particular, thanks to the integrated graphical interface, it enables the user to

vary the wiring circuit, the conductivity of the wires, and to immediately observe the

resulting behaviour. The documentation included in [81] (chapter 1) includes a brief

overview of Braitenberg work, an explanation of vehicles 2 and 3, and directions on

how to use this experiments to gain a practical knowledge on how behaviour emerges

from the robot/environmental interaction.

4.6.2 The Discrimination Experiment

The KheperaDiscriminationExperiment plugin enables the user to replicate one of the

first evolutionary robotics experiments that were carried out in the world [76]. This

experiment still represents one of the most straightforward demonstrations demonstra-

tion of how adaptive robots that develop their skills autonomously in interaction with the

107

4.6. ILLUSTRATIVE EXPERIMENTS

Figure 4.9: Screenshot from the CollectiveForagingExperiment plugin

experiments involving the iCub platform, such the experiments on active categorization

described in [123], language and action described in [64], and language comprehen-

sion described in [125].

4.6.4 Collective Behaviour and Swarm Robotics

FARSA allows to carry on both individual and collective experiments, i.e. experiments

in which robots are situated in an environment containing other robots. The term

“swarm” is generally used to indicate experiments involving a large number of robots.

Setting up collective experiments in FARSA is extremely easy. For experiments based

on the EvoRobotExperiment class, it only requires to set the parameters that specify

the number of robots needed.

The CollectiveForagingExperiment plugin, for example, enables you to carry on exper-

iments involving a population of 10 MarXbots that can be evolved for the ability collect

“food” and to bringing it back to the “nest” (which are indicated by the two blue cylin-

ders in Figure 4.9). The robots might cooperate to achieve better performance with

111

4.6. ILLUSTRATIVE EXPERIMENTS

respect to robots that operate individually. In particular the robots might coordinate to

collectively explore the environment and to overcome the limitation of their individual

sensory systems (i.e. the fact that they are able to perceive the food area and the nest

area only up to a limited range). Indeed, the robots evolved for the ability to reach the

food area and to bring the collected food to the nest area tend to form a dynamic chain

between the two cylinders that enables them both to preserve information concerning

the relative position of the two target destinations and to travel directly back and forth

toward distant locations that are often too far to be perceived (see [110]).

The plugin also allows to carry on more complex experiments in which the foraging

robots also need to coordinate to help stuck robots and to escape predators (indicated

in red in Figure 4.9).

In this experiment the colonies of robots are formed by fully-related genetic individuals

(i.e. by 10 clones of the same individual genotype that give rise to 10 identical robots

with 10 identical neural controllers).

4.6.5 Sensory-Motor Coordination

Sensory-motor coordination refers to the ability to act so to later perceive useful in-

formation. By coordinating their perceptual and action capabilities, robots can access

and generate the information they need to carry on their task and can solve problems

through solutions that are significantly more parsimonious with respect to solutions that

do not exploit sensory-motor coordination.

The KepheraDiscriminationExperiment plugin described in section 4.6.2 represents a

demonstration of how a problem that apparently requires to discriminate between walls

and cylinders can be solved through a simple solution that does not require to cat-

egorize the two type of objects. The possibility to identify this simple solution is crucial

to solve the problem, since the stimuli perceived near the two types of objects largely

overlap in the robot’s sensory space [78, 79].

The AbstractDiscriminationExperiment plugin allows to replicate a simplified version of

112

4.6. ILLUSTRATIVE EXPERIMENTS

the experiment reviewed above in which an agent that is situated in a circular envir-

onment and that can move only clockwise or counter-clockwise needs to reach and

remain in the left side of the environment. The environment is constructed so that each

of the 20 different stimuli that the robot can perceive are present both on the left and on

the right portion of the environment. Consequently, the perception of any stimulus by it-

self does not provide any information on whether the robot is located on the left or right

side. Despite of that, the agent can solve the task on the basis of a reactive controller

that does not have the possibility to remember previously experienced stimuli [78, 79].

Finally, the KheperaNavigationExperiment plugin allows to replicate an experiment that

shows how a robot can coordinate its sensory-motor activity as to generate and use

information that it cannot perceive from the environment. In this case, a Khepera robot

placed in a rectangular environments in which the length of the top and bottom walls

exceed the length of the left and right wall is asked to navigate and remain in the top-left

or bottom-right corners of the environment while avoiding the other two corners. The

discrimination of the target corners with respect to the other two corners can be carried

out by discriminating the length of the walls which however cannot be perceived by the

robot on the basis of the available infrared sensors. The experiment shows how, by

coordinating the sensory and motor process, the robot can solve the problem through

a simple strategy that consists in reaching a corner and then leaving it with an angle

of about 45 degrees from the two walls forming the corner. This in fact ensures that

by turning left and then following the wall, when the robot encounter a wall on its left

side, it will always navigate toward the two right corners. In other words the strategy

of abandoning a corner with a 45 degrees angle enables the robot to infers whether

the walls encountered later on are long or short (walls encountered on the left side are

long while walls encountered on the right side are short). Indeed, turning left and then

moving forward along walls encountered on the left side, enables the robot to always

travel toward the top-left or right-bottom corners [78, 79].

113

4.6. ILLUSTRATIVE EXPERIMENTS

4.6.6 Body Evolution and Morphological Computing

The term “Morphological Computing” refers to the fact that the computations/elabora-

tions that allow a situated robot to display a certain desired behaviour should not be

performed necessarily by the robot’s control system only, but can be performed also by

the robot’s body [90]. One paradigmatic demonstration of this is constituted by pass-

ive walking machines, i.e. robots that can display a bipedal walking behaviour on an

inclined plane without any actuator and any control system. Whether these machines

manage to display an appropriate walking behaviour or not depends on the physical

characteristics of their body (e.g. the length and the mass of each body segment).

The term “Body Evolution” or “Body/Brain Evolution” refers instead to evolutionary ro-

botics experiments in which not only the characteristics of the robots’ controllers but

also the characteristics of the robots’ body are evolved.

The PassiveWalkerExperiment plugin provides a way to study the power of morpholo-

gical computation through an evolutionary approach that is used to discover the char-

acteristics of the robots’ body that, in interaction with the environment, enable the robot

to display the desired walking behaviour.

In this experiment a biped robot constituted of only passive elements (rigid body seg-

ments, joints and springs) can evolve an ability to walk on an inclined plane. For sim-

plicity, the plugin implements a simplified biped with a body that does not extend over

the lateral axis and consequently does not need to balance over that axis. The phys-

ical characteristics of the robot body are encoded in the robots’ genotype and evolved.

Evolving individuals are evaluated on the basis of the distance walked during a fixed

amount of time. The implementation of the body structure is included in the plugin code

and constitutes a useful exemplification of how robots made of articulated body parts

can be implemented in FARSA.

114

4.6. ILLUSTRATIVE EXPERIMENTS

Figure 4.11: Screenshot from the MinimalCognitiveBehaviourExperiment plugin

along the horizontal axis. This type of simple experimental setting can be used to study

different cognitive capacities. For example, experiments involving circle-shaped and

diamond-shaped falling objects, in which the agent should “catch” (i.e. collide with) the

former but not the latter type of objects, can be used to study active categorization [7].

Experiments involving two circular objects falling down at different time and locations,

in which the agent should catch the first and the second landing object in sequence,

can be used to study selective attention [44].

The MinimalCognitiveBehaviourExperiment plugin can be used to replicate the exper-

iments on selective attention described in [44] and can be used as a basis for imple-

menting other related experiments.

4.6.8 Learning by demonstration

The KinestheticGraspExperiment plugin implements an experiment in which an iCub

robot learns to reach and grasp an object placed on a table [126]. Unlike the Grasp-

Experiment plugin (described in section 4.6.3), in which the robot is trained using a

genetic algorithm, in this case both a supervised learning and a genetic algorithm are

116

4.7. CUSTOMIZING AND EXPANDING FARSA

Figure 4.12: Screenshot from the KinestheticGraspExperiment plugin

used. More specifically, the robot first acquires the ability to perform approximated

reach and grasp through a learning by demonstration procedure and then its skills are

refined by the application of evolutionary robotics techniques.

The iCub robot is placed in front of a table with a red ball on top of it, which can assume

random positions. The learning procedure is made up of two phases. In the first one the

robot arm is moved by external forces to reach and grasp the ball, as if a “teacher” was

guiding it. During this movement, the sequence of postures is recorded and used to

train the neural controller of the robot with the Levenberg-Marquardt algorithm (similar

to the classical back-propagation algorithm, but with a much faster convergence time).

Following this initial training, the robot undergoes an evolutionary process to fine-tune

the parameters of the controller, in order to perform effective movements.

4.7 Customizing and Expanding FARSA

FARSA can be expanded by creating new experimental plugins that can then be shared

together with the existing illustrative experiments. Moreover, all the functionality of

FARSA can be extended and expanded. We provide a detailed description of how this

117

4.8. CONCLUSIONS

can be done in FARSA documentation available from https://sourceforge.net/

p/farsa/wiki/Home/. In appendix A we provide a more synthetic description that

illustrates to interested readers how this can be realized.

4.8 Conclusions

In this chapter we have introduced FARSA, an open source tool targeted also toward

user with limited technical capabilities that enables to carry on experiments involving

embodied agents.

As far as we know FARSA is the only available tool that provides an integrated frame-

work for carrying on experiments of this type, i.e. it is the only tool that provides ready

to use integrated components that enable to define the characteristics of the robots and

of the environment, the characteristics of the robots’ controller and the characteristics

of the adaptive process. This enables users to quickly setup complex experiments and

to quickly start collecting results.

The tool still requires simple programming skills for implementing custom base reward-

ing functions or specific environmental structure. However, the level of technical skills

required is significantly smaller with respect to alternative tools.

In its current form, the tool would allow creating experiments similar to those described

in chapter 2 and 3 at a fraction of the effort. First of all there are ready-to-use robotic

models and it is possible to create new ones with simple building blocks (boxes, cyl-

inders and actuated joints). The same building blocks can also be used to build the

environment in which the robots acts and it is possible to decide how accurately the

interaction between objects should be simulated. This allows to trade-off accuracy for

simulation speed, e.g. to quickly test multiple hypotheses first so that more time can be

spent on the most promising ones. Moreover in FARSA the simulation of the robot and

the environment is already integrated with the other tools that are required to perform

simulated cognitive science experiments like the ones described in this thesis (i.e. a

neural network library and a genetic algorithm library).

118

4.8. CONCLUSIONS

More in general FARSA contains some of the building blocks that are generally needed

to create an embodied cognitive science experiment: a simulator for the body-environment

interaction, a library of agent controllers and adaptation algorithms. Concerning ex-

periments investigating the interaction between action and language, FARSA has few

modules that are explicitly dedicated to communication (e.g. some sensors), but im-

plementing them is quite straightforward using mechanisms like e.g. that of resources.

Moreover multi-agent scenarios in which two or more robots share the same environ-

ment and communicate among them are already possible, as shown by some of the

illustrative experiments described in this chapter.

FARSA, however, is far from being perfect. The main problem is that, due to use of

old pieces of code that were developed in the past in the LARAL laboratory, some

portions of the code are not completely modular. For example there is one C++ class

that is used as the starting point to implement evolutionary robotics experiments. It

puts together the simulator, neural network, sensors/motors and the genetic algorithm,

but it does not allow to selectively replace one component (e.g. the genetic algorithm)

with another one. In case of experiments that do not perfectly fit in this scenario, this

means that the user can either use the class, accepting that there will be parts of the

code that are not used actively but might consume resources (e.g. memory), or not use

it at the cost of writing more code from scratch (e.g. to connect sensors and motors to

the neural network).

Another issue with FARSA is that it only has limited tools to support analysis of agents’

behaviour. The aim is not to be able to perform do all needed analysis directly inside

FARSA, there are many tools that can be used to this end. It would however be very

useful, for example, to inspect and plot some simulation variables while watching the

agents’ behaviour. This is possible, at the moment, only for some variables, like e.g.

neurons of the neural networks controlling the agent.

It would also be beneficial to work on increasing the parallelism of simulations. At

the moment, multiple agents can be simulated in parallel, but only if they do not inter-

119

4.8. CONCLUSIONS

act (e.g. when evaluating the individuals of a population of one generation of a genetic

algorithm). To exploit the new highly parallel hardware architectures (like GPUs), paral-

lelization at a finer level would be needed, like e.g. parallel activation of the controller of

one agent or, in the case of swarm robotics simulations, parallel simulation of different

agents of the swarm. There have been attempts at using OpenCL36, a framework for

parallel programming of heterogeneous systems, but they are still at a very preliminary

stage.

Another limitation of the current version of the tool is that it is not possible to interface

with real robots. A step that, when possible, is generally useful when working with

simulations, is to validate the results on a real robot. This allows to make sure that the

simulation did not introduce simplifications that fundamentally change how the agent

interacts with the environment. At present, simulations performed with FARSA require

a substantial amount of work to be tested on a real robot and the precise steps crucially

depend on the robotic platform. As discussed in section 4.2 there are different robotic

middlewares that already allow to abstract over the details of the particular robotic plat-

form. By using one of those frameworks it would be possible to easily switch between

the simulated model of the robot and the real one.

To conclude, the success of the tool will depend on whether the user community will

reach a critical mass that will enable a progressive expansion of the functionalities

provided by the tool and a progressive expansion of the experiments repository. For

this reason in the near future we plan to disseminate the tool toward the large number

of potentially interested users who include students and researchers in the embodied

cognitive science community and professors of undergraduate and graduate courses.

We hope that the tool can help to reduce the complexity barrier that currently discour-

ages part of the researchers interested in the study of behaviour and cognition from

initiating experimental activity in this area.

36https://www.khronos.org/opencl/

120

Chapter 5

Conclusions

Embodied cognitive science addresses the study of behaviour and cognition in simu-

lated or real agents that have a body and that are situated in an external environment

with which they interact. In part of the cases, these studies also investigate how these

agents can develop their skills autonomously through an evolutionary and/or learning

process.

For many years, these studies have been confined to relatively simple agents and

tasks, due to theoretical as well as technical limitations. However, recent research,

including my own, have demonstrated how this method can be extended to studies that

involve agents with complex morphologies and rich sensory-motor systems mastering

relatively hard tasks ([6, 64, 95, 97, 101, 124, 137]).

In this thesis I reported two series of experiments in which we investigated the relation

between language and action development. More specifically in chapter 2 I reported a

series of experiments in which we demonstrated how the exposure to linguistic inputs,

that indicate the action that need to be performed in a particular phase, facilitates the

development of object manipulation skills. Moreover in chapter 3, I reported a series of

experiments in which we demonstrated how the acquisition of an ability to comprehend

simple command sentences lead to the acquisition of compositional comprehension

and action skills that enable the robots to comprehend and execute appropriately also

new sentences never experienced during the training process.

More specifically, the experiments reported in chapter 2 showed how the presence of

linguistic labels enabled the robot to successfully developed effective reaching, grasp-

121

ing, and lifting behaviour and to develop an ability to correctly handle the transition

among them. The presence of language helped the robot to segment the action in the

three constituent parts (reach-grasp-lift) and to properly handle the transition from the

second to the third behaviour.

The experiments reported in chapter 3 demonstrated how the development of an ability

to respond to linguistic commands, formed by the combination of action and object

“words”, by producing the appropriate corresponding manipulation behaviour led to

the development of solutions characterized by a modular organization that enables

the robot to comprehend new sentences (never experienced before) by producing the

appropriate corresponding actions. The fact that this type of compositional organization

emerged only in the experimental condition in which the actions to be produced were

related, demonstrates how the similarity relationships between actions influence the

synthesis of compositional solutions.

The experiments presented are very simplified in certain respects. The form of lan-

guage used is extremely simple and the behavioural repertoire acquired by the robots

is also rather limited. The adaptive process is realized by using one of the most simple

and yet effective techniques that can be used to synthesize behaviours of this type, that

is a basic genetic algorithm. On the other hand, the usage of a rather sophisticated

humanoid robot enables us to study adaptive tasks that have a significant complex-

ity. The realization of experiments that are complex in that respect was functional to

address our scientific objective. Indeed, the facilitation effect of language on action de-

velopment can only be observed in situations in which the behaviours to be developed

are sufficiently complex. Similarly, the emergence of compositional structures in ac-

tion generation and language comprehension might crucially depend on the need to

perform behaviours displaying a hierarchical organization (i.e. behaviour with a certain

complexity).

To perform these two studies the development of a new software tool was needed.

Each experiment had different requirements, that were analysed in the final sections

122

5.1. CONTRIBUTION TO KNOWLEDGE

of chapters 2 and 3. These requirements guided the development of the tool that

would then become FARSA, presented in chapter 4. In its current form FARSA allows

to easily set up and carry on embodied experiments and has already been used to

perform other experiments not reported in this thesis.

Today FARSA is the only available tool that provide an integrated framework for carrying

out experiments with embodied and situated robots, i.e. it is the only tool that provides

ready to use integrated components that enables to define the characteristics of the

robots and of the environment, the characteristics of the robots’ controller, and the

characteristics of the adaptive process. This enables users to quickly setup complex

experiments and to quickly start to collect results. We hope that this open-source tool

can help to reduce the complexity barrier that currently discourages some researchers

interested in the study of behaviour and cognition from initiating experimental activity

in this area.

5.1 Contribution to knowledge

This thesis contains both scientific and methodological contributions. Scientific contri-

butions to knowledge are contained in chapters 2 and 3 and are as follows:

• the experiments in chapter 2 have shown that external guidance in the form of

simplified linguistic labels can help a robot to develop manipulation abilities that

would otherwise be too complex to learn. This result is in line with theories about

the cognitive role of language, as discussed for example in [70];

• the experiments in chapter 3 show another possible effect of language on the

development of behavioural capabilities. The use of a simple compositional lin-

guistic instruction made up of an action “word” plus an object “word”, in fact, leads

to the development of a modular organization of behaviours that allows the robot

to respond to instructions never experienced before;

• with regard to the symbol grounding problem discussed in section 1.2, the cited

experiments are examples of systems in which symbols are fully grounded in the

123

5.1. CONTRIBUTION TO KNOWLEDGE

sensory-motor capabilities of the agents. This is a more profound form of ground-

ing with respect to what has been proposed in related literature (e.g. [112]).

Chapter 4, as well as sections 2.6 and 3.9, contain methodological contributions:

• researchers in embodied cognitive science need powerful software tools. There

are many available libraries, but most of them only can only be used to deal with

one particular aspect of an experiment (e.g. physics simulation, control, adapt-

ation algorithms). The FARSA framework, instead, contains an integrated set of

components that can be used to quickly setup an embodied cognitive science

experiment;

• such an integrated tool also facilitates the sharing of source code among re-

searchers and the possibility to replicate experiments.

124

Appendix A

Customizing and Expanding FARSA

A.1 Plugins, components and resources

FARSA can be extended by creating new components, i.e. software structures belong-

ing to a certain type (e.g. robots, sensors, motors, experiments, controllers etc.) that

can be instantiated at runtime when needed. The components that are required can

be specified in a configuration file and can be configured in the same configuration files

through appropriate parameters. New components can be conveniently be encapsu-

lated in plugins, that can be compiled independently from FARSA e can be loaded at

runtine.

A.1.1 Creating a plugin and registering components

To create a component in a FARSA plugin the user might use the following class:

#include " f a r s a p l u g i n . h "

. . .

class FARSA_PLUGIN_API ExampleClass : public Component

{

FARSA_REGISTER_CLASS(Component)

. . .

} ;

The example contains everything that is needed to add a new component. In particular

the FARSA_REGISTER_CLASS macro is necessary to instantiate the component from

a configuration file. The argument of the macro is the name of the parent component.

125

A.1. PLUGINS, COMPONENTS AND RESOURCES

The project required to compile the plugin can be generated with CMake1, a cross-

platform, open-source build system. The build steps needed to compile a CMake pro-

ject are specified in a script file called CMakeLists.txt. FARSA provides ready-to-use

CMake files that make the compilation of plugins as easy as possible2.

A.1.2 Configuring components

Below we show an example of a configuration file that can be used to instantiate and

configure a series of components:

[Component]

type = EvoRobotComponent

[Component /GA]

type = Evoga

ngenerat ions = 500

[Component /GA/ Experiment]

type = KheperaDiscr iminat ionExper iment

nsteps = 600

[Component /GA/ Experiment /ROBOT]

type = Khepera

kinematicRobot = t rue

[Component /GA/ Experiment /NET]

type = Evonet

[Component /GA/ Experiment / Sensor : 0]

type = KheperaSampledProximityIRSensor

act iveSensors = 11111100

[Component /GA/ Experiment / Motor : 0]

type = KheperaWheelVelocityMotor

The text between square brackets is the name of a group. All parameters belong to

the group immediately preceding them. Groups are organized in a hierarchical way

and the “/” character is used to separate groups and subgroups. So, for example,

Component/GA/Experiment means that Experiment is a subgroup of GA that, in turn,

is a subgroup of Component. The parameter type is used to specify the class of the

1http://www.cmake.org/
2See page https://sourceforge.net/p/farsa/wiki/PluginsAndRegistration/

126

A.1. PLUGINS, COMPONENTS AND RESOURCES

component.

The following example shows a component implemented inside a plugin:

class FARSA_PLUGIN_API KheperaDiscr iminat ionExper iment : public

EvoRobotExperiment

{

FARSA_REGISTER_CLASS(EvoRobotExperiment)

public :

. . .

s t a t i c void descr ibe (QStr ing type) ;

v i r t u a l void con f igu re (Conf igurat ionParameters& params , QStr ing p r e f i x) ;

v i r t u a l void p o s t C o n f i g u r e I n i t i a l i z a t i o n () ;

. . .

} ;

void KheperaDiscr iminat ionExper iment : : descr ibe (QStr ing type)

{

EvoRobotExperiment : : descr ibe (type) ;

Desc r i p to r d = addTypeDescr ipt ion (type , " The experiment i n which a khepera

robot has to d i s c r i m i n a t e between an ob jec t i n the arena and the arena

wa l l s ") ;

d . descr ibeReal (" playgroundWidth ") . def (0 . 5) . l i m i t s (0 . 0 , + I n f i n i t y) . help ("

The width o f the playground ") ;

d . descr ibeReal (" p laygroundHeight ") . def (0 . 5) . l i m i t s (0 . 0 , + I n f i n i t y) . help ("

The he igh t o f the playground ") ;

. . .

}

void KheperaDiscr iminat ionExper iment : : con f igu re (Conf igurat ionParameters&

params , QStr ing p r e f i x)

{

EvoRobotExperiment : : con f igu re (params , p r e f i x) ;

m_playgroundWidth = Conf igu ra t ionHe lper : : getDouble (params , p r e f i x + "

playgroundWidth " , 0 .5) ;

m_playgroundHeight = Conf igu ra t ionHe lper : : getDouble (params , p r e f i x + "

playgroundHeight " , 0 .5) ;

. . .

}

127

A.1. PLUGINS, COMPONENTS AND RESOURCES

void KheperaDiscr iminat ionExper iment : : p o s t C o n f i g u r e I n i t i a l i z a t i o n ()

{

EvoRobotExperiment : : p o s t C o n f i g u r e I n i t i a l i z a t i o n () ;

. . .

}

Every component should include a describe() and a configure() function. The de-

scribe() function, that is executed before the component is created, is used to describe

of all the parameters and subgroups that are needed by the component. The config-

ure() function, that is executed after the component is created, is used to configure the

component on the basis of the parameters specified in the configuration file. Compon-

ents might also include a postConfigureInitialization() function, that is executed after

the previous function, that can be used to initialize the component, when necessary.

Components can have associated graphical user interfaces (GUIs) and menu items

that are added to the default menu included in total993.

A.1.3 Declaring and accessing resources

The resource mechanism allows components to access the data of other components

in a simple way. Standard components (e.g. sensors, motors, experiments, etc.) are

already enabled to create and access resources. The user has the possibility to cre-

ate new resources through the declareResource() function and to access resources

through the getResource() function as shown in the example below.

MyComponent : : MyComponent () : . . .

{

. . .

addUsableResource (" arena ") ;

. . .

}

MyComponent : : f ()

{

ResourcesLocker l ocke r (th is) ;

3See page https://sourceforge.net/p/farsa/wiki/ComponentsConfig/

128

A.2. CREATING A NEW EXPERIMENT

Arena * arena = getResource <Arena >(" arena ") ;

. . .

}

Notice that before accessing a resource through the getResource() function the object

should declare that it is going to use it through the addUsableResource() function.

Moreover, the user should lock the resource before accessing it to avoid problems that

can be caused by multiple threads attempting to access to the same resources at the

same time. The resourceChanged() function is called every time a resource is created,

modified, or deleted.

A.2 Creating a new experiment

FARSA provides different classes that can be used to create an experiment, tailored

to different kinds of experiments. Here we will show how to create experiments on the

basis of the EvoRobotExperiment component, which is particularly suitable for evolu-

tionary robotics experiments. This class enables the user to define the large majority

of the characteristics of the experiment (i.e. the type of robot, the number of robots,

the robot’s sensors and motors, the architecture of the robots’ neural controller, the

characteristics of the adaptive process, the number of trials used for evaluating robots,

etc.) through parameters specified in the configuration file. The characteristics of the

environment, the initial positions and orientations of the robots, and the fitness function,

instead, should be defined inside the experimental plugin.

As a basic example, we include below an extract of the source code from the Braiten-

bergExperiment plugin. The full source code and a sample configuration file are avail-

able in the FARSA illustrative experiments package. Moreover a detailed description

can be found in the on-line documentation4. This example does not include the defin-

ition of a fitness function since the experiments do not require to subject the robots to

an adaptation process.

class FARSA_PLUGIN_API Brai tenbergExper iment : public EvoRobotExperiment

4See page https://sourceforge.net/p/farsa/wiki/CreatingNewExperiment/

129

A.2. CREATING A NEW EXPERIMENT

{

Q_OBJECT

FARSA_REGISTER_CLASS(EvoRobotExperiment)

public :

Bra i tenbergExper iment () ;

v i r t u a l void con f igu re (Conf igurat ionParameters& params , QStr ing p r e f i x) ;

s t a t i c void descr ibe (QStr ing type) ;

v i r t u a l void p o s t C o n f i g u r e I n i t i a l i z a t i o n () ;

v i r t u a l void i n i t T r i a l (i n t t r i a l) ;

v i r t u a l void endStep (i n t step) ;

} ;

. . .

void Brai tenbergExper iment : : p o s t C o n f i g u r e I n i t i a l i z a t i o n ()

{

EvoRobotExperiment : : p o s t C o n f i g u r e I n i t i a l i z a t i o n () ;

ResourcesLocker l ocke r (th is) ;

Arena * arena = getResource <Arena >(" arena ") ;

arena−>getPlane ()−>setCo lor (Qt : : whi te) ;

. . .

Box2DWrapper * e ;

e = arena−>createRectangularTargetArea (t ickness , playgroundHeight + (

t i ckness * 2) , Qt : : b lack) ;

e−>s e t P o s i t i o n ((playgroundWidth + t i ckness) / 2 , 0 .0) ;

. . .

RobotOnPlane * robot = getResource <RobotOnPlane >(" agent [0] : robot ") ;

}

void Brai tenbergExper iment : : i n i t T r i a l (i n t)

{

ResourcesLocker l ocke r (th is) ;

Arena * arena = getResource <Arena >(" arena ") ;

RobotOnPlane * robot = getResource <RobotOnPlane >(" agent [0] : robot ") ;

. . .

robot−>s e t P o s i t i o n (arena−>getPlane () , rx , ry) ;

robot−>s e t O r i e n t a t i o n (arena−>getPlane () , globalRNG−>getDouble(−PI_GRECO,

PI_GRECO)) ;

}

130

A.3. CUSTOMIZING THE ENVIRONMENT

/ / This i s needed because endStep i s pure v i r t u a l i n EvoRobotExperiment

void Brai tenbergExper iment : : endStep (i n t) { }

For a description of other experimental classes provided by FARSA see https://

sourceforge.net/p/farsa/wiki/ComponentBaseExperiment/.

A.3 Customizing the environment

The characteristics of the environment in which the robots are situated and eventually

the way in which the environment is re-initialized during different periods of the robots’

lifetime are usually specified within the source code of the experimental plugins. In this

section we describe the Arena component and the Worldsim library that can be used

to set-up different types of environments.

A.3.1 The Arena Component

The Arena component can be used to set-up the environment for experiments involving

wheeled robots. It allows the user to easily create a flat planar surface containing

objects like walls, cylinders, boxes, target areas (i.e. portion of the floor painted with a

specific colour) and light bulbs. See Figure A.1 for an example

The following code briefly illustrates how to create, modify and delete objects in the

Arena. For more information see https://sourceforge.net/p/farsa/wiki/

ArenaComponent/.

void MyExperiment : : setupArena ()

{

ResourcesLocker l ocke r (th is) ;

Arena * arena = getResource <Arena >(" arena ") ;

/ / Set the co lour o f the arena plane

arena−>getPlane ()−>setCo lor (Qt : : whi te) ;

. . .

/ / Create a l i g h t grey c i r c u l a r t a r g e t area

Cylinder2DWrapper * c i r c u l a r a r e a ;

c i r c u l a r a r e a = arena−>crea teC i rcu la rTarge tArea (0 .09 , QColor

(200 ,200 ,200 ,255)) ;

131

A.3. CUSTOMIZING THE ENVIRONMENT

Figure A.1: A simulated Arena, with various objects. The cylinder in the centre rep-

resents a simulated Khepera robot.

132

A.4. ROBOTIC PLATFORMS

/ / In the f o l l o w i n g func t i on , m_world i s the ins tance of the World c lass

void WorldsimShowcase : : createShowcase ()

{

. . .

/ / An hinge j o i n t between a box and a c y l i n d e r . The hinge has a lower

/ / and upper l i m i t to i t s movement .

PhyBox* hBox = new PhyBox (0 . 4 , 0 .4 , 0 .1 , m_world) ;

hBox−>setMass (1 . 0) ;

hBox−>s e t P o s i t i o n (0 . 7 , 0 .0 , 0 .5) ;

hBox−>setCo lor (QColor (255 , 190 , 0)) ;

PhyCyl inder * hCy l inder = new PhyCyl inder (0 .05 , 0 .3 , m_world) ;

hCyl inder−>setMass (0 . 1) ;

mtr = wMatr ix : : yaw(M_PI_2) ;

mtr . w_pos = wVector (0 . 5 , 0 .0 , 0 .65) ;

hCyl inder−>se tMa t r i x (mtr) ;

/ / Se t t i ng a slow i n i t i a l v e l o c i t y so t h a t the c y l i n d e r does not remain

/ / v e r t i c a l

hCyl inder−>setOmega (wVector (0 . 0 , 1 .0 , 0 .0)) ;

hCyl inder−>setCo lor (QColor (190 , 255 , 0)) ;

PhyHinge * hinge = new PhyHinge (wVector (0 . 0 , 1 .0 , 0 .0) , wVector (−0.2 , 0 .0 ,

0 .0) , hBox , hCy l inder) ;

hinge−>dofs () [0]−> s e t L i m i t s (−M_PI / 3 .0 , M_PI / 3 .0) ;

/ / Al low f ree movement (otherwise a motor t r i e s to keep the ob jec ts i n

t h e i r s t a r t i n g p o s i t i o n)

hinge−>dofs () [0]−> swi t chOf f () ;

hinge−>dofs () [0]−> enab leL imi ts () ;

. . .

}

A.4 Robotic platforms

FARSA provides a series of ready-to-use robotic platforms (i.e. Khepera, ePuck,

MarXbot, and iCub). The robots to be used can be specified through parameters.

However the user might need to access to the robots’ component, e.g. to set the initial

position of the robots and to compute the fitness while the robots move.

134

A.4. ROBOTIC PLATFORMS

For each robot there are two different classes, one with the same name of the robot

(e.g. Khepera, Epuck, etc.) and another with the same name preceded by “Phy ” (e.g.

PhyKhepera, PhyEpuck, etc.). The Phy classes contain the physical model of the

robot and all associated physical objects (e.g. joints, motors, sensors). Most of the

properties of the robots can be specified through parameters. FARSA also enables to

specify through a parameter whether the robots/environmental interaction should be

simulated through the kinematic or the dynamic simulation engine.

The source code below shows an example of how a robot resource can be accessed

and used to set the position and the orientation of a wheeled robot. RobotOnPlane is

the base class that can be used to access wheeled robots located over a planar surface

(Arena). In this situation, in fact, the position of the robot can be set by using simple

bi-dimensional coordinates. The example assumes that MyExperiment is a subclass

of EvoRobotExperiment.

void MyExperiment : : i n i t T r i a l (i n t)

{

ResourcesLocker l ocke r (th is) ;

Arena * arena = getResource <Arena >(" arena ") ;

RobotOnPlane * robot = getResource <RobotOnPlane >(" agent [0] : robot ") ;

/ / Se t t i ng the p o s i t i o n o f the robot by s e l e c t i n g a random l o c a t i o n

robot−>s e t P o s i t i o n (arena−>getPlane () , globalRNG−>getDouble (−0.2 f , 0.2 f) ,

globalRNG−>getDouble (−0.2 f , 0.2 f)) ;

/ / Se t t i ng the o r i e n t a t i o n o f the robot to a random value

robot−>s e t O r i e n t a t i o n (arena−>getPlane () , globalRNG−>getDouble(−PI_GRECO,

PI_GRECO)) ;

/ / Get t ing the robot pos i t i on , o r i e n t a t i o n , rad ius , and co lour

wVector p o s i t i o n = robot−>p o s i t i o n () ;

r e a l o r i e n t a t i o n = robot−>o r i e n t a t i o n (arena−>getPlane ()) ;

r e a l rad ius = robot−>robotRadius () ;

QColor c o l o r = robot−>robotCo lor () ;

}

The source code shown below instead shows how the user can create a simulated

135

A.4. ROBOTIC PLATFORMS

iCub robot, initializes the posture of the robot, enables the motors of the torso, and

access the velocity of one of the iCub joint.

void iCubShowcase : : create iCub ()

{

ResourcesLocker resourceLocker (th is) ;

/ / Creat ing the iCub . Here we set the i n i t i a l p o s i t i o n and do not create

the con t ro lboards

/ / (t h a t are needed only i f communication wi th YARP i s requ i red)

f a rsa : : wMatr ix mtr = fa rsa : : wMatr ix : : i d e n t i t y () ;

mtr . w_pos . z = 0 . 1 ;

m_icub = new f a rsa : : PhyiCub (m_world , " icub " , mtr , fa lse) ;

/ / B lock ing a piece of the iCub to rso so t h a t i t always remains i n the

same p o s i t i o n i n the

/ / wor ld

m_icub−>blockTorso0 (true) ;

/ / Se t t i ng a posture . This s imply moves a l l j o i n t s to the des i red

p o s i t i o n s . I t should

/ / not be used whi le iCub j o i n t s are moved by the motor c o n t r o l l e r

QMap< int , rea l > j o i n t S e t u p ;

j o i n t S e t u p [fa rsa : : PhyiCub : : r i g h t _ s h o u l d e r _ p i t c h] = 0 . 0 ;

j o i n t S e t u p [fa rsa : : PhyiCub : : r i g h t _ s h o u l d e r _ r o l l] = 90 .0 ;

j o i n t S e t u p [fa rsa : : PhyiCub : : r ight_shoulder_yaw] = 0 . 0 ;

j o i n t S e t u p [fa rsa : : PhyiCub : : r igh t_e lbow] = 90 .0 ;

. . .

m_icub−>conf igurePosture (j o i n t S e t u p) ;

/ / Enabl ing to rso motors

m_icub−>t o r s o C o n t r o l l e r ()−>setEnabled (true) ;

}

void iCubShowcase : : s imu la t ionStep (i n t step)

{

ResourcesLocker resourceLocker (th is) ;

/ / Moving to rso . We i n v e r t v e l o c i t y every 200 steps

i f ((step % 200) == 0) {

m_torso0Vel *= −1.0;

}

136

A.5. PROGRAMMING A FITNESS FUNCTION

m_icub−>t o r s o C o n t r o l l e r ()−>veloc i tyMove (0 , m_torso0Vel) ;

m_world−>advance () ;

/ / Reading to rso p o s i t i o n

double pos ;

m_icub−>t o r s o C o n t r o l l e r ()−>getEncoder (0 , &pos) ;

Logger : : i n f o (QStr ing (" Torso p o s i t i o n i n degrees : %1") . arg (pos)) ;

}

A.5 Programming a fitness function

The fitness function of the robot is stored in the totalFitnessValue variable. Con-

sequently, to update the fitness function the user needs to update the value of this

variable. This can be done after each step, each trial, or at the end of all trials within

the endStep(), endTrial() or endIndividual() functions, respectively. To calculate the fit-

ness, typically the user needs to access the robot’s component and/or the environment

component through the functions that we briefly illustrated above.

Below we include an example taken from the KheperaDiscriminationExperiment plugin.

In this case, the fitness of the robot is increased by one point, at the end of each step,

when the robot is sufficiently near to a certain object in the arena. The fitness is

normalized at the end of each trial by the number of steps and then at the end of the

evaluation by the number of trials.

void KheperaDiscr iminat ionExper iment : : i n i t T r i a l (i n t t r i a l)

{

. . .

/ / Reset t ing f i t n e s s f o r the cu r ren t t r i a l

t r i a l F i t n e s s V a l u e = 0;

}

void KheperaDiscr iminat ionExper iment : : endStep (i n t step)

{

fa rsa : : ResourcesLocker l ocke r (th is) ;

f a rsa : : RobotOnPlane * robot = getResource < fa rsa : : RobotOnPlane >(" agent [0] :

robo t ") ;

const f a rsa : : Arena * arena = getResource < fa rsa : : Arena >(" arena ") ;

137

A.6. CREATING CUSTOM SENSORS OR MOTORS

/ / I f robot c o l l i d e d wi th something , s topp ing the t r i a l

i f (arena−>getK inemat icRobotCo l l i s ionsSet (" agent [0] : robot ") . s i ze () != 0) {

s t o p T r i a l () ;

return ;

}

/ / Computing the d is tance of the robot w i th the ob jec t

const f a rsa : : r e a l d is tance = robotObjec tD is tance (robot) ;

i f (d is tance < m_distanceThreshold) {

t r i a l F i t n e s s V a l u e += 1 . 0 ;

}

}

void KheperaDiscr iminat ionExper iment : : endTr ia l (i n t t r i a l)

{

t o t a l F i t n e s s V a l u e += t r i a l F i t n e s s V a l u e / getNSteps () ;

}

void KheperaDiscr iminat ionExper iment : : end Ind i v i dua l (i n t i n d i v i d u a l)

{

t o t a l F i t n e s s V a l u e = t o t a l F i t n e s s V a l u e / ge tNTr ia l s () ;

}

A.6 Creating custom sensors or motors

FARSA provides many ready-to-use sensors and motors for each supported robotic

platform. When necessary, however, the user can create new sensors or motors by

defining new subclasses of the Sensor and Motor classes.

The example below shows how to implement a simple sensor that simply sets three

input units to the constant value of 0.5. Sensors and motors classes have a series

of methods for doing different things. The size() function can be used to specify the

number of corresponding sensory units. The update() function is used to update the

state of the sensory units on the basis of the current position of the robot and on the

basis of the state of the environment. See https://sourceforge.net/p/farsa/

wiki/CustomSensorMotor/ for more information.

class FARSA_PLUGIN_API MinimalSensor : public Sensor

138

A.6. CREATING CUSTOM SENSORS OR MOTORS

{

FARSA_REGISTER_CLASS(Sensor)

public :

MinimalSensor (Conf igurat ionParameters& params , QStr ing p r e f i x) ;

~MinimalSensor () ;

v i r t u a l void save (Conf igurat ionParameters& params , QStr ing p r e f i x) ;

s t a t i c void descr ibe (QStr ing type) ;

v i r t u a l void update () ;

v i r t u a l i n t s ize () ;

protected :

v i r t u a l void resourceChanged (QStr ing resourceName , ResourceChangeType

changeType) ;

const QStr ing m_neuronsIteratorResource ;

Neurons I te ra to r * m_neuronsI tera tor ;

} ;

MinimalSensor : : MinimalSensor (Conf igurat ionParameters& params , QStr ing p r e f i x

) :

Sensor (params , p r e f i x) ,

m_neuronsIteratorResource (actualResourceNameForMult i robot (

Con f igu ra t ionHe lper : : g e t S t r i n g (params , p r e f i x + " neu rons I t e ra t o r " , "

neu rons I t e ra t o r "))) ,

m_neuronsI tera tor (NULL)

{

addUsableResource (m_neuronsIteratorResource) ;

}

void MinimalSensor : : update ()

{

. . .

m_neuronsI terator−>setCur rentB lock (name ()) ;

for (unsigned i n t i = 0 ; i < m_add i t i ona l Inpu ts . s ize () ; i ++ ,

m_neuronsI terator−>nextNeuron ()) {

m_neuronsI terator−>se t I npu t (0 . 5) ;

}

}

i n t MinimalSensor : : s i ze ()

{

139

A.7. IMPLEMENTING A NEW ROBOT

return 3;

}

void MinimalSensor : : resourceChanged (QStr ing resourceName , ResourceChangeType

changeType)

{

. . .

i f (resourceName == m_neuronsIteratorResource) {

m_neuronsI tera tor = getResource <Neurons I te ra to r > () ;

m_neuronsI terator−>setCur rentB lock (name ()) ;

for (i n t i = 0 ; i < s ize () ; i ++ , m_neuronsI terator−>nextNeuron ()) {

m_neuronsI terator−>setGraph icProper t ies ("m" + QStr ing : : number (i) , 0 .0 ,

1 .0 , Qt : : red) ;

}

}

. . .

}

A.7 Implementing a new robot

The user can also implement a new robotic platform by using the methods available

in the Worldsim library. For more information see https://sourceforge.net/p/

farsa/wiki/NewRobot/.

140

Bibliography

[1] Michael L. Anderson. Embodied Cognition: A Field Guide. Artificial Intelligence,

149(1):91–130, 2003.

[2] H. Arie, T. Endo, S. Jeong, M. Lee, S. Sugano, and J. Tani. Integrative learning

between language and action: A neuro-robotics experiment. In Proceedings of

the 20th International Conference on Neural Networks, page In Press. Springer

Verlag, Berlin, GE, 2010.

[3] Joshua E. Auerbach and Josh C. Bongard. Environmental Influence on

the Evolution of Morphological Complexity in Machines. PLoS Comput Biol,

10(1):e1003399+, January 2014.

[4] Ruzena Bajcsy. Active perception. In Proc IEEE, 76:996–1005, 1988.

[5] Dana H. Ballard. Animate vision. Artificial Intelligence, 48(1):57–86, February

1991.

[6] Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models

with intrinsically motivated goal exploration in robots. Robotics and Autonomous

Systems, 61(1):49–73, January 2013.

[7] R. Beer. The dynamics of active categorical perception in an evolved model

agent. Adaptive Behavior, 11:209–243, 2003.

[8] R. D. Beer and J. C. Gallagher. Evolving dynamic neural networks for adaptive

behavior. Adaptive Behavior, 1(1):91–122, 1992.

[9] Randall D. Beer. Toward the evolution of dynamical neural networks for minimally

cognitive behavior. In P. Maes, M. Mataric, J. Meyer, J. Pollack, and S. Wilson,

141

BIBLIOGRAPHY

editors, From animals to animats 4: Proceedings of the Fourth International Con-

ference on Simulation of Adaptive Behavior, pages 421–429. MIT Press, Cam-

bridge, MA, 1996.

[10] Katrien Beuls and Luc Steels. Agent-Based Models of Strategies for the Emer-

gence and Evolution of Grammatical Agreement. PLoS ONE, 8(3):e58960+,

March 2013.

[11] M. Bonani, V. Longchamp, S. Magnenat, P. Retornaz, D. Burnier, G. Roulet,

F. Vaussard, H. Bleuler, and F. Mondada. The marxbot, a miniature mobile robot

opening new perspectives for the collective-robotic research. In Intelligent Ro-

bots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages

4187–4193, 2010.

[12] Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. A Brad-

ford Book, February 1986.

[13] Rodney Allen Brooks. Elephants don’t play chess. Robotics and Autonomous

Systems, 6(1-2):3–15, June 1990.

[14] Rodney Allen Brooks. Intelligence Without Reason. In John Myopoulos and Ray

Reiter, editors, Proceedings of the 12th International Joint Conference on Arti-

ficial Intelligence (IJCAI-91), pages 569–595, Sydney, Australia, 1991. Morgan

Kaufmann publishers Inc.: San Mateo, CA, USA.

[15] Rodney Allen Brooks. Intelligence without representation. Artificial Intelligence,

47(1-3):139–159, January 1991.

[16] A. Cangelosi and D. Parisi, editors. Simulating the evolution of language.

Springer Verlag, New York, 2002.

[17] A. Cangelosi and T. Riga. An embodied model for sensorimotor grounding

and grounding transfer: Experiments with epigenetic robots. Cognitive Science,

30(4):673–689, 2006.

142

BIBLIOGRAPHY

[18] Angelo Cangelosi, Josh Bongard, Martin H. Fischer, and Stefano Nolfi. Em-

bodied intelligence. In Janusz Kacprzyk and Witold Pedrycz, editors, Springer

Handbook of Computational Intelligence, pages 697–714. Springer, 2015.

[19] S. Carpin, M. Lewis, Jijun Wang, S. Balakirsky, and C. Scrapper. USARSim: a

robot simulator for research and education. In Robotics and Automation, 2007

IEEE International Conference on, pages 1400–1405, 2007.

[20] Peter Carruthers. The cognitive functions of language. Behavioral and Brain

Sciences, 25:657–674, 12 2002.

[21] N. Chater and C.D. Manning. Probabilistic models of language processing and

acquisition. Trends in Cognitive Sciences, 10(7):335–344, 2006.

[22] Hillel J. Chiel and Randall D. Beer. The brain has a body: adaptive behavior

emerges from interactions of nervous system, body and environment. Trends in

Neurosciences, 20(12):553–557, December 1997.

[23] Andy Clark. Being There: Putting Brain, Body, and World Together Again. A

Bradford Book, reprint edition, January 1998.

[24] Andy Clark. Magic words: How language augments human computation. Lan-

guage and thought: Interdisciplinary themes, pages 162–183, 1998.

[25] Andy Clark. An embodied cognitive science? Trends in Cognitive Sciences,

3(9):345–351, September 1999.

[26] T. H. J. Collet, B. A. MacDonald, and B. Gerkey. Player 2.0: Toward a practical

robot programming framework. In Proceedings of the Australasian Conference

on Robotics and Automation, 2005.

[27] Steve Collins, Andy Ruina, Russ Tedrake, and Martijn Wisse. Efficient bi-

pedal robots based on passive-dynamic walkers. Science (New York, N.Y.),

307(5712):1082–5, February 2005.

143

BIBLIOGRAPHY

[28] Steven H. Collins, Martijn Wisse, and Andy Ruina. A Three-Dimensional

Passive-Dynamic Walking Robot with Two Legs and Knees. The International

Journal of Robotics Research, 20(7):607–615, July 2001.

[29] Antonio R. Damasio. Descartes’ Error: Emotion, Reason, and the Human Brain.

Harper Perennial, 1 edition, November 1995.

[30] Daniel C. Dennett. Consciousness Explained. Penguin, 1991.

[31] E.A. Di Paolo. Behavioral coordination, structural congruence and entrainment

in a simulation of acoustically coupled agents. Adaptive Behaviour, 8(1):27–48,

2000.

[32] J.L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[33] J.L. Elman. Computational approaches to language acquisition. In K. Brown,

editor, Encyclopedia of Language and Linguistics, volume 2, pages 726–732.

Oxford: Elsevier, second edition, 2006.

[34] J. Felip and A. Morales. Robust sensor-based grasp primitive for a three-finger

robot hand. In IEEE/RSJ International. Conference on Intelligent Robots and

Systems, 2009.

[35] Martin H. Fischer and Rolf A. Zwaan. Embodied language: A review of the

role of the motor system in language comprehension. The Quarterly Journal of

Experimental Psychology, 61(6):825–850, May 2008.

[36] P. Fitzpatrick, E. Ceseracciu, D. Domenichelli, A. Paikan, G. Metta, , and L. Nat-

ale. A middle way for robotics middleware. Journal of Software Engineering for

Robotics, 5(2):42–49, 2014.

[37] J.A. Fodor and Z.W. Phylysyn. Connectionism and cognitive architecture: A

critical analysis. Cognition, 28:3–71, 1988.

144

BIBLIOGRAPHY

[38] B. Gerkey, R. Vaughan, and A. Howard. The player/stage project: Tools for

multi-robot and distributed sensor systems. In Proceedings of the International

Conference on Advanced Robotics, pages 317–323, 2003.

[39] Brian P. Gerkey, Richard T. Vaughan, Gaurav S. Sukhatme, Kasper Stoy, Andrew

Howard, and Maja J. Mataric. Most valuable player: A robot device server for

distributed control, 2001.

[40] James J. Gibson. The Ecological Approach to Visual Perception. Houghton

Mifflin Harcourt (HMH), Boston, March 1979.

[41] M. Gienger, M. Toussaint, N. Jetchev, A. Bendig, and C. Goerick. Optimization

of fluent approach and grasp motions. In Procceding of the 8th IEEE-RAS Inter-

national Conference on Humanoid Robots, pages 111–117. IEEE Press, 2008.

[42] A. Glenberg and M. Kaschak. Grounding language in action. Psychonomic

Bulletin & Review, 9:558–565, 2002.

[43] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley, Reading, MA, 1989.

[44] Eldan Goldenberg, Jacob Garcowski, and Randall D. Beer. May we have your at-

tention: Analysis of a selective attention task. In S. Schaal, A. Ijspeert, A. Billard,

S. Vijayakumar, J. Hallam, and J.-A. Meyer, editors, From Animals to Animats 8:

Proceedings of the Eighth International Conference on the Simulation of Adapt-

ive Behavior, pages 49–56. MIT Press, Cambridge, MA, 2004.

[45] Joachim Greeff and Stefano Nolfi. Evolution of Communication and Language

in Embodied Agents, chapter Evolution of Implicit and Explicit Communication in

Mobile Robots, pages 179–214. Springer Berlin Heidelberg, Berlin, Heidelberg,

2010.

[46] R. V. Guha and Douglas B. Lenat. Cyc: a mid-term report. AI Mag., 11(3):32–59,

1990.

145

BIBLIOGRAPHY

[47] Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phenom-

ena, 42(1-3):335–346, June 1990.

[48] Stevan Harnad. To cognize is to categorize: Cognition is categorization. In

Claire Lefebvre and Henri Cohen, editors, Handbook of Categorization. Elsevier,

December 2005. UQaM Summer Institute in Cognitive Sciences on Categoriza-

tion. 30 June - 11 July 2003 http://www.unites.uqam.ca/sccog/liens/program.html

Event Dates: 30 June - 11 July 2003.

[49] S. Harnard. The symbol grounding problem. Physica D, 42:335–346, 1990.

[50] John Haugeland. Artificial Intelligence: The Very Idea. The MIT Press, January

1989.

[51] O. Hauk, I. Johnsrude, and F. Pulvermuller. Somatotopic representation of action

words in human motor and premotor cortex. Neuron, 41(2):301–307, 2004.

[52] J.L. Elman J.D. Lewis. Learnability and the statistical structure of language:

Poverty of stimulus arguments revisited. 2001.

[53] Julio Jerez and Alain Suero. Newton Game Dynamics, 2004.

[54] F. Kaplan, P-Y. Oudeyer, and B. Bergen. Computational models in the debate

over language learnability. Infant and Child Development, 17(1):55–80, 2008.

[55] David Kirsh and Paul Maglio. On distinguishing epistemic from pragmatic action.

Cognitive Science, 18(4):513–549, December 1994.

[56] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an

open-source multi-robot simulator. In In IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 2149–2154, 2004.

[57] George Lakoff and Mark Johnson. Philosophy in the Flesh : The Embodied Mind

and Its Challenge to Western Thought. Basic Books, December 1999.

146

BIBLIOGRAPHY

[58] Tobias Leugger and Stefano Nolfi. Action development and integration in an

humanoid icub robot: How language exposure and self-talk facilitate action de-

velopment. In Terry Bossomaier and Stefano Nolfi, editors, COGNITIVE 2012,

The Fourth International Conference on Advanced Cognitive Technologies and

Applications, pages 24–30. IARIA, 2012.

[59] A. Y. Ng M. Quigley, E. Berger. Stair: Hardware and software architecture. 2007.

[60] B. MacWhinney. Computational models of child language learning: an introduc-

tion. Journal of Child Language, 37:477–485, 2010.

[61] Gianluca Massera, Angelo Cangelosi, and Stefano Nolfi. Evolution of prehension

ability in an anthropomorphic neurorobotic arm. Front Neurorobot, 1:4, 2007.

[62] Gianluca Massera, Tomassino Ferrauto, Onofrio Gigliotta, and Stefano Nolfi.

Farsa: An open software tool for embodied cognitive science. Cambridge, MA,

2013. MIT Press.

[63] Gianluca Massera, Tomassino Ferrauto, Onofrio Gigliotta, and Stefano Nolfi.

Designing adaptive humanoid robots through the farsa open-source framework.

Adaptive Behavior, 22(4):255–265, 2014.

[64] Gianluca Massera, Elio Tuci, Tomassino Ferrauto, and Stefano Nolfi. The facilit-

atory role of linguistic instructions on developing manipulation skills. Computa-

tional Intelligence Magazine, 5(3):33–42, August 2010.

[65] M. K. McCarty, R. K. Clifton, D. H. Ashmead, P. Lee, and N. Goulet. How infants

use vision for grasping objects. Child Development, 72:973–987, 2001.

[66] Tad McGeer. Passive Dynamic Walking. The International Journal of Robotics

Research, 9(2):62–82, April 1990.

[67] G. Metta, P. Fitzpatrick, and L. Natale. Yarp: Yet another robot platform. In-

ternational Journal of Advanced Robotics Systems, special issue on Software

Development and Integration in Robotics, 3(1):43–48, 2006.

147

BIBLIOGRAPHY

[68] Olivier Michel. Webots™: Professional mobile robot simulation. International

Journal of Advanced Robotic Systems, 1(1):39–42, 2004.

[69] Marco Mirolli and Domenico Parisi. Language as an aid to categorization: A

neural network model of early language acquisition. pages 97–106, 2005.

[70] Marco Mirolli and Domenico Parisi. Towards a vygotskyan cognitive robotics:

The role of language as a cognitive tool. New Ideas in Psychology, 29:298–311,

2011.

[71] Francesco Mondada, Michael Bonani, Xavier Raemy, James Pugh, Christopher

Cianci, Adam Klaptocz, Stéphane Magnenat, Jean christophe Zufferey, Dario

Floreano, and Alcherio Martinoli. The e-puck, a robot designed for education

in engineering. In In Proceedings of the 9th Conference on Autonomous Robot

Systems and Competitions, pages 59–65, 2009.

[72] Francesco Mondada, Edoardo Franzi, and Paolo Ienne. Mobile robot miniatur-

isation: A tool for investigation in control algorithms. In Proceedings of the 3rd

International Symposium on Experimental Robotics, 1993.

[73] Anthony F. Morse, Tony Belpaeme, Angelo Cangelosi, and Linda B. Smith. Think-

ing with your body: modelling spatial biases in categorization using a real hu-

manoid robot. In Proceedings of 2010 annual meeting of the Cognitive Science

Society. Portland, USA, pages 1362–1368, 2010.

[74] S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology, Intelligence, and

Technology of Self-Organizing Machines. MIT Press, Cambridge, MA, 2000.

[75] S. Nolfi and M. Mirolli, editors. Evolution of Communication and Language in

Embodied Agents. Springer Verlag, Berlin, 2010.

[76] Stefano Nolfi. Adaptation as a More Powerful Tool Than Decomposition and

Integration. In Proceedings of the Workshop on Evolutionary Computing and

Machine Learning, 13th International Conference on Machine Learning, 1996.

148

BIBLIOGRAPHY

[77] Stefano Nolfi. Evorobot 1.1 user manual. Technical report, Institute of Psycho-

logy, CNR., 2000.

[78] Stefano Nolfi. Power and limits of reactive agents. Neurocomputing, 49:119–145,

2002.

[79] Stefano Nolfi. Category formation in self-organizing embodied agents. In

Henri CohenClaire Lefebvre, editor, Handbook of Categorization in Cognitive

Science, pages 869 – 889. Elsevier Science Ltd, Oxford, 2005.

[80] Stefano Nolfi. New Perspectives on the Origins of Language, chapter Emergence

of communication and language in evolving robots, pages 533––554. John Ben-

jamins Publishing Company, Amsterdam, 2013.

[81] Stefano Nolfi. Adaptive Robots: Exploring the Complex Adaptive System Nature

of Behaviuor and Cognition. Roma, Italy, 2016.

[82] Stefano Nolfi and Onofrio Gigliotta. Evorobot*. In Stefano Nolfi and Marco Mirolli,

editors, Evolution of Communication and Language in Embodied Agents, pages

297–301. Springer Berlin Heidelberg, 2010.

[83] Stefano Nolfi and Davide Marocco. Active perception: A sensorimotor account

of object categorization. In Proceedings of the 7th Intl. Conf. on Simulation of

Adaptive Behavior, pages 266–271. MIT Press, 2002.

[84] E. Oztop, N. S. Bradley, and M. A. Arbib. Infant grasp learning: a computational

model. Experimental Brain Research, 158(4):480–503, 2004.

[85] D. Parisi. Future Robots: Towards a robotic science of human beings. John

Benjamins Publishing Company, Amsterdam, The Netherlands, 2014.

[86] U. Pattacini, F. Nori, L. Natale, G. Metta, and G. Sandini. An experimental eval-

uation of a novel minimum-jerk cartesian controller for humanoid robots. In Pro-

ceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 1668–1674, 2010.

149

BIBLIOGRAPHY

[87] Diane Pecher and Rolf A. Zwaan. Grounding Cognition: The Role of Perception

and Action in Memory, Language, and Thinking. Cambridge University Press,

January 2005.

[88] E. Yoshida P.F. Dominey, A. Mallet. Real-time spoken-language programming for

cooperative interaction with a humanoid apprentice. I. J. Humanoid Robotics,

6(2):147–171, 2009.

[89] F. Warneken P.F. Dominey. The basis of shared intentions in human and robot

cognition. New Ideas in Psychology, 29(3):260–274, December 2011.

[90] Rolf Pfeifer and Josh Bongard. How the Body Shapes the Way We Think: A New

View of Intelligence. Computer Science and Intelligent Systems. The MIT Press,

Cambridge, MA, USA, October 2006.

[91] Rolf Pfeifer and Christian Scheier. Understanding intelligence. MIT Press, Cam-

bridge, MA, USA, 1999.

[92] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Math-

ews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, and

M. Dorigo. ARGoS: A modular, parallel, multi-engine simulator for multi-robot

systems. Swarm Intelligence, 6(4):271–295, 2012.

[93] F. Reali and M.H. Christansen. Uncovering the richness of the stimulus: structure

dependence and indirect statistical evidence. Cognitive Science, 29:1007–1028,

2005.

[94] Terry Regier. The Human Semantic Potential - Spatial Language and Con-

strained Connectionism. MIT Press, Cambridge, Mass., 1996.

[95] T. Reil and P. Husbands. Evolution of central pattern generators for bipedal walk-

ing in a real-time physics environment. Evolutionary Computation, IEEE Trans-

actions on, 6(2):159–168, 2002.

150

BIBLIOGRAPHY

[96] P. Rochat. Self-perception and action in infancy. Experimental Brain Research,

123:102–109, 1998.

[97] Matthias Rolf, Jochen J. Steil, and M. Gienger. Goal Babbling permits direct

learning of inverse kinematics. IEEE Trans. Autonomous Mental Development,

2(3), 2010.

[98] T. G. Sandercock, D. C. Lin, and W. Z. Rymer. Muscle models. In M.A. Arbib, ed-

itor, Handbook of brain theory and neural networks, pages 711–715. MIT Press,

Cambridge, MA, second edition, 2002.

[99] G. Sandini, G. Metta, and D. Vernon. The icub cognitive humanoid robot: An

open-system research platform for enactive cognition. In M. Lungarella, F. Iida,

J. Bongard, and R. Pfeifer, editors, 50 Years of Artificial Intelligence, pages 358–

369. Springer Verlag, Berlin, GE, 2007.

[100] Giulio Sandini, Giorgio Metta, and David Vernon. Robotcub: an open framework

for research in embodied cognition. In Humanoids, pages 13–32. IEEE, 2004.

[101] Piero Savastano and Stefano Nolfi. Incremental learning in a 14 dof simu-

lated icub robot: Modeling infant reach/grasp development. In Tony J. Prescott,

Nathan F. Lepora, Anna Mura, and Paul F. M. J. Verschure, editors, Living Ma-

chines, volume 7375 of Lecture Notes in Computer Science, pages 250–261.

Springer, 2012.

[102] S. Schaal. Arm and hand movement control. In M.A. Arbib, editor, Handbook of

brain theory and neural networks, pages 110–113. MIT Press, Cambridge, MA,

second edition, 2002.

[103] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning movement primit-

ives. In Springer verlag, editor, International Symposium on Robotics Research

(ISRR2003), pages 1–10, 2004.

151

BIBLIOGRAPHY

[104] John R. Searle. Minds, brains, and programs. Behavioral and Brain Sciences,

3(03):417–424, September 1980.

[105] R. Shadmehr and S. P. Wise. The Computational Neurobiology of Reaching and

Pointing: A Foundation for Motor Learning. MIT Press, Cambridge, MA, 2005.

[106] Karl Sims. Evolving 3D Morphology and Behavior by Competition. Artificial Life,

1(4):353–372, 1994.

[107] Linda B. Smith and Samuelson Larissa K. Objects in space and mind: From

reaching to words. In Kelly S. Mix, Linda B. Smith, and Michael Gasser, edit-

ors, Thinking Through Space: Spatial Foundations of Language and Cognition.

Oxford University Press, Oxford, UK, 2010.

[108] Russel Smith. Open Dynamics Engine, 2004.

[109] Z. Solan, D. Horn, E. Ruppin, and S. Edelman. Unsupervised learning of natural

languages. Proc. Natl. Acad. Sci., 102:11629–11634, 2005.

[110] Valerio Sperati, Vito Trianni, and Stefano Nolfi. Self-organised path formation in

a swarm of robots. Swarm Intelligence, 5(2):97–119, June 2011.

[111] L. Steels. Experiments on the emergence of human communication. Trends in

Cognitive Sciences, 10(8):347–349, 2006.

[112] L. Steels. The Symbol Grounding Problem Has Been Solved. So What’s Next?

In M. de Vega, editor, Symbols and Embodiment: Debates on Meaning and

Cognition, chapter 12. Oxford University Press, Oxford, 2008.

[113] Luc Steels. Evolving grounded communication for robots. Trends in Cognitive

Sciences, 7(7):308–312, July 2003.

[114] Luc Steels. The emergence and evolution of linguistic structure: from lexical

to grammatical communication systems. Connection Science, 17(3-4):213–230,

December 2005.

152

BIBLIOGRAPHY

[115] Luc Steels and Tony Belpaeme. Coordinating Perceptually Grounded Categories

Through Language: a Case Study for Colour. Behavioral and Brain Sciences,

28(04):469–489, 2005.

[116] Luc Steels and Martin Loetzsch. Perspective Alignment in Spatial Language. In

Kenny R. Coventry, Thora Tenbrink, and John, editors, Spatial Language and

Dialogue. Oxford University Press, 2007.

[117] Y. Sugita and J. Tani. Learning semantic combinatoriality from the interaction

between linguistic and behvioral processes. Adaptive Behavior, 13(1):33–52,

2005.

[118] Y. Sugita and J. Tani. Acquiring a functionally compositional system of goal-

directed actions of a simulated agent. In M. Asada, J.C.T. Hallam, J.-A. Meyer,

and J. Tani, editors, Proc. of the 10th Int. Conf. on Simulation of Adaptive Behavior

(SAB2008), pages 331–341. Springer Verlag, 2008.

[119] Esther Thelen and Linda B. Smith. A Dynamic Systems Approach to the De-

velopment of Cognition and Action (Cognitive Psychology). A Bradford Book,

reprint edition, January 1996.

[120] V. Tikhanoff, A. Cangelosi, P. Fitzpatrick, G. Metta, L. Natale, and F. Nori. An

open-source simulator for cognitive robotics research: the prototype of the icub

humanoid robot simulator. In Proceedings of the 8th Workshop on Performance

Metrics for Intelligent Systems, PerMIS ’08, pages 57–61, New York, NY, USA,

2008. ACM.

[121] M. Tomasello. Constructing a language: a usage-based theory of language ac-

quisition. Cambridge, MA: Harvard University, 2003.

[122] E. Tuci. An investigation of the evolutionary origin of reciprocal communication

using simulated autonomous agents. Biological Cybernetics, 101(3):183–199,

2009.

153

BIBLIOGRAPHY

[123] E. Tuci, G. Massera, and S. Nolfi. Active categorical perception in an evolved

anthropomorphic robotic arm. In Proceedings of the Eleventh conference on

Congress on Evolutionary Computation, CEC’09, pages 31–38, Piscataway, NJ,

USA, 2009. IEEE Press.

[124] E. Tuci, G. Massera, and S. Nolfi. Active categorical perception of object shapes

in a simulated anthropomorphic robotic arm. Evolutionary Computation, IEEE

Transactions on, 14(6):885–899, Dec 2010.

[125] Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca Massera, and Stefano

Nolfi. An experiment on behavior generalization and the emergence of linguistic

compositionality in evolving robots. IEEE T. Autonomous Mental Development,

3(2):176–189, 2011.

[126] M. Valenti. Learning of manipulation capabilities in a humanoid robot. Master’s

thesis, University of Rome, La Sapienza, 2013.

[127] T. Van Gelder. Compositionality: A connectionist variation on a classic theme.

Cognition, 14:355–384, 1990.

[128] Francisco J. Varela, Evan T. Thompson, and Eleanor Rosch. The Embodied

Mind: Cognitive Science and Human Experience. The MIT Press, new ed edi-

tion, November 1992.

[129] Richard Vaughan. Massively multi-robot simulation in stage. Swarm Intelligence,

2(2-4):189–208, 2008.

[130] C. von Hofsten. Eye-hand coordination in the newborn. Developmental Psycho-

logy, 18:450–461, 1982.

[131] C. von Hofsten. Developmental changes in the organization of prereaching

movements. Developmental Psychology, 20:378–388, 1984.

[132] C. von Hofsten. Structuring of early reaching movements: a longitudinal study.

Journal of Motor behavior, 23:280–292, 1991.

154

BIBLIOGRAPHY

[133] L. S. Vygotsky. Thought and language. MIT Press, Cambridge, MA, 1962.

[134] L. S. Vygotsky. Mind in society. Harvard University Press, Cambridge, MA, 1978.

[135] J.L. Elman W.C. Morris, G.W. Cottrell. A connectionist simulation of the empirical

acquisition of grammatical relations. volume 1778, pages 175–193, Berlin; New

York, 2000. Springer-Verlag.

[136] J. Weng. Developmental robotics: Theory and experiments. I. J. Humanoid

Robotics, 1(2):199–236, 2004.

[137] Yuichi Yamashita and Jun Tani. Emergence of Functional Hierarchy in a Mul-

tiple Timescale Neural Network Model: A Humanoid Robot Experiment. PLoS

Comput Biol, 4(11):e1000220+, November 2008.

[138] Xin Yao and M. M. Islam. Evolving artificial neural network ensembles. IEEE

Computational Intelligence Magazine, 3(1):31–42, 2008.

155

BIBLIOGRAPHY

156

Bound copies of published papers

157

1556-603X/10/$26.00©2010IEEE AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 33

Gianluca Massera, Elio Tuci, Tomassino Ferrauto, and Stefano Nolfi
Institute of Cognitive Sciences and Technologies (ISTC), ITALY

Abstract–In this paper, we show how a simulated
humanoid robot controlled by an artificial
neural network can acquire the ability to
manipulate spherical objects located over
a table by reaching, grasping, and lift-
ing them. The robot controller is
developed through an adaptive pro-
cess in which the free parameters
encode the control rules that
regulate the fine-grained inter-
action between the agent and
the environment, and the vari-
ations of these free parameters
are retained or discarded on
the basis of their effects at the
level of the behavior exhibited
by the agent. The robot devel-
ops the sensory-motor coordi-
nation required to carry out
the task in two different condi-
tions; that is, with or without
receiving as input a linguistic
instruction that specifies the type
of behavior to be exhibited during
the current phase. The obtained
results shown that the linguistic
instructions facilitate the development
of the required behavioral skills.

© CORBIS CORP.

I. Introduction

I
n this paper, we describe a series of experiments in which a simulated iCub robot acquires through

an adaptive process the ability to reach, grasp, and lift a spherical object. The robot develops the

sensory-motor coordination required to carry out the whole task in two different conditions; that

is, with or without receiving as input linguistic instructions that specify the type of behavior that

should be exhibited during the current phase. These are binary input vectors associated with elementa-

ry behaviors that should be displayed by the robot during the task. The main objective of this study is

to investigate whether the use of linguistic instructions facilitates the acquisition of a sequence of

 complex behaviors. The long term goal of this research is to verify whether the acquisition of ele-

mentary skills guided by linguistic instructions provides a scaffolding for more complex behaviors.

Digital Object Identifier 10.1109/MCI.2010.937321

e
ng
ned
istic

opment

© CORBIS CORP.

how a simulated
an artificial
ability to

ted over
d lift-
r is
o-
rs

©2010 IEEE. Reprinted, with permission, from Gianluca Massera, Elio Tuci, Tomassino Ferrauto and

Stefano Nolfi, The Facilitatory Role of Linguistic Instructions on Developing Manipulation Skills, IEEE

Computational Intelligence Magazine, August 2010

34 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

The first theoretical assumption behind this work is that

the activity of developing robots displaying complex cognitive

and behavioral skills should be carried out by taking into

account the empirical findings in psychology and neurosci-

ence which show that there are close links between the

mechanisms of action and those of language. As shown in [1],

[2], [3], [4], [5] action and language develop in parallel, influ-

ence each other, and base themselves on each other. If brought

into the world of robotics, the co-development of action and

language skills might enable the transfer of properties of

action knowledge to linguistic representations, and vice versa,

thus enabling the synthesis of robots with complex behavioral

and cognitive skills [6], [7].

The second theoretical assumption behind this work is that

behavioral and cognitive skills in embodied agents are emergent

dynamical properties which have a multi-level and multi-scale

organization. Behavioral and cognitive skills arise from a large

number of fine-grained1 interactions occurring among and

within the robot body, its control system, and the environment

[8]. Handcrafting the mechanisms underpinning these skills

may be a hard task. This is due to the inherent difficulty in fig-

uring out from the point of view of an external observer, the

detailed characteristics of the agent that, as a result of the inter-

actions between the elementary parts of the agent and of the

environment, lead to the exibition of the desired behavior. The

synthesis of robots displaying complex behavioral and cognitive

skills should instead be obtained through an adaptive process in

which the detailed characteristics of the agent are subjected to

variation and in which variations are retained or discarded on

the basis of their effects at the level of the overall behavior

exhibited by the robot situated in the environment [8]. There-

fore, the role of the designer should be limited to the specifica-

tion of the utility function, that determines whether variations

should be preserved or discarded, and eventually to the design

of the ecological conditions in which the adaptive process takes

place [9], [10], [8].

II. Background and Literature Review

The control of arm and hand movements in human and non-

human primates and in robots is a fascinating research topic

actively investigated within several disciplines including psy-

chology, neuroscience, and robotics. However, the task to

model in detail the mechanisms underlying arm and hand

movement control in humans and primates and the task of

building robots able to display human-like arm/hand move-

ments still represents an extremely challenging goal [11].

Moreover, despite the progress achieved in robotics through

the use of traditional control methods [12], the attempt to

develop robots with the dexterity and robustness of humans is

still a long term goal. These difficulties can be explained by

considering the need to take into account the role of several

aspects including the morphological characteristics of the arm

and of the hand, the bio-mechanics of the musculoskeletal sys-

tem, the presence of redundant degrees of freedom and limits

on the joints, non- linearity (e.g., the fact that small variations

in some of the joints might have a strong impact on the hand

position), gravity, inertia, collisions, noise, the need to rely on

different sensory modalities, visual occlusion, the effects of

movements on the next experienced sensory states, the need to

coordinate arm and hand movements, the need to adjust

actions on the basis of sensory feedback, and the need to han-

dle the effects of the physical interactions between the robot

and the environment. The attempt to design robots that devel-

op their skills autonomously through an adaptive process per-

mits, at least in principle, to delegate the solutions to some of

these aspects to the adaptive process itself.

The research work described in this paper proposes an

approach that takes into account most of the aspects discussed

above, although often by introducing severe simplifications.

More specifically, the morphological characteristics of the

human arm and of the hand are taken into account by using a

robot that reproduces approximately the morphological char-

acteristics of a 3.5 year-old in term of size, shape, articulations,

degrees of freedom and relative limits [13]. Some of the prop-

erties of the musculo-skeletal system have been incorporated

into the model by using muscle-like actuators controlled by

antagonistic motor neurons. For the sake of simplicity, the seg-

ments forming the arm, the palm, and the fingers are simulated

as fully rigid bodies. However, the way in which the fingers are

controlled, enable a certain level of compliance in the hand.

The role of gravity, inertia, collision, and noise are taken into

account by accurately simulating the physic laws of motion and

the effect of collisions (see Section IV for details of the model).

One of the main characteristics of the model presented in

this paper is that the robot controller adjusts its output on the

basis of the available sensory feedback directly updating the

forces exerted on the joints (see [14] for related approaches).

The importance of the sensory feedback loop has been empha-

sized by other works in the literature. For example in [15] the

authors describe an experiment in which a three-fingered

robotic arm displays a reliable grasping behavior through a

series of routines that keep modifying the relative position of

the hand and of the fingers on the basis of the current sensory

feedback. The movements tend to optimize a series of proper-

ties such as hand-object alignment, contact surface, finger

 position symmetry, etc.

In this work, the characteristics of the human brain that

processes sensory and proprio-sensory information and control

the state of the arm/hand actuators are modeled very loosely

through the use of dynamical recurrent neural networks. The

architecture of the artificial neural network employed is not

inspired by the characteristics of the neuroanatomical pathways

of the human brain. Also, many of the features of neurons and

synapses are not taken into account (see [16], for an example of

works that emulate some of the anatomical characteristics of

the human brain). The use of artificial neural networks as robot

1The granularity refers to the extent to which the robot-environmental system is bro-

ken into small parts and to the extent to which the dynamics of the system is divided

into short time periods. The term fine-grained interactions thus refer to interactions

occurring at a high frequency between small parts.

©2010 IEEE. Reprinted, with permission, from Gianluca Massera, Elio Tuci, Tomassino Ferrauto and

Stefano Nolfi, The Facilitatory Role of Linguistic Instructions on Developing Manipulation Skills, IEEE

Computational Intelligence Magazine, August 2010

AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 35

controller provides several advantages with respect to alternative

formalisms, such as robustness, graceful degradation, generaliza-

tion and the possibility to process sensory-motor information

in a way that is quantitative both in state and time. These char-

acteristics also make neural networks particularly suitable to be

used with a learning/adaptive process in which a suitable

 configuration of the free parameters is obtained through a pro-

cess that operates by accumulating small variations.

Newborn babies display a rough ability to perform reach-

ing, which evolves into effective reaching and grasping skills

by 4/5 months, into adult-like reaching and grasping strate-

gies by 9 months, up to precision grasping by 12/18 months

[17], [18], [19]. Concerning the role of sensory modalities, the

experimental evidence collected on humans indicates that

young infants rely heavily on somatosensory and tactile infor-

mation to carry out reaching and grasping action and they

use vision to elicit these behaviors [20]. However, the use of

visual information (employed to prepare the grasping behav-

ior or to adjust the position of the hand by taking into

account the shape and the orientation of the object) starts to

play a role only after 9 months from birth [21]. On the basis

of this, we provide our robot with proprioceptive and tactile

sensors and with a vision system that only provides informa-

tion concerning the position of the object but not about its

shape and its orientation. Moreover, we do not simulate visual

occlusions on the basis of the assumption that the information

concerning the position of the object can be inferred in rela-

tively reliable way even when the object is partially or totally

occluded by the robot’s arm and hand.

In accordance with the empirical evidence indicating that

early manipulation skills in infants are acquired through self-

learning mechanisms rather than by imitation learning [16],

the robot acquires its skills through a trial and error process

during which random variations of the free parameters of the

robots’ neural controller (which are initially assigned random-

ly) are retained or discarded on the basis of their effect at the

level of the overall behavior exhibited by the robot in interac-

tion with the environment. More precisely, the effect of varia-

tions is evaluated using a set of utility functions that

determine the extent to which the robot manages to reach

and grasp a target object with its hand, and the extent to

which the robot succeeds in lifting the object over the table.

The use of this adaptive algorithm and utility functions leaves

the robot free to discover during the adaptive process its own

strategy to reach the goals set by the experimenter. This in

turn allows the robot to exploit sensory-motor coordination

(i.e., the possibility to act in order to later experience useful

sensory states) as well as the properties arising from the physi-

cal interactions between the robot and the environment. In

[22] it is shown how this approach allows the robot to distin-

guish objects of different shapes by self-selecting useful stimuli

through action, and in [23] it is shown how this approach

allows for the exploiting of properties arising from the physi-

cal interaction between the robot body and the environment

for the purpose of manipulating the object.

Finally, in this work we shape the ecological conditions in

which the robot has to develop its skills by allowing the robot to

access linguistic instructions that indicate the type of behavior

that should be currently exhibited by the robot. We do not con-

sider any other form of shaping, such as, for example, the possi-

bility to expose the robot to simplified conditions in some of the

trials (in which, for example, the object to be grasped is initially

placed within the robot’s hand) although we assume that other

forms of shaping might favour the developmental process as well.

III. Experimental Setup

Our experiments involve a simulated humanoid robot that is

trained to manipulate a spherical object located in different

positions over a table in front of the robot by reaching, grasp-

ing, and lifting it. More specifically the robot is made up of an

anthropomorphic robotic arm with 27 actuated degrees of

freedom (DOF) on the arm and hand, 6 tactile sensors

 distributed over the inner part of the fingers and palm, 17 pro-

priosensors encoding the current angular position of the joints

of the arm and of the hand, a simplified vision system that

detects the relative position of the object (but not the shape of

the object) with respect to the hand and 3 sensory neurons

that encode the category of the elementary behaviors that the

robot is required to exhibit (i.e., reaching, grasping, or lifting

the sphere). The neural controller of the robot is a recurrent

neural network trained through an evolutionary algorithm for

the ability: (i) to reach an area located above the object, (ii) to

wrap the fingers around the object, and (iii) to lift the object

over the table. The condition in which the linguistic instruc-

tions are provided has been compared with the condition in

which the linguistic instructions are not provided. For each

condition, the evolutionary process has been repeated 10 times

with different random initializations. The robot and the robot/

environmental interactions have been simulated by using

Newton Game Dynamics (NGD, see: www.newtondynamics.

com), a library for accurately simulating rigid body dynamics

and collisions. For related approaches, see [23], [22], [24].

In section IV, we describe the structure and the actuators of

the arm and hand. In section V, we describe the architecture of

the robot controller and the characteristics of the sensors. In

section VI, we describe the adaptive process that has been used

to train the robot. In section VII, we describe the results

obtained, and, finally, in section VIII, we discuss the significance

of these results and our plans for the future.

IV. Robot Structure

A. Arm Structure

The arm consists mainly of three elements (the arm, the fore-

arm, and the wrist) connected through articulations placed

into the shoulder, the arm, the elbow, the forearm and wrist

(see Figure 1).2

2Details about arm and hand dimensions are available at the supplementary web page

http://laral.istc.cnr.it/esm/linguisticExps.

©2010 IEEE. Reprinted, with permission, from Gianluca Massera, Elio Tuci, Tomassino Ferrauto and

Stefano Nolfi, The Facilitatory Role of Linguistic Instructions on Developing Manipulation Skills, IEEE

Computational Intelligence Magazine, August 2010

36 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

The joints J1, J2 and J3 provide abduction/adduction, exten-

sion/flexion and supination/pronation of the arm in the range

32140°, 1100° 4, 32110°, 190° 4 and 32110°, 190° 4, respec -

tively. These three degrees of freedom (DOFs) acts like a ball-

and-socket joint moving the arm in a way analogous to the

human shoulder joint. J4, located in the elbow, is a hinge

joint which provides extension/f lexion within the

32170°, 10° 4 range. J5 twists forearm providing pronation/

supination of the wrist (and the palm) within 32100°, 1100° 4.

J6 and J7 provide flexion/extension and ab duction/adduction of

the hand within 3240°, 140° 4 and 32100°, 1100° 4

respectively (see Figure 1).

B. Arm Actuators

The arm joints (J1, c, J7) are actuated by two simulated

antagonist muscles implemented accordingly to Hill’s muscle

model [25], [26]. More precisely, the total force exerted by a

muscle is the sum of three forces TA 1a, x 2 1TP 1x 2 1TV 1x# 2
which depend on the activity of the corresponding motor neu-

ron (a) on the current elongation of the muscle (x) and on the

muscle contraction/elongation speed (x
#

) which are calculated

on the basis of the following equations:

TA5aa2
AshTmax 1x2RL 2 2

RL
2

1Tmaxb

Ash5
RL

2

1Lmax2RL 2 2

 TP5Tmax

exp eKsha
x2RL

Lmax2RL

b f 2 1

exp EKshF 2 1
 (1)

 TV5 b # x
#

,

where Lmax and RL are the maximum and resting lengths of the

muscle, Tmax is the maximum force that can be generated, Ksh is

the passive shape factor, and b is the viscosity coefficient.

The active force TA depends on the activation of muscle

a and on the current elongation/compression of the muscle.

When the muscle is completely elongated/compressed, the

active force is zero regardless of the activation a. At the rest-

ing length RL, the active force reaches its maximum that

depends on the activation a. The red curves in Figure 2 show

how the active force TA changes with respect to the elonga-

tion of the muscle for some possible values of a. The passive

force TP depends only on the current elongation/compres-

sion of the muscle (see the blue curve in Figure 2). TP tends

to elongate the muscle when it is compressed less than RL

and tends to compress the muscle when it is elongated above

RL. TP differs from a linear spring for its exponential trend

that produces a large opposition to muscle elongation and

–50

0

50

100

150

200

250

300

1.5 2 2.5 3 3.5

α = 0.2

α = 0.4

α = 0.6

α = 0.8

α = 1.0

TP

FIGURE 2 An example of the force exerted by a muscle; the graph
shows how the force exerted by a muscle varies as a function of the
activity of the corresponding motor neuron and of the elongation of
the muscle for a joint in which Tmax is set to 300 N.

In
d
e
x

M
id

d
le

R
in

g

P
in

ky

Thumb
Palm

Wrist

Shoulder

F
o
re

a
rm

Body Arm

J1

J2

J3

J4

J5

J6

J7J8

J9
J10

J11

J13
J17 J21

J25

J26

J27
J22

J23

J18J14

J15

J19

J 1
2

J 1
6

J 2
0

J 2
4

(a) (b)

FIGURE 1 (a) The robot structure and (b) its kinematic chain. Cylinders represent rotational DOFs where its main axis indicates the
 corresponding axis of rotation; the links amongst cylinders represents the rigid connections that make up the arm structure.

©2010 IEEE. Reprinted, with permission, from Gianluca Massera, Elio Tuci, Tomassino Ferrauto and

Stefano Nolfi, The Facilitatory Role of Linguistic Instructions on Developing Manipulation Skills, IEEE

Computational Intelligence Magazine, August 2010

AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 37

 little to muscle compression. TV is the viscosity force. It pro-

duces a force proportional to the velocity of the elongation/

compression of the muscle.

The parameters of the equation are identical for all 14 mus-

cles controlling the seven DOFs of the arm and have been set

to the following values: Ksh5 3.0, RL5 2.5, Lmax5 3.7,

b5 0.9, Ash5 4.34 with the exception of parameter Tmax

which is set to 3000 N for joint J2, 300 N for joints J1, J3, J4,

and J5, and 200 N for J6 and J7.

Muscle elongation is computed by linearly mapping the

angular position of the DOF, on which the muscle acts, into the

muscle length range. For instance, in the case of the elbow

where the limits are 32170o, 10o 4, this range is mapped onto

311.3, 13.7 4 for the agonist muscle and 313.7, 11.3 4 for the

antagonist muscle. Hence, when the elbow is completely

extended (angle 0), the agonist muscle is completely elongated

(3.7) and the antagonist muscle is completely compressed (1.3),

and vice versa when the elbow is flexed.

C. Hand Structure

The hand is attached to the robotic arm just after the wrist (at

joint J7 as shown in Figure 1). One of the most important

features of the hand is its compliance. In details, the compli-

ance has been obtained setting a maximum threshold of

300 N to the force exerted by each joint. When an external

force acting on a joint exceeds this threshold, either the joint

cannot move further, or the joint moves backward due to the

external force.

The robotic hand is composed of a palm and 15 phalanges

that make up the digits (three for each finger) connected

through 20 DOFs, J8, c, J27 (see Figure 1).

Joint J8 allows the opposition of the thumb with the other

fingers and it varies within the range 32120°, 10° 4, where the

lower limit corresponds to thumb-pinky opposition. The

knuckle joints J12, J16, J20 and J24 allow the abduction/adduction

of the corresponding finger and their ranges are 30°, 115° 4 for

the index, 322°, 12° 4 for the middle, 3210°, 10° 4 for the ring,

and 3215°, 10° 4 for the pinky. All others joints are for the

extension/flexion of phalanges and vary within 3290°, 10° 4
where the lower limit corresponds to complete flexion of the

phalanx (i.e., the finger closed).

D. Hand Actuators

The joints are not controllable independently of each other, but

they are grouped. The same grouping principle used for devel-

oping the iCub hand [13] has been used. More precisely, the

two distal phalanges of the thumb move together as do the two

distal phalanges of the index and the middle fingers. Also, all

extension/flexion joints of the ring and pinky fingers are linked

as are all the joints of abduction/adduction of the fingers. Hence,

only 9 actuators move all the joints of the hand, one actuator

for each of the following group of joints: 8 J89, 8 J99, 8 J10, J119,
8 J139, 8 J14, J159, 8 J179, 8 J18, J199, 8 J12, J16, J20, J249 and 8 J21, J22,

J23, J25, J26, J279. These actuators are simple motors controlled

by position.

V. Neural Controller

The architecture of the neural controllers (see Figure 3) varies

slightly depending on the ecological conditions in which the

robot develops its skills. In the case of the development support-

ed by linguistic instructions, the robot is controlled by a neural

network which includes 29 sensory neurons, 12 internal neu-

rons with recurrent connections and 23 motor neurons. In the

case without the support of linguistic instructions, the neural

network lacks the sensory neurons dedicated to the linguistic

instructions. Thus, it is composed of 26 sensory neurons instead

of 29. The sensory neurons are divided into four blocks.

The Arm Sensors encode the current angles of the 7

DOFs located on the arm and on the wrist normalized in the

range 30, 1 4.
The Hand Sensors encode the current angles of hand’s

joints. However, instead of feeding the network with all joint

angles of the hand, the following values are used:

ha 1 J82 , a 1 J9 2 ,
a 1 J10 21 a 1 J11 2

2
, a 1 J13 2 ,

a 1 J14 21 a 1 J15 2
2

,

a 1 J17 2 ,
a 1 J18 21 a 1 J19 2

2
, a 1 J21 2,

a 1 J22 21 a 1 J23 2
2

, a 1 J12 2 i,

where a 1 Ji 2 is the angle of the joint Ji normalized in the range

30, 1 4 with 0 meaning fully extended and 1 fully flexed. This

way of representing the hand posture mirrors the way in which

the hand joints are actuated (see section IV-D).

The Tactile Sensors encode how many contacts occur on

the hand components. The first tactile neuron corresponds to

the palm and its activation is set to the number of contacts nor-

malized in the range 30, 1 4 between the palm and another

body (i.e., an object or other parts of the hand). Normalization

is performed using a ramp function that saturates to 1 when

there are more than 20 contacts. The other five tactile neurons

correspond to the fingers and are activated in the same way.

The Target Position Sensors can be seen as the output of a

vision system (which has not been simulated) that computes

the relative distance in cm of the object with respect to the

hand over three orthogonal axes. These values are fed into the

networks as they are without any normalization.

Arm Muscle Actuators

14 Neurons

Finger Actuators

9 Neurons

12 Hidden Neurons

Arm

Sensors

7 Neurons

Hand

Sensors

10 Neurons

Tactile

Sensors

6 Neurons

Target

Position

Linguistic

Input

FIGURE 3 The architecture of the neural controllers. The arrows
 indicated blocks of fully connected neurons

©2010 IEEE. Reprinted, with permission, from Gianluca Massera, Elio Tuci, Tomassino Ferrauto and

Stefano Nolfi, The Facilitatory Role of Linguistic Instructions on Developing Manipulation Skills, IEEE

Computational Intelligence Magazine, August 2010

38 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

The Linguistic Instruction Sensors is a block of three neu-

rons each of which represents one of the commands reach, grasp

and lift. Specifically, the vector 850, 0, 09 corresponds to the lin-

guistic instruction “reach the object”, 80, 50, 09 corresponds to

the linguistic instruction “grasp the object” and 80, 0, 509 corre-

sponds to the linguistic instruction “lift the object”. The way in

which the state of these sensors is set is determined by equation

4 explained below.

Note that the state of the Linguistic Instruction and Target

Position Sensors varies on a larger interval than the other sen-

sors in order to increase the relative impact of these neurons.

Indeed, control experiments in which all sensory neurons were

normalized within the 30, 1 4 interval led to significantly lower

performance (result not shown).

The outputs Hi 1 t 2 of the Hidden Neurons are calculated on

the basis of following equation:

 yi 1 t 2 5saa
29

j51

wjiIj 1 t 2 1 bib

 Hi 1 t 2 5di
yi 1 t 2 1 112di 2 # yi 1 t2 1 2 , (2)

where Ij 1 t 2 is the output of the jth sensory neuron, wji is the

synaptic weight from the jth sensory neuron to the ith hidden

neuron, bi is the bias of the ith hidden neuron, di is the decay-

factor of the ith hidden neuron, and s 1x 2 is the logistic func-

tion with a slope of 0.2.

The output neurons are divided into two blocks, the Arm

Muscle Actuators and the Finger Actuators. All outputs of these

neurons are calculated in the same way using the following

equation:

 Oi 1 t 2 5saa
12

j51

wjiHj 1 t 2 b, (3)

where Hj 1 t 2 is the output of hidden neuron j as described in 2,

wji is the synaptic weight from the jth hidden neuron to the ith

output neuron and s 1x 2 is the logistic function with slope 0.2.

With respect to the hidden neurons, the output neurons do not

have any bias or decay-factor.

The Arm Muscle Actuators output sets the parameter a

used in equation 1 to update the position of the arm as

described in section IV-B while the Finger Actuators output

sets the desired extension/flexion position of the nine hand

actuators as described in IV-D. The state of the sensors, the

desired state of the actuators, and the internal neurons are

updated every 10 ms.

This particular type of neural network architecture has been

chosen to minimize the number of assumptions and to reduce,

as much as possible, the number of free parameters. Also, this

particular sensory system has been chosen in order to study sit-

uations in which the visual and tactile sensory channels need to

be integrated.

VI. The Adaptive Process

The free parameters of the neural controller (i.e., the connec-

tion weights, the biases of internal neurons and the time con-

stant of leaky-integrator neurons) are set using an evolutionary

algorithm [27], [28].

The initial population consists of 100 randomly generated

genotypes, which encode the free parameters of 100 corre-

sponding neural controllers. In the conditions in which Lin-

guistic Instruction Sensors are employed (hereafter, referred to

as Exp. A), the neural controller has 792 free parameters. In the

other condition without the Linguistic Instruction Sensors

(hereafter, referred to as Exp. B) there are 756 free parameters.

Each parameter is encoded into a binary string (i.e., a gene) of

16 bits. In total, a genotype is composed of 792 # 165 12672

bits in Exp. A and 756 # 165 12096 bits in Exp. B. In both

experiments, each gene encodes a real value in the range

326, 16 4, but for genes encoding the decay-factors di the

encoded value is mapped in the range 30, 1 4.
The 20 best genotypes of each generation are allowed to

reproduce by generating five copies each. Four out of five cop-

ies are subject to mutations and one copy is not mutated. Dur-

ing mutation, each bit of the genotype has a 1.5% probability

to be replaced with a new randomly selected value. The evolu-

tionary process is repeated for 1000 generations.

A. Fitness Function

The agents are rewarded for reaching, grasping and lifting a

spherical object of radius 2.5 cm placed on the table in exact-

ly the same way in both Exp. A and Exp. B. Each agent of the

population is tested 4 times. Each time the initial position of

the arm and the sphere change. Figure 4 shows the four initial

positions of the arm and of the sphere superimposed on one

another. For each initial arm/object configuration, a random

displacement of 61o is added to each joint of the arm and a

random displacement of 61.5 cm is added on the x and the y

coordinates of the sphere position. Each trial lasts 6 sec corre-

sponding to 600 simulation steps. The sphere can move freely

and it can eventually fall off the table. In this case, the trial is

stopped prematurely.

The fitness function is made up of three components: FR

for reaching, FG for grasping and FL for lifting the object.

Each trial is divided in 3 phases in which only a single fitness

component is updated. The conditions that define the current

phase at each timestep and consequently which component has

to be updated are the following:

r 1 t 2 5 12 e
120.1.ds 1t22

g 1 t 2 5 e
120.2 #graspQ 1t22

l 1 t 2 5 12 e
120.3.contact1t22

Phase 1 t 2 5 •

reach r 1 t 2 . g 1 t 2 , 0.5

 grasp otherwise

 lift g 1 t 2 . 0.7` l 1 t 2 . 0.6,

where ds 1 t 2 is the distance from the center of the palm to a

point located 5 cm above the center of the sphere. graspQ 1 t 2 is
the distance between the centroid of the fingertips-palm poly-

gon and the center of the sphere. contacts 1 t 2 is the number of

contacts between the fingers and the sphere. The shift between

©2010 IEEE. Reprinted, with permission, from Gianluca Massera, Elio Tuci, Tomassino Ferrauto and

Stefano Nolfi, The Facilitatory Role of Linguistic Instructions on Developing Manipulation Skills, IEEE

Computational Intelligence Magazine, August 2010

AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 39

the three phases is irreversible (i.e. the reach phase is always fol-

lowed by the reach or grasp phases and the grasp phase is

always followed by the grasp or lift phases).

Essentially, the current phase is determined by the values

r 1 t 2 , g 1 t 2 and l 1 t 2 . When r 1 t 2 is high (i.e., when the hand is far

from the object) the robot should reach the object. When r 1 t 2
decreases and g 1 t 2 increases (i.e., when the hand approaches

the object from above) the robot should grasp the object.

Finally, when l 1 t 2 increases (i.e., when the number of activated

contact sensors are large enough) the robot should lift the

object. The rules and the thresholds included in equation 4

have been set manually on the basis of our intuition and have

not been adjusted through a trial and error process. In Exp. A,

the phases are used to define which linguistic instruction the

robot perceives.

The three fitness components are calculated in the follow-

ing way:

FR5

a
t[TReach

a 0.5

11 ds 1t 2 /4 1
0.25

11 ds 1t 2 1fingersOpen 1t21palmRot 1 t 22b

FG5 a
t[TWrap

a 0.4

11 graspQ 1 t 2 1
0.2

11 contacts 1 t 2 /4b

FL5 a
t[TLift

objLifted 1 t 2 ,

where TReach, TWrap and TLift are the time ranges determined

by equation 4. fingersOpen 1 t 2 correspond to the average

degree of extension of the fingers, where 1 occurs when all fin-

gers are extended and 0 when all fingers are closed. palmRot 1 t 2
is the dot product between the normals of the palm and the

table, with 1 referring to the condition in which the palm is

parallel to the table and 0 to the condition in which the palm is

orthogonal to the table). objLifted 1 t 2 is 1 only if the sphere is

not touching the table and it is in contact with the fingers, oth-

erwise it is 0.

The total fitness is calculated at the end of four trials as:

F5min 1500, FR 21min 1720, FW 21min 11600, FL 21bonus,

where bonus adds 300 for each trial where the agent switches

from reach phase to grasp phase only, and 600 for each trial

where the agent switches from reach to grasp phase and from

grasp to lift phase.

During the reach phase the agent is rewarded for approach-

ing a point located 5 cm above the center of the object with

the palm parallel to the table and the hand open. Note that the

rewards for the hand opening and the rotation of the palm are

relevant only when the hand is near the object (due to

0.25/ 111 ds 1 t 22 factor); in this way the agent is free to rotate

the palm when the hand is away from the sphere allowing any

reaching trajectory.

During the grasp phase, the centroid of the fingertips-

palm polygon can reach the center of the sphere only when

the hand wraps the sphere with the fingers, producing a

potential power grasp. During the lift phase, the reward is

given when the agent effectively moves the sphere upward

of the table.

VII. Results

For both Exp. A (with linguistic instructions) and Exp. B

(without linguistic instructions), we run 10 evolutionary sim-

ulations for 1,000 generations, each using a different random

initialization. Looking at the fitness curves of the best agents

at each generation of each evolutionary run, we noticed that,

for Exp. A, there are three distinctive evolutionary paths (see

 Figure 5a). The most promising is run 7, in which the last

generation’s agents have the highest fitness. The curve corre-

sponding to run 2 is representative of a group of seven evolu-

tionary paths which, after a short phase of fitness growth,

reach a plateau at F5 2,000. The curve corresponding to

run 9 is representative of a group of two evolutionary paths

which are characterized by a long plateau slightly above

F5 1,000. Generally speaking, these curves progressively

increase by going through short evolutionary intervals in

which the fitness grows quite rapidly followed by a long pla-

teau 3. For Exp. B, all the runs show a very similar trend, reach-

ing and constantly remaining on a plateau at about F5 3,000

(see Figure 5b).

Due to the nature of the task and of the fitness function,

it is quite hard to infer from these fitness curves what could

be the behavior of the agents during each evolutionary

phase. However, based on what we know about the task,

and by visual inspection of the behavior exhibited by the

agents, we found out how the agents behave at different

generations of each evolutionary run. In Exp. A, the phases

of rapid fitness growth are determined by the bonus factor,

which substantially rewards those agents that successfully

FIGURE 4 Initial positions of the arm and the sphere over imposed;
the joints J1, cJ4 are initialized to 8273, 230, 240, 2569,
8273, 230, 240, 21139, 826, 130, 210, 2569 and
8273, 230, 145, 21139; the initial sphere positions are 8218, 1109,
8226, 1189, 8218, 1269 and 8210, 1189.

3The fitness curves of the runs not shown are available at the supplementary web page

http://laral.istc.cnr.it/esm/linguisticExps.

©2010 IEEE. Reprinted, with permission, from Gianluca Massera, Elio Tuci, Tomassino Ferrauto and

Stefano Nolfi, The Facilitatory Role of Linguistic Instructions on Developing Manipulation Skills, IEEE

Computational Intelligence Magazine, August 2010

40 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

accomplish single parts of the task. The first fitness jump is

due to the bonus factor associated to the execution of a suc-

cessful reaching behavior. This jump corresponds to the

phase of fitness growth observed in run 7 in correspon-

dence of label R Figure 5a, and in run 2 in correspondence

of label V Figure 5a. The agents generated after these fitness

jumps are able to systematically reach the object. Run 9

does not go through the first fitness jump, and the agents of

this run lack the ability to systematically carry out a suc-

cessfull reaching behavior.

The second fitness jump is due to the bonus factor associ-

ated with the execution of a successful grasping behavior.

Only in run 7 is it possible to observe a phase of rapid fitness

growth corresponding to a second fitness jump (see label S

Figure 5a). The agents generated after this jump are able to

successfully carry out reaching and grasping. Note also that,

in run 7, the fitness curve keeps on growing until the end of

the evolution. This growth is determined by the evolution of

the capability to lift the object. Thus, in run 7, the best

agents following generation 400 are capable of reaching,

grasping, and lifting the object. The constant increment of

the fitness is determined by the fact that the agents become

progressively more effective in lifting the object. Run 2 does

not go through a second fitness jump. The agents of this run

lack the ability to systematically carry out a successfully

grasping behavior.

In summary, only run 7 has generated agents (i.e., those best

agents generated after generation 400) capable of successfully

accomplishing reaching, grasping, and lifting.4 The best agents

of run 2, and of the other six runs that show a similar evolu-

tionary trend, are able to systematically reach but not grasp the

object and completely lack the ability to lift the object. The

best agents of run 9, and of the other run that show a similar

evolutionary trend, are not even able to systematically reach the

object. In Exp. B, they are able to successfully reach and grasp

the object, but not lift it.

A. Robustness and Generalization

In this section, we show the result of a series of post-evalua-

tion tests aimed at establishing the effectiveness and robustness

of best agents’ behavioral strategies of the four runs show in

Figure 5. In these tests, the agents, from generation 900 to

generation 1000 of each run, are subjected to a series of trials

in which the position of the object as well as the initial posi-

tion of the arm are systematically varied. For the position of

the object, we define a rectangular area (28 cm 3 21 cm)

divided in 11 3 11 cells. The agents are evaluated for reach-

ing, grasping and lifting the object positioned in the center of

each cell of the rectangular area. For the initial position of the

arm, we use the four initial positions employed during evolu-

tion as prototypical cases (see Figure 4). For each prototypical

case, we generate 100 slightly different initial positions with

the addition of a 610° random displacement on joints J1, J2,

J3, and J4. Thus, this test is comprised of 48400 trials, given

by 400 initial positions (4 # 100) for each cell, repeated for

121 cells corresponding to the different initial positions of the

object during the test. In each trial, reaching is considered

successful if an agent meets the conditions to switch from the

reach phase to the grasp phase (see equation 4). Grasping is

considered successful if an agent meets the conditions to

switch from the grasp phase to the lift phase (see equation 4).

Lifting is considered successful if an agent manages to keep

the object at more than 1 cm from the table until the end of

the trial. In this section, we show the results of a single agent

for each run. However, agents belonging to the same run

obtained very similar performances. Thus, the reader should

consider the results of each agent as representative of all the

other agents of the same evolutionary run.

All the graphs in Figure 6 show the relative position of

the rectangular area and the cells with respect to the agent/

table system. Moreover, each cell of this area is colored in

shades of grey, with black indicating 0% success rate, and

white indicating 100% success rate. As expected from the

previous section, the agent chosen from run 7 Exp. A proved

to be the only one capable of successfully accomplishing all

the three phases of the task. This agent proved capable of suc-

cessfully reaching the object placed almost anywhere within

the rectangular area. Its grasping and lifting behavior are less

robust than the reaching behavior. Indeed, the grasping and

lifting performances are quite good everywhere except in

4Movies of the behavior and corresponding trajectories are available at the supple-

mentary web page http://laral.istc.cnr.it/esm/linguisticExps.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 200 400 600 800 1,000

Run 7

Run 2

Run 9

R

S

V

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

Run 0

(a)

0 200 400 600 800 1,000
(b)

FIGURE 5 Fitness of the best agents at each generation of (a) run 2,
run 7, and run 9 of Exp. A, and (b) run 0 of Exp. B.

©2010 IEEE. Reprinted, with permission, from Gianluca Massera, Elio Tuci, Tomassino Ferrauto and

Stefano Nolfi, The Facilitatory Role of Linguistic Instructions on Developing Manipulation Skills, IEEE

Computational Intelligence Magazine, August 2010

AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 41

two small zones located in the top left and bottom right of

the rectangular area in which cells are colored black. The

agent chosen from run 2 Exp. A proved to be capable of suc-

cessfully performing reaching behavior for a broad range of

object initial positions, and completely unable to perform

grasping and lifting behavior. The agent chosen from run 9

Exp. A does not even manage to systematically bring the

hand close to the object regardless of the object’s initial posi-

tion. The agent chosen from run 0 Exp. B, proved capable of

successfully performing reaching and grasping behavior but

not lifting behavior.

VIII. Conclusion

In this paper, we showed how a simulated humanoid robot

controlled by an artificial neural network can acquire the ability

to manipulate spherical objects located over a table by reaching,

grasping and lifting them. The agent is trained through an adap-

tive process in which the free parameters encode the control

rules that regulate the fine-grained interaction between the

agent and the environment, and the variations of these free

parameters are retained or discarded on the basis of their effects

at the level of the behavior exhibited by the agent. This means

that the agents develop their skills autonomously in interaction

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

Run 7

(Exp. A)

Run 2

(Exp. A)

Run 2

(Exp. B)

Run 9

(Exp. A)

Reach Grasp Lift

FIGURE 6 Results of post-evaluation tests on the robustness of reaching, grasping and lifting behavior of the best agent at generation 1,000 of
run 7, run 2, and run 9 in Exp. A and run 0 in Exp. B. The cells in shades of grey indicate the percentage of successful trials (from 0% success
rate in black, to 100% success rate in white), with the object located in the center of each cell.

©2010 IEEE. Reprinted, with permission, from Gianluca Massera, Elio Tuci, Tomassino Ferrauto and

Stefano Nolfi, The Facilitatory Role of Linguistic Instructions on Developing Manipulation Skills, IEEE

Computational Intelligence Magazine, August 2010

42 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

with the environment. Moreover, this means that the agents are

left free to determine the way in which they solve the task

within the limits imposed by i) their body/control architecture,

ii) the characteristics of the environment, and iii) the constraints

imposed by the utility function that rewards the agents for their

ability to reach an area located above the object, wrap the fin-

gers around the object, and lift the object. The analysis of the

best individuals generated by the adaptive process shows that

the agents of a single evolutionary run manage to reach, grasp,

and lift the object in an reliable and effective way. Moreover,

when tested in new conditions with respect to those

 experienced during the adaptive process, these agents proved to

be capable of generalising their skills with respect to new object

positions never experienced before. The comparison of two

experimental conditions (i.e., with or without the use of lin-

guistic instructions that specify the behaviors that the agents are

required to exhibit during the task) indicates that the agents

succeed in solving the entire problem only with the support of

linguistic instructions (i.e., in Exp. A). This result confirms the

hypothesis that the possibility to access linguistic instructions,

representing the category of the behavior that has to be exhib-

ited in the current phase of the task, might be a crucial pre-

requisite for the development of the corresponding behavioral

skills and for the ability to trigger the right behavior at the

right time. More specifically, the fact that the best agents of

Exp. B succeed in exhibiting the reaching and then the grasping

behavior but not the lifting behavior suggests that the linguistic

instructions represent a crucial pre-requisite in situations in

which the agent has to develop an ability to produce different

behaviors in similar sensory-motor circumstances. The reaching

to grasping transitions are marked by well differentiated senso-

ry-motor states, which are probably sufficient to induce the

agents to stop the reaching phase and to start the grasping

phase, even without the support of a linguistic instruction. The

grasping to lifting transition is not characterized by well differ-

entiated sensory-motor states. Thus, in Exp. A, it seems to be

that the valuable support of the linguistic instruction induces

successful agents to move on to the lifting phase.

In future work, we plan to verify whether these agents can

be trained to self-generate linguistic instructions and use them

to trigger the corresponding behaviors autonomously (i.e.,

without the need to rely on external instructions). In other

words, we would like to verify whether the role played by lin-

guistic instructions can be later internalized in agents’ cognitive

abilities [29], [30], [31]. Moreover, we plan to port the experi-

ments performed in simulation in hardware by using the iCub

robot and the compliant system recently developed [32]. Even

though the iCub joints are stiff, the implementation of the

muscle model used in this article is still possible. Two 6 axis

force sensors placed on the arms and a module developed by

the robotcub consortium allow the joints to react as if they

were compliant. In this way, it is possible to move the joint

applying a torque on its axis and thanks to the opensource

aspect of the project, it would be possible to implement muscle

actuation directly on the motor control boards.

IX. Acknowledgment

This research work was supported by the ITALK project (EU,

ICT, Cognitive Systems and Robotics Integrating Project, grant

no 214668). The authors thank their colleagues at LARAL for

stimulating discussions and feedback during the preparation of

this paper.

References
[1] S. F. Cappa and D. Perani, “The neural correlates of noun and verb processing,”

J. Neurolinguistics, vol. 16, no. 2–3, pp. 183–189, 2003.

[2] A. Glenberg and M. Kaschak, “Grounding language in action,” Psychon. Bull. Rev.,

vol. 9, pp. 558–565, 2002.

[3] O. Hauk, I. Johnsrude, and F. Pulvermuller, “Somatotopic representation of action

words in human motor and premotor cortex,” Neuron, vol. 41, no. 2, pp. 301–307, 2004.

[4] F. Pulvermuller, The Neuroscience of Language. On Brain Circuits of Words and Serial Order.

Cambridge, U.K.: Cambridge Univ. Press, 2003.

[5] G. Rizzolatti and M. A. Arbib, “Language within our grasp,” Trends Neurosci., 1998.

[6] A. Cangelosi, V. Tikhanoff, J. F. Fontanari, and E. Hourdakis, “Integrating language

and cognition: A cognitive robotics approach,” IEEE Comput. Intell. Mag., vol. 2, no. 3,

pp. 65–70, 2007.

[7] A. Cangelosi, G. Metta, G. Sagerer, S. Nolfi, C. L. Nehaniv, K. Fischer, J. Tani, G.

Sandini, L. Fadiga, B. Wrede, K. Rohlfing, E. Tuci, K. Dautenhahn, J. Saunders, and A.

Zeschel, “Integration of action and language knowledge: A roadmap for developmental

robotics,” Tech. Rep., 2010.

[8] S. Nolfi, “Behaviour as a complex adaptive system: On the role of self-organization

in the development of individual and collective behaviour,” Complexus, vol. 2, no. 3–4,

pp. 195–203, 2005.

[9] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, and E. Thelen, “Autono-

mous mental development by robots and animals,” Science, vol. 291, no. 5504, pp. 599–600, 2001.

[10] J. Weng, “Developmental robotics: Theory and experiments,” Int. J. Humanoid Ro-

bot., vol. 1, no. 2, pp. 199–236, 2004.

[11] S. Schaal, “Arm and hand movement control,” in Handbook of Brain Theory and Neural

Networks, 2nd ed., M. Arbib, Ed. Cambridge, MA: MIT Press, 2002, pp. 110–113.

[12] M. Gienger, M. Toussaint, N. Jetchev, A. Bendig, and C. Goerick, “Optimization of

f luent approach and grasp motions,” in Proc. 8th IEEE-RAS Int. Conf. Humanoid Robots.

IEEE Press, 2008, pp. 111–117.

[13] G. Sandini, G. Metta, and D. Vernon, “Robotcub: An open framework for research

in embodied cognition,” Int. J. Humanoid Robot., 2004.

[14] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning movement primitives,” in

Proc. Int. Symp. Robotics Research (ISRR2003), S. verlag, Ed. 2004, pp. 1–10.

[15] J. Felip and A. Morales, “Robust sensor-based grasp primitive for a three-finger robot

hand,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2009.

[16] E. Oztop, N. S. Bradley, and M. A. Arbib, “Infant grasp learning: A computational

model,” Exp. Brain Res., vol. 158, no. 4, pp. 480–503, 2004.

[17] C. von Hofsten, “Eye-hand coordination in the newborn,” Dev. Psychol., vol. 18, pp.

450–461, 1982.

[18] C. von Hofsten, “Developmental changes in the organization of prereaching move-

ments,” Dev. Psychol., vol. 20, pp. 378–388, 1984.

[19] C. von Hofsten, “Structuring of early reaching movements: a longitudinal study,”

J. Mot. Behav., vol. 23, pp. 280–292, 1991.

[20] P. Rochat, “Self-perception and action in infancy,” Exp. Brain Res., vol. 123, pp.

102–109, 1998.

[21] M. K. McCarty, R. K. Clifton, D. H. Ashmead, P. Lee, and N. Goulet, “How infants

use vision for grasping objects,” Child Dev., vol. 72, pp. 973–987, 2001.

[22] E. Tuci, G. Massera, and S. Nolf i, “Active categorical perception of object shapes in a

simulated anthropomorphic robotic arm,” IEEE Trans. Evol. Comput., to be published.

[23] G. Massera, A. Cangelosi, and S. Nolfi, “Evolution of prehension ability in an an-

thropomorphic neurorobotic arm,” Front. Neurorobot., vol. 1, pp. 1–9, 2007.

[24] T. Buehrmann and E. A. Di Paolo, “Closing the loop: Evolving a model-free visu-

ally-guided robot arm,” in Proc. 9th Int. Conf. Simulation and Synthesis of Living Systems, J.

Pollack, M. Bedau, P. Husbands, T. Ikegami, and R. Watson, Eds. Cambridge, MA: MIT

Press, 2004, pp. 63–68.

[25] T. G. Sandercock, D. C. Lin, and W. Z. Rymer, “Muscle models,” in Handbook of Brain Theo-

ry and Neural Networks, 2nd ed., M. Arbib, Ed. Cambridge, MA: MIT Press, 2002, pp. 711–715.

[26] R. Shadmehr and S. P. Wise, The Computational Neurobiology of Reaching and Pointing:

A Foundation for Motor Learning. Cambridge, MA: MIT Press, 2005.

[27] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelligence, and Technology

of Self-Organizing Machines. Cambridge, MA: MIT Press, 2000.

[28] X. Yao and M. M. Islam, “Evolving artif icial neural network ensembles,” IEEE

Comput. Intell. Mag., vol. 3, no. 1, pp. 31–42, 2008.

[29] L. S. Vygotsky, Thought and Language. Cambridge, MA: MIT Press, 1962.

[30] L. S. Vygotsky, Mind in Society. Cambridge, MA: Harvard Univ. Press, 1978.

[31] M. Mirolli and D. Parisi. (2009). Towards a vygotskyan cognitive robotics: The role of language as

a cognitive tool. New Ideas Psychol. [Online]. Available: http://www.sciencedirect.com/science/

article/B6VD4-4X00P73-1/2/5eb2e93d’ 3fc615eea3ec0f637af6fc89

[32] V. Mohan, J. Zenzeri, P. Morasso, and G. Metta, “Equilibrium point hypothesis

revisited: Advances in the computational framework of passive motion paradigm,”

pp. 1–3.

©2010 IEEE. Reprinted, with permission, from Gianluca Massera, Elio Tuci, Tomassino Ferrauto and

Stefano Nolfi, The Facilitatory Role of Linguistic Instructions on Developing Manipulation Skills, IEEE

Computational Intelligence Magazine, August 2010

176 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 3, NO. 2, JUNE 2011

An Experiment on Behavior Generalization and

the Emergence of Linguistic Compositionality in

Evolving Robots
Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca Massera, and Stefano Nolfi

Abstract—Populations of simulated agents controlled by dy-

namical neural networks are trained by artificial evolution to
access linguistic instructions and to execute them by indicating,

touching, or moving specific target objects. During training the

agent experiences only a subset of all object/action pairs. During
postevaluation, some of the successful agents proved to be able

to access and execute also linguistic instructions not experienced

during training. This owes to the development of a semantic
space, grounded in the sensory motor capability of the agent and

organized in a systematized way in order to facilitate linguistic

compositionality and behavioral generalization. Compositionality
seems to be underpinned by a capability of the agents to access

and execute the instructions by temporally decomposing their

linguistic and behavioral aspects into their constituent parts (i.e.,
finding the target object and executing the required action). The

comparison between two experimental conditions, in one of which

the agents are required to ignore rather than to indicate objects,
shows that the composition of the behavioral set significantly

influences the development of compositional semantic structures.

Index Terms—Artificial neural networks, behavior generaliza-

tion, compositional semantics, evolutionary robotics.

I. INTRODUCTION

R ECENT research on action and language processing in

humans and animals clearly demonstrates the strict in-

teraction and codependence between language and action (e.g.,

[1]–[5]).

For example, in [3] the authors describe a seminal psycholog-

ical study showing that the execution of actions (e.g., bringing

something close to or far away from to the body) facilitates/dis-

rupts the comprehension of concurrently presented sentences

which imply similar/opposite actions (e.g., sentence direction

toward/away from the body). According to the authors, the re-

sults of this study show that understanding a sentence invokes

the same cognitive mechanisms as those used in planning and

executing actions. On the neurophysiological side, the authors

Manuscript received August 19, 2010; revised November 19, 2010; accepted
January 28, 2011. Date of publication February 14, 2011; date of current ver-
sion June 15, 2011. This work was supported by the ITALK Project (EU, ICT,
Cognitive Systems and Robotics Integrating Project, Grant 214668).
E. Tuci, T. Ferrauto, G. Massera, and S. Nolfi are with the ISTC-CNR, 00185

Rome, Italy (e-mail: elio.tuci@istc.cnr.it; tomassino.ferrauto@istc.cnr.it;
gianluca.massera@istc.cnr.it; stefano.nolfi@istc.cnr.it).
A. Zeschel is with the Institute of Business Communication and Information

Science, University of Southern Denmark, 6400 Sønderborg, Denmark, (e-mail:
zeschel@uni-bremen.de).

Digital Object Identifier 10.1109/TAMD.2011.2114659

in [6] performed a study in which by means of single-pulse tran-

scranial magnetic stimulation, either the hand or the foot/leg

motor area in the left hemisphere was stimulated in distinct ex-

perimental sessions, while participants were listening to sen-

tences expressing hand and foot actions. The results of the study

show that processing verbally presented actions activates dif-

ferent sectors of the motor system, depending on the effector

used in the described action. The authors conclude that certain

action words modulate areas of the brain concerned with per-

forming those actions.

Developmental psychology studies based on emergentist and

constructivist approaches also support a view of cognitive de-

velopment strongly dependent on the contribution of various

cognitive capabilities (e.g., [7]–[9]). These studies demonstrate

the gradual emergence of linguistic constructions built through

the child’s experience with her social and physical environment.

This is in line with the cognitive linguistic assumption that lin-

guistic categorization involves the same principles and mech-

anisms that also underlie nonlinguistic cognition (see [10] and

[11]).

In recent years, a fruitful exchange of ideas between roboti-

cists and cognitive linguists has begun to develop. On the one

hand, more and more language-related research in robotics em-

braces key ideas of the usage-based language model developed

in cognitive linguistics [12], [13]. Several roboticists explicitly

acknowledge this framework as their main theoretical inspira-

tion on the language side (e.g., [14]–[17]). On the other hand,

it is becoming progressively more common for cognitive lin-

guists to draw on insights and suggestions from works on com-

putational modelling (see, e.g., [18] and [19]). This is especially

evident in the field of language acquisition, where computa-

tional modelling has become a prominent aspect of the research

agenda of various scientists (see [20]–[22], for recent reviews).

In this paper, we describe a further robotic model designed

to look at aspects related to the emergence of compositional se-

mantic structures in simulated agents. Our results demonstrate

how the agents, trained to execute several actions by responding

to linguistic instructions, can generalize their linguistic and be-

havioral skills to never experienced instructions through the

production of appropriate behaviors. The analysis of the best

agents and the comparison of different experimental conditions,

in which the representation of the linguistic instructions is the

same but in which the behavioral set is varied, demonstrates

how the emergence of compositional semantics is affected by

the presence of behavioral regularities in the execution of dif-

ferent actions. Postevaluation tests also unveil further details of

1943-0604/$26.00 © 2011 IEEE

©2011 IEEE. Reprinted, with permission, from Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca

Massera and Stefano Nolfi, An Experiment on Behavior Generalization and the Emergence of Linguistic

Compositionality in Evolving Robots, IEEE Transactions on Autonomous Mental Development, June

2011

TUCI et al.: AN EXPERIMENT ON BEHAVIOR GENERALIZATION AND THE EMERGENCE OF LINGUISTIC COMPOSITIONALITY IN EVOLVING ROBOTS 177

the behavioral and linguistic strategies used by agents equipped

with compositional semantics to accomplish the task.

The paper is structured as follow. Section II reviews the most

relevant works in the literature and in particular those described

in (see [23]–[25]), which have been particularly inspiring for our

work. Section III describes the task investigated in this research

work and the agents’ morphological structure. In Sections IV,

V, and VI, we describe the agent’s control system, the evolu-

tionary algorithm and the fitness function used to design it. In

Section VII, we illustrate the results of a series of postevaluation

analyses. In Section VIII, we express some reflections on po-

tential connections between empirical studies of child language

learning and robotic models trying to indicate fruitful directions

for future work. Conclusions are presented in Section IX.

II. BACKGROUND

By the term “compositional semantics,” we refer to a func-

tional dependence of the meaning of an expression on the

meaning of its parts. Compositional semantics in natural lan-

guage refers to the human ability to understand the meaning of

spoken or written sentences from the meaning of their parts, and

the way in which these parts are put together. For example, the

meaning of an unknown sentence like “Susan likes tulips” can

be understood by learning the following three sentences: “Julie

likes daisies,” “Julie likes tulips,” and “Susan likes daisies.” In

this example, the meaning of the original sentence is achieved

through compositional semantics by generalizing the meaning

of single words from a known (already learned) to an unknown

(yet to be learned) context.

During the cognitivist era, compositionality was supposed

to be underpinned by concatenative processes in which the to-

kens of an expression’s constituents (and the sequential rela-

tions among them) are preserved in the expression itself [26].

The difficulties shown by classic symbolic AI in accounting

for general associations between semantic representations and

sensory–motor profiles, and in particular in accounting for the

acquisition of linguistic semantics through behavioral experi-

ences, determined a paradigm shift in which an alternative per-

spective on compositionality emerged (see [27] for a critical per-

spective on classic AI). In the last decade of the previous cen-

tury, the connectionist approach to cognition proposed the idea

of functional compositionality; that is compositional semantics

systems in which the tokens of an expression’s constituents (and

the sequential relations among them) are not preserved in the

expression itself [28]. Various connectionist models proved that

artificial neural networks can be employed to physically instan-

tiate functional compositional semantic structures [29].

More recently, autonomous (real or simulated) robots have

been used to investigate how a form of language can emerge

and evolve in a population of robots interacting between them-

selves and with the physical environment [30]–[33]. Moreover,

several works have investigated how a robot can acquire a lan-

guage by interacting with a human user. For example, in [34],

the authors designed robotic experiments with robots that, in ad-

dition to react to language commands issued by the user are also

able to acquire both the meaning of new linguistic instructions

and new behavioral skills on the fly, by grounding the new com-

mands in preexisting motor skills. In [35] the authors designed

robots able to cooperate and to share attention with a human user

in a restricted experimental setting. This is achieved by allowing

the robot to observe the goal-directed behavior exhibited by the

user and to adopt her plan. In [36], the author designed a devel-

opmental learning architecture that allows a robot to progres-

sively expand its behavioral repertoire while interacting with

a human trainer that shapes its behavior. In [37], the authors

studied how new, higher-order behavioral abilities can be au-

tonomously built upon previously-grounded basic action cat-

egories, acquired through language-mediated interactions with

human users.

In [23]–[25], the authors investigate the issue of grounding

compositional semantic structures in an agent’s sensory-motor

skills in tasks that require the shift from rote knowledge to

systematized knowledge. In particular, in [23] and [25] a robot

learns to execute actions in response to linguistic instructions

consisting in two-words sentences. The robots neural controller

comprises a behavioral and a linguistic module. The behavioral

module is trained through a learning-by-demonstration method

in which the sensory–motor states experienced while the robot

is moved by the experimenter, through teleoperation or kines-

thetic teaching, are used as a training set. The linguistic module

is trained to predict the next word of a two-word linguistic

instructions in which the words are provided to the agent

sequentially. In [25], both thebehaviorall and the linguistic

module are trained only on a subset of all possible linguistic

instructions resulting from the combination of all possible

objects with all possible actions. In [23], the linguistic module

is trained only on a subset of all possible linguistic instructions

whereas the behavioral module is trained to execute all the

possible instructions. In all three studies [23]–[25], the agent

proves capable of performing actions associated with linguistic

instructions not experienced during training. The authors claim

that behavioral and/or linguistic generalization is achieved by

“conceiving something not experienced as a recombination of

learned examples” (see [23], for details). The contribution of

these works is in bringing evidence for a dynamical perspective

on compositional semantic systems, alternative to the one in

which neural correlates of language are viewed as atomic ele-

ments semantically associated to basic units of the linguistics

system. The authors show that compositional systems can be

underpinned by neural structures in which the neural correlates

of the linguistic instructions are dynamically self-organized

topological properties of the neural substrate, induced by

similarities among sensory–motor sequences. Each instruction

(i.e., action plus object) is represented in a two-dimensional

semantic space by a single point which lies in a grid-like

geometrical structure in which one dimension refers to actions

and the other to objects. The geometrical arrangement of neural

correlates that emerged during the simultaneous training of

the behavioral and linguistic modules, allows the agent to

successfully respond to nonexperienced linguistic instructions.

In this paper, we describe a series of simulations in which a

robot is required to perform a task very similar to the one de-

scribed in [23]. As in [23], our goal is also to investigate the

emergence and the underlying properties of a functionally com-

positional semantic system in a task that requires the shift from

rote knowledge to systematized knowledge. However, we look

©2011 IEEE. Reprinted, with permission, from Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca

Massera and Stefano Nolfi, An Experiment on Behavior Generalization and the Emergence of Linguistic

Compositionality in Evolving Robots, IEEE Transactions on Autonomous Mental Development, June

2011

178 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 3, NO. 2, JUNE 2011

Fig. 1. (a) Image of the simulated iCub and its word. (b) Schematic representation of the agent structure and its world in the 2-D simulator. The vision system of
the agent is drawn only with respect to the arm initialized on the right initialization area. refers to the angular position of . refers to the angular position of
with respect to . See text for further details.

at the problem with different methods that, as we will see, lead

to a qualitatively different type of solution. In our case, a neural

controller is trained to execute a subset of possible linguistic in-

structions through an evolutionary method in which the robot

is rewarded for the ability to achieve a certain goal without

specifying the sequence of movements through which this goal

should be realized. As shown in Section VII, this allows the

robot to codevelop linguistic skills to access the meaning of the

instructions and behavioral skills to execute them.

III. THE AGENT STRUCTURE AND THE TASK

The experimental scenario concerns a humanoid iCub robot

[38] placed in front of a table with a red, green, and blue object

as shown in Fig. 1(a). The robot is trained to execute seven

actions on the object by responding to linguistic instructions

formed by all the possible combinations of the three action

words “INDICATE,” “TOUCH,” and “MOVE” and the three

object word “Red,” “Green,” and “Blue” with the exception

of the sentences “TOUCH Green object” and “MOVE Blue

object.” After training, the robot is then tested on the two

nonexperienced sentences to assess whether it produces the

appropriate corresponding behaviors even though it had neither

experienced these sentences before nor received training on

the two corresponding behaviors. To reduce the computational

costs associated to the simulation of such a complex robot, we

carried out our experiments on a simpler experimental 2-D sce-

nario involving a two-segments arm described below. We then

port the obtained results on a simulated iCub by controlling the

robots hand position on the basis of the current position of the

end-effector of the simplified arm through the inverse kinematic

software described in [39]. The best evolved controllers have

been successfully ported on the iCub simulator.1

In the simple two-dimensional simulated world, an agent is

composed of an arm with two segments referred to as (100

cm) and (50 cm), and two degrees of freedom (DOF). Each

DOF comprises a rotational joint which acts as the fulcrum and

an actuator. The first actuator causes to rotate clockwise or

anticlockwise around joint , with the movement restricted in

the right and the left (210) bound. The other actuator

1Movies and further methodological details concerning the porting can be
found at http://laral.istc.cnr.it/esm/tuci-etal-IEEE_TAMD2010/.

causes to rotate clockwise or anticlockwise around joint

within the range [90 , 0] with respect to [see Fig. 1(b)].

Friction and momentum are not considered.

In the environment there are three objects of different colors

(i.e., a blue, a green, and a red object). The objects are placed

150 cm from with their center placed anywhere on the chord

delimiting their corresponding Init. sector [see Fig. 1(b)]. The

objects do not move unless pushed by the arm. The agent is

equipped with a linear camera with a receptive field of 30 , di-

vided in three sectors, each of which has three binary sensors

(for blue, for green, and for red, with

sectors). Each sensor returns 1 if the blue/green/red object falls

within the corresponding sector. If no colored object is detected,

the readings of the sensors are set to 0 (i.e., the camera perceives

a black background). The camera and move together. The

experimental set up is built in a way that at each time step there

can be only one object in the camera view.

The agent has means to perceive whenever reaches the

right or the left bound through the activation of the camera sen-

sors. That is, when reaches the right bound , and

are set to 1 (i.e., the first camera sector perceives a white

background). When reaches the right bound , and

are set to 1 (i.e., the third camera sector perceives a white

background). Finally, two binary touch sensors (i.e.,) are

placed on the right, and left side of . Collisions between the

agent and an object are handled by a simple model in which

whenever pushes the object the relative contact points re-

main fixed.

To assess whether the composition of the behavioral set

affects the developmental process and the generalization

capabilities of the agents, we run two sets of evolutionary

experiments. In theWith-Indicate experimental condition, the

task consists in the execution of the following instructions:

TOUCH Blue object , TOUCH Red object ,

MOVE Green object , MOVE Red object ,

INDICATE Blue object , INDICATE Green ob-

ject , and INDICATE Red object . In the

With-Ignore experimental condition, the action INDICATE

is substituted with the action IGNORE. Thus, refers

to IGNORE Bkue object, refers to IGNORE Green

object, and refers to IGNORE Red object. For both

©2011 IEEE. Reprinted, with permission, from Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca

Massera and Stefano Nolfi, An Experiment on Behavior Generalization and the Emergence of Linguistic

Compositionality in Evolving Robots, IEEE Transactions on Autonomous Mental Development, June

2011

TUCI et al.: AN EXPERIMENT ON BEHAVIOR GENERALIZATION AND THE EMERGENCE OF LINGUISTIC COMPOSITIONALITY IN EVOLVING ROBOTS 179

TABLE I
THE LINGUISTIC INSTRUCTIONS. IN GREY THE NONEXPERIENCED

INSTRUCTIONS, THAT IS, THOSE NOT EXPERIENCED DURING TRAINING.
THE TABLE ALSO SHOWS THE NOTATION USED IN (1) TO
REFER TO EACH BIT OF THE LINGUISTIC INSTRUCTIONS

evolutionary conditions, the linguistic instructions experienced

during training are referred to as experienced instructions, while

the instructions TOUCH Green object and MOVE

Blue object , never experienced during training, are

referred to as nonexperienced instructions (see also Table I).

The object-label and the action-label are given to the agent

concurrently and for the entire duration of a trial.

TOUCH and MOVE require the agent to rotate and

until collides with the target object. TOUCH requires an

agent to remain in contact with the target object with the right

side of (that is, by activating the touch sensor) for an

uninterrupted interval of 100 time steps. During this interval,

must not rotate. MOVE requires an agent to rotate more

than 35 while is touching the object with its right side. The

rotation of while is touching the object determines the

movement of the object. INDICATE requires an agent to rotate

until the angular distance between and the object is less

than 30 . INDICATE is correctly executed only if remains at

less than 30 from the target object for more than 100 time steps.

IGNORE requires the agent to look at anything except the target

object. The agent has to move away from positions in which the

target object falls within its visual field. During the execution of

INDICATE and IGNORE, an agent must not collide with any

object. During the execution of TOUCH and MOVE, an agent

must not collide with the nontarget objects (i.e., the objects not

mentioned in the current linguistic instruction).

After training, all the agents are evaluated for their capability

to access experienced and nonexperienced linguistic instruc-

tions and to execute the corresponding behaviors.

IV. THE AGENT CONTROLLER

The agent controller is composed of a continuous time re-

current neural network (CTRNN) of 18 sensor neurons, three

interneurons, and four motor neurons [40]. At each time step

sensor neurons are activated using an input vector with

corresponding to the sensors readings. In particular,

Fig. 2. Neural network. Continuous line arrows indicate the efferent connec-
tions for the first neuron of each layer. Underneath the input layer, it is shown
the correspondences between sensors/linguistic instructions, the notation used
in (1) to refer to them, and the sensory neurons.

and are the readings of touch sensors and , respec-

tively; to are the readings of the camera sensors; is

refers to the normalized angular position of with respect to

(i.e.,); to are the linguistic input and their value

depend on the current linguistic instruction. , and

identify the object, , and identify the action to exe-

cute (see Fig. 2).

The interneuron network is fully connected. Additionally,

each interneuron receives one incoming synapse from each

sensory neuron. Each motor neuron receives one incoming

synapse from each interneuron. There are no direct connections

between sensory and motor neurons. The states of the motor

neurons are used to control the movement of and as

explained later. The states of the neurons are updated using the

following equation:

(1)

for (2)

for (3)

with . In these equations, using terms de-

rived from an analogy with real neurons, represents the cell

potential, the decay constant, is a gain factor, the inten-

sity of the perturbation on sensory neuron the strength of

the synaptic connection from neuron to neuron the bias

term, the firing rate (hereafter,). All sensory neu-

rons share the same bias , and the same holds for all motor

neurons . and with , all the

network connection weights , and are genetically specified

networks’ parameters. At each time step the angular movement

of is degrees and of is

degrees, where is the Heav-

iside step function and sgn is the sign function. Cell potentials

are set to 0 when the network is initialized or reset, and (2) is

integrated using the forward Euler method with an integration

time step .

©2011 IEEE. Reprinted, with permission, from Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca

Massera and Stefano Nolfi, An Experiment on Behavior Generalization and the Emergence of Linguistic

Compositionality in Evolving Robots, IEEE Transactions on Autonomous Mental Development, June

2011

180 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 3, NO. 2, JUNE 2011

V. THE EVOLUTIONARY ALGORITHM

A simple generational genetic algorithm is employed to set

the parameters of the networks [41]. At generation 0, a random

population of 100 vectors is generated by initializing each com-

ponent of each vector to a value chosen uniformly random in the

range [0, 1]. Each vector comprises 84 real values (i.e., 75 con-

nection weights , three decay constants , five bias term ,

and one gain factor shared by all the sensory neurons). Here-

after, using terms derived from an analogy with biological sys-

tems, a vector is referred to as genotype and its components as

genes.

Generations following the first one are produced by a combi-

nation of selection with elitism and mutation. For each new gen-

eration, the three highest scoring genotypes (“the elite”) from

the previous generation are retained unchanged. The remainder

of the new population is generated by fitness-proportional se-

lection from the 50 best genotypes of the old population. New

genotypes, except “the elite,” are produced by applying muta-

tion. Mutation entails that a randomGaussian offset is applied to

each gene, with a probability of 0.4. The mean of the Gaussian is

0, and its standard deviation is 0.1. During evolution, all genes

are constrained to remain within the range [0, 1]. That is, if due

to mutations a gene falls below zero, its value is fixed to 0; if it

rises above 1, its value is fixed to 1.

Genotype parameters are linearlymapped to produce network

parameters with the following ranges: in

in with ,

with , and ,

with , and , gain factor

. Decay constants with , are firstly lin-

early mapped into the range and then exponentially

mapped into . The lower bound of corre-

sponds to the integration step-size used to update the controller;

the upper bound, arbitrarily chosen, corresponds to about 4% of

the maximum length of a trial.

VI. THE FITNESS FUNCTION

During evolution, each genotype is translated into an arm

controller and evaluated more than once for all the object–ac-

tion experienced instructions by varying the starting positions.

The agents perceive experienced instructions and they are re-

quired to execute the corresponding behaviors. Agents are eval-

uated 14 times initialized in the left and 14 times in the right

initialization area, for a total of 28 trials. For each initialization

area, an agent experiences all the experienced linguistic instruc-

tions twice. The nonexperienced linguistic instructions

and are never experienced during the training phase.

At the beginning of each trial, the agent is randomly initialized

in one of the two initialization area, and the state of the neural

controller is reset. A trial lasts 25 simulated seconds (

time steps). A trial is terminated earlier in case the arm collides

with a non target object. In each trial , an agent is rewarded by

an evaluation function which seeks to assess its ability to exe-

cute the desired action on the target object.

A. With-Indicate

In With-Indicate, the fitness attributed to an agent in

trial is the sum of three fitness components , and .

rewards the agent for reducing the angular distance between

and the target object. rewards the agent for performing

the required action on the target object. rewards the agent

for extending when it is perceiving the target object and it is

required to touch or to move it

(4)

, and are computed as follows:

(5)

where and are, respectively, the initial (i.e., at)

and final (i.e., at the end of the trail) angular distances be-

tween and the target object and is 1 if ,

0 otherwise. is the penalty factor. It is set to 0.6 if the agent

collides with a non target object, otherwise to 1.0. The angle

between and the target object can be measured clockwise

or anticlockwise . In (5), and are the min-

imum between the clockwise and anticlockwise distance, that is

. See (6a)–(6b) at the bottom of the page,

where if

otherwise . For

the action INDICATE, steps-on-target refers to the number of

time steps during which , and does not touch the

target object. For the action TOUCH, steps-on-target refers to

the number of time steps during which touches the

target object by activating the touch sensor , and does not

change its angular position. is the angular displacement of

the orientation of recorded while , and is touching

the target object by activating the touch sensor .

(7)

with corresponding to the angular position of with respect

to . is computed only when the target object is falling

within the visual field of the agent and in those trials in which

the agent is required to touch or to move the target object. If

the current linguistic instruction requires the agent to indicate

an object and during the time of a trial in which the agent is not

steps-on-target

max-steps-on-target

for

or
(6a)

max-angular-offset
(6b)

©2011 IEEE. Reprinted, with permission, from Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca

Massera and Stefano Nolfi, An Experiment on Behavior Generalization and the Emergence of Linguistic

Compositionality in Evolving Robots, IEEE Transactions on Autonomous Mental Development, June

2011

TUCI et al.: AN EXPERIMENT ON BEHAVIOR GENERALIZATION AND THE EMERGENCE OF LINGUISTIC COMPOSITIONALITY IN EVOLVING ROBOTS 181

Fig. 3. Graphs showing the fitness curves of the best agent at each generation of ten evolutionary Runs in condition (a)With-Indicate; (b)With-Ignore.

perceiving the target object . A trial is terminated earlier

if during the

execution of INDICATE or TOUCH and when

during the execution of MOVE.

B. With-Ignore

With-Ignore differs fromWith-Indicate only in the compu-

tation of and during the execution of the linguistic in-

structions IGNORE Blue object , IGNORE Green ob-

ject , and IGNORE Red object . During the

trials in which an agent is required to IGNORE an object

if at the end of the trial the target object does not fall within the

visual field of the agent, otherwise .

steps-out-of-target

max-steps-out-of-target
for

where , and steps-out-of-

target refers to the number of time steps during which ,

and does not touch the target object.

VII. RESULTS

For each experimental condition (With-Indicate, and

With-Ignore), we run ten evolutionary simulations for 6000

generations, each using a different random initialization. Recall

that our objective is to generate agents that are capable of

successfully accessing and executing experienced linguistic in-

structions. Moreover, we are interested in investigating whether

agents develop semantic structures that are functionally com-

positional. Agents endowed with functionally compositional

semantics should be able to successfully access and execute

experienced linguistic instructions and to generalize their

linguistic and behavioral skills to nonexperienced instructions

(i.e., linguistic instructions never experienced during training).

We run two different series of simulations to test whether a

different training bears upon the development of the required

mechanisms for compositional semantics.

Fig. 3 shows the fitness of the best agent at each generation

of ten evolutionary Runs per condition. All the curves reach a

stable plateau with fitness either firmly fixed or progressing with

small oscillation around the maximum score (i.e.,).

There are Runs in which the agents reach the maximum fitness

very quickly (e.g., Run n 1 conditionWith-Indicate, or in Run

n 2 conditionWith-Ignore) other in which it takes longer (e.g.,

Run n 4 condition With-Indicate, or in Run n 3 condition

With-Ignore). For all the Runs, before reaching the last fitness

plateau, we have periods of very rapid fitness growth induced by

the acquisition of new skills to access and execute either entire

linguistic instructions or just single linguistic labels. These pe-

riods are always followed by either long or short fitness plateaus

characterized by rather small oscillations. Just by looking at the

fitness curves, we can say that, at the end of the simulation, most

of the best agents in both conditions looked capable of correctly

solving the linguistic task. However, to estimate the effective-

ness and robustness of some of the best evolved agents, with

respect to the initial position of the arm, we postevaluated them

for a larger number of trials.

A. First Postevaluation Test: Performances on Experienced

and Nonexperienced Linguistic Instructions

In the first postevaluation test, the best five agents of each

generation, from generation 4000 to generation 6000, of each

evolutionary Run in both conditions, have been repeatedly

postevaluated in each experienced and nonexperienced lin-

guistic instruction. We decided to test the best five agents

instead of the best one of each generation, because, during evo-

lution, the agents have been ranked according to their fitness,

which does not take into account the agent capability to access

and execute nonexperienced linguistic instructions. Recall that

nonexperienced linguistic instructions have not been presented

during evolution. Thus, with respect to the capability to access

and execute nonexperienced linguistic instructions, the best

agent of each generation may not represent the most effective

solution that appeared at each evolutionary time. Overall,

100 000 agents per condition have been postevaluated (i.e., five

agents, times 2000 generations, times 10 Runs).

During this postevaluation test, each agent is required to ex-

ecute 80 times each of the nine instructions [40 trials with the

agents randomly initialized in the right initialization area and,

40 trials in the left one, see also Fig. 1(b)]. The position of the

objects is also randomly varied as explained in Section III. In

each trial , an agent can be either successful or unsuccessful. It

is successful if , otherwise it is unsuccessful (see (4),

Section VI for details on). At the end of the postevalua-

tion test, an agent capability to solve the linguistic and behav-

ioral task is represented by nine scores, one for each linguistic

instruction. Recall that each score ranges from 0 to 80, and it

represents the number of times an agent is successful at the ex-

ecution of the corresponding linguistic instruction.

It is worth noting that, the results of this test gave us a rather

heterogeneous picture, with performances that, even for a single

©2011 IEEE. Reprinted, with permission, from Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca

Massera and Stefano Nolfi, An Experiment on Behavior Generalization and the Emergence of Linguistic

Compositionality in Evolving Robots, IEEE Transactions on Autonomous Mental Development, June

2011

182 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 3, NO. 2, JUNE 2011

agent, vary remarkably from one linguistic instruction to the

other. We felt that readings and interpreting these data by only

concentrating on general trends, it would have significantly im-

poverished the message or this research work. Therefore, we

chose a way of representing the results which gives the reader

a coherent and exhaustive, although a bit articulated, synthesis

of what the postevaluated agents are capable of doing at the lin-

guistic task. In particular, for each condition, the performances

of the agents are compared with respect to four different sub-

tasks. For each subtask, the comparison were accomplished by

grouping the 100 000 agents in eleven different categories. We

first describe what the subtasks are and then we explain the

meaning of each category.

Subtask I takes into account only the seven scores recorded

during the execution of the experienced linguistic instructions.

Subtask II takes into account the seven scores recorded

during the execution of the experienced linguistic instructions

plus the score recorded during the execution of the nonexperi-

enced linguistic instruction MOVE Blue object.

Subtask III takes into account the seven scores recorded

during the execution of the experienced linguistic instructions

plus the score recorded during the execution of the nonexperi-

enced linguistic instruction TOUCH Green object.

Subtask IV takes into account all the nine scores (i.e., seven

of them for the experienced instructions plus two for the nonex-

perienced instructions).

For each subtask, the agents are allocated to one of eleven

possible categories (from to). For a given sub-

task, an agent is assigned to with , if its

lowest score among those considered for that particular subtask,

is within the interval (]. com-

prises all agents that failed to complete a single trial out of 80

attempts on at least one of the instructions. The higher the cat-

egory, the better the overall performance of the agent. For ex-

ample, subsumes those agents for whom the lowest score

among those considered in a given subtask is within the interval

(40, 48]. subsumes those agents for whom the lowest score

among those considered in a given subtask is within the interval

(48,56], etc. Let’s consider an agent whose performances at the

postevaluation test are represented by the following nine scores

vector (80, 80, 80, 80, 80, 80, 80, 52, 67), in which the first seven

scores refer to the performances while executing experienced

instructions, the eighth score refers to the performance while ex-

ecuting the nonexperienced instruction TOUCH Green, and the

ninth score refers to the performance while executing the non-

experienced instruction MOVE Blue object. This agent would

be assigned to the following categories: 1) category as far

as it concerns subtask I; 2) category as far as it concerns

subtask II; and 3) category as far as it concerns subtask III

and subtask IV.

Table II shows the number of postevaluated agents for each

category and for each subtask. These results can be summarized

in the following:

• for both conditions, more than half of the postevaluated

agents (about 60% of the agents in With-Indicate, and

about 66% of them inWith-Ignore), are perfectly capable

of accessing and executing the seven linguistic instruction

experienced during evolution (see subtask I, , con-

TABLE II
RESULTS OF POSTEVALUATION TESTS SHOWING, FOR EACH EVOLUTIONARY
CONDITION, THE NUMBER OF AGENTS FOR EACH PERFORMANCE CATEGORY

AND FOR EACH SUBTASK. THE TOTAL NUMBER OF POSTEVALUATED
AGENTS PER CONDITION IS 100 000 (I.E., FIVE AGENTS,

TIMES 2000 GENERATIONS, TIMES 10 RUNS)

ditionWith-Indicate, andWith-Ignore). This is expected

from what was previously observed in the fitness curves

shown in Fig. 3.

• for both conditions, only a very small number of poste-

valuated agents is perfectly capable of accessing and exe-

cuting all the experienced plus one single nonexperienced

linguistic instruction, no matter which one of the two we

consider (see Table II, subtask II, and III, , condition

With-Indicate, and With-Ignore). The great majority of

the agents in subtask II and III completely fails to access

and execute exactly the single nonexperienced linguistic

instruction included in the corresponding subtask. This has

been confirmed by further checks on the data. However, it

can also be inferred from the fact that the same agents that

are in for subtask I tend to be in for subtasks

II and III.

• for both conditions, only a tiny fraction of the posteval-

uated agents is perfectly capable of accessing and exe-

cuting both the experienced and nonexperienced linguistic

instructions (see Table II, subtask IV, , With-Indi-

cate, andWith-Ignore).

From these results, it clearly emerges that only a tiny frac-

tion of the postevaluated agents is capable of accessing and ex-

ecuting all the linguistic instructions, independently from the

initial position of the arm. However, since the number of agents

in condition With-Indicate, , subtask II, III, and IV, is

©2011 IEEE. Reprinted, with permission, from Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca

Massera and Stefano Nolfi, An Experiment on Behavior Generalization and the Emergence of Linguistic

Compositionality in Evolving Robots, IEEE Transactions on Autonomous Mental Development, June

2011

TUCI et al.: AN EXPERIMENT ON BEHAVIOR GENERALIZATION AND THE EMERGENCE OF LINGUISTIC COMPOSITIONALITY IN EVOLVING ROBOTS 183

significantly different from the number of agents in condition

With-Ignore, , subtask II, III, and IV (pairwiseWilcoxon

test with 99% confidence interval), we conclude that condition

With-Indicate facilitates the evolution of agents capable of ac-

cessing and executing both experienced and nonexperienced

linguistic instructions. In other words, evolutionary pressures

to evolve a behavioral repertoire to execute the INDICATE be-

havior seem to facilitate the development of compositional se-

mantics. In the next Section, we will further investigate this

issue and present a closer look at what makes conditionWith-

Indicate more suitable to the evolution of compositional se-

mantic structures.

Obviously, it is important to emphasize the fact that the evo-

lutionary conditions detailed in previous Sections, and in par-

ticular those in condition With-Indicate, generate the neural

mechanisms required by the agents to go beyond what was ex-

perienced during evolution. Nevertheless, the fact remains that

in either condition, the agents capable of generalizing their skills

are only a tiny fraction of the agents capable of successfully ac-

complishing the evolutionary task. This can be explained by the

fact that: 1) evolution only seldom produced agents fully ca-

pable of generalizing their skills; and 2) the selective process

does not differentiate between compositional and noncomposi-

tional agents since they tend to produce equally good perfor-

mance with respect to the conditions in which they are eval-

uated. We noticed that agents capable of generalizing appear

only in six Runs out of ten, and they are never more than one or

two per generation.2When they appear, they generally have the

highest fitness recorded at that particular generation, which al-

most always is the highest possible fitness. However, they tend

to appear when there are already many more agents with the

same fitness in the population that are nevertheless not capable

of generalizing their linguistic and behavioral skills to nonexpe-

rienced linguistic instructions. The selection mechanism, which

can not distinguish on the basis of the fitness alone, agents ca-

pable of generalizing from those not capable of generalizing,

tends to favor the latter, to the detriment of the former, simply

because the latter are more frequent in the population.

A final point of minor significance is that generalization ca-

pabilities with respect to the MOVE Blue object instruction are

more frequent than that with respect to the TOUCHGreen object

instruction. That is, for both conditions, the number of agents in

subtask II is significantly different from the number of

agents in subtask III (pairwise Wilcoxon test with 99%

confidence interval). Although we have no empirical explana-

tion for this finding, we know that the action MOVE, which re-

quires the agents to rotate both arms around their joints, is an

action that, in evolutionary terms, appears earlier than the ca-

pability to TOUCH an object, which requires the agents to stop

rotating both arms. At the beginning of the evolution, when the

agents’ linguistic and behavioral skills are rather simple, it pays

more to be able to rotate the arms in order to approach the target

objects, rather than to be able to stop a not existing yet rotation of

the arms. This evolutionary progression of the behavioral skills

may explain why the nonexperienced instruction which requires

2Data not shown in the paper can be found at http://laral.istc.cnr.it/esm/tuci-
etal-IEEE_TAMD2010/.

to MOVE a target object turns out to be more easily accessible

and executable than the nonexperienced instruction that requires

to TOUCH a target object.

B. Compositionality: Operational Principles

What kind of operational principles do agents employ to be

able to access and execute both experienced and nonexperi-

enced instructions? What are the mechanisms underpinning

compositional semantics? By visually inspecting the behavior

of some of the agents, we notice that, contrary to the behavior

of the agents evolved in condition With-Ignore, the behavior

of compositional agents evolved in condition With-Indicate

is the result of the combination of two types of elementary

behavior: an “INDICATE Red object” or “INDICATE Green

object,” or “INDICATE Blue object” behavior produced during

the first phase of the trial, eventually followed by a “TOUCH”

or “MOVE” behavior, in the second phase of the trial. During

the first phase of the trial, regardless of the action to be per-

formed on the object, the agents search the target object by

rotating in order to reduce the angular distance between

the target object and , keeping bent as at start until the

target object falls into the agent visual field. During the second

phase of the trial, regardless of the target object, the agents

rotate without moving if TOUCH is required. They

rotate until this segment collides with the target object

and then they start rotating again if MOVE is required.

They keep pointing to the object and fully bent as at

start if INDICATE is required. This qualitative analysis of the

behavior of compositional agents suggests that the agents have

developed behavioral skills that, being independent from the

particular nature of the linguistic instructions in which they are

employed, can be used in contexts already experienced as well

as in context not experienced during training.

From this observation, we hypothesized that compositional

semantics is underpinned by simple mechanisms by which,

during the first part of the trial, the agents regulate their actions

on the basis of the object-label and not on the basis of the

action-label, and vice-versa, during the second part of the

trial. This quite intuitive hypothesis suggests that, in any given

trial, there may be a first temporal phase, which starts right

at the beginning of the trial, in which agents access the part

of the linguistic instruction that defines the target object (i.e.,

the object-label) and act in order to execute the appropriate

search behavior. During this phase, the other part of the lin-

guistic instruction (i.e., the action-label) should not influence

the agent’s behavior. The first phase would be followed by

a second one, which begins roughly when the target object

is visually found. In the second phase, the agents regulate

their behavior on the basis of the action-label only (i.e., the

object-label does not have any influence) in case the instruction

is TOUCH or MOVE. In the case of INDICATE, instead, the

agents keep producing the same behavior during the entire trial.

On this account of compositionality, linguistic instructions not

experienced during training (i.e., MOVE Blue object, TOUCH

Green object), would be:

• accessed by exploiting the capability to extract from a non-

experienced instruction already experienced linguistic la-

bels (i.e., TOUCH,MOVE, Blue object, and Green object).

©2011 IEEE. Reprinted, with permission, from Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca

Massera and Stefano Nolfi, An Experiment on Behavior Generalization and the Emergence of Linguistic

Compositionality in Evolving Robots, IEEE Transactions on Autonomous Mental Development, June

2011

184 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 3, NO. 2, JUNE 2011

Fig. 4. Graphs showing the results of the (a) action–transition test; (b) object–transition test. In both graphs, each bar indicates the percentage of agents that
managed to obtain a success rate higher than 75% in all possible transitions of the corresponding test. Black bars refer to the agents evolved in conditionWith-
Indicate, white bars refer to the agents evolved in condition With-Ignore. See the text for the definition of fully-compositional, partially-compositional, and
noncompositional agents.

• executed by calling upon known elementary behaviors as-

sociated to or triggered by one or the other linguistic label.

In what remains of this Section, we show the results of two

postevaluation tests designed in order to verify whether the

agents temporally and functionally decompose the linguistic

and behavioral task into two sequential phases as suggested by

our hypothesis. These tests are referred to as the action–tran-

sition test and the object–transition test. Both tests follow a

similar logic. In the action–transition test, the action-label is

changed during the course of a trial, while in the object–tran-

sition test, the object-label is changed during the course of

a trial. In both tests, the change takes place in a single time

step randomly chosen within a 10 time steps interval which

starts at the time when the target object falls within an agent

visual field. Based on our hypothesis, agents equipped with

compositional semantics are expected to execute the second

given action–label and neglect3 the first given one, at the ac-

tion–transition test. This is because the first given action-label

is experienced during the first phase of a trial, when the atten-

tion of the agents should be focused on the object-label. At the

object–transition test, these agents are expected to neglect the

second given object-label. This is because this object-label is

experienced during a time in which the agents already see the

first given target. Consequently, they should pay attention only

to the action-label.

The action–transition test and the object–transition test have

been run on a pool of agents selected on their results at the first

postevaluation test (see Section VII.A). In particular, for each

evolutionary condition (i.e.,With-Indicate, andWith-Ignore),

we chose the agents that proved to be more than 75% successful

at executing each experienced instruction. For the purposes of

these tests, these agents have been further selected, and the fol-

lowing three categories have been created: 1) noncompositional

agents, referring to those agents that, at the first postevaluation

test, proved to be less than 10% successful at executing each

3In this Section, we often take an anthropomorphic stance, by talking about
agents that attend or neglect linguistic labels. This is purely for ease of exposi-
tion. It is not our intention to claim that the agents are cognitively rich enough
to intentionally attend or neglect sensory stimuli.

of the nonexperienced instructions; 2) partially-compositional

agents, referring to those agents that, at the first postevaluation

test, proved to be more than 75% successful at executing only

one of the two nonexperienced instructions, and less than 10%

successful at executing the other nonexperienced instructions;

and 3) fully-compositional agents, referring to those agents that,

at the first postevaluation test, proved to be more than 75% suc-

cessful at executing each of the nonexperienced instructions.

For both tests, the agents are evaluated 80 times (i.e., 80 trials)

on each transition. In half of the trials, the agents are randomly

initialize in the right, and in half of the trials, in the left initializa-

tion area. In each trial , an agent can either succeed, if at the end

of the trial , or fail, if . Following the logic of

each test, the fitness components , and are updated

with respect to the execution of the second given action-label

on the current target object, in the action–transition test, and

with respect to the execution of the current action-label on the

first given target object, in the object–transition test. For both

tests, an agent’s overall performance on each specific transition

is considered a success if the agent successfully executes the

transition inmore than 60 out of 80 trials (i.e., 75% success rate).

Since both tests are indiscriminately done on noncompositional,

partially-compositional, and fully-compositional agents, we re-

moved from the two sets of possible transitions, those which, as-

suming our hypothesis holds, require a response that noncompo-

sitional, and partially-compositional agents are not capable of

performing. That is, we remove those transitions which require

a MOVE Blue object, or a TOUCH Green object response.4

Fig. 4(a) and (b) show the results of the action–transition test

and of the object–transition test, respectively. In both graphs,

each bar indicates the percentage of agents that managed to ob-

tain a success rate higher than 75% in all possible transitions of

the corresponding test. Black bars refer to the agents evolved in

4In particular, in the action–transition test, the transitions experienced by the
agents are those in which the second given action-label in combination with
the object-label does not produce a nonexperienced instruction. Similarly, in
the object–transition test, the transitions experienced by the agents are those in
which the first given object-label in combination with the action-label does not
produce a nonexperienced instruction

©2011 IEEE. Reprinted, with permission, from Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca

Massera and Stefano Nolfi, An Experiment on Behavior Generalization and the Emergence of Linguistic

Compositionality in Evolving Robots, IEEE Transactions on Autonomous Mental Development, June

2011

TUCI et al.: AN EXPERIMENT ON BEHAVIOR GENERALIZATION AND THE EMERGENCE OF LINGUISTIC COMPOSITIONALITY IN EVOLVING ROBOTS 185

conditionWith-Indicate, white bars refer to the agents evolved

in condition With-Ignore. Before commenting the results, the

reader should be aware of the following. These are quite se-

vere tests since they demands a high success rate on part of

the agents on each experienced transition. If our hypothesis on

the mechanisms underpinning compositionality holds, we ex-

pect noncompositional and partially-compositional agents to be

very bad at least in one of the experienced transitions. This is

because we assume that the test can be successfully performed

only by agents possessing the capability to functionally and tem-

porally decompose the linguistic and behavioral task into two

sequential phases, and that this capability can only be found in

fully-compositional agents. However, the agents may not need

to fully decompose every single trial into two sequential phases

in order to be able to successfully access and execute nonexpe-

rienced instructions. In this sense, the test may demand more

than what is required to be capable of behavioral and linguistic

generalization. Moreover, in these tests the agents’ performance

is influenced by whether the label change takes place exactly at

the time when the agents switch the focus of their attention from

the object–label to the action–label. For methodological conve-

nience, we treated all the agents in the same way, by arbitrarily

making this switch in a single time step randomly located in a 10

time steps interval that starts when the agents see the target ob-

ject. Nevertheless, this may not fully comply with each agent’s

own strategy, causing failure even in those agents that can func-

tionally and temporally decompose the task.

In spite of these limitations, these graphs tell us several im-

portant things. We first concentrate on the results of the ac-

tion–transition test. Fig. 4(a) indicates that the majority of fully-

compositional agents evolved in condition With-Indicate, re-

lies on strategies in which the action–label does not influence the

agents’ behavior during the first phase of the task [see Fig. 4(a),

black bar on the left]. This suggests that the capability to ne-

glect the action-label while searching for the target object is

associated with the presence of compositional semantic struc-

tures, since it tends to be observed in fully-compositional agents.

However, some of the partially-compositional and noncompo-

sitional agents in conditionWith-Indicate proved also capable

of accomplishing their task without failing in any transition of

the action–transition test [see Fig. 4(a), central and right black

bars]. Thus, the first conclusion we draw is that neglecting the

action–label while reaching the target object is not sufficient

to attain compositionality, since it does not allow those par-

tially-compositional and noncompositional agents that possess

it to access and execute nonexperienced instructions.

Fig. 4(a) also shows that the capability to cope with the ac-

tion-label change is completely absent in the agents evolved

in condition With-Ignore. This result seems to suggest that

the significant differences, illustrated in the previous Section,

between the two evolutionary conditions in the generation of

agents capable of accessing and executing nonexperienced lin-

guistic instructions, could be explained by the fact that solutions

based on the combination of independent elementary behaviors

are more rare in the With-Ignore condition. Thus, we further

conclude that the conditionWith-Indicate seems to contain the

evolutionary pressures that facilitate the emergence of compo-

sitionality by indirectly favoring those agents whose behavior

is not influenced by the action-label while they reach the target

object.

Fig. 4(b), which refers to the object–transition test, tell us that

the capability to neglect the object-label during the second phase

of a trial, when the target object is already within an agent’s

visual field, is completely absent in agents evolved in condi-

tion With-Indicate, and in particular is completely absent in

fully-compositional agents. Only some of the partially-compo-

sitional and of the noncompositional agents evolved in condi-

tionWith-Ignore seem to be able to cope with the object-label

change [see Fig. 4(b), central and right white bars]. How do

we explain these results? As far as it concerns the unexpected

failure of the fully-compositional agents evolved in condition

With-Indicate, we found out that, contrary to what hypothe-

sized by us, the agents use the object-label during the second

phase of the task to keep the target object within their visual

field. We observed that, when the object-label does not match

what is visually perceived, fully-compositional, partially-com-

positional, and noncompositional agents perform a search be-

havior, loosing visual contact with the object indicated by the

first given object-label. Thus, the object-label influences the

agents’ behavior during both the first and second phase of a

trial, by triggering the agents’ response of searching and ori-

enting toward the appropriate object. As far as it concerns the

performance of the agents evolved in condition With-Ignore,

we think that their successes at the object–transition test can

be explained by considering the evolutionary circumstances in

which they evolved. In particular, the action IGNORE can be

accomplished by executing a common act for all the objects.

Behavioral inspections have indeed demonstrated that partially-

compositional and noncompositional agents evolved in condi-

tion With-Ignore and capable of coping with the object–label

change, once required to IGNORE an object simply do not move

at all from their position. This is a strategy which can be suc-

cessfully applied to execute the action IGNORE regardless of

the target object. This may have facilitated the emergence of

mechanisms to be able to neglect the object-label while exe-

cuting the required action. However, this is speculative and fur-

ther analyses are required to test it.

Overall, these tests indicate that in fully-compositional agents

obtained in conditionWith-Indicate, the “INDICATE Red ob-

ject,” “INDICATE Blue object,” and “INDICATE Green ob-

ject” behaviors are executed during the entire trial, as demon-

strated by the fact that the agents are able to search for a new

object and then keep indicating it when the object-label is mod-

ified during the second phase of the trial. The execution of the

“INDICATE” behavior during the second phase of the trial is

not apparent in normal condition (i.e., when the position or the

color of the objects do not change) simply because the exe-

cution of this behavior do not produce any movement. Thus,

during the second phase of the trial, when the action label is

“INDICATE,” agents keep producing the same behavior. When

the action label is “TOUCH” or “MOVE,” the agents perform

the corresponding elementary behavior that operates in parallel

with the “INDICATE” behavior. The key mechanism that en-

ables compositionality, therefore, is the fact that the action–label

does not affect the agents behavior during the first part of the

trial. In other words, “TOUCH” and “MOVE” behaviors con-

©2011 IEEE. Reprinted, with permission, from Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca

Massera and Stefano Nolfi, An Experiment on Behavior Generalization and the Emergence of Linguistic

Compositionality in Evolving Robots, IEEE Transactions on Autonomous Mental Development, June

2011

186 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 3, NO. 2, JUNE 2011

stitute independent behavioral units realized through the execu-

tion of the same sequence of micro-actions irrespectively from

the object–label. Moreover, we can now state that a different

training bears upon the development of the required mecha-

nisms for compositional semantics, and that condition With-

Indicate facilitates the emergence of compositionality by fa-

voring the emergence of the functional independence of the ac-

tion-label from the behavioral experience of searching for the

target object.

Indeed, by looking at the phylogeny of fully-compositional

and partially-compositional agents in conditionWith-Indicate,

we notice that in early stages of their evolutionary history, one

of the first behavioral skill to appear is indeed related to the

capability of these agents to systematically reduce the angular

distance between and the target object regardless of what

type of action the current linguistic instruction is demanding.

For example, the ancestors of fully-compositional agents, when

required to MOVE or to TOUCH an object, they successfully

bring in correspondence of the target object, and they keep

bent until the end of the trial, by systematically failing to

execute the action MOVE and TOUCH. In other words, these

agents proved to be capable of accessing the linguistic label that

defines the object without being able to appropriately execute

the linguistic label that defines the TOUCH andMOVE actions.

The ability to handle these type of actions is developed later.

This can be considered a further evidence that, since the early

generation of evolution in conditionWith-Indicate, fully-com-

positional and partially-compositional agents learn to decom-

pose the trial into two parts, in the first one of which their be-

havior is entirely triggered by the object-label. It is important

to note that the early appearance of the capability to decompose

the task into two parts is not enforced by any means by the de-

sign of the fitness function, it emerges through the dynamics of

evolution, and it is facilitated in conditionWith-Indicate by the

presence of the instruction INDICATE. However, in the absence

of further tests, we can not exclude that these phenomena are in-

duced by design constraints, such as the fact that the segment

and the vision system are bound together. This is because, this

particular constraint makes it impossible for an agent to develop

a visual search strategy without concurrently acting as required

by the instruction INDICATE.

VIII. DISCUSSION: PERSPECTIVES FOR RESEARCH ON

CHILD LANGUAGE ACQUISITION

Computational approaches to language learning are an in-

tensely researched topic in several disciplines (for recent re-

views, cf. [20]–[22]). As yet, however, there is still a marked

gap between language learning research in cognitive robotics

on the one hand and language acquisition studies in computa-

tional linguistics on the other. One reason for this is the different

thrust of typical research in the two disciplines: in robotics, the

focus is commonly on semantic issues to do with the grounding

of individual linguistic symbols in agents’ sensory–motor expe-

rience [42]. In computational linguistics, the focus is usually on

structural issues to do with the induction of complex grammars

from unrestricted text [43], [44]. In a nutshell, roboticists tend

to concentrate on words as carriers of meaning (but neglect their

combinatorial properties), while linguists tend to concentrate on

their grammar (but neglect their meanings).

Given this apparent opposition, it is interesting to note that

a currently influential theory of child language acquisition

assumes both a phenomenological continuum and a develop-

mental connection between these two seemingly complemen-

tary learning targets (i.e., meaningful “words” and meaningless

“rules” in traditional terminology). In usage-based models of

language learning, children are assumed to acquire linguistic

“rules” (i.e., grammatical categories and constructional patterns

thereof) through piecemeal abstractions over utterance-length

concrete “words” (i.e., unanalyzed holophrastic strings like

“there you go” and “look at this” that are associated

with a holistic communicative intention, see [9]). Learners’

discovery of the internal structure of these units, coupled

with the realization that the segmented building blocks can be

productively recombined within the abstracted constructional

patterns, marks the crucial transition from finite lexicons to

open-ended grammars. From this perspective, the above exper-

iment is therefore concerned with the emergence of a genuine

breakthrough on the way to language.

Needless to say, both the learning target and the learning ar-

chitecture are substantially less complex here. However, most

computational models of language acquisition do not purport

to provide an accurate representation of the precise learning

mechanisms and processes at work in human children. Rather,

the more modest aim is usually to show that it is possible to

solve a given task through learning at all (i.e., without innate do-

main-specific biases). In this way, computational models have

made an important contribution to the debate over language

learnability, innateness and the purported “poverty of the stim-

ulus” (e.g., [45] and [46]). However, none of the models in these

debates is grounded in the way that human children’s internal

representation of language is. In other words, such research has

focused on the combinatorial dimension of language alone, but

has ignored the additional challenge of linking linguistic struc-

tures to the embodied conceptualizations that constitute their

meanings. The present study takes steps towards closing this

gap, and several of its findings can indeed be related to sim-

ilar observations made in empirical studies of child language

learning.

To better appreciate these connections, it will be helpful to

translate aspects of the design into the terminology of usage-

based models of child language acquisition. Agents’ capacity

to correctly access and execute a nonexperienced linguistic in-

struction corresponds to their acquisition of an “item-based con-

struction,” for example, [moveN] in the sense of [9]. As the term

“item-based” implies, the generalizations that child language

learners have acquired at this developmental stage do not apply

across the board. For instance, they may begin to use grammat-

ical marking on some verbs but not on others, indicating that

the more inclusive generalization that both items belong to the

same overall category has not yet been formed. Empirical evi-

dence for such item-specific effects in early language acquisi-

tion is abundant (cf. [9]), and the theoretical vision of a transi-

tion from holophrastic units over networks of item-specific “is-

lands” to ever more schematic grammars has also received sup-

port from different computational simulations of (nongrounded)

©2011 IEEE. Reprinted, with permission, from Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca

Massera and Stefano Nolfi, An Experiment on Behavior Generalization and the Emergence of Linguistic

Compositionality in Evolving Robots, IEEE Transactions on Autonomous Mental Development, June

2011

TUCI et al.: AN EXPERIMENT ON BEHAVIOR GENERALIZATION AND THE EMERGENCE OF LINGUISTIC COMPOSITIONALITY IN EVOLVING ROBOTS 187

language learning [47]. From this perspective, agents’ differen-

tial performance on the two nonexperienced instructions in the

present experiment does not come as a surprise: also in child

language acquisition, the transition from holophrases to com-

positional grammars is not instantaneous.

Similarly, also the second major finding of this study, that

is the significant effect of learning condition (With-Indicate

versus With-Ignore) on agents’ generalization performance

readily translates into a concept of usage-based models of

child language learning: if the above assumptions about what

makes the behavior INDICATE more similar to MOVE and

TOUCH than IGNORE are plausible, agents’ poorer general-

ization performance in condition With-Ignore would be said

to be the outcome of a lower cue consistency (i.e., regularity

of form-function mapping) of the category “Verb” in this

condition. Furthermore, since such constellations of incon-

sistency, competition and syncretism are in fact taken to be

the norm in natural language processing and learning, a look

to usage-based acquisition models in linguistics could also

suggest certain useful extensions of the present approach that

might be worthwhile to explore in future work (e.g., studying

agents’ generalization performance across more than one con-

struction, with or without semantic similarity between actions

and/or referents, with balanced or statistically skewed training

input, etc.). In other words, we will investigate the characteris-

tics that favor the emergence of compositional solutions (i.e.,

that ensure behavioral generalization) and/or that reduce the

chance to converge on noncompositional solutions. We will

also investigate the possibility to scale the model with respect

to the number and the complexity of the linguistic/behavioral

repertoire of the agent.

IX. CONCLUSION

In this paper, we described a robotic model that allows a

simulated robot to interact with three colored objects (a Red,

a Green, and a Blue object) located in its peripersonal space

by executing three actions (INDICATE, TOUCH, and MOVE)

during a series of trials. In each trial, the agent receives as input

a linguistic instruction and is rewarded for the ability to ex-

hibit the corresponding behavior. The results of this study show

that dynamical neural networks designed by artificial evolution

allow the robot to access and correctly execute the linguistic in-

structions formed by all the possible combinations of the three

action-labels and the three object-labels with the exception of

the instructions “TOUCH Green object” and “MOVE Red ob-

ject,” which are nonexperienced during training. Postevaluation

tests showed that some of the evolved agents generalize their

linguistic and behavioral skills by responding to the two non-

experienced instructions with the production of the appropriate

behaviors.

Our study shows that behavioral and linguistic competences

can coevolve in a single nonmodularized neural structure in

which the semantics is fully grounded in the sensory–motor

capabilities of the agents and fully integrated with the neural

mechanisms that underpin the agent’s behavioral repertoire.

Owe to the use of artificial evolution, we leave the agents

free to determine how to achieve the goals associated to each

linguistic instruction. This allows the agents to oreganos their

behavioral skills in ways that facilitate the development of

compositionality thus enabling the possibility to display a

generalization ability at the level of behaviors (i.e., the ability

to spontaneously produce behaviors in circumstances that have

not been encountered or rewarded during training).

The comparison between two experimental conditions, in one

of which the action–label INDICATE is substituted with the ac-

tion–label IGNORE, shows that the composition of the behav-

ioral set significantly influences the development of solutions

that generalize to nonexperienced instructions. Only individuals

evolved in conditionWith-Indicate are characterized by a par-

ticularly successful linguistic and behavioral organization based

on the decomposition of the task into two phases, each of which

can be associated with the execution of an elementary behavior.

In the first phase only the object-label bears upon the agents’

behavior by triggering the object search strategy. In the second

phase, both the object-label and the action-label determine the

agents’ response. In particular, the object-label keeps an agent

eliciting the same behavior produced during the first phase (i.e.,

the agent keeps on searching/pointing the target object with the

first segment of its arm). At the same time, the action-label trig-

gers a different behavior that consists in bending the second seg-

ment of the arm so to touch or move the object. The capability

to decompose the task into two sequential phases as described

above, and the use of elementary behaviors employed in dif-

ferent circumstances, are features that, although not sufficient

per se to explain compositional semantics, they certainly facil-

itate its evolution.

The use of elementary behavioral skills to generate instruc-

tions denoting complex actions resembles the process described

in [37], in which the ability to execute more complex linguistic

commands, such as GRAB, is acquired by associating two or

more previously acquired elementary behaviors (e.g., CLOSE-

LEFT-ARM and CLOSE-RIGHT-ARM). However, in [37], the

relation between complex and elementary behaviors is estab-

lished through explicit teaching (i.e., through linguistic input

such as: GRAB is CLOSE-LEFT-ARM and CLOSE-RIGHT-

ARM). By contrast, in the experiments reported in this paper,

behavioral decomposition emerge as a side effect of the need

to acquire the ability to execute several related linguistic com-

mands. Moreover, the way in which the agents accomplished

the required functionality (i.e., by combining in sequence or in

parallel relatively independent behavioral units) represents an

important prerequisite for the emergence of compositionality.

Therefore, leaving the agents as free as possible to organize how

they produce the required skills might be advantageous since it

might allow them to decompose the problem in a way that max-

imize skills reuse. This in turn implies that methods such as the

evolutionary method that rewards the agent on the basis of the

ability to achieve a given functionality without specifying in de-

tails the behavioral that should be produced might be advanta-

geous with respect to alternative methods in that respect.

The results of our postevaluation analyses also suggests us

that there are further distinctive operational principles underpin-

ning compositionality, other than those considered in this work,

that are most probably related to the structural and functional

characteristics of the agents’ neural controller. In future work,

we will specifically target these principles, trying to provide a

©2011 IEEE. Reprinted, with permission, from Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca

Massera and Stefano Nolfi, An Experiment on Behavior Generalization and the Emergence of Linguistic

Compositionality in Evolving Robots, IEEE Transactions on Autonomous Mental Development, June

2011

188 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 3, NO. 2, JUNE 2011

clear description of their nature. Moreover, we mentioned that

compositional agents tend to appear very rarely during evolu-

tion. It is our intention to work on the characteristics of the

task to identify the elements that bear upon the evolutionary

origins of agents equipped with compositional semantic struc-

tures. With respect to this issue, we think that it may be worth

to vary linguistic features and behavioral aspects of the task.

For example, in this simulation, the objects have fixed positions

with respect to the agent (i.e., Red object on the left, Green

object in front, and Blue object on the right of the agent). We

wonder whether the necessity to evolved more robust explo-

ration strategies, induced by the variability of the object po-

sition relative to the agent, facilitates or hinders the develop-

ment of compositional structures.Moreover, we are interested in

studying whether the use of more cognitively plausible coding

schemes, in which the labels are perceived by the agent in a se-

quential order and just for a short interval of time, bears upon

the emergence of compositional semantics. We are also inter-

ested in studying whether the development, during training, of

a wider andmore heterogeneous behavioral repertoire facilitates

the emergence of more robust generalization capabilities.

ACKNOWLEDGMENT

The authors would like to thank C. Burani et al. at the Lab-

oratory of Autonomous Robotics and Artificial Life (LARAL)

for stimulating discussions and feedback during the preparation

of this paper.

REFERENCES

[1] G. Rizzolatti and M. Arbib, “Language within our grasp,” Trends Neu-

rosci., vol. 21, pp. 188–194, 1998.

[2] S. Cappa and D. Perani, “The neural correlates of noun and verb pro-

cessing,” J. Neuroling., vol. 16, no. 2–3, pp. 183–189, 2003.

[3] A. Glenberg and M. Kaschak, “Grounding language in action,” Psy-

chonomic Bulletin Rev., vol. 9, pp. 558–565, 2002.

[4] F. Pulvermuller, The Neuroscience of Language. On Brain Circuits of

Words and Serial Order. Cambridge, U.K.: Cambridge Univ. Press,

2003.

[5] V. Gallese, “Mirror neurons and the social nature of language: The

neural exploitation hypothesis,” Social Neurosci., vol. 3, pp. 317–333,

2008.

[6] G. Buccino, T. Riggio, G. Mellia, F. Binkofski, V. Gallese, and G.

Rizzolatti, “Listening to action-related sentencesmodulates the activity

of the motor system: A combined tms and behavioral study,” Cogn.

Brain Res., vol. 24, pp. 355–363, 2005.

[7] M. Bowerman and S. Levinson, Language Acquisition and Conceptual

Development. Cambridge: Cambridge Univ. Press, 2001.

[8] B. MacWhinney, “The emergence of linguistic form in time,”Connect.

Sci., vol. 17, no. 3–4, pp. 191–211, 2005.

[9] M. Tomasello, Constructing a Language: A Usage-Based Theory of

Language Acquisition. Cambridge, MA: Harvard Univ. Press, 2003.

[10] G. Lakoff, Women, Fire, and Dangerous Things: What Categories Re-

veal About the Mind. Chicago, IL: Univ. Chicago Press, 1987.

[11] R. Langacker, Foundations of Cognitive Grammar. Stanford, CA:

Stanford Univ. Press, 1987.

[12] A. Goldberg, Constructions at Work: The Nature of Generalization in

Language. London, U.K.: Oxford Univ. Press, 2006.

[13] R. Langacker, Cognitive Grammar: A Basic Introduction. Oxford,

U.K.: Oxford Univ. Press, 2008.

[14] P. Dominey, “From holophrases to abstract grammatical constructions:

Insights from simulation studies,” in Constructions in Acquisition,

E. Clark and B. Kelly, Eds. Stanford: CSLI Publications, 2006, pp.

137–162.

[15] E. Hutchins and C. Johnson, “Modelling the emergence of language as

an embodied collective cognitive activity,” Topics Cogn. Sci., vol. 1,

pp. 523–546, 2009.

[16] S. Wermter, M. Page, M. Knowles, V. Gallese, F. Pulvermller, and J.

Taylor, “Multimodal communication in animals, humans and robots:

An introduction to perspectives in brain-inspired informatics,” Neural

Netw., vol. 22, no. 2, pp. 111–115, 2009.

[17] A. Cangelosi, G. Metta, G. Sagerer, S. Nolfi, C. Nehaniv, K. Fischer,

J. Tani, T. Belpaeme, G. Sandini, F. Nori, L. Fadiga, B. Wrede, K.

Rohlfing, E. Tuci, K. Dautenhahn, J. Saunders, and A. Zeschel, “In-

tegration of action and language knowledge: A roadmap for develop-

mental robotics,” IEEE Trans. Autonom. Mental Develop., vol. 2, no.

3, pp. 1–28, Sep. 2010.

[18] R. W. Langacker, “A dynamic usage-based model,” in Usage-Based

Models of Language, M. Barlow and S. Kemmer, Eds. Stanford:

CSLI Publications, 2000, pp. 1–63.

[19] A. Goldberg, “Constructions work,” Cognitive Linguistics, vol. 20, no.

1, pp. 201–224, 2009.

[20] J. Elman, “Computational approaches to language acquisition,” in En-

cyclopedia of Language and Linguistics, K. Brown, Ed., 2nd ed. Ox-

ford, U.K.: Elsevier, 2006, vol. 2, pp. 726–732.

[21] F. Kaplan, P. Oudeyer, and B. Bergen, “Computational models in the

debate over language learnability,” Inf. Child Develop., vol. 17, no. 1,

pp. 55–80, 2008.

[22] B. MacWhinney, “Computational models of child language learning:

An introduction,” J. Child Lang., vol. 37, pp. 477–485, 2010.

[23] Y. Sugita and J. Tani, “Learning semantic combinatoriality from the

intercation between linguistic and behvioral processes,” Adapt. Behav.,

vol. 13, no. 1, pp. 33–52, 2005.

[24] Y. Sugita and J. Tani, “Acquiring a functionally compositional system

of goal-directed actions of a simulated agent,” in Proc. 10th Int. Conf.

Simul. Adapt. Behav. (SAB2008), M. Asada, J. Hallam, J.-A. Meyer,

and J. Tani, Eds., Berlin, Germany, 2008, pp. 331–341.

[25] H. Arie, T. Endo, S. Jeong, M. Lee, S. Sugano, and J. Tani, “Integrative

learning between language and action: A neuro-robotics experiment,”

in Proc. 20th Int. Conf. Neural Netw., Berlin, Germany, 2010.

[26] J. Fodor and Z. Phylysyn, “Connectionism and cognitive architecture:

A critical analysis,” Cognition, vol. 28, pp. 3–71, 1988.

[27] S. Harnard, “The symbol grounding problem,” Physica D, vol. 42, pp.

335–346, 1990.

[28] T. Van Gelder, “Compositionality: A connectionist variation on a

classic theme,” Cognition, vol. 14, pp. 355–384, 1990.

[29] J. Elman, “Finding structure in time,” Cogn. Sci., vol. 14, no. 2, pp.

179–211, 1990.

[30] Simulating the Evolution of Language, A. Cangelosi and D. Parisi,

Eds. New York: Springer-Verlag, 2002.

[31] Evolution of Communication and Language in Embodied Agents, S.

Nolfi and M. Mirolli, Eds. Berlin, Germany: Springer-Verlag, 2010.

[32] L. Steels, “Experiments on the emergence of human communication,”

Trends Cogn. Sci., vol. 10, no. 8, pp. 347–349, 2006.

[33] E. Tuci, “An investigation of the evolutionary origin of reciprocal com-

munication using simulated autonomous agents,” Biol. Cybernet., vol.

101, no. 3, pp. 183–199, 2009.

[34] P. Dominey, A. Mallet, and E. Y. E. , “Real-time spoken-language pro-

gramming for cooperative interactionwith a humanoid apprentice,” Int.

J. Human. Robot., vol. 6, no. 2, pp. 147–171, 2009.

[35] P. Dominey and F. W. F. , “The basis of shared intentions in human

and robot cognition,” New Ideas in Psychology 2010, in Pres.

[36] J. Weng, “Developmental robotics: Theory and experiments,” Int. J.

Human. Robot., vol. 1, no. 2, pp. 199–236, 2004.

[37] A. Cangelosi and T. Riga, “An embodied model for sensorimotor

grounding and grounding transfer: Experiments with epigenetic

robots,” Cogn. Sci., vol. 30, no. 4, pp. 673–689, 2006.

[38] G. Sandini, G. Metta, and D. Vernon, “The icub cognitive humanoid

robot: An open-system research platform for inactive cognition,” in

50 Years of Artificial Intelligence, M. Lungarella, F. Iida, J. Bongard,

and R. Pfeifer, Eds. Berlin, Germany: Springer-Verlag, 2007, pp.

358–369.

[39] U. Pattacini, F. Nori, L. Natale, G. Metta, and G. Sandini, “An experi-

mental evaluation of a novel minimum-jerk cartesian controller for hu-

manoid robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2010.

[40] R. D. Beer and J. C. Gallagher, “Evolving dynamic neural networks

for adaptive behavior,” Adapt. Behav., vol. 1, no. 1, pp. 91–122, 1992.

[41] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Reading, MA: Addison-Wesley, 1989.

[42] E. A. Di Paolo, “Behavioral coordination, structural congruence and

entrainment in a simulation of acoustically coupled agents,” Adapt.

Behav., vol. 8, no. 1, pp. 27–48, 2000.

©2011 IEEE. Reprinted, with permission, from Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca

Massera and Stefano Nolfi, An Experiment on Behavior Generalization and the Emergence of Linguistic

Compositionality in Evolving Robots, IEEE Transactions on Autonomous Mental Development, June

2011

TUCI et al.: AN EXPERIMENT ON BEHAVIOR GENERALIZATION AND THE EMERGENCE OF LINGUISTIC COMPOSITIONALITY IN EVOLVING ROBOTS 189

[43] N. Chater and C. Manning, “Probabilistic models of language pro-

cessing and acquisition,” Trends Cogn. Sci., vol. 10, no. 7, pp. 335–344,

2006.

[44] Z. Solan, D. Horn, E. Ruppin, and S. Edelman, “Unsupervised learning

of natural languages,” in Proc. Nat. Acad. Sci., 2005, vol. 102, pp. 11

629–11 634.

[45] F. Reali and M. Christansen, “Uncovering the richness of the stimulus:

Structure dependence and indirect statistical evidence,”Cogn. Sci., vol.

29, pp. 1007–1028, 2005.

[46] J. Lewis and J. Elman, “Learnability and the statistical structure of lan-

guage: Poverty of stimulus arguments revisited,” in Proc. 26th Annu.

Boston Univ. Conf. Lang. Develop., 2001.

[47] W.Morris, G.W.Cottrell, and J. Elman, “A connectionist simulation of

the empirical acquisition of grammatical relations,” in Hybrid Neural

Symbolic Integr., S. Wermter and R. Sun, Eds. Berlin, GE: Springer-

Verlag, 2000.

Elio Tuci received the M.Sc. (Laurea) degree in ex-
perimental psychology from “La Sapienza” Univer-
sity, Rome, Italy, in 1996, and the Ph.D. degree in
computer science and artificial intelligence fromUni-
versity of Sussex, Sussex, U.K., in 2004.
He is currently a Lecturer in Developmental

Robotics in the Department of Computer Science,
Aberystwyth University, Aberystwyth, U.K. His
research interests concern the development of real
and simulated embodied agents to look at scientific
questions related to the mechanisms and/or the

evolutionary origins of individual and social behavior.

Tomassino Ferrauto received the M.Sc. degree
in engineering from the University of L’Aquila,
L’Aquila, Italy. He is currently working toward
the Ph.D. degree at the University of Plymouth,
Plymouth, U.K., working under the supervision of
Prof. A. Cangelosi and Dr. S. Nolfi.
His main research interests are within the domain

of evolutionary robotics, active perception, and lan-
guage and behavior codevelopment in robots.

Arne Zeschel received the Staatsexamen degree at
the University of Hannover, Hannover, U.K., in 2001
and the Ph.D. degree in English linguistics at the Uni-
versity of Bremen, Bremen, Germany, in 2007.
He is currently working as a Postdoctoral Re-

searcher on construction-based approaches to child
language acquisition at the University of Southern
Denmark, Sønderborg, Denmark. His main research
interests are cognitive linguistics, corpus linguistics,
and usage-based linguistic model building.

Gianluca Massera received the M.Sc. degree in
computer science from the University of Rome
“Sapienza,” Rome, Italy. He is currently working
toward the Ph.D. degree at the Plymouth University,
Plymouth, U.K., working under the supervision of
Prof. A. Cangelosi and Dr. S. Nolfi.
His research interests are within the domain

of evolutionary robotics, active perception, and
sensory–motor coordination in artificial arms.

Stefano Nolfi received the M.A. degree in litera-
ture and philosophy from the University of Rome
“Sapienza,” Rome, Italy.
He is currently the Research Director at the Insti-

tute of Cognitive Sciences and Technologies of the
Italian National Research Council (ISTC-CNR) and
Head of the Laboratory of Autonomous Robots and
Artificial Life, Rome, Italy. His research activities
focus on embodied cognition, adaptive behavior,
autonomous robotics, and complex Systems. He
authored or coauthored more than 130 scientific

publications and a book on evolutionary robotics published by MIT Press.

©2011 IEEE. Reprinted, with permission, from Elio Tuci, Tomassino Ferrauto, Arne Zeschel, Gianluca

Massera and Stefano Nolfi, An Experiment on Behavior Generalization and the Emergence of Linguistic

Compositionality in Evolving Robots, IEEE Transactions on Autonomous Mental Development, June

2011

Original Paper

Adaptive Behavior

2014, Vol. 22(4) 255–265

� The Author(s) 2014

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/1059712314536909

adb.sagepub.com

Designing adaptive humanoid robots
through the FARSA open-source
framework

Gianluca Massera1, Tomassino Ferrauto1, Onofrio Gigliotta2 and

Stefano Nolfi1

Abstract

We introduce FARSA, an open-source Framework for Autonomous Robotics Simulation and Analysis, that allows us to

easily set up and carry on adaptive experiments involving complex robot/environmental models. Moreover, we show

how a simulated iCub robot can be trained, through an evolutionary algorithm, to display reaching and integrated reach-
ing and grasping behaviours. The results demonstrate how the use of an implicit selection criterion, estimating the extent

to which the robot is able to produce the expected outcome without specifying the manner through which the action

should be realized, is sufficient to develop the required capabilities despite the complexity of the robot and of the task.

Keywords

Evolutionary robotics, embodied cognition, open software, simulation framework

1 Introduction

Adaptive behaviour models focus on the study of how

embodied agents develop their capabilities autono-

mously while interacting with their physical and (even-

tually) social environment. For many years, these

studies have been confined to relatively simple agents

and tasks. Recent research, however, demonstrated

how this method can be extended to studies that

involve agents with complex morphologies and rich

sensory–motor systems mastering relatively hard tasks

(Baranes & Oudeyer, 2013; Massera, Tuci, Ferrauto, &

Nolfi, 2010; Reil & Husbands, 2002; Rolf, Steil, &

Gienger, 2010; Savastano & Nolfi, 2012; Tuci,

Massera, & Nolfi, 2010; Yamashita & Tani, 2008).

From a modelling point of view complexity does not

represent a value in itself. We fully bound the Occam’s

razor argument that claims that given two explanations

of the data, all other things being equal, the simpler

explanation is preferable. After all, one of the key con-

tribution of adaptive behaviour research consists in the

demonstration of how complex abilities can emerge

from the interactions between relatively simple agents

and the environment. On the other hand, the modeliza-

tion of a given phenomenon necessarily require the

inclusion of the characteristics that constitute key

aspects of the targeted objective of study. In some

cases, therefore, the use of complex agents and/or tasks

is necessary. For example, the modelization of the

morphological characteristics and of the articulated

structure of the human arm constitutes a prerequisite

for modelling human object manipulation skills.

Likewise, the use of agents provided with rich sensory

systems constitutes a necessary prerequisite for model-

ling sensory integration and fusion.

From a methodological perspective, however, the

need to build rather complex models for tackling these

research issues currently represents a barrier that might

significantly slow down research progress in this area.

In this paper we introduced FARSA, an open source

software tool that allows to easily set up and carry out

adaptive experiments based on the iCub humanoid

robot (Metta, Sandini, Vernon, Natale, & Nori, 2008;

Sandini, Metta, & Vernon, 2004) as well as on other

robotic platforms. FARSA does not only provide a

simulator, since it consists of a set of integrated

libraries: a robot/environmental simulator, a sensor

and actuator library, a controller library, and an adap-

tive library. Moreover, it comes with a rich graphical

interface that facilitates the visualization and analysis

1Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
2NAC Laboratory, Department of Humanities, University of Naples

Federico II, Naples, Italy

Corresponding author:

Onofrio Gigliotta, NAC Laboratory, Department of Humanities,

University of Naples Federico II, 1 via Porta di Massa, Naples 80133 Italy.

Email: onofrio.gigliotta@unina.it

 at Consiglio Nazionale Ricerche on March 29, 2016adb.sagepub.comDownloaded from

Gianluca Massera, Tomassino Ferrauto, Onofrio Gigliotta and Stefano Nolfi, Designing adaptive

humanoid robots through the FARSA open-source framework, Adaptive Behavior (volume: 22, issue: 4)

pp. 255–265. Copyright ©[2014] (The Authors(s)). Reprinted by permission of SAGE Publications. DOI:

https://doi.org/10.1177/1059712314536909

of the characteristics of the model and of the beha-

vioural and cognitive processes originating from the

agent/environmental interaction. For these reasons we

believe that it can contribute to boost adaptive beha-

viour research addressing the acquisition of multiple

skills and the development complex capabilities.

We then illustrate a series of experiments in which an

iCub robot (Metta et al., 2008; Sandini et al., 2004) is

trained through an evolutionary algorithm for the ability

to display integrated reaching and grasping capabilities.

The results obtained in these experiments demonstrate

how the use of an implicit selection criterion, estimating

the extent to which the robot is able to produce the

expected outcome of the actions, is sufficient to develop

the required capabilities despite the complexity of the

robot, of the robot’s sensory–motor system, and of the

task. These experiments have been realized through the

use of FARSA and constitute two of the exemplificative

examples provided with the tools. Therefore, they can be

easily be replicated and varied by the reader.

In the next section we introduce FARSA. In Section

3 we describe the relation of our experiment on inte-

grated reaching and grasping to the state of the art. In

Section 4 and 5 we describe our experiments and

results. Finally in Section 6 we draw our conclusions.

2 FARSA

FARSA (see http://laral.istc.cnr.it/farsa/) is an open-

source tool designed to carry on experimental research

in embodied cognitive science and adaptive behaviour.

It combines in a single framework the following

features:

� It is open-source, so it can be freely modified, used,

and extended by the research community.
� It is constituted by a series of integrated libraries

that allow it to easily design the different compo-

nents of an embodied model (i.e. the agents’ body

and sensory–motor system, the agents’ control sys-

tems, and the ecological niche in which the agents

operate) and that allow to simulate accurately and

efficiently the interactions between the agent and

the environment.
� It comes with a rich graphical interface that facili-

tates the visualization and analysis of the elements

forming the embodied model and of the beha-

vioural and cognitive processes originating from

the agent/environment interactions.
� It is based on a highly modular software architec-

ture that enables a progressive expansion of the tool

features and simplifies the implementation of new

experiments and of new software components.
� It is multi-platform, i.e. it can be compiled and used

on Linux, Windows, and Mac OS X operating

systems.

� It comes with a set of exemplificative experiments

and with a synthetic but comprehensive documenta-

tion that should enable users to quickly master the

tool usage.

Other related tools include: Webots� (Michel,

2004), USARSim (Carpin, Lewis, Wang, Balakirsky, &

Scrapper, 2007), Gazebo (Koenig & Howard, 2004),

ARGOS (Pinciroli et al., 2012), and LpzRobots (Der &

Martius, 2012).

In the following sub-sections we briefly review the

characteristics of its main components.

2.1 The robots/environment simulator

library

The robots/environment simulator (worldsim) is a

library that allows the simulation of robots and the

environment in which they operate. The library sup-

ports both individual robot simulation and collective

experiments in which several robots are placed in the

same environment. The physical and dynamical aspects

of the robots and of the robot/environment interactions

can be simulated accurately by using a 3D dynamics

physics simulator or by using a faster but simplified

kinematic engine. For what concern the dynamics simu-

lation, FARSA relies on the Newton Game Dynamics

engine (Jerez & Suero, 2004) that enables accurate and

fast simulations. The underlying dynamic engine has

been encapsulated so as to enable the inclusion of alter-

native engines.

Currently, FARSA supports the following robotic

platforms: the Khepera (Mondada, Franzi, & Ienne,

1993), the e-Puck (Mondada et al., 2009), the marXbot

(Bonani et al., 2010), and the iCub (Sandini et al.,

2004). These robots have been designed by assembling

a series of building blocks (physical elements, sensors,

and motorized joints) that users can re-use to imple-

ment alternative, not yet supported, robots.

In the case of the iCub, the simulator is based on the

YARP (Metta, Fitzpatrick, & Natale, 2006) middle-

ware library (the same command used to read the

robot’s sensors and control the robot’s motor can be

used to work with the simulated or real robot). This

strongly facilitates the possibility to port results from

simulation to reality and the possibility to integrate

into FARSA projects the software modules available

from the iCub software repository (http://wiki.icu-

b.org/iCub_documentation).

With respect to the iCub simulator developed by

Tikhanoff et al. (2008), the simulation library included

in FARSA presents a series of advantages: it strictly

conforms to the real kinematic joint structure of the

robot, it allows to simulate multiple robots, it includes

both a dynamic and kinematic engine, and it provides

an enhanced visualization tool.

256 Adaptive Behavior 22(4)

 at Consiglio Nazionale Ricerche on March 29, 2016adb.sagepub.comDownloaded from

Gianluca Massera, Tomassino Ferrauto, Onofrio Gigliotta and Stefano Nolfi, Designing adaptive

humanoid robots through the FARSA open-source framework, Adaptive Behavior (volume: 22, issue: 4)

pp. 255–265. Copyright ©[2014] (The Authors(s)). Reprinted by permission of SAGE Publications. DOI:

https://doi.org/10.1177/1059712314536909

2.2 The sensor and motor library

FARSA also includes a library of ready-to-use sensors

and actuators. In some cases, sensors and actuators

include software routines that pre-elaborate sensory or

motor information (e.g. to reduce its dimensionality)

and/or integrate different kinds of sensory–motor infor-

mation (as in the case of actuators that set the torque

to be produced by a joint motor on the basis of the cur-

rent and desired position of the controlled joint).

Wheeled robots are provided with infrared, ground,

traction force, linear vision, and communication

sensors, among others. Moreover, they are provided

with wheels, grippers, LEDs, and communication

actuators.

The iCub robot is provided with proprioceptors that

measure the current angular position of the robot’s

joints, tactile sensors, and vision sensors among others

and with actuators that control all the available DOFs.

The state of the robot’s sensors and actuators, as well

as the state of selected variables of the robot’s control

system, can be graphically visualized while the robot

interacts with the environment. This provides a useful

analysis and debugging tool.

2.3 The controller libraries

These libraries enable the user to design, modify, and

visualize the robot’s control system. Currently FARSA

includes two libraries that support the design of neuro-

controllers. Users willing to use other architectures or

formalisms can integrate into FARSA alternative

libraries.

Evonet is an easy-to-use library that enables users to

graphically design, modify, and visualize the architec-

ture of the robot’s neural controller as well as the prop-

erties of the neurons and of the connection weights.

The library supports logistic, leaky integrator, and

threshold neurons. NNFW is an alternative object-

oriented library that provides a larger variety of neuron

types and output functions (Gaussian, winner-take-all,

ramp, periodic, etc.) and supports the use of a radial

basis function neural network.

Thanks to the integration between the controller and

the sensory and motor libraries, the sensory and motor

layer of the neural controller is automatically generated

on the basis of the selected sensors and actuators.

Moreover, the update of the sensory neurons and the

update of the actuators on the basis of the state of the

motor neurons is handled automatically.

Finally, the graphic viewer of the robot’s controller

also enables users to lesion and/or to manually manipu-

late the state of the sensors, internal, and motor neu-

rons in order to analyse the relationship between the

state of the controller and the behaviour that originates

from the robot/environmental interaction.

2.4 The adaptation libraries

These libraries enable the user to subject a robot or a

population of robots to an adapting process (i.e. to a

evolutionary and/or learning process during which the

characteristics of the robots are varied and variations

are selected so as to improve the abilities of the robots

to cope with a given task/environment).

The adaptation libraries that are currently available

support the use of evolutionary algorithms (including

steady state, truncation selection, and Pareto-front

algorithms), supervised learning algorithms (i.e. back-

propagation), and unsupervised learning algorithms

(i.e. Hebbian learning). The evolutionary algorithms

are parallelized at the level of the individual’s evalua-

tion and can therefore run significantly faster in multi-

core machines and computer clusters.

In the case of evolutionary and supervised algorithm,

the variation in performance during the adaptation can

be monitored and analysed in the associated graphics

renderer.

2.5 Usability and speed

FARSA is well documented, easy to use, and provided

with a rich graphical interface that facilitates monitor-

ing and debugging. The inclusion of exemplificative

experiments (including the two experiments described

in this paper) enables easy replication and a variety of

interesting case studies.

A large spectrum of experiments can be configured

and varied through parameters. More specifically, the

type of robotic platform, the sensors and actuators of

the robot, the characteristics of the neural controller,

and the type and the characteristics of the adaptive pro-

cess can be set and varied easily through the graphical

interface or through a text editor. The realization of

experiments that involve non-parametric variations (i.e.

that require a new type of fitness function or a new type

of sensor) require writing C++ extensions. This task,

however, is facilitated by the fact that experiments are

defined as plugins, i.e. relatively short programs that

can be compiled separately from FARSA and loaded at

runtime. Plugins can also be used to implement larger

software extensions (e.g. new learning algorithms or

new graphics widgets).

FARSA is optimized and parallelized so to reduce

as much as possible the time required to carry on com-

putationally expensive experiments. The simulation

speed clearly depends on the complexity of the robotic

platform and of the robot/environment interactions. In

the case of the experiments described below, the simu-

lation of the robot/environmental interaction on a stan-

dard single processor (Quad-Core AMD Opteron�

Processor 2374 HE at 2.2 GHz) under Linux runs 116

times and 2.6 times faster than real time (in the case of

the experiments reported in Sections 4 and 5,

Massera et al. 257

 at Consiglio Nazionale Ricerche on March 29, 2016adb.sagepub.comDownloaded from

Gianluca Massera, Tomassino Ferrauto, Onofrio Gigliotta and Stefano Nolfi, Designing adaptive

humanoid robots through the FARSA open-source framework, Adaptive Behavior (volume: 22, issue: 4)

pp. 255–265. Copyright ©[2014] (The Authors(s)). Reprinted by permission of SAGE Publications. DOI:

https://doi.org/10.1177/1059712314536909

respectively). Moreover the simulation of the evolution-

ary process on a multi-thread cluster runs approxi-

mately 666 times and 19 times faster on two quad-core

processors using 8 threads (the same type of processor

and operating system as above, experiment reported in

Sections 4 and 5, respectively).

3 Relation to the state of the art

Reaching and grasping capabilities can be developed

through trial-and-error and/or supervised learning

methods (Barto, 2003). In trial-and-error methods, the

motor capability is acquired without the help of an

explicit teacher or trainer, and the adaptive process is

driven by intrinsic feedback. Examples of intrinsic feed-

back are the kinesthetic and tactile sensations experi-

enced when an object has been successfully grasped or

the sight of a ball entering inside the net after a kicking

action. In supervised training methods, instead, the

intrinsic feedback is augmented with extrinsic informa-

tion provided by the teacher. This information might

consist of the sequence of sensory states experienced by

the robot while its arm is driven by a caretaker toward

a target object to be reached (in kinesthetic teaching

methods, see for example Yamashita and Tani (2008))

or by the demonstration performed by the teacher of

the action that should be performed by the robot (in

learning by demonstration methods, see for example

Miyamoto and Kawato (1998)). Most of the research in

the field of artificial intelligence and adaptive behaviour

focus on the latter paradigm. In this paper, instead, we

will focus on trial-and-error methods relying on intrin-

sic feedback (e.g. the robot’s capability to perceive

whether or not and eventually to what extent a reaching

and/or grasping action has been successfully carried

out). Previous attempts to study how robots can

develop reaching or grasping capabilities through trial-

and-error methods include experiments with non-

redundant systems provided with two actuated DOFs

(Berthier, Rosenstein, & Barto, 2005; Schlesinger,

Parisi, & Langer, 2000) or experiments in which the

robots were provided with significant built-in compe-

tences (Oztop, Bradley, & Arbib, 2004). More specifi-

cally, Schlesinger et al. (2000) studied the development

of reaching behaviour in a simulated agent provided

with a 2-dimensional arm with two actuated DOFs, a

bi-dimensional vision system with one actuated DOF,

and a tactile sensor located on the final portion of the

arm. The robot’s neural network controller received as

input the angular state of the arm joints, the state of the

tactile sensor, and the visual information extracted

from the camera and control the two DOFs of the arm

and one DOF of the visual system. The neural network

controller was trained through an evolutionary method

(Nolfi & Floreano, 2000) on the basis of a performance

criterion calculated by computing the average number

of time steps spent by the robot touching the target

object. Oztop et al. (2004) studied the development of

grasping behaviour in a simulated robot provided with

an arm and hand with 19 actuated DOFs. The reaching

behaviour was pre-programmed in the robot on the

basis of the Jacobian transpose method (Sciavicco &

Siciliano, 2004). Learning was thus confined to the

mapping of a series of sensorily extracted object affor-

dances into a series of grasping parameters able to

shape the pre-existing reaching capability into an effec-

tive grasping behaviour. The neural network controller

was trained through a reinforcement learning algorithm

(Sutton & Barto, 1998) and received positive reward for

the trials producing successful or nearly successful

grasps and negative reward for trials leading to unstable

grasps or no object contact. Berthier et al. (2005) stud-

ied the development of a reaching behaviour in a simu-

lated robot provided with an arm with 2 controlled

DOFs on the shoulder (flexion–extension and adduc-

tion–abduction). The robot’s neural network controller

received as input the current state and velocity of the

two joints and produced as output the intensity of the

torque to be applied by two muscle-like actuators. The

network was trained through a reinforcement learning

algorithm (Sutton & Barto, 1998) by providing to the

robot positive and negative rewards when the hand of

the robot approached or moved away from the target,

respectively. The experiments described in this paper,

instead, concern the study of how a highly redundant

humanoid robot can develop reaching and grasping

capabilities from scratch or on-top of simple reflex-like

competences. The relation between the experiments pre-

sented in this paper and our own previous related work

(Massera, Cangelosi, & Nolfi, 2007; Massera et al.,

2010; Savastano & Nolfi, 2012, 2013) will be discussed

below. Although the first phase of reaching and grasp-

ing development in children are clearly characterized by

a trial-and-error learning process (Oztop et al., 2004),

the objective of this paper is not to model human learn-

ing but rather to demonstrate how apparently complex

behavioural capabilities can be successfully acquired

through a simple trial-and-error adaptive process that

do not require specification of the manner through

which the target actions should be realized.

4 Reaching

In this section we describe how a simulated iCub robot

can acquire the capability to reach with its left arm any

arbitrary target position in its peripersonal space by

controlling six actuated joints (two joints of the iCub’s

torso and four joints of the iCub’s left arm). The con-

nection weights of the robots’ neural controller are

adapted through an evolutionary method for the ability

to minimize the average distance between the left hand

of the robot and the target location averaged over

258 Adaptive Behavior 22(4)

 at Consiglio Nazionale Ricerche on March 29, 2016adb.sagepub.comDownloaded from

Gianluca Massera, Tomassino Ferrauto, Onofrio Gigliotta and Stefano Nolfi, Designing adaptive

humanoid robots through the FARSA open-source framework, Adaptive Behavior (volume: 22, issue: 4)

pp. 255–265. Copyright ©[2014] (The Authors(s)). Reprinted by permission of SAGE Publications. DOI:

https://doi.org/10.1177/1059712314536909

several trials in which the robot has to reach different

target positions.

4.1 Method

The robot’s neural controller (Figure 1) is provided with

three sensory neurons that encode the position of the tar-

get object in Cartesian coordinates, four internal neurons,

and six motor neurons that control the desired angular

position or velocities (depending on experimental setup,

see below) of the six actuated DOFs (i.e. the rotation and

the extension–flexion of the torso; the extension–flexion,

the abduction–adduction and the supination–pronation

of the arm; the extension–flexion of the forearm).

The sensory neurons are fully connected to internal

neurons that are fully connected to motor neurons. To

verify the role of the sensory feedback during the robot/

environment interactions we ran two sets of experi-

ments. In steady-encoding experiments the sensory neu-

rons encode the offset of the current target position

along the X, Y, and Z axes, normalized in the range

[0,1], with respect to centre of the iCub body, and the

motor neurons encode the desired angles for the final

posture of the arm by using a linear mapping (actual

torques are set through a PID controller). The offset

between the desired and the target angular positions are

then used to set the velocity of the joint motors on the

basis of a simple proportional controller. In the

unsteady-encoding experiments, instead, the three sen-

sory neurons encode the offset of the current target

position along the X, Y, and Z axes, normalized in the

range [0,1], with respect to the centre of the left palm,

and the motor neurons encode directly the velocity of

the joint motors. In the latter case the robot can use the

perceptual feedback of its own actions to refine its

behaviour while it interacts with the environment. In

the former case, instead, the sensory state does not

change while the robot moves and consequently the

robot cannot exploit the sensorial effects of its own

actions. Moreover, the sensorial information perceived

in the unsteady-encoding correlate directly with the

extent to which the robot has successfully carried out its

action.

The output of internal and motor neurons was com-

puted accordingly the following equation:

oi =s

X

N

j= 0

xjwji

 !

ð1Þ

where s is the standard logistic function: 1=(1+ e�x), xj
is the output of the jth presynaptic neuron and wji is the

synaptic weight from the jth presynaptic to ith postsy-

naptic neuron. The update rate of the state of the sen-

sors, of the neural controller, of the actuators, of the

robot and of the environment is 25 Hz. The characteris-

tics of the robot and of the architecture of the robots’

neural network are kept fixed. The strength of the con-

nection weights are adapted by using an evolutionary

method (Nolfi & Floreano, 2000). The initial popula-

tion consists of 20 randomly generated genotypes,

which encode the 46 free parameters of 20 correspond-

ing neural controllers. Each gene is constituted by 8 bits

that encode a corresponding floating point value in the

range ½�5:0,+5:0�. During each generation, each indi-

vidual is allowed to produce an offspring (i.e. a geno-

type identical to that of the parent with 5% of its bit

randomly mutated). The 20 parent and the 20 offspring

Figure 1. (Left) The simulated iCub. The white points shows all the possible target positions (see text for an explanation). (Right)

The architecture of the neural controller. The lower, intermediate, and upper layer indicate the sensory, internal, and motor

neurons. Lines represents connections from the lower to the upper layer.

Massera et al. 259

 at Consiglio Nazionale Ricerche on March 29, 2016adb.sagepub.comDownloaded from

Gianluca Massera, Tomassino Ferrauto, Onofrio Gigliotta and Stefano Nolfi, Designing adaptive

humanoid robots through the FARSA open-source framework, Adaptive Behavior (volume: 22, issue: 4)

pp. 255–265. Copyright ©[2014] (The Authors(s)). Reprinted by permission of SAGE Publications. DOI:

https://doi.org/10.1177/1059712314536909

individuals are evaluated. The genotypes of offspring

individuals that outperform parents are used to replace

the genotypes of the worst parents. The genotypes of

the remaining offspring are discarded. The reproduc-

tion, evaluation, and selection process is repeated for

5000 generations. Each individual is evaluated for 400

trials, each lasting up to 17.5 s, during which it should

reach 400 corresponding target positions extracted from

a set of 2304 reachable positions. To get a subset of

points as equidistributed as possible, we use the crowd-

ing distance (Deb, Agrawal, Pratap, & Meyarivan,

2000) to sort all reachable positions on the basis of their

Cartesian coordinates. The 2304 reachable points have

been calculated by storing the position that the centre

of the robot’s left palm assumed when the six actuated

joints were moved to all possible combination of states

within the values indicated in Table 1. Furthermore, to

favour the selection of individuals that are able to gen-

eralize their abilities to any possible reachable position,

the target position experienced during each trial was

randomly chosen within a spherical area with a dia-

meter of 2 cm centred around the current extracted

reachable position.

The fitness is calculated on the basis of the following

equation:

F=
X

400

t= 1

e �
kpalmPos�targetPosk

0:04ð Þ ð2Þ

Where t is the trial, and k palmPos� targetPos k is

the Euclidean distance in meters between the centre of

the robot’s left palm and the centre of the target loca-

tion measured at the end of each trial. To verify

whether an incremental adaptive process can lead to

better performance, we ran an additional set of experi-

ments referred to below as incremental. More specifi-

cally, to simulate the condition on which the problem is

initially simplified and become progressively harder as

soon as the skills of the individuals improve, they are

rewarded with the maximum fitness during trials in

which the palmPos� targetPos distance is below a

threshold . This threshold is initially set to 5 cm at gen-

eration 0 and it is progressively reduced by 20% after a

generation in which the average fitness of all individu-

als is greater than 0.6, and it is definitely set to 0.0

when it becomes lower than 1 cm. For sake of compari-

son, consider that the height of the iCub is about 1 m.

4.2 Results

The combination of the steady versus unsteady encod-

ing and incremental versus non-incremental adaptive

process leads to four sets of experiments. For each

experiments six replications starting from different ran-

domly generated populations were run. Evolved indi-

viduals were then post-evaluated on the entire set of

2304 reachable target locations by calculating percent-

age of target location reached with an accuracy of at

least 5 cm.

By analysing the performance of the best evolved

individuals in the four experimental conditions (see

Figure 2), we can see how the individuals evolved in

the unsteady condition significantly outperform those

evolved in the steady condition. This results confirms

that the possibility to exploit the sensory feedbacks

caused by the robot’s actions and/or the availability of

information that strongly correlates with the extent to

which the robot successfully accomplishes the current

action strongly facilitates the development of the effec-

tive solutions.

The comparison of the performance obtained in the

incremental versus non-incremental experimental con-

ditions does not reveal significant differences.

Overall the analysis of the results in the best experi-

mental conditions indicates how the adapted individu-

als can reach close to optimal performance. This is a

remarkable result given the simplicity of the neural con-

troller and given that some of the targets located in

Table 1. Angular positions selected uniformly within the joints

limits used to generate a representative set of all possible

reachable positions.

Joint Limits

Torso rotation ½�25,0,+ 25�
Arm abduction–adduction ½32:16, 64:32, 96:48, 128:64�
Torso extension–flexion ½�2:5,5,12:5�
Arm supination–pronation ½�13:6,9:8,33:2,56:6�
Arm extension–flexion ½�74:4,� 53:3,� 32:2,� 11:1�
Forearm extension–flexion ½33:2, 51:4, 69:6, 87:8�

Figure 2. Percentage of target locations reached with an

accuracy of at least 5 cm (i.e. with a distance between the

centre of the palm and the centre of the target location less or

equal to 5 cm). The four box plots show the distribution of

performance of the six best individuals each from an

independent run with random initial conditions.

260 Adaptive Behavior 22(4)

 at Consiglio Nazionale Ricerche on March 29, 2016adb.sagepub.comDownloaded from

Gianluca Massera, Tomassino Ferrauto, Onofrio Gigliotta and Stefano Nolfi, Designing adaptive

humanoid robots through the FARSA open-source framework, Adaptive Behavior (volume: 22, issue: 4)

pp. 255–265. Copyright ©[2014] (The Authors(s)). Reprinted by permission of SAGE Publications. DOI:

https://doi.org/10.1177/1059712314536909

peripheral areas of the robot’s peripersonal space are

hard to reach due to the limits and constraints that

affect the robot’s movements in these regions.

For instructions on how to replicate this experiment

with FARSA and on how to analyze the evolved solu-

tions, see http://laral.istc.cnr.it/res/reach.

5 Reaching and grasping

In this section we describe how a simulated iCub robot

can develop integrated reaching and grasping capabil-

ities that enable it to reach a ball located in varying

positions over a table, grasp it, handle it, and elevate it.

Beside the difficulties concerning the need to control an

articulated arm with many DOFs (Bernstein, 1967),

this represents a rather challenging task since it requires

interaction with physical objects (including a sphere

that can easily roll away from the robot’s peripersonal

space) and integration of three interdependent beha-

viours (reaching, grasping, and lifting).

5.1 The method

In the case of this experiment, the robot’s controller

includes a richer set of sensors and actuators, a larger

neural network, and a greater number of parameters to

be varied during the adaptive process. Adapting indi-

viduals are provided with an hand-coded neural circuit

that produce a simple reflex behaviour consisting in

turning the robot head toward red objects.

The sensory system (Figure 3(b), bottom layer)

includes two neurons that encode the offset between the

sphere and the hand over the visual plane (dx, dy, by

visual plane we means the two dimensional image per-

ceived by the robot’s camera), four neurons that encode

the current angular position of the pitch and yaw DOFs

of the neck (n0, n1) and of the torso (t0, t1), and nine

sensory neurons that binarily encode whether the five

tactile sensors located on the fingertips (Rf1, Rf2, Rf3,

Rf4, Rf5) and the four tactile sensors located on the

palm (Rp1, Rp2, Rp3, Rp4) are stimulated.

The motor system (Figure 3(b), top layer) includes

two motor neurons that control the desired angular

position of pitch and yaw DOFs of the torso (T0 and

T1), seven motor neurons that control the desired angu-

lar position of the seven corresponding DOFs of the

right arm and wrist (RA0, RA1, RA2, RA3, RA4, RA5

and RA6) and a right-hand motor (RF0) that controls

the desired angular position of all joints of the hand

(the fingers’ abduction–adduction is kept fixed). This

means that all fingers extend/flex together.

The neural network is also provided with seven inter-

nal neurons that receive connections from all sensory

neurons and project connection to all motor neurons

(Figure 3(b), intermediate layer). These neurons are

leaky integrators, that is their activation at a given time

step depends on both the input at that time step and on

the activation at the previous time step. The output of

the ith internal neuron is computed as follows:

oi, t =aioi, t�1 + 1� aið Þs
X

N

j= 0

xj, twji

 !

ð3Þ

where oi, t is the output of the ith internal neuron at

time step t, ai is a time integrator parameter that deter-

mines how much the output at the current time step

depends on the output at the previous time step, s(z) is

the standard logistic function as before, xj, t is the out-

put of the jth presynaptic neuron at time step t and wji

is the synaptic weight from the jth presynaptic to ith

postsynaptic neuron. The update rate of the state of the

sensors, of the neural controller, of the actuators, of

the robot and of the environment is 25 Hz (50 ms per

step).

The reflex behaviour is realized by a neural circuit

(Figure 3(a)) with two sensory neurons, that encode the

average offsets of red pixels over the vertical and hori-

zontal axis of the visual field, which are directly con-

nected to two motor neurons, that control the angular

position of the neck (N0, N1). The four weights and the

two biases of the motor neurons are set manually. The

other 226 parameters are adapted.

At the beginning of each trial the sphere is placed in

a random position inside one of four square areas with

a side of 4 cm (Figure 4). The first two of these areas

are located in front of the iCub at a distance of 25 cm

and 35 cm, the other two are located 10 cm on the left

and on the right side and at a distance of 30 cm. Each

trial lasts 300 time steps (i.e. 15 s) plus 10 additional

time steps during which the plane is removed to verify

whether or not the ball is held by the robot.

The fitness is computed on the basis of the following

equations:

Ft = 0:3Dt + 0:2Tt + 0:2OtCt + 0:3Qt +Gt ð4Þ

F=
X

N

t= 1

Ft ð5Þ

Where F is the overall fitness of the individual, Ft is

the fitness at trial t, N is the number of trials and Dt,

Tt, Ot, Ct, Qt, and Gt are fitness components, ranging

from 0 to 1, that reward the individuals for bringing

their hand near the object (Dt),touching the object with

the palm (Tt), opening the fingers far from the object

(Ot), closing the finger near the object (Ct), closing the

finger around the object (Qt), holding and elevating the

object (Gt). These fitness components have been intro-

duced to increase the individuals’ evolvability (i.e. the

probability that random variations might lead to per-

formance improvements) and to channel the adaptive

process toward the acquisition of abilities that consti-

tute a prerequisite for the development of the required

Massera et al. 261

 at Consiglio Nazionale Ricerche on March 29, 2016adb.sagepub.comDownloaded from

Gianluca Massera, Tomassino Ferrauto, Onofrio Gigliotta and Stefano Nolfi, Designing adaptive

humanoid robots through the FARSA open-source framework, Adaptive Behavior (volume: 22, issue: 4)

pp. 255–265. Copyright ©[2014] (The Authors(s)). Reprinted by permission of SAGE Publications. DOI:

https://doi.org/10.1177/1059712314536909

capabilities (we will come back to this issue in the dis-

cussion section). The used components and their para-

meters have been chosen on the basis of our intuition

and have not be optimized on the basis of a trial and

error approach. They are computed on the basis of the

following equations (the subscript indicating the depen-

dency on the trial has been removed for clarity):

D= e�5d ð6Þ

T = min
n

10
, 1

� �

ð7Þ

O=
1

n0

X

n0

s= 1

Es ð8Þ

C=
1

300�nc

P

300

s= nc
1� Es, if nc 6¼ 300

0, otherwise

�

ð9Þ

Q= min
f

4
, 1

� �

ð10Þ

G=

0, if oz<� 0:1
0:5+ oz + 0:1

0:2 0:5, if � 0:1\oz\0:1
1, if oz � 0:1

8

<

:

ð11Þ

where d is the distance between the centre of the palm

and the surface of the object at the end of the trial; n is

the number of steps in which the palm of the robot

touched the object during the current trial; n0 and nc
are the steps at which palm enters in contact with the

object for the first and for the fifth time, respectively,

or 300 when the conditions are never satisfied; Es is the

extension of the fingers at step s; f is the maximum

number of fingers that entered in contact with the

object concurrently during the trial; oz is the displace-

ment along the vertical axis of the object centre (0

means the object is exactly on the table).

To support the evolution of robust behaviours while

minimizing the simulation costs, the number of trials is

initially set to 4 and is then increased to 8, 12, 16, 20,

24, and 28 as soon as an evolving individual successfully

grasps and holds the objects during 50%, 60%, 70%,

80%, 90% and 100% of the trials. Five replications of

the experiment lasting 2000 generations were run. All

other parameters were identical to that described in

Section 3.

Figure 3. The architecture of robot’s neural controller. The lower, intermediate, and upper layer represent the sensory, internal,

and motor neurons, respectively. Lines represents connections from the lower to the upper layer. The connection weights and

biases and of the neural circuit shown in (a) are manually set and fixed. All other connection weights and biases are adapted.

Figure 4. The experimental setup. The robot is shown in the

posture set at the beginning of each trial. The left arm of the

robot is not moved. The yellow squares on the table show the

areas where the object can be located.

262 Adaptive Behavior 22(4)

 at Consiglio Nazionale Ricerche on March 29, 2016adb.sagepub.comDownloaded from

Gianluca Massera, Tomassino Ferrauto, Onofrio Gigliotta and Stefano Nolfi, Designing adaptive

humanoid robots through the FARSA open-source framework, Adaptive Behavior (volume: 22, issue: 4)

pp. 255–265. Copyright ©[2014] (The Authors(s)). Reprinted by permission of SAGE Publications. DOI:

https://doi.org/10.1177/1059712314536909

5.2 Results

By analysing the obtained results we observed that in

all replications of the experiment the evolved individu-

als display an ability to reach, grasp, and hold spherical

objects located in varying positions (Table 2). In the

case of the best replication of the experiment, the best

individual displays a rather robust capability that

allows it to successfully carry on the task in 77% of the

trials. This represents a remarkable result in consider-

ation of the rigidity of the robot body and of the diffi-

culties of physically interacting with spherical objects

that can easily roll away from the peripersonal space of

the robot. The obtained solutions also represent prog-

ress with respect to the previous studies carried by

some of the authors (see Massera et al. (2007)), in

which the individuals were able to successfully accom-

plish a similar task but showed limited generalization

capabilities with respect to variations of the object

positions.

The visual inspection of the behavioural solutions

displayed by these individuals (see http://laral.istc.

cnr.it/res/reach-grasp/) can allow us to appreciate the

importance played by the integration between the

required elementary behaviours (i.e. reaching, grasping,

and lifting) and by the way in which they are combined

over time. Indeed, the way in which the best evolved

individuals reach the object by bending the torso

toward the table and by carefully pressing the ball

over the table so as to block it, while the fingers are

wrapped around the object, clearly demonstrate the

importance of the fact that the reaching and the grasp-

ing abilities have been co-evolved to serve a common

function.

Overall this demonstrates the potential advantages

of acquiring the required elementary behavioural capa-

cities through an adaptive process and of using methods

that enable the co-development of multiple capacities.

More specifically, for what concerns the experiments

illustrated above, this suggests that the introduction of

a fitness component that rewards the development of

the required elementary capabilities and of components

that reward the ability to appropriately combine and

integrate the acquired elementary capabilities might be

crucial for the development of general and effective

solutions.

For instructions on how to replicate this experiment

with FARSA and on how to analyse the evolved solu-

tions see http://laral.istc.cnr.it/res/reach-grasp/.

6 Discussion and conclusion

The possibility to design adaptive agents able to

develop their behavioural skills autonomously, while

they interact with the physical and social environment

in which they are situated, represented one of the most

fascinating scientific landmarks of the end of the last

century. Whether and how such methods can enable

the synthesis of robots able to acquire complex beha-

vioural and cognitive skills and able to progressively

expand their behavioural and cognitive repertoire still

represents an open question.

To achieve this challenging objective agents need to

be able to first develop elementary capabilities and then

more complex skills by recombining and integrating

previously developed skills. However, the way in which

this can be achieved still represents an open question.

A possible approach postulates a modular organiza-

tion of the agents’ control system in which different

modules support the acquisition and production of the

elementary capabilities and in which the elementary

modules/capabilities are then combined to produce

more complex skills (Mataric, 1998; Schaal, 2002;

Wolpert & Kawato, 1998). The composition, however,

is far from easy to achieve (Nemec & Ude, 2012), often

employs very heuristic schemes (Reinhart, Lemme, &

Steil, 2012), or needs in itself sophisticated modelling

approaches (Kulic, Ott, Lee, Ishikawa, & Nakamura,

2012; Wrede et al., 2012).

An alternative approach postulates that multiple

and complex capabilities can be obtained by recombin-

ing previously acquired behavioural and cognitive skills

that do not necessarily correspond to different parts of

the agent’s control system (Nolfi, 2009; Yamashita &

Tani, 2008). Within this approach, compositionality is

seen as a property that arises from the acquisition and

integration of multiple skills rather than a consequence

of architectural constraints. The question of whether

and how this approach can really lead to the progres-

sive acquisition of a rich behavioural and cognitive

repertoire, however, still remains to be answered.

In this paper we introduced a software framework

that enables researchers to easily perform and analyse

adaptive experiments involving relatively complex

agents and tasks. We believe that the availability of

tools of this type can significantly contribute to boost

research in adaptive robotics by enabling the investiga-

tion of hard problems and the comparison of alterna-

tive models and methods.

Table 2. Percentage of trials in which the best evolved robot of each replication successfully grasps and hold the ball during a post-

evaluation test conducted for 100 trials.

Replication 1 2 3 4 5

Success rate (%) 77 74 69 66 50

Massera et al. 263

 at Consiglio Nazionale Ricerche on March 29, 2016adb.sagepub.comDownloaded from

Gianluca Massera, Tomassino Ferrauto, Onofrio Gigliotta and Stefano Nolfi, Designing adaptive

humanoid robots through the FARSA open-source framework, Adaptive Behavior (volume: 22, issue: 4)

pp. 255–265. Copyright ©[2014] (The Authors(s)). Reprinted by permission of SAGE Publications. DOI:

https://doi.org/10.1177/1059712314536909

Moreover, we reported the result of a series of

experiments that demonstrate how a relatively complex

humanoid robot provided with a simple non-modular

controller can acquire multiple integrated behavioural

capabilities. This is achieved through the use of multi-

ple component fitness functions that enhance the evol-

vability of the system and channel the adaptive process

toward promising directions. The question of whether

and how this type of approach can scale to larger beha-

vioural repertories constitutes an important research

challenge for future research.

Funding

The authors gratefully acknowledge the financial support

provided by the Italian National Research Council (CNR)

through the EuroBioSAS Programme of the European

Science Foundation.

References

Baranes, A., & Oudeyer, P.-Y. (2013). Active learning of

inverse models with intrinsically motivated goal explora-

tion in robots. Robotics and Autonomous Systems, 61(1),

69–73.

Barto, A. G. (2003). Reinforcement learning in motor control.

In M. A. Arbib (Ed.), Handbook of brain theory and neural

networks (pp. 968–972). Cambridge, MA: MIT Press.

Bernstein, N. (1967). The co-ordination and regulation of move-

ments. Oxford, UK: Pergamo.

Berthier, N. E., Rosenstein, M. T., & Barto, A. G. (2005).

Approximate optimal control as a model for motor learn-

ing. Psychological Review, 112, 329–346.

Bonani, M., Longchamp, V., Magnenat, S., Rtornaz, P., Bur-

nier, D., Roulet, G., ., Mondada, F. (2010). The marX-

bot, a miniature mobile robot opening new perspectives

for the collective-robotic research. In Proceedings of the

IEEE/RSJ international conference on intelligent robots and

systems (IROS) (pp. 4187–4193). IEEE.

Carpin, S., Lewis, M., Wang, J., Balakirsky, S., & Scrapper,

C. (2007). USARSim: A robot simulator for research and

education. In Proceedings of the IEEE international confer-

ence on robotics and automation (ICRA) (pp. 1400–1405).

IEEE.

Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A

fast elitist non-dominated sorting genetic algorithm for

multi-objective optimization: NSGA-II. In Parallel Prob-

lem Solving from Nature PPSN VI (pp. 849–858). Berlin:

Springer.

Der, R., & Martius, G. (2012). The LpzRobots Simulator. In

R. Der, & G. Martius (Eds.), The playful machine: theore-

tical foundation and practical realization of self-organizing

robots (Vol. 15) (pp. 293–308). Berlin, Germany: Springer

Verlag.

Jerez, J., & Suero, A. (2004). Newton game dynamics.

Retrieved www.newtondynamics.com

Koenig, N., & Howard, A. (2004). Design and use paradigms

for Gazebo, an open-source multi-robot simulator. In Pro-

ceedings of IEEE/RSJ international conference on intelli-

gent robots and systems (IROS) (pp. 2149–2154). IEEE.

Kulic, D., Ott, C., Lee, D., Ishikawa, J., & Nakamura, Y.

(2012). Incremental learning of full body motion

primitives and their sequencing through human motion

observation. International Journal of Robotics Research,

31(3), 330–345.

Massera, G., Cangelosi, A., & Nolfi, S. (2007). Evolution of

prehension ability in an anthropomorphic neurorobotic

arm. Frontiers in Neurorobotics, 1(4).

Massera, G., Tuci, E., Ferrauto, T., & Nolfi, S. (2010). The

facilitatory role of linguistic instructions on developing

manipulation skills. IEEE Compotational Intelligence Mag-

azine, 5(3), 33–42.

Mataric, M. J. (1998). Behavior-based robotics as a tool for

synthesis of artificial behavior and analysis of natural

behavior. Trends in Cognitive Sciences, 2(3), 82–86.

Metta, G., Fitzpatrick, P., & Natale, L. (2006). Yarp: Yet

another robot platform. International Journal of Advanced

Robotics Systems, special issue on Software Development

and Integration in Robotics, 3(1), 43–48.

Metta, G., Sandini, G., Vernon, D., Natale, L., & Nori, F.

(2008). The iCub humanoid robot: An open platform for

research in embodied cognition. In Proceedings of the 8th

workshop on performance metrics for intelligent systems

(pp. 50–56). New York, USA: ACM.

Michel, O. (2004). Webots: Professional mobile robot simula-

tion. Journal of Advanced Robotics Systems, 1(1), 39–42.

Miyamoto, H., & Kawato, M. (1998). A tennis serve and

upswing learning robot based on bi-directional theory.

Neural Networks, 11(7–8), 1331–1344.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C.,

Klaptocz, A., ., Martinoli, A. (2009). The e-puck, a robot

designed for education in engineering. In Proceedings of

the 9th conference on autonomous robot systems and compe-

titions (Vol. 1, pp. 59–65). IPCB.

Mondada, F., Franzi, E., & Ienne, P. (1993). Mobile robot

miniaturisation: A tool for investigation in control algo-

rithms. In Proceedings of the 3rd international symposium

on experimental robotics (pp. 501–513). Tokyo: Springer.

Nemec, B., & Ude, A. (2012). Action sequencing using dynamic

movement primitives. Robotica, 30(5), 837–846.

Nolfi, S. (2009). Behavior and cognition as a complex adap-

tive system: Insights from robotic experiments. In

C. Hooker (Ed.), Handbook of the philosophy of science.

Amsterdam, The Netherlands: Elsevier.

Nolfi, S., & Floreano, D. (2000). Evolutionary robotics. Cam-

bridge, MA: MIT Press.

Oztop, E., Bradley, N. S., & Arbib, M. A. (2004). Infant grasp

learning: A computational model. Experimental Brain

Research, 158(4), 480–503.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A.,

Brambilla, M., ., Dorigo, M. (2012). ARGoS: A modu-

lar, parallel, multi-engine simulator for multi-robot sys-

tems. Swarm Intelligence, 6(4), 271–295.

Reil, T., & Husbands, P. (2002). Evolution of central pattern

generators for bipedal walking in a real-time physics envi-

ronment. IEEE Transactions on Evolutionary Computation,

6(2), 159–168.

Reinhart, F., Lemme, A., & Steil, J. J. (2012). Representation

and generalization of bi-manual skills from kinesthetic

teaching. In Proceedings of the IEEE-RAS international

conference on humanoid robots. IEEE.

Rolf, M., Steil, J. J., & Gienger, M. (2010). Goal babbling

permits direct learning of inverse kinematics. IEEE Trans-

actions on Autonomous Mental Development, 2(3), 216–229.

264 Adaptive Behavior 22(4)

 at Consiglio Nazionale Ricerche on March 29, 2016adb.sagepub.comDownloaded from

Gianluca Massera, Tomassino Ferrauto, Onofrio Gigliotta and Stefano Nolfi, Designing adaptive

humanoid robots through the FARSA open-source framework, Adaptive Behavior (volume: 22, issue: 4)

pp. 255–265. Copyright ©[2014] (The Authors(s)). Reprinted by permission of SAGE Publications. DOI:

https://doi.org/10.1177/1059712314536909

Sandini, G., Metta, G., & Vernon, D. (2004). Robotcub: An

open framework for research in embodied cognition. In

Proceedings of IEEE/RAS international conference on

humanoid robots (pp. 13–32). IEEE.

Savastano, P., & Nolfi, S. (2012). Incremental learning in a

14 DOF simulated iCub robot: Modeling infant reach/

grasp development. In T. Prescott, N. Lepora, A. Mura, &

P. Verschure (Eds.), Biomimetic and biohybrid systems

(Vol. 7375, pp. 250–261). Berlin; Heidelberg: Springer.

Savastano, P., & Nolfi, S. (2013). A robotic model of reaching

and grasping development. IEEE Transactions on Autono-

mous Mental Development, 5(4), 326–336.

Schaal, S. (2002). Learning robot control. In M. Arbib (Ed.),

The handbook of brain theory and neural networks (pp. 983–

987). 2nd edition.Cambridge, MA: MIT Press.

Schlesinger, M., Parisi, D., & Langer, J. (2000). Learning to

reach by constraining the movement search space. Devel-

opmental Science, 3, 67–80.

Sciavicco, L., & Siciliano, B. (2004). Modelling and control of

robot manipulators. London; New York: Springer.

Sutton, R., & Barto, A. (1998). Reinforcement Learning: An

Introduction. Cambridge, MA: MIT Press.

Tikhanoff, V., Cangelosi, A., Fitzpatrick, P., Metta, G., Natale,

L., & Nori, F. (2008). An open-source simulator for cogni-

tive robotics research: The prototype of the iCub humanoid

robot simulator. In Proceedings of the 8th workshop on per-

formance metrics for intelligent systems (pp. 57–61). New

York, NY: ACM.

Tuci, E., Massera, G., & Nolfi, S. (2010). Active categorical

perception of object shapes in a simulated anthropo-

morphic robotic arm. IEEE Transactions on Evolutionary

Computation, 14(6), 885–899.

Wolpert, D. M., & Kawato, M. (1998). Multiple paired for-

ward and inverse models for motor control. Neural Net-

works, 11(7–8), 1317–1329.

Wrede, B., Rohlfing, K. J., Steil, J. J., Wrede, S., Oudeyer, P.

-Y., & Tani, J. (2012). Towards robots with teleological

action and language understanding. In IEEE humanoids,

workshop on developmental robotics. Osaka: IEEE.

Yamashita, Y., & Tani, J. (2008). Emergence of functional

hierarchy in a multiple timescale neural network model: A

humanoid robot experiment. PLoS Comput Biol, 4(11),

e1000220.

Massera et al. 265

 at Consiglio Nazionale Ricerche on March 29, 2016adb.sagepub.comDownloaded from

Gianluca Massera, Tomassino Ferrauto, Onofrio Gigliotta and Stefano Nolfi, Designing adaptive

humanoid robots through the FARSA open-source framework, Adaptive Behavior (volume: 22, issue: 4)

pp. 255–265. Copyright ©[2014] (The Authors(s)). Reprinted by permission of SAGE Publications. DOI:

https://doi.org/10.1177/1059712314536909

